1 More hints and solutions

1.16
We have

(o) >

Since In(1 +¢) >t — 3t for t > 0,

ln(nﬁk)n_k > (n—k) lnfk_2(nk—2k)2]

Hence v~ = /27 - el/6k . ek I/l = \/2rk - ek”/n+1/6k

1.17

Say that a k-element subset S C {1,2,...,n} is good if z # y+ 1 for all z,y € S, z # y.
Our goal is to compute the number N of such subsets. Let S = {a1,,a2,...,ar} be a good
subset with a; < ag < ... < ak. Then the set S’ = {a1,a2—1,...,a;,—(k—1)} is a k-element
subset of {1,2,...,n—k+1}. Hence, L < ("_,I§+1). On the other hand, for every k-element
subset {b1 < by <...<bg}of {1,2,...,n—k+1}, theset S = {b1,bo+1,...,bp+(k—1)}
is a good subset of {1,2,...,n}. Hence, L > (”_EH).

1.26

Let n be the number of objects, z the number of bins, z the number of bins that are not
red and y the number of bins that are not blue. There are 2" ways of sorting the objects
into bins; " of these ways shun red and y™ of them shun blue. So where A is the number
of ways that shun both colors, B is the number of ways that shun red but not blue, C is
the number of ways that shun blue but not red, and D is the number of ways that shun
neither, we have z" = A+ B, y" = A+ C and 2" = A+ B + C 4+ D. These equations give
"™ + y™ = 2" if and only if A = D, which is to say, if and only if the number of ways of
sorting objects into a row of colored bins that shun both colors is equal to the number of
ways that shun neither.

2.8
By Eq. (1.8), the right-hand sum can be written as
m m m m
Z Z Z Y N4 = Z Z Zd(x)’
11=1 tp—1=1 A,-ke}" i11=1 tg—1=1xz€Y

where Y = Y (i1,...,45—1) := 4;; N---N A;,_,. Changing the order of the summation, we
obtain )y d(z)- N(z), where N(z) is the number of (k —1)-tuples of sets in F containing
the point z. Since N(z) = d(z)*~!, we are done.



2.15
First, by (1.7) and (1.9),

1 d(x
Z|5mgj\:§(Z|s,-nsj|—z|si|) (Zd Zd(x)>zz((2)>.
i<j 0 i z€V seV eV

NOW, by (11)’
i<j {ijleE
Hence,
> (d(x)) <k-|B|.
zeV 2

On the other hand, by (i) we know that

S d(z)=>[Si| =n-r.
i=1

zeV

Hence, the sum Y,y (d(;)) is minimized when d(z) = r for all z € V, implying that
T d(x)
zEV

For an edge e = {z,y}, let t(e) be the number of triangles containing e. Let B = V' \ {z, y}.
Among the vertices in B there are precisely t(e) vertices which are adjacent to both z
and y. Every other vertex in B is adjacent to at most one of these two vertices. Thus,
d(z) + d(y) — t(e) < n. Summing over all edges e = {z,y} we obtain

> (d(z) +d(y)) = Y _t(e) <n-|El.

eckE eck

4.16

The second term on the left-hand side is equal to 3 - ¢(G) whereas the first is equal to
Y sev d(z)? which, by Cauchy Schwarz inequality is at least (¥, d(z))? /n = 4 - |E[*/n.
Altogether this yields the desired lower bound on #(G).

4.17

Let G = (V, E) be a (k,r)-sparse graph on n vertices, and let N be the sum, over all k-
element subsets S of V', of the number of edges spanned by S. That is, N = > ¢|E(S)|
where E(S) is the set of edges from E having both endpoints in S. Every edge of E is
spanned by precisely (z:g) of the sets S. By double-counting,
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here the first equality is Exercise 1.10, and the inequality holds because N/ (’,:) is the average
number of edges in F spanned by a k-element set, and hence, cannot exceed r.

9.4

Observe that

Al _n—|A B —|B|—
T Mgl = 3T plBIHClne Bl
CCACD BCD\C

and that by the binomial theorem, for any set X we have that

o (1X1\ i xc
Y pB B =y ( i >pzq|X—z —(p+rgX =1.

BCX i=0

13.7

Suppose not, i.e., LN S = {z} for some z € S and line L. There are ¢ + 1 points in S
besides z, and for every such points there must be a line # L, connecting it with . So, we
would have g 4+ 2 lines through z, a contradiction.

