
Preface

Combinatorial mathematics has been pursued since time immemorial, and at
a reasonable scientific level at least since Leonhard Euler (1707–1783). It ren-
dered many services to both pure and applied mathematics. Then along came
the prince of computer science with its many mathematical problems and
needs – and it was combinatorics that best fitted the glass slipper held out.
Moreover, it has been gradually more and more realized that combinatorics
has all sorts of deep connections with “mainstream areas” of mathematics,
such as algebra, geometry and probability. This is why combinatorics is now
a part of the standard mathematics and computer science curriculum.

This book is as an introduction to extremal combinatorics – a field of com-
binatorial mathematics which has undergone a period of spectacular growth
in recent decades. The word “extremal” comes from the nature of problems
this field deals with: if a collection of finite objects (numbers, graphs, vectors,
sets, etc.) satisfies certain restrictions, how large or how small can it be?

For example, how many people can we invite to a party where among each
three people there are two who know each other and two who don’t know
each other? An easy Ramsey-type argument shows that at most five persons
can attend such a party. Or, suppose we are given a finite set of nonzero
integers, and are asked to mark an as large as possible subset of them under
the restriction that the sum of any two marked integers cannot be marked.
It appears that (independent of what the given integers actually are!) we can
always mark at least one-third of them.

Besides classical tools, like the pigeonhole principle, the inclusion-exclusion
principle, the double counting argument, induction, Ramsey argument, etc.,
some recent weapons – the probabilistic method and the linear algebra
method – have shown their surprising power in solving such problems. With
a mere knowledge of the concepts of linear independence and discrete prob-
ability, completely unexpected connections can be made between algebra,
probability, and combinatorics. These techniques have also found striking
applications in other areas of discrete mathematics and, in particular, in the
theory of computing.

Nowadays we have comprehensive monographs covering different parts of
extremal combinatorics. These books provide an invaluable source for stu-
dents and researchers in combinatorics. Still, I feel that, despite its great po-
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tential and surprising applications, this fascinating field is not so well known
for students and researchers in computer science. One reason could be that,
being comprehensive and in-depth, these monographs are somewhat too dif-
ficult to start with for the beginner. I have therefore tried to write a “guide
tour” to this field – an introductory text which should

• be self-contained,
• be more or less up-to-date,
• present a wide spectrum of basic ideas of extremal combinatorics,
• show how these ideas work in the theory of computing, and
• be accessible for graduate and motivated undergraduate students in

mathematics and computer science.

Even if not all of these goals were achieved, I hope that the book will at
least give a first impression about the power of extremal combinatorics, the
type of problems this field deals with, and what its methods could be good
for. This should help students in computer science to become more familiar
with combinatorial reasoning and so be encouraged to open one of these
monographs for more advanced study.

Intended for use as an introductory course, the text is, therefore, far from
being all-inclusive. Emphasis has been given to theorems with elegant and
beautiful proofs: those which may be called the gems of the theory and may
be relatively easy to grasp by non-specialists. Some of the selected arguments
are possible candidates for The Book, in which, according to Paul Erdős, God
collects the perfect mathematical proofs. 1 I hope that the reader will enjoy
them despite the imperfections of the presentation.

Extremal combinatorics itself is much broader. To keep the introductory
character of the text and to minimize the overlap with existing books, some
important and subtle ideas (like the shifting method in extremal set theory,
applications of Janson’s and Talagrand’s inequalities in probabilistic existence
proofs, use of tensor product methods, etc.) are not even mentioned here. In
particular, only a few results from extremal graph theory are discussed and
the presentation of the whole Ramsey theory is reduced to the proof of one
of its core results — the Hales–Jewett theorem and some of its consequences.
Fortunately, most of these advanced techniques have an excellent treatment
in existing monographs by Bollobás (1978) on extremal graph theory, by
Babai and Frankl (1992) on the linear algebra method, by Alon and Spencer
(1992) on the probabilistic method, and by Graham, Rothschild and Spencer
(1990) on Ramsey theory. We can therefore pay more attention to the recent
applications of combinatorial techniques in the theory of computing.

