
Lecture Notes

Interactive Proof Systems

Jaikumar Radhakrishnan and Sanjeev Saluja
Theoretical Computer Science group

Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay �������

email�fjaikumar�salujag�tcs�tifr�res�in

�� February� ����

Technical Report No�� TCS	��
�

Preface

In Spring ����� we taught a course called Interactive Proof Systems at TIFR� Bombay� The
class met once a week for three hours� The lecture notes supplied for this course are collected
in this report�

We had intended to provide an introduction to the area of computational complexity for an
audience with no prior exposure to Theoretical Computer Science� At the same time� we wished
to include a discussion of the recent discoveries on probabilistically checkable proofs and their
applications� It is hoped that these notes will be helpful to those that wish to be acquainted
quickly with the background material in complexity theory as well as the recent developments�

Many people helped in the preparation of these notes� We thank them for their help�
K� Narayan Kumar typed the Alon	Boppana proof of Razborov�s theorem �Chapters and ��
and prepared �gure ���� Sivakumar Nagarajan sat up cheerfully through the wee hours of Friday
nights being useful in a million ways� R� Raveendran� Anil Maheshwari� K� V� Subrahmanyam
and Basant Rajan chipped in when things were threatening to go out of control�

For four months John Barretto ensured that the copies of these notes were ready on time�
It mattered little that we never got our work done� he always got his done on time� On many
occasions he came to the o�ce at unearthly hours �often on holidays� to keep his word� Can we
ever thank John enough�

People with varying backgrounds� drawn from various groups and institutions� participated
in the course� Not everyone managed to attend all the lectures� other academic commitments�
travel out of town and our own inability to hold their attention came in the way� The course
was attended by�

Pradyut Shah� Abhijit Bihari� Moshin Ahmed and R� Venkataramanan from the
Computer Science Department� IIT Bombay� S� Krishnan� Bhiksha Raj and Anil
Maheshwari from the Computer Systems and Communications group� TIFR� Profes	
sors S� S� Sane� Anjana Wirmani	Prasad and P� D� Chawate from the Department of
Mathematics� Bombay University� Professor P� N� Dandawate from Patkar College�
Bombay� Agha Asfar Ali� Porus Lakdawala and M� K� Hari from the Theoreti	
cal Physics group� TIFR� Sibsankar Haldar� Prabhat Kumar� K� Narayan Kumar�
Ladan Kazerouni� Sivakumar Nagarajan� Sundar Nagarajan� Basant Rajan� Y� S� Ra	
makrishna� Garima Sogani� K� V� Subrahmanyam and P� S� Subramanian from the
Theoretical Computer Science group� TIFR�

We thank them all� it was their interest in the subject and faith in us that sustained this course�

TIFR� Bombay Jaikumar Radhakrishanan

�� February� ���� Sanjeev Saluja

i

TATA INSTITUTE OF FUNDAMENTAL RESEARCH
HOMI BHABHA ROAD� BOMBAY ��� ���

COURSE ANNOUNCEMENT

Graduate Course in Theoretical Computer Science

January ��� ����

Title� Interactive Proof Systems

Instructors� Jaikumar Radhakrishnan Sanjeev Saluja
D��� Ext� ���� ��� D��� Ext� ���� ���
jaikumar�tifrvax saluja�tifrvax

Time and place will be announced later� The �rst class will be held on Jan� �� �Friday� at

��		pm in the Seminar Room D
	
� The regular time will be decided then� If you cannot

attend the �rst class� please let us �JR or SS� know your preference�

Course Outline� We shall study the developments in Complexity Theory leading to the recent
results on Interactive Proof Systems� No advance knowledge of the subject is expected of the
audience � all the concepts will be developed in the lectures�

We shall begin with an introduction of the standard complexity theoretic notions such as
P and NP� and describe the early attempts to understand them� After characterizing NP as
the class of properties that have easily veri�able proofs� we shall study the e�ect of introducing
randomness and interaction in the veri�cation process� This will lead us naturally to Arthur	
Merlin games� We shall study in detail the recent results in this area� and� as an application�
derive the startling consequence that certain functions that were earlier believed to be hard to
compute exactly are equally hard even to estimate approximately�

Text� Printed notes will be supplied�

Expected Work� There will be hours of lectures every week� There will be ��� sets of
homework problems in the entire course�

ii

Contents

Preface i

Course Announcement ii

� Complexity Classes �

��� Alphabet� Strings� Languages �

��� Machines and Algorithms �

�� Complexity Classes �

� Reductions� Completeness� Relativization ��

��� Reductions ��

��� Completeness �

�� The polynomial time hierarchy ��

��� Interpreter programs and canonical complete sets � � � � � � � � � � � � � � � � � � ��

��� P ��NP and relativization ��

Homework � ��

� Circuit Complexity ��

�� Alternation and the hierarchy ��
���� Alternation and PSPACE �

�� Circuit Complexity ��

���� The circuit model ��

���� Circuits and P ��

��� Circuits and NP ��

���� Circuits and P ��NP ��

� Razborov lower bound for monotone circuit size ��

�� Lower bound for the clique function �

� Randomization ��

��� Razborov�s proof continued �

��� Primality �

�� Randomized computation �

��� Proof systems �

����� Randomness and interaction �

	 Arthur
Merlin Games ��

��� Randomized classes ��

����� The class BPP ��

��� Arthur vs� Merlin ��

����� Finite levels of the AM hierarchy �

����� Arthur Merlin games and PH ��

���� AM vs� co	NP ��

iii

� Toda�s Theorems 	�
��� Counting classes ��
��� Counting operators ��
�� Toda�s �rst theorem� PH randomly reduces to �P � � � � � � � � � � � � � � � � � �
��� Toda�s second theorem� Turing reductions to �P � � � � � � � � � � � � � � � � � � ��

Homework � 	

 AM�poly� � PSPACE ��
��� PH � AM�poly� ��

����� Arithmetization of �	SAT ��
����� The protocol ��

��� PSPACE � AM�poly� ��
����� Quanti�ed Boolean Formulas ��
����� Arithmetization of QBF ��
���� The revised arithmetization ��
����� The protocol ��

� Probabilistically Checkable Proofs �
��� MIP and PCP ��
��� NP � PCP�log n�poly logn� ��

����� Arithmetization of 	SAT ��
����� The protocol ��

� NP � PCP�log n�poly log logn� �
��� NP � PCP�log n�poly logn� continued ��

����� Analysis ��
����� Low degree tests� ��
���� The revised protocol for NP � PCP�log n�poly log n� � � � � � � � � � � � ��

��� Reducing the number of probes ��
�� NP � PCP�log n�poly log log n� ��

�� NP � PCP�poly� �� �

�� NP � PCP�log n� �� ��
���� E�cient probabilistically checkable proofs for NP � � � � � � � � � � � � � � � � � ��

������ Invisible and fragmented inputs �
������ Composing the protocols ��

���� Testing a linear function ��

Homework � ��

�� The Low Degree Test ���
���� The test ���
���� The analysis ���

�� The Technical Lemma ���
��� The Berlekamp	Welch decoder ���
��� Application ���

�� PCP and Approximation ���

iv

Lecture �

Complexity Classes

Lecturer� Sanjeev Saluja Date� �� January	
���

Our purpose in this course is to study the problems that can be solved e�ciently on a computer�
In any such formal study� we must �rst understand what a problem is� how a computer is
expected to solve it� and when a proposed solution is to be considered e�cient� In the following
sections� we present the treatment of these issues as is now accepted in Complexity Theory�

��� Alphabet� Strings� Languages

In our study� data will be represented as a string of symbols from some �nite set� The �nite
set used will be called the alphabet� For example� the set fa� b� � � � � zg� f�� �� �� � � � � �g and f�� �g
can serve as our alphabet� A string over an alphabet is a a �nite sequence of symbols from the
alphabet� For example� �complexity� is a string over the alphabet fa� b� � � � � zg� and ����� is a
string over the alphabet f�� �� � � � � �g� A string with no symbols at all is called the empty string

and denoted by �� For an alphabet �� we shall denote the set of all strings over � �including
the empty string �� by ���

The length of a string is the number of symbols in it� For example� the length of the string
����� is � We shall denote the length of the string x by jxj� thus j�j � �� The set of all strings
of length k over the alphabet � will be denoted by �k� observe that j�kj � j�jk �is �� � ����

A language is a set of strings over an alphabet� that is� a language over the alphabet is a
subset of ��� A language may be �nite� for example� f��� ��� ��� �����g is a �nite language over
the alphabet f�� �g� Or it could be in�nite� for example�

fw � f�� �g� � w has an equal number of ��s and ��sg�

Similarly� if wR denotes the reversal of the string w� then the language of palindromes�

fw � �� � w � wRg�

is in an in�nite language for every nonempty alphabet ��

With every language L over the alphabet � one may associate a computational task as
follows�

Input� A string x � ���
Output� �Yes�� if x � L�

�No�� if x �� L�

This task will be called the recognition problem for the language L� With the language L is
associated the predicate PL � �

� � f�� �g de�ned by

PL�x� � ��� x � L�

�

Clearly� the language recognition problem for the language L is equivalent to computing PL�
At �rst sight� a language recognition problem may appear to be rather abstract� far removed

from the tasks one normally expects a computer to perform� To motivate the study of language
recognition problems� we consider the following natural task in connection with graphs�

Input� An undirected graph G�
Output� �Yes�� if G is connected�

�No�� if the G is not connected�

To phrase this as a language recognition problem� we must somehow translate graphs into
strings� This is easily done using the adjacency matrix of the graph� For example� the undirected
graph �V�E� with

V � f�� �� � �g�
E � ff�� �g� f�� g� f� �g� f�� �gg�

has adjacency matrix �
����
� � � �
� � � �
� � � �
� � � �

�
���� �

Then the string corresponding to this graph is obtained by concatenating the rows� in this case�
the string is ������������������� With this correspondence in mind� we may say that

fw � f�� �g� � w corresponds to a connected graphg

is the language corresponding to the task described above� Often the method of coding graphs
using strings is not controversial� or is quite irrelevant� it is� therefore� preferable to omit it and
write the language as

fG � G is a connected graphg�
where we assume tacitly that some reasonable coding over some alphabet is being employed to
represent graphs as strings�

��� Machines and Algorithms

Having modelled a typical computational task faced by a computer in terms of a language
recognition problem� we now turn to modelling the device �the computer itself� on which such
a task is to be performed� Historically� the Turing machine has been used to model the process
of computation� and� perhaps� every complete and precise treatment must use a similar device�
However� in our study we will rarely need this level of precision� It will su�ce for our purposes to
develop some intuitive understanding of how a typical computation proceeds� This we propose
to do using examples��

�� The language of Palindromes is recognized by the following procedure�

Input� w � f�� �g��
�For this course� it can be safely assumed that a valid solution for a computational problem is program in

some programming language� say PASCAL� It is not hard to show that in certain broad terms the powers of this
language is equivalent to the power of the Turing machine�

Step �� Compute n � jwj�
Step �� For i � �� �� � � � � n�

if wi �� wn�i��� then output �No�� STOP�

Step �� Output �yes�� STOP�

Before we accept this procedure� we must ensure that the steps performed are reasonable
for a computer� For instance� is it true that a computer� given a string� can compute some
representation of its length� or� when given a position� determine whether that position
is a � or a �� These tasks the computer can perform easily� and we admit their use in the
procedure� We shall refer to such a sequence of steps as an algorithm�

�� The language of connected graphs is recognized by the following procedure�

Input� An undirected graph G�

Step �� Set n � jV �G�j�
Step �� Pick the 	rst vertex in V �G� and mark it�

Step �� While there is an edge fi� jg � E�G� with vertex i marked and j unmarked� mark
vertex j�

Step �� If all the vertices of the graph are marked then output �Yes�� otherwise output �No��

Once again� before accepting this procedure� we must convince ourselves that all the steps
are reasonable� How does one mark a vertex� On possibility is to maintain in the memory
an array of locations A���� A���� � � � � A�n�� Initially� each each A�i� contains a � and whenever
we need to mark a vertex i we set A�i� to �� Note that checking if vertex i is marked is now
easy � we just check if A�i� � �� Also� when implementing Step � we must go through the
adjacency matrix systematically and check if any edge meets the condition stated there�
It is not hard to convince oneself that all this can indeed be done�

Implementation issues such as those encountered above will arise often in our study� What is
reasonable and easy to implement will rarely be controversial� and we will ignore these technical
details� In principle� we must use a formal programming language or a Turing machine to
justify these algorithms� But the bene�t one derives from such an exercise is not worth the
time spent on it� Moreover� by now most have seen some programming language and developed
some intuition about the process of computing� The informal language of our algorithms will
be much easier for them to appreciate than the cold formal code of a Turing machine� where
even simple steps need to be carried out in a circuitous way� Yet� if due to the informal nature
of description� there arises some doubt about the feasibility of some step� we shall fall back to
the formal models where things can be treated precisely�

��� Complexity Classes

There are many problems that can� in principle� be solved by a computer� However� the solutions
proposed are not always realistic� for they take unreasonably long to �nish� even on inputs of
moderate size� Any theory that purports to describe what is e�ciently computable� must take
into account the resources used in the solutions� One of the goals of complexity theory is to
classify problems based on the amount of resources they need� The two resources most frequently
considered are time and space�

Let us consider time complexity �rst� Suppose we have a language L that is recognized by
an algorithm A� How e�cient is A� Now� A might take di�erent amounts of time on di�erent

inputs� for it is only reasonable that as the input string becomes longer the algorithm needs to
expend more time to decide� For evaluating the e�ciency of such an algorithm one proceeds as
follows� The performance of A is studied as a function of input length� That is� for each natural
number n we compute the maximum amount of time that A might take on a string of length n�
The running time of A� denoted by tA�n�� is given by

tA�n� � max time taken by A on input of length at most n�

Before we describe the classi�cation of computational problems� we need to introduce some
notation pertaining to the growth of functions� Let f and g be functions from N to N� We
write f � O�g� if there is a constant c and and integer n� �N such that

f�n� 	 cg�n� for all n
 n��

We write f�n� � �g�n�� if there is a constant c � � and and integer n� � N such that

cg�n� 	 f�n� for all n
 n��

We write f�n� � o�g�n�� if for all c � � there exists an n� � N such that

f�n� � cg�n� for all n
 n��

We write f�n� � ��g�n�� if for all c � � there exists an n� � N such that

cg�n� � f�n� for all n
 n��

For t � N� N� DTime�t�n�� is de�ned by

DTime�t�n�� � fL � �� � there is an algorithm A recognizing L such that tA�n� � O�t�n��g�
that is� DTime�t�n�� consists of exactly those languages that can be recognized by some al	
gorithm with whose running time is bounded by t�n�� The letter !D� in DTime stands for
deterministic� emphasizing that the algorithms we are considering are deterministic� later we
shall describe nondeterministic computation and use the notation NTime�t�n�� to denote the
complexity class arising there�

Similarly� for space complexity� we have the class DSpace�s�n�� de�ned by

DSpace�s�n�� � fL � �� � there is an algorithm A recognizing L such that sA�n� � O�s�n���g
Here sA�n� denotes the space used by algorithm A� in the worst case� on an input of length n�

Tractable Computation� In complexity theory� the following class plays a central role�

P �
�
k��

DTime�nk��

The notion of polynomial time has several nice closure properties that make it an attractive
mathematical approximation for what one would intuitively consider feasible� Moreover� many
problems of practical interest are not even know to be solvable in polynomial time� It is�
therefore� natural to try to obtain polynomial time algorithms for them� before proceeding to
propose practical solutions� Though P has come to be accepted as the class of languages that
can be recognized e�ciently� the argument in its favour is by no means compelling� For example�
an algorithm whose running time in n��� is far from from being practical� yet� the de�nition
above considers it reasonable� In any case� it is certainly safe to say that a problem not solvable
in polynomial time is intractable�

Similar to the class P we have� for space complexity� the class

PSPACE �
�
k

DSpace�nk��

Nondeterminism� Let us accept� then� that P is the set of problems that have e�cient
solutions� As mentioned earlier� there are many natural problems that are not known to be in
P � As examples consider the following three problems on graphs�

�� Hamilton Graphs� Input� a graph G� Task� Determine if G has a Hamilton cycle�

�� Graph Colouring� Input� a graph G� Task� Determine if the graph has a proper colouring
using at most three colours�

� Independent Set� Input� A graph G and a number k� Task� Determine if the graph has
an independent set of size k�

For these three problems� no practical algorithm is known� perhaps none exists� even under
the somewhat generous notion of what is practical that is implicit in the de�nition of the class P�
Can we somehow enhance the power of our computational model a little so that these problems
can be solved� What if our computers had the ability to guess or make nondeterministic choices�
It turns out that many problems� including the ones above� can be easily solved if the computer
is allowed nondeterminism� What is nondeterminism�

In nondeterministic computation� we permit the algorithm to make guesses �imagine that
our PASCAL program can invoke a function that could return either a � or a �� the program
can use these !magic� digits and compute�� To clarify this concept let us consider an e�cient
nondeterministic algorithm for the language of Hamilton graphs�

Input� An undirected graph G�

Step �� Choose a subset S of edges of G�

Step �� Check if the the edges in S form a Hamilton cycle�

How do we choose a subset S of the edges� For each edge of G we invoke the guessing device�
and if the outcome is � then we include the edge and if it is � we omit it� In other words� we
guess the characteristic vector of the set S� How many guesses did it take� One for each edge
of G� Once the set has been obtained� how hard is it to check if it describes a Hamilton cycle�
Not hard � just verify that the graph described by them is connected and that every vertex of G
has exactly two edges from S incident on it� This can certainly be done in polynomial time� So
the algorithm is e�cient� Note that the second step is entirely deterministic because we make
no guesses�

The algorithm is not of the usual kind� it is not clear right in the beginning how the compu	
tation will proceed� Much depends on which subset S is chosen in the �rst step� and for di�erent
subsets the �nal conclusion may be di�erent� It is possible for the algorithm� however� to produce
the answer !No� even when the input contains a Hamilton cycle� However� if the graph is not
Hamiltonian� the algorithm will never produce a !Yes�� and� if the graph is Hamiltonian� there
is at least one sequence of choices �lucky guesses� that would cause the algorithm to produce a
!Yes� �Why��� This last sentence contains the essence of nondeterministic computation�

A nondeterministic algorithm A recognizes a language L if

� If x � L then there exists a sequence of guesses made by A that would cause it to produce
the answer !Yes��

� If x �� L then A always produces a !No��

The �rst condition appears overly generous � of the possibly millions of choice sequences�
there might be just one that causes A to produce the answer !Yes�� yet this is su�cient� It is�
no doubt� unrealistic� the reader might try to imagine that the following law is in operation� if
anything can go right �cause you to accept�� it will" So� for inputs that must be accepted we
trust our luck� but for inputs not in the language we must make sure that nothing will cause us
to accept�

As another example� let us consider the following algorithm for determining if a graph G has
an independent set of size k�

Input� An undirected graph G and an integer k�

Step �� Choose a subset S of V �G��

Step �� Output �Yes� if jSj
 k and there are no edges of G with both ends in S� otherwise� output
�No��

The reader should convince herself that this nondeterministic algorithm constitutes a valid
solution under the de�nition stated above�

The operation of a nondeterministic program can be visualized as a rooted binary tree� where
each node corresponds to a guess� and the two outgoing edges of the node correspond to the two
possible outcomes of the guess� After making the sequence of guesses the algorithm moves to its
deterministic phase and� based on the input and the guesses� either accepts or rejects the input�
Thus� the input is in the language if at least one leaf of the tree corresponds to the answer !Yes��
and if all the leaves correspond to !No�� the input is not in the language�

As usual� we measure the running time of the nondeterministic algorithm as a function of
the input size� For a nondeterministic algorithm A� its running time tA�n� is given by

tA�n� � max
w�jwj�n

max
guess sequence y

time taken by A on input w with guess y�

Then NTime�t�n� denotes the set of languages that can be recognized by nondeterministic
algorithms whose running time is O�t�n��� The class NP� for nondeterministic polynomial time�
is de�ned by