13.12
Srer, @ = Y5 (a))t = Y5 (at)F = ((at) 1 = 1)/(a* - 1).

20.16

Let I;, 5 = 1,...,n, be the set of positions in w where the jth letter of the alphabet appears.
Assume that |I;| = N/n for all i. The number of good r-subsets wj,,...,w;, equals the
number (') of possibilities to choose r blocks of positions, times the number (N/n)" of
possibilities to arrange the corresponding (to these blocks) r letters to their positions (one
letter can appear in N/n possible positions). Thus

)<<%)’"-<:><(%)’“-<¢>:<n>r
RO

T

7,.7'
- — A~
r!

To get rid of the e" term, use more tight lower bound for the binomial coefficient, given in
Ex. 1.16.

2 More exercises

2.1 A Ramsey-type theorem for set intersections

Use double-counting to prove the following Ramsey-type result:



Given any integer k > 2, there exists an integer n such that given any n mn-elements
subsets of [2n — 1] = {1,2,...,2n — 1}, there exist k of these subsets with at least &
elements in common.

Show that the result holds for n < k- 2F + (5) + 1.

Hint: (Ramras 2002): For each n > k consider bipartite graphs G = (X,Y, E) where X =
any family of n n-elements subsets of [2n — 1]; ¥ = the family of all k-element subsets of
[2n — 1], and (z,y) € E iff £ D y. Suppose the statement is false, and show that then
deg(y) < k — 1 for every y € Y. Use this to get a contradiction with the (obvious) fact that

Y rex deg(z) =30, oy deg(y)-
To get the desired upper bound on n, observe that

n 2n —1
= < . .
n(k> IEI_( k ) mapx deg(y)

2.2 Ramsey theorem for bipartite graphs

Use the Pigeon-hole principle and the previous exercise to prove the following:

For any integer k there exists an integer m such that given any r-coloring of the edges
of the complete bipartite graph K, ,,, there exists a monochromatic induced subgraph
isomorphic to Ky .

Hint: Choose n according to the previous exercise, and let m = nr — 1. Let the bipartition of
Kpm,m be (A, B). Apply the Pigeonhole principle to show that, for each vertex a € A, some
n edges incident with a must receive the same color; call that color ¢(a), and assign vertex a
the color ¢(a). Apply the Pigeonhole principle once again, this time to the r-colored vertices
of A, to show that some set A’ C A of |A'| = n vertices of A will receive the same color, say,
red color. Consider the family of n sets R(a) = {b € B : edge (a,b) is red} with a € A', and
apply the previous exercise.

2.3 List chromatic number of bipartite graphs

Let G = (V1, Vs, E) be a bipartite graph with |Vi| = |V2| = n and with a list C, of at
least log, n colors associated with each vertex v. Prove that there is a legal coloring of G
assigning to each vertex v a color from its list C,,.

Comment: Hence, every bipartite n x n graph G has list chromatic number

x¢(G) < log, n.

Hint: Let C be the union of all sets C,. For each ¢ € C' choose, randomly and independently,
a value i. € {1,2}. The colors ¢ for which i, = i will be the ones to be used for coloring the
vertices in V;. Use the counting sieve to prove that for every i € {1,2} and for every v € V;,
there is at least one color ¢ € C, such that i. = 1.



2.4 Rich submatrices

Let M be a matrix with arbitrary entries. Let A(M) be the minimum number such that
in every row and in every column each entry can appear at most A(M) times. Prove the
following:

In every #2 x t? matrix M there is a ¢ X ¢ submatrix containing at least

t2
AA(M)

different entries.

Sketch: (Ajtai 1999) Let M(X,Y) = {M(z,y) : x € X, y € Y} be an arbitrary matrix with
|X| = |Y]| = t2. Apply the following greedy strategy to construct the sequence of pairs of sets
of rows X; = {z1,...,%;} and columns Y; = {y1,...,y;} for i = 1,...,¢: at i-th step pick
x; € X and y; € Y so that the difference D; = |M(X;,Y;)| — |[M(X;—1,Y;—1)| is maximal. It
is enough to show that, for every i > %—i— 1, either |M (X;-1,Yi—1)| > % (and we can stop the
procedure) or D; > 2L For this, assume that i > £ + 1 but |M(X;_1,Y;_1)| < %. Argue
that then, for every j =1,...,i — 1, the set

Wi={y€eY: M(z;,y)  M(X;_1,Yi1)}

has at least % elements. Hence, Z;;ll |W;| > gLAS. Use double-counting to show that some
y € Y\ Y;_; must belong to at least 2t sets W;. Take y; =y (why y ¢ ¥;_17) and pick an

z; € X \ Xi_ arbitrarily to show that D; > 2k.