A possible feature and main departure from traditional books in combi-
natorics is the choice of topics and results, influenced by the author’s twenty

1 “You don’t have to believe in God but, as a mathematician, you should believe
in The Book.” (Paul Erdős)

For the first approximation see M. Aigner and G.M. Ziegler, Proofs from THE
BOOK. Second Edition, Springer, 2000.
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years of research experience in the theory of computing. Another departure
is the inclusion of combinatorial results that originally appeared in computer
science literature. To some extent, this feature may also be interesting for
students and researchers in combinatorics. The corresponding chapters and
sections are: 2.3, 4.8, 6.2.2, 7.2.2, 7.3, 10.4–10.6, 12.3, 14.2.3, 14.5, 15.2.2, 16,
18.6, 19.2, 20.5–20.9, 22.2, 24, 25, 26.1.3, and 29.3. In particular, some re-
cent applications of combinatorial methods in the theory of computing (a new
proof of Haken’s exponential lower bound for the resolution refutation proofs,
a non-probabilistic proof of the switching lemma, a new lower bounds argu-
ment for monotone circuits, a rank argument for boolean formulae, lower and
upper bounds for span programs, highest lower bounds on the multi-party
communication complexity, a probabilistic construction of surprisingly small
boolean formulas, etc.) are discussed in detail.

Teaching. The text is self-contained. It assumes a certain mathematical ma-
turity but no special knowledge in combinatorics, linear algebra, probability
theory, or in the theory of computing — a standard mathematical background
at undergraduate level should be enough to enjoy the proofs. All necessary
concepts are introduced and, with very few exceptions, all results are proved
before they are used, even if they are indeed “well-known.” Fortunately, the
problems and results of combinatorics are usually quite easy to state and
explain, even for the layman. Its accessibility is one of its many appealing
aspects.

The book contains much more material than is necessary for getting ac-
quainted with the field. I have split it into 29 relatively short chapters, each
devoted to a particular proof technique. I have tried to make the chapters
almost independent, so that the reader can choose his/her own order to fol-
low the book. The (linear) order, in which the chapters appear, is just an
extension of a (partial) order, “core facts first, applications and recent de-
velopments later.” Combinatorics is broad rather than deep, it appears in
different (often unrelated) corners of mathematics and computer science, and
it is about techniques rather than results – this is where the independence of
chapters comes from.

Each chapter starts with results demonstrating the particular technique in
the simplest (or most illustrative) way. The relative importance of the topics
discussed in separate chapters is not reflected in their length – only the topics
which appear for the first time in the book are dealt with in greater detail.
To facilitate the understanding of the material, over 300 exercises of varying
difficulty, together with hints to their solution, are included. This is a vital
part of the book – many of the examples were chosen to complement the
main narrative of the text. I have made an attempt to grade them: problems
marked by “−” are particularly easy, while the ones marked by “+” are more
difficult than unmarked problems. The mark “(!)” indicates that the exercise
may be particularly valuable, instructive, or entertaining. Needless to say,
this grading is subjective. Some of the hints are quite detailed so that they
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actually sketch the entire solution; in these cases the reader should try to fill
out all missing details.

Feedback to the author. I have tried to eliminate errors, but surely some
remain. I hope to receive mail offering suggestions, praise, and criticism,
comments on attributions of results, suggestions for exercises, or notes on
typographical errors. I am going to maintain a website that will contain a
(short, I hope) list of errata, solutions to exercises, feedback from the readers,
and any other material to assist instructors and students. The link to this
site as well as my email address can be obtained from the Springer website

http://www.springer.de/comp/

Please send your comments either to my email address or to my permanent
address: Institute of Mathematics, Akademijos 4, 2600 Vilnius, Lithuania.
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8.1 The Erdős–Ko–Rado theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 Finite ultrafilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.3 Maximal intersecting families . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.4 A Helly-type result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.5 Intersecting systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



