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|A1|+ |Ak ∪ {x}| = (|A1|+ |Ak|) + 1 = (n− 1) + 1 = n

and

|A1 ∪ {x}|+ |Ak−1 ∪ {x}| = (|A1|+ |Ak−1|) + 2 = (n− 2) + 2 = n.

Is this a partition? It is indeed. If A ⊆ Y then only C ′i contains A where Ci is
the chain in 2Y containing A. If A = B ∪ {x} where B ⊆ Y then B ∈ Ci for
some i. If B is the maximal element of Ci then C′i is the only chain containing
A, otherwise A is contained only in C ′′i . ut

9.1.2 Application: the memory allocation problem

The following problem arises in information storage and retrieval. Suppose
we have some list (a sequence) L = (a1, a2, . . . , am) of not necessarily distinct
elements of some set X. We say that this list contains a subset A if it contains
A as a subsequence of consecutive terms, that is, if

A = {ai, ai+1, . . . , ai+|A|−1}
for some i. A sequence is universal for X if it contains all the subsets of X.
For example, if X = {1, 2, 3, 4, 5} then the list

L = (1 2 3 4 5 1 2 4 1 3 5 2 4)

of length m = 13 is universal for X.
What is the length of a shortest universal sequence for an n-element set?

Since any two sets of equal cardinality must start from different places of
this string, the trivial lower bound for the length of universal sequence is(

n
bn/2c

)
, which is about

√
2
πn2

n, according to Stirling’s formula (1.4). A trivial

upper bound for the length of the shortest universal sequence is obtained by
considering the sequence obtained simply by writing down each subset one
after the other. Since there are 2n subsets of average size n/2, the length of
the resulting universal sequence is at most n2n−1. Using Dilworth’s theorem,
we can obtain a universal sequence, which is n times (!) shorter than this
trivial one.

Theorem 9.4 (Lipski 1978). There is a universal sequence for {1, . . . , n} of
length at most 2

π2
n.

Proof. We consider the case when n is even, say n = 2k (the case of odd n
is similar). Let S = {1, . . . , k} be the set of the first k elements and T =
{k+1, . . . , 2k} the set of the last k elements. By Theorem 9.3, both S and T
have symmetric chain decompositions of their posets of subsets intom =

(
k

k/2

)

symmetric chains: 2S = C1∪ · · ·∪Cm and 2T = D1∪ · · ·∪Dm. Corresponding
to the chain

Ci = {x1, . . . , xj} ⊂ {x1, . . . , xj , xj+1} ⊂ . . . ⊂ {x1, . . . , xh} (j + h = k)
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we associate the sequence (not the set!) Ci = (x1, x2, . . . xh). Then every sub-
set of S occurs as an initial part of one of the sequences C1, . . . , Cm. Similarly
let D1, . . . , Dm be sequences corresponding to the chains D1, . . . ,Dm. If we
let Di denote the sequence obtained by writing Di in reverse order, then
every subset of T occurs as a final part of one of the Di. Next, consider the
sequence

L = D1C1D1C2 . . . D1Cm . . . DmC1DmC2 . . . DmCm.

We claim that L is a universal sequence for the set {1, . . . , n}. Indeed, each
of its subsets A can be written as A = E ∪ F where E ⊆ S and F ⊆ T .
Now F occurs as the final part of some Df and E occurs as the initial part
of some Ce; hence, the whole set A occurs in the sequence L as the part of
DfCe. Thus, the sequence L contains every subset of {1, . . . , n}. The length

of the sequence L is at most km2 = k
(

k
k/2

)2
. Since, by Stirling’s formula,

(
k

k/2

)
∼ 2k

√
2
kπ , the length of the sequence is km2 ∼ k 2

kπ · 22k = 2
π2

n. ut

9.2 Antichains

A set system F is an antichain (or Sperner system) if no set in it contains
another: if A,B ∈ F and A 6= B then A 6⊆ B. It is an antichain in the sense
that this property is the other extreme from that of the chain in which every
pair of sets is comparable.

9.2.1 Sperner’s theorem

Simplest examples of antichains over {1, . . . , n} are the families of all sets of
fixed cardinality k, k = 0, 1, . . . , n. Each of these antichains has

(
n
k

)
members.

Recognizing that the maximum of
(
n
k

)
is achieved for k = bn/2c, we conclude

that there are antichains of size
(

n
bn/2c

)
. Are these antichains the largest ones?

The positive answer to this question was found by Emanuel Sperner in
1928, and this result is known as Sperner’s Theorem.

Theorem 9.5 (Sperner 1928). Let F be a family of subsets of an n element
set. If F is an antichain then |F| 6

(
n

bn/2c
)
.

A considerably sharper result, Theorem 9.6 below, is due to Lubell (1966).
The same result was discovered by Meshalkin (1963) and (not so explicitly)
by Yamamoto (1954). Although Lubell’s result is also a rather special case
of an earlier result of Bollobás (see Theorem 9.8 below), inequality (9.1) has
become known as the LYM inequality.

Theorem 9.6 (LYM Inequality). Let F be an antichain over a set X of n
elements. Then