2.5 Degree of induced subgraphs

For a graph G = (V, E), let dave(G) = ﬁ Y vey d(v) be the average degree and duwin(G) =
min{d(v) : v € V} the minimum degree of its vertices. Prove the following: every graph G
contains an induced subgraph H such that daye(H) > dave(G) and dpin(H) > %dave(H )-

Hint: Try to delete vertices of small degree one by one, until only vertices of large degree
remain.

2.6 Clique number of 4-cycle-free graphs

A graph is Cy-free if it contains no cycle of length four as an induced(!) subgraph. Recall
that the clique number w(G) (resp., the independence number a(G)) of a graph G denotes
the maximum number of vertices of G all (resp., none) of which are adjacent.

(a) Show that for every Cy-free graph G = (V, E),
V]

(G

w(G) >



Hint: Fix an independent set S = {z1,...,2,} with a = a(G). Let A; be the set of neighbors
of z; in G, and B; the set of vertices whose only neighbor in S is x;. Consider the family F
consisting of all a sets {z;} UB; and (5) sets A;NA;. Show that: (i) each member of F forms
a clique in G, and (ii) the members of F cover all vertices of G.

(b) Let G be a Cy-free graph with n vertices and minimum degree d. Prove that for every
t < a(@),

d-t—n
w(G B
(@)=

Hint: Take an independent set S = {z1,...,x;} of size t and let A4; be the set of neighbors of
z; in G. Let m be the maximum of |4;NA;| over all 1 < ¢ < j < t. Use the inclusion-exclusion

principle to show that
t
> td —
2=y}

(c) Combine parts (a) and (b) to prove the following result due to Gyérfas, Hubenko and
Solymosi (Combinatorica, 22:2, 2002): there is an absolute constant ¢ > 0 such that
if G = (V, E) is a Cy-free graph on |V| = n vertices, then

t

U

i=1

and argue that m < w(G).

clBf?
n3

w(G) >

Comment: Note that being Cy-free here is very important: for example, a complete bipartite
graph K, , has n?/4 edges but w(K, ) = 2.

Hint: Let a be the average degree of G; hence, a = 2|E|/n. By the previous exercise (about
degrees of induced subgraphs), we already know that G has an induced subgraph of average
degree > a and minimum degree > a/2. So, we may assume w.l.o.g. (why?) that the graph G
itself has these two properties. Now consider two cases depending on whether a(G) is larger
than Cn/a or not (for an appropriately chosen constant C). If yes, apply part (b); if not,
apply part (a). Show that in both cases, w(G) = Q(a?/n).

2.7 Zero-patterns of polynomials

Let f = {fi(z1,...,2n) : i =1,...,m} be a sequence of polynomials over some field F'. For
v € F™, a zero-pattern of f on a v is the set

S(Ev)={i: fi(v) =0} C{1,...,m};

the point v is a witness for this zero-pattern. Let Zp(f) denote the number of zero-patterns
of f as v ranges over F™. Let d; denote the degree of f;, and D = Y7, d;. Prove that

Zp(f) < <n+D>-

n



2.8

Sketch: (Roényai, Babai, and Ganapathy, J. of AMS, 14:3, 2001) Assume that f has M zero-

patterns, and let vy, ..., vy be witnesses to each zero-pattern. Let S; = S(f,v;) and consider
the polynomials g; = [[;cg, fr- Observe that g;(v;) # 0 if and only if S; C S;, and show that
the polynomials ¢, ..., gy are linearly independent over F.

Matrix rank and Ramsey graphs

Let R be a ring and A = (a;j) be an n x n matrix with entries from R. The rank rkp(A)
of A over R is defined as the minimum number r for which there exists an n X r matrix
B and an r x n matrix C over R such that A = B - () if all entries of A are zeroes then
l‘kR(A) =0.