Contents XIII

9. Chains and Antichains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.1 Decomposition of posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.1.1 Symmetric chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.1.2 Application: the memory allocation problem . . . . . . . . . 100

9.2 Antichains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.2.1 Sperner’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.2.2 Bollobás’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.2.3 Strong systems of distinct representatives . . . . . . . . . . . . 105
9.2.4 Union-free families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10. Blocking Sets and the Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.1 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.2 The blocking number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.3 Generalized Helly theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
10.4 Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10.4.1 Depth versus certificate complexity . . . . . . . . . . . . . . . . . 115
10.4.2 Block sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.5 The switching lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.6 Monotone circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10.6.1 The lower bounds criterion . . . . . . . . . . . . . . . . . . . . . . . . 122
10.6.2 Explicit lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

11. Density and Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11.1 Dense sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11.2 Hereditary sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
11.3 Universal sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

11.3.1 Isolated neighbor condition . . . . . . . . . . . . . . . . . . . . . . . . 137
11.3.2 Paley graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

11.4 Full graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

12. Witness Sets and Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
12.1 Bondy’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
12.2 Average witnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
12.3 The isolation lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12.4 Isolation in politics: the dictator paradox . . . . . . . . . . . . . . . . . . 150
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

13. Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
13.1 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
13.2 Finite linear spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
13.3 Difference sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
13.4 Projective planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



XIV Contents

13.4.1 The construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
13.4.2 Bruen’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

13.5 Resolvable designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
13.5.1 Affine planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
13.5.2 Blocking sets in affine planes . . . . . . . . . . . . . . . . . . . . . . . 163

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Part III. The Linear Algebra Method

14. The Basic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
14.1 The linear algebra background . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
14.2 Spaces of incidence vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

14.2.1 Fisher’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
14.2.2 Inclusion matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
14.2.3 Disjointness matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

14.3 Spaces of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
14.3.1 Two-distance sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.3.2 Sets with few intersection sizes . . . . . . . . . . . . . . . . . . . . . 178
14.3.3 Constructive Ramsey graphs . . . . . . . . . . . . . . . . . . . . . . . 179
14.3.4 Bollobás theorem – another proof . . . . . . . . . . . . . . . . . . 180

14.4 Combinatorics of linear spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
14.4.1 Universal sets from linear codes . . . . . . . . . . . . . . . . . . . . 182
14.4.2 Short linear combinations . . . . . . . . . . . . . . . . . . . . . . . . . 182

14.5 The flipping cards game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

15. Orthogonality and Rank Arguments . . . . . . . . . . . . . . . . . . . . . . 191
15.1 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

15.1.1 Orthogonal coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
15.1.2 A bribery party . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.1.3 Hadamard matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

15.2 Rank arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
15.2.1 Balanced families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
15.2.2 Lower bounds for boolean formulas . . . . . . . . . . . . . . . . . 197

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

16. Span Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
16.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
16.2 Span programs and switching networks . . . . . . . . . . . . . . . . . . . . 206
16.3 Monotone span programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

16.3.1 Threshold functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
16.3.2 Non-bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
16.3.3 Odd factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
16.3.4 A lower bound for threshold functions . . . . . . . . . . . . . . . 211



Contents XV

16.4 A general lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
16.5 Explicit self-avoiding families . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Part IV. The Probabilistic Method

17. Basic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
17.1 Probabilistic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
17.2 Elementary tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
17.3 Advanced tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

18. Counting Sieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
18.1 Ramsey numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
18.2 Van der Waerden’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
18.3 Tournaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
18.4 Property B revised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
18.5 The existence of small universal sets . . . . . . . . . . . . . . . . . . . . . . 232
18.6 Cross-intersecting families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

19. The Lovász Sieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
19.1 The local lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
19.2 Counting sieve for almost independence . . . . . . . . . . . . . . . . . . . 239
19.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

19.3.1 Colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
19.3.2 Hashing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