NP �
�
k

NTime�nk��

Another view of NP� In our description of nondeterministic algorithms there were two
phases� in the �rst phase� a string was guessed� in the second� a deterministic computations
was performed using the input and the guess� If the entire computation is to be performed in
polynomial time then the length of the guess and the time taken for the second phase must both
be bounded by some polynomial� Suppose we denote the computation performed in the second
phase by the predicate P �x� y�� �that is� P �x� y� is true i� on input x and guess y the algorithm
produces the output !Yes��� then we have� for a constant k and all x � ��

x � L�� �y�jyj 	 jxjk� P �x� y��
We may thus formulate an alternative de�nition of NP as follows� A language L is in NP i�
there exists a �deterministic� polynomial time computable predicate P �x� y� and a constant k
such that for all x

x � L�� �y�jyj 	 jxjk� P �x� y�� �����

That all languages in NP can be expressed in this form follows from the discussion above� On
the other hand� that every language de�ned in the form ����� is inNP can be shown by explicitly
constructing a nondeterministic �guess and verify� algorithm �How���

We shall often drop the condition that jyj 	 jxjk �in �y�jyj 	 jxjk�� and instead write �Py�
where the superscript P will remind us that we are allowed to choose as guesses only those y�s
whose length is bounded by a �xed polynomial in the length of x� Then we rewrite ����� as

x � L�� �Py P �x� y�� �����

The characterization ����� has an interesting interpretation� Suppose we are in possession of an
algorithm AP that computes the predicate P in polynomial time� Now if someone claims that
a string x is in L� we will ask for the guess y� Once we have both x and y� we run AP on input
�x� y� and verify the claim�� This protocol is feasible because we know that there is a reasonable
sized guess y and that AP runs in polynomial time�

Thus� we may interpret y as a witness or proof of the fact that x � L and the computation
of P �x� y� using AP as the proof veri�cation process� We are therefore justi�ed in saying that
NP is the class of languages that have easy to verify membership proofs�

Easy inclusions� First observe that our de�nitions immediately give P � NP and P �
PSPACE �How���

A somewhat more interesting inclusion is

NP � PSPACE�

To see this consider any language L � NP � We know that there exists a polynomial time
computable predicate P �x� y� such that

x � L�� �Py P �x� y��

Let A be an algorithm that computes P in polynomial time� We now show how we can recognize
L using only polynomial amount of space� On input x� the algorithm tries all potential strings
y and each time computes P �x� y� using the algorithm A� It is not hard to see that one can
generate all strings y systematically one after the other using just polynomial amount of space�
Since A is a polynomial time algorithm� it uses only polynomial amount of space� The algorithm
accepts the input x if any of the witnesses y cause A to accept� otherwise it rejects x�

P versus NP� The condition for a language L to be in P can be stated in a manner similar
to ������

x � L�� P �x��

where P is some polynomial time computable predicate� That is� for languages in P memberships
claims can be checked e�ciently �without any additional proof�� It is natural� then� to compare
the two notions P and NP � Is it true� perhaps� that for each polynomial time computable
predicate P �x� y� and constant k� there exists a polynomial time computable predicate Q�x�
such that for all x

�y�jyj 	 jxjk� P �x� y��� Q�x��

If true this would imply that whenever a language has easy to verify membership proofs� the
language itself can be recognized e�ciently �without proof�� that Hamilton graphs can be rec	
ognized e�ciently� that it is easy to determine if a graph is 	colourable� � � �

�Observe that we do not immediately have a way of verifying the claim that x �� L�

The P versus NP question grew out of developments in mathematical logic and
electronic technology during the middle of the twentieth century� � � � This question
has attracted considerable attention� Its intuitive statement is simple and accessible
to non	specialists� even those outside science� By embracing issues in the foundations
of mathematics as well as in the practice of computing� it gains something in character
beyond that of a mere puzzle� but with apparently deeper signi�cance and broader
consequences�

� Mike Sipser� ����

The class co
NP � The class P has an interesting property� Suppose a language L is in P�
and consider its complement L �consisting of all the strings not in L�� Is L in P� Yes� because
one can easily obtain a program for recognizing L from the one for L by simply reversing the
roles of !Yes� and !No��

Now� what about the classNP� Is it true� for example� that