(a)

Suppose that R = F' is a field. Show that then rkz(A) coincides with the usual matrix
rank over F.

Hint: B-C is a set of linear combinations of the rows of B, given by columns of C.

Suppose that A has no zero column and that every row of A contains at most s
non-zero entries. Prove that rkr(A) > n/s.

A matrix A = (a;;) is (lower) co-triangular if a;; = 0and a;; # 0 forall1 < j <i < mn.
Prove that if R = GF(p) for some prime p, then rkp(A4) > n'/-1 —p,

Hint: Since p is a prime, a?~ ! = 1 for every a # 0 in GF(p). Use part (a) to represent the
matrix as the product A = B - C of two matrices. For i = 1,...,n consider the polynomials
fi(x) = 1 — gi(z)P~! in r variables z = (z1,...,z,) over GF(p), where g;(z) is the scalar
product of z with the i-th row of B, and show that the polynomials fi,..., f, are linearly
independent over GF(p).

(Grolmusz 2000) Consider the ring Zg of integers modulo 6, and let A = (a;;) be
an n X n co-triangular matrix over Zg. Consider the graph G4 = (V, E) with V =
{1,...,n}; two vertices ¢ and j are adjacent iff 1 > j and a;; is odd. Prove the
following: if r = rkz,(A) then the graph G 4 contains neither a clique on r+ 2 vertices
nor an independent set of size (r + 3)2 + 1.

Comment: Hence, low-rank co-triangular matrices can be used to construct graphs with good
Ramsey properties.

Hint: Tt is clear that that rkgp(,)(A4) < r for both p = 2,3. Show that every clique in G4
of size t corresponds to a t x t lower co-triangular submatrix of A over GF(2), and every
independent set of site ¢ corresponds to a ¢ x t lower co-triangular submatrix of A over GF'(3).
In both cases apply the estimate ¢ < (r + p)P~! from part (c).



2.9 Rank of generalized intersection matrices
Let A= {A4,...,An} be a family of subsets of [n] = {1,...,n}, and
f(.Tl,... ,.’L‘n) = Z (J,IX[
ICIn]

be a multi-linear polynomial, where X7 = [[;c; z;. Assume that all the coeflicients ar either
all are non-negative integers, or all belong to the ring Z, for some r. The weight of f is
the number w(f) of monomials in f with nonzero coefficients. Let f(A) = {Bi,...,Bn}
denote the family of subsets of monomials(!) of f which is defined as follows. Take the
incidence n x m matrix M of A. The rows of the incidence matrix N of f(.A) correspond to
monomials of f; there are ay identical rows of N corresponding to the same monomial X7.
The row corresponding to a monomial X; = [[;c; #; of f is just a component-wise AND of
the rows ¢ of M with i € I.

(a) Show that
f(AinN Aj) = |Bi N Bj|
for all 7, j; here f(A; N A;) denotes the value of f on the incidence vector of A4; N A;.
(b) Show that the matrix
Ip(A) ={f(A4in 4;) : 1 <4,j <m}
has rank at most w(f) over the field of real numbers.

Hint: Use part (a) of the previous exercise to show that if M is a square matrix of
intersection sizes of subsets of some domain D, then rkr(M) < |D|, and apply part (a)
of this exercise.

2.10 Zeroes of multivariate polynomials

Let f(z1,...,Z,) be a polynomial in n variables over an arbitrary field F. Suppose that
the degree of f as a polynomial in z; is d;, for 1 < ¢ < n. Let S; C F be a set of at least
d; + 1 distinct elements of F, i = 1,...,n. Prove the following:

If f is not the zero polynomial, then f(s1,...,s,) # 0 for at least one point (s1,...,sy)
in 81 X -+ x Sy.

Comment: Note that this is a “granulated”version of Zippel’s lemma (Lemma 25.2 in the
book) where all sets S; are required to have the size

|S;| > max{d:,...,dp} + 1.

Hint: (Alon and Tarsi 1992) Prove the reversed claim: if f(s1,...,s,) = 0 for all n-tuples
(s1,-.-,8n) in Sy X --- x Sy, then f = 0. Proceed by induction on n. In the induction step,
write f as a polynomial in z,, that is

dn
f = Zfi(.’lil, .. .,.’L'n_l).'llzn
i=1

Show that all the polynomials f; vanish on Sy x---xS,,_1, and apply the induction hypothesis.