20. Linearity of Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
20.1 Hamilton paths in tournaments . . . . . . . . . . . . . . . . . . . . . . . . . . 245
20.2 Sum-free sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
20.3 Dominating sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
20.4 The independence number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
20.5 Low degree polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
20.6 Maximum satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
20.7 Hashing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
20.8 Submodular complexity measures . . . . . . . . . . . . . . . . . . . . . . . . . 253
20.9 Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

20.9.1 Example: matrix multiplication . . . . . . . . . . . . . . . . . . . . 259
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260



XVI Contents

21. The Deletion Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
21.1 Ramsey numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
21.2 Independent sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
21.3 Coloring large-girth graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
21.4 Point sets without obtuse triangles . . . . . . . . . . . . . . . . . . . . . . . 266
21.5 Covering designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
21.6 Affine cubes of integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

22. The Second Moment Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
22.1 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
22.2 Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
22.3 Threshold for cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

23. The Entropy Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
23.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
23.2 Subadditivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
23.3 Combinatorial applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

24. Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
24.1 Satisfying assignments for 2-CNF . . . . . . . . . . . . . . . . . . . . . . . . . 286
24.2 The best bet for simpletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
24.3 Small formulas for complicated functions . . . . . . . . . . . . . . . . . . 290
24.4 Random walks and search problems . . . . . . . . . . . . . . . . . . . . . . . 294

24.4.1 Long words over a small alphabet . . . . . . . . . . . . . . . . . . 295
24.4.2 Short words over a large alphabet . . . . . . . . . . . . . . . . . . 296

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

25. Randomized Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
25.1 Zeroes of multivariate polynomials . . . . . . . . . . . . . . . . . . . . . . . . 299
25.2 Verifying the equality of long strings . . . . . . . . . . . . . . . . . . . . . . 302
25.3 The equivalence of branching programs . . . . . . . . . . . . . . . . . . . . 302
25.4 A min-cut algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

26. Derandomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
26.1 The method of conditional probabilities . . . . . . . . . . . . . . . . . . . 307

26.1.1 A general frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
26.1.2 Splitting graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
26.1.3 Maximum satisfiability: the algorithmic aspect . . . . . . . 310

26.2 The method of small sample spaces . . . . . . . . . . . . . . . . . . . . . . . 312
26.3 Sum-free sets: the algorithmic aspect . . . . . . . . . . . . . . . . . . . . . . 316
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317



Contents XVII

Part V. Fragments of Ramsey Theory

27. Ramsey’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
27.1 Colorings and Ramsey numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 321
27.2 Ramsey’s theorem for graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
27.3 Ramsey’s theorem for sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
27.4 Schur’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
27.5 Geometric application: convex polygons . . . . . . . . . . . . . . . . . . . 327
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

28. Ramseyan Theorems for Numbers . . . . . . . . . . . . . . . . . . . . . . . . 329
28.1 Sum-free sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
28.2 Zero-sum sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
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Prolog: What This Book Is About

Many combinatorial problems have the following “extremal” formulation.
Given a finite n-element set of points, the goal is to find the maximum (or
minimum) possible cardinality of a system of its subsets satisfying certain
assumptions. To get a feeling about what kind of problems this book deals
with, we list several typical examples. (Although long, the list is far from
being exhaustive.) The number(s) in brackets indicate the section(s), where
the corresponding problem is discussed.

Graphs: acquaintances and strangers

◦ In a town with n inhabitants, how many acquaintances can there be if we
know that among any k inhabitants at least two of them are strangers?
For k = 3 the answer “at most n2/4 acquaintances” was found by Mantel
in 1907. Note that this is only about a half of all n(n − 1)/2 possible
acquaintances. For an arbitrary k the answer was found by Turán in 1941,
and this fundamental result initiated the field, currently known as the
extremal graph theory. [4.3, 4.4]

◦ We want to avoid the situation that some k of inhabitants are either
mutually acquainted or are mutual strangers. Ramsey’s theorem says that
in any town with at least 4k inhabitants this bad situation will definitely
occur. On the other hand, using the probabilistic argument, Erdős has
proved that in every town with up to 2k/2 inhabitants, there exists an
arrangement of mutual acquaintances and strangers such that this bad
situation will not appear. Using the linear algebra method, Frankl and
Wilson were able even to construct such an arrangement if the town has
up to about klog k inhabitants. [27.2, 18.1, 14.3.3]

Set systems: clubs

◦ A town has n inhabitants and some number of clubs; each inhabitant
may be a member of several (or none) of them. If no club contains all the
members of another club, then we can have at most

(
n

bn/2c
)
clubs in the

town. This is the classical Sperner’s theorem. [9.2.1]
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◦ We have m clubs A1, . . . , Am with s members in each, and want to know
their number m. We can try to form m new “fictive” clubs B1, . . . , Bm,
each with r members such that Ai and Bj will share a member if and only
if i 6= j. If we succeed in doing so, then we know the answer: m 6

(
s+r
s

)
.

This result, due to Bollobás, generalizes Sperner’s theorem and is one of
the corner-stones in extremal set theory. [9.2.2]

◦ A collection of clubs forms a “sunflower” if each inhabitant, participating
in at least one of them, is either a member of all or of precisely one of
these clubs. A classical result of Erdős and Rado says that if each club
has s members and we have more than s!(k − 1)s clubs in a town, then
some k of them will form a sunflower. [7.1]

◦ We want to form as few clubs as possible with the property that if we take
any set of k inhabitants and arbitrarily split them in two groups, then
there will be a club which contains among its members all the inhabitants
from the first group and none from the other. It is clear that 2n clubs
are enough and that we need at least 2k clubs (or more, if k < n). Using
the probabilistic method it can be shown that, somewhat surprisingly, it
is possible to achieve this situation with only about k2k log n clubs. Such
collections of clubs are important in many applications, such as testing
logical circuits, construction of k-wise independent random variables, etc.
[11.3, 14.4.1, 18.5]

◦ Each of n inhabitants participates in the lottery, where he/she can win
with equal probability some amount x of points, 0 6 x 6 N . After
that, each club calculates the total sum of points gained by its members.
What is the probability that precisely one club will have the smallest
(or the largest) total yield? The isolation lemma, due to K. Mulmuley,
U. Vazirani, and V. Vazirani, says that (independent of how the clubs are
formed) this will happen with probability at least 1− n/N . [12.3]

◦ The city council selects some s numbers and passes a rule that if a pair of
clubs share ` members, then this ` must be among the given s numbers.
How many clubs can be formed under this rule? Using the linear algebra
method it can be proved that (no matter what the selected numbers are)
the inhabitants can form at most

∑s
i=0

(
n
i

)
clubs. This far reaching exten-

sion of Fisher’s inequality is the celebrated Ray-Chaudhuri–Frankl–Wilson
theorem. [14.3.2]

Numbers

◦ A set of integers is sum-free if the sum of every two (not necessarily
distinct) of its elements does not belong to it. In 1965 Erdős, using a
probabilistic argument, proved that every set of N nonzero integers always
contains a sum-free subset of at least size N/3. [20.2]

◦ Given an integer k, how long must a sequence of integers a1, . . . , an be in
order to be sure that it contains a subsequence of (not necessarily consec-
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utive) elements whose sum is divisible by k? The sequence 0 . . . 01 . . . 1 of
k − 1 subsequent 0’s and 1’s shows that the sequence must have at least
2k − 1 numbers. Using an algebraic argument, it can be shown that every
sequence of 2k−1 numbers will already have the desired subsequence. [28.2]

◦ If somebody gives us a sequence of more than sr integers, then we (without
looking at that sequence) can be sure that it contains either a subsequence
of s (not necessarily consecutive) increasing numbers or a subsequence of
r decreasing numbers. This result was first proved by Erdős and Szekeres
in 1935. In 1959 Seidenberg found a very short proof using the pigeonhole
principle. [4.2]