2.11 Nullstellensatz

Let f(z1,...,%,) be a polynomial in n variables over an arbitrary field F, and let deg(f)
denote the total degree of f. Prove the following special case of Hilbert’s Nullstellensatz:

Let S1,...,S, be nonempty subsets of F' and define

gi(z;) = H (z; — s).

SES;
If f(s1,...,80,) =0 for all (s1,...,8,) € S1 X -+ xSy, (that is, if f vanishes on all the
common zeros of gi,...,gy), then there are polynomials h;(x1,...,2,), i = 1,...,n
satisfying deg(h;) < deg(f) — deg(g;) so that
f=> higi.
=1

Hint: (Noga Alon) Define d; = |S;| — 1 for all 4, and consider polynomials

d;
gi(zi) = H (zi—s) = 37?"“ - Zaiﬂff-
7=0

s€S;

Observe that if z; € S; then g;(z;) = 0, that is,

d;
ght = Zaing. (%)
=0

Let f' be the polynomial obtained by writing f as a linear combination of monomials and
replacing, repeatedly, each occurrence of xf (1 <4 < n), where f; > d;, by a linear com-
bination of smaller powers of z;, using the relations (x). Show that: (i) f’ is obtained from
f by subtracting from it products of the form h;g; where deg(h;) < deg(f) — deg(g;); (ii)
f'(z) = f(z) for all z € Sy x --- x Sp, and (iii) f'(z) =0 for all x € Sy x --- x Sp, and use
the previous exercise.

2.12 Combinatorial Nullstellensatz

Let f(x1,...,z,) be a polynomial in n variables over an arbitrary field F. Prove the
following;:

Let t1,...,t, be no-negative integers such that >>"
i—1 ti = deg(f). If the coefficient of

the monomial [T* ) )
i—1 ;" in f is nonzero, then for any subsets Si,...,S, of F' of size

|Si| > t;+1, there exists a point (a1, ..., a,) in Sy x---x S, for which f(ai,...,a,) #0.

Hint: (Noga Alon) We may assume that |S;| = ¢; + 1 for all i. Suppose the result if false,
and define g;(z;) = [[,cs, (xi —s). Let hi,...,h, be the polynomials guaranteed by the
Nullstellensatz from the previous exercise. Let a and b be, respectively, the coefficients of
[T, z¥ in f and in > | h;g;. By assumption, a # 0, and hence, it should be that b # 0.
Use the facts that deg(hig;) < deg(f) and that z%*' is a monomial of g;(z;) to show that
b=0.



2.13 Regular subgraphs

A graph is p-regular if all its vertices have degree p. Use the abridged version of Combinato-
rial Nullstellensatz to prove the following theorem of Alon, Friedland and Kalai (J. Comb.
Theor. B 37, 1984):

Let G = (V,E) be a graph. Assume that G has no loops but multiple edges are
allowed. Let p be a prime number. If G has average degree bigger that 2p — 2 and
maximum degree at most 2p — 1, then G contains a spanning p-regular subgraph.

Sketch: (Noga Alon) Associate each edge e of G with a variable z, and consider the polynomial

=TI |r- (Zav,eme)p_l] “Tla-=)

veV ecE ecE

over GF(p), where a,, = 1if v € e and a,,, = 0 otherwise. Show that the total degree of f is
|E| and apply the abridged version of the Combinatorial Nullstellensatz to f. Take a point
z = (z, : e € E) for which f(x) # 0. Argue that z # (0,...,0) and that, for this vector,
Y ecE Qu,eTe is divisible by p for every v. Take the subgraph H consisting of all edges e € E
for which z, = 1, and show that this subgraph must be p-regular.

2.14 The permanent lemma

Let A = (a;;) be an n x n matrix over a field F'. The permanent Per(A) of A is a sum of n!
products ai;,a2i, -+ * an;,, where (i1,%9,...,4,) is a permutation of (1,2,...,n). Prove the
following:

If Per(A) # 0, then for any vector b € F", there is a subset of the rows of A whose
sum differs from b in all coordinates.

Hint: Consider the polynomial f = [T, (37—, aiz; — b;) and apply the abridged version
of Combinatorial Nullstellensatz with all S; = {0,1}.
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