Geometry

◦ What is the maximal set of points in the n-dimensional Euclidean space
R
n, such that all angles determined by three points from the set are

strictly less than π/2? It was an old conjecture of Danzer and Grünbaum
that any such set can have at most 2n − 1 points. Using the probabilistic
method, Erda̋s and Füredi disproved this conjecture: there is such a set
with about 1.15n points. [21.4]

◦ In 1944 Hadwiger proposed the following question: how many colors do
we need in order to color the points of the n-dimensional Euclidean space
R
n so that each monochromatic set of points misses some distance? A

set is said to “miss distance” d if no two of its points are at distance d
apart from each other. This turns out to be quite a hard problem; the
exact answer is not known even for the plane (where n = 2). In 1972
Larman and Rogers proved that about 2.8n colors are enough. Using the
linear algebra method, in 1981 Frankl and Wilson were able to prove that
this exponential bound is not far from the truth: at least 1.2n colors are
necessary. [14]

Complexity theory

◦ Let f be a boolean function and a be an input vector. A certificate
of a is a set of its bits such that looking at only these bits of a we
can determine the value f(a). A decision tree for f is a deterministic
algorithm which, given an input a, tests its bits one-by-one in a prescribed
order and outputs the value f(a). Suppose we know that all inputs have
certificates of size at most k. How many tests must a decision tree make
on the worst case input? It turns out that k2 tests are always enough. [10.4]

◦ Given a set of m 0-1 vectors, how many of their bits must be exposed
in order to distinguish every single vector from the remaining vectors in
the set? It turns our that, on average, it is enough to expose at most√
m bits, and there are sets for which this bound cannot be improved. [12.2]



4 Prolog: What This Book Is About

◦ With every boolean function f on 2n variables we can associate a graph
Gf whose vertices are 0-1 vectors of length n, and two vertices a, b are
joined by an edge precisely when f(a, b) = 1. If the graph Gf has a
“complicated” structure, then (intuitively) the function f should be hard
to compute, that is, should require a large formula or circuit. Using the
probabilistic argument, Razborov has proved that this intuition may be
false! [24.3]

◦ Given a boolean function, how many And, Or and Not operations do
we need to represent it as a formula? The difficulty in proving that a
given boolean function has high complexity (i.e., requires large formulas,
or large circuits, etc.) seems to lie in the nature of the adversary: the
algorithm. Fast algorithms may work in a counterintuitive fashion, using
deep, devious, and fiendishly clever ideas. How could one prove that there
is no clever way to quickly solve a given problem? This has been the
main issue confronting the complexity theorists since the early 1950’s. We
will show how, using non-trivial combinatorial arguments, this task can
be solved for different models of computation – like DeMorgan formulas,
combinational circuits, and span programs – under additional restrictions
on the use of Not gates. [10.6, 15.2.2, 16.4, 16.5]

In this book we will learn some of the most powerful combinatorial tools
which have proved useful in attacking such and similar problems:

1. basic methods: the double counting argument, the pigeonhole principle,
the inclusion-exclusion formula, the averaging argument, etc.

2. the linear algebra method
3. the probabilistic method
4. Ramsey arguments.

These tools are presented in a form acceptable also to a reader from other
fields of mathematics and computer science. (However, the reader should not
be immediately disappointed if some of the seemingly “simple” proofs would
require a half an hour of thinking – bright brains have spent maybe months
to produce them!) The emphasis is made on learning methods rather than
the results themselves – these are chosen to illustrate the way of reasoning
in elegant and simple form.

Most of the results and techniques presented in this book are motivated
by applications in the theory of computing. A fundamental problem of this
theory – known as the lower bounds problem – is to prove that a given function
cannot be computed within a given amount of resourses (time, space, chip-
area, etc.). This is an extremal problem per se and we will demonstrate
the role of combinatorial reasoning in its solution for different models of
computation: resolution refutation proofs, boolean formulas, circuits, span
programs and multi-party communication protocols (Sects. 10.4, 10.5, 10.6,
15.2.2, 16, 24, 29.3).



Notation

In this section we give the notation that shall be standard throughout the
book.

Sets

We deal exclusively with finite objects. We use the standard set-theoretical
notation:

|X| denotes the size (the cardinality) of a set X.
A k-set or k-element set is a set of k elements.
[n] = {1, 2, . . . , n} is often used as a “standard” n-element set.
A−B = {x : x ∈ A and x 6∈ B}.
A = X\A is the complement of A.
A⊕B = (A−B) ∪ (B −A) (symmetric difference).
A×B = {(a, b) : a ∈ A, b ∈ B} (Cartesian product).
A ⊆ B if B contains all the elements of A.
A ⊂ B if A ⊆ B and A 6= B.
2X is the set of all subsets of the set X. If |X| = n then

∣∣2X
∣∣ = 2n.

A permutation of X is a one-to-one mapping (a bijection) f :X → X.
{0, 1}n = {(v1, . . . , vn) : vi ∈ {0, 1}} is the (binary) n-cube.
0-1 vector (matrix) is a vector (matrix) with entries 0 and 1.
An m× n matrix is a matrix with m rows and n columns.
The incidence vector of a set A ⊆ {x1, . . . , xn} is a 0-1 vector
v = (v1, . . . , vn), where vi = 1 if xi ∈ A, and vi = 0 if xi 6∈ A.
The characteristic function of a subset A ⊆ X is the function
f : X → {0, 1} such that f(x) = 1 if and only if x ∈ A.

Arithmetic

Some of the results are asymptotic, and we use the standard asymptotic
notation: for two functions f and g, we write f = O(g) if f 6 c1g + c2 for
all possible values of the two functions, where c1, c2 are absolute constants.
We write f = Ω(g) if g = O(f), and f = Θ(g) if f = O(g) and g = O(f).
If the limit of the ratio f/g tends to 0 as the variables of the functions tend
to infinity, we write f = o(g). Finally, f . g means that f 6 (1 + o(1))g,
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and f ∼ g denotes that f = (1 + o(1))g, i.e., that f/g tends to 1 when the
variables tend to infinity. If x is a real number, then dxe denotes the smallest
integer not less than x, and bxc denotes the greatest integer not exceeding
x. As customary, Z denotes the set of integers, R the set of reals, Zn an
additive group of integers modulo n, and GF(q) (or Fq) a finite Galois field
with q elements. Such a field exists as long as q is a prime power. If q = p
is a prime then Fp can be viewed as the set {0, 1, . . . , p − 1} with addition
and multiplication performed modulo p. The sum in F2 is often denoted by
⊕, that is, x ⊕ y stands for x + y (mod 2). We will often use the so-called
Cauchy–Schwarz inequality (see Proposition 14.4 for a proof): if a1, . . . , an
and b1, . . ., bn are real numbers then

( n∑

i=1

aibi

)2

6

( n∑

i=1

a2
i

)( n∑

i=1

b2i

)
.

If not stated otherwise, e = 2.718... will always denote the base of the natural
logarithm.

Graphs

A graph is a pair G = (V,E) consisting of a set V , whose members are
called vertices (or nodes), and a family E of 2-element subsets of V , whose
members are called edges. A vertex v is incident with an edge e if v ∈ e. The
two vertices incident with an edge are its endvertices or endpoints, and the
edge joins its ends. Two vertices u, v of G are adjacent, or neighbors, if {u, v}
is an edge of G. The number d(u) of neighbors of a vertex u is its degree. A
walk of length k in G is a sequence v0, e1, v1 . . . , ek, vk of vertices and edges
such that ei = {vi−1, vi}. A walk without repeated vertices is a path. A walk
without repeated edges is a trail. A cycle of length k is a path v0, . . . , vk with
v0 = vk. A (connected) component in a graph is a set of its vertices such that
there is a path between any two of them. A graph is connected if it consists
of one component. A tree is a connected graph without cycles. A subgraph
is obtained by deleting edges and vertices. A spanning subgraph is obtained
by deleting edges only. An induced subgraph is obtained by deleting vertices
(together with all the edges incident to them).

A complete graph or clique is a graph in which every pair is adjacent. An
independent set in a graph is a set of vertices with no edges between them.
The greatest integer r such that G contains an independent set of size r is
the independence number of G, and is denoted by α(G). A graph is bipartite
if its vertex set can be partitioned into two independent sets.

A legal coloring of G = (V,E) is an assignment of colors to each vertex
so that adjacent vertices receive different colors. In other words, this is a
partition of the vertex set V into independent sets. The minimum number of
colors required for that is the chromatic number χ(G) of G.
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Set systems

A set system or family of sets F is a collection of sets. Because of their inti-
mate conceptual relation to graphs, a set system is often called a hypergraph.
A family is k-uniform if all its members are k-element sets. Thus, graphs are
k-uniform families with k = 2. The rank of a family is the maximum cardinal-
ity of its member. A blocking set (or transversal) of F is a set which intersects
every member of F . The minimum number of elements in a blocking set of a
family F is its blocking number, and is denoted by τ(F).

The notions of independent set and chromatic number extend to set sys-
tems. For a set system F over the universe X, the subset S ⊆ X is called
independent if S does not contain any member of F . An r-coloring of F is a
map h:X → {1, 2, . . .} which assigns to each point x ∈ X its “color” h(x).
Such a coloring is legal if none of the members of F is monochromatic, i.e., if
for all A ∈ F there exist x, y ∈ A such that h(x) 6= h(y). The independence
number α(F) and the chromatic number χ(F) are defined as for graphs.

Three representations

In order to prove something about families of sets (as well as to interpret the
results) it is often useful to keep in mind that any family can be looked at
either as a 0-1 matrix or as a bipartite graph.

Let F = {A1, . . . , Am} be a family of subsets of a set X = {x1, . . . , xn}.
The incidence matrix of F is an n × m 0-1 matrix M = (mi,j) such that
mi,j = 1 if and only if xi ∈ Aj . Hence, the jth column of M is the incidence
vector of the set Aj . The incidence graph of F is a bipartite graph with parts
X and F , where xi and Aj are joined by an edge if and only if xi ∈ Aj .
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Fig. 0.1. Three representations of the family F = {A1, A2, A3} over the set of
points X = {1, 2, 3, 4, 5} with A1 = {1, 2, 3}, A2 = {2, 4} and A3 = {5}

Projective planes

To justify the optimality of some results, we will often refer to the following
regular families. Let n = q2 + q + 1. A projective plane of order q is a family
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of n subsets (called lines) of an n-element set X (of points) satisfying the
following four conditions:

- every line has exactly q + 1 points;
- every point belongs to exactly q + 1 lines;
- every two lines meet in exactly one point;
- any two points lie on a unique line.

Such a family exists for any prime power q; see Chap. 13 for more details.

Boolean functions

A boolean function f = f(x1, . . . , xn) on the n variables x1, . . . , xn is simply
a function f : {0, 1}n → {0, 1}. In particular,

0, 1, x1 ∧ · · · ∧ xn, x1 ∨ · · · ∨ xn, x1 ⊕ · · · ⊕ xn

denote, as usual, the two constant functions, the And function (whose value
is 1 iff xi = 1 for all i), the Or function (whose value is 0 iff xi = 0 for all
i), and the Parity function (whose value is 0 iff xi = 1 for an even number of
variables xi). For a function f , we let f = f ⊕ 1 denote its complement, Not
f . The functions xi and xi are called literals (or atoms).

A monomial is an And of literals, and a clause is an Or of literals. The
number of literals in a clause or monomial is its length (or size). The Or
of an arbitrary number of monomials is a disjunctive normal form (DNF).
Dually, the And of an arbitrary number of clauses is a conjunctive normal
form (CNF). A boolean function f is a t-And-Or function if it can be written
as an And of an arbitrary number of clauses, each being an Or of at most t
literals. That is, a function is t-And-Or function if it can be represented by a
CNF, all whose clauses have length at most t. Dually, a boolean function f an
s-Or-And if it can be written as an Or of an arbitrary number of monomials,
each being an And of at most s literals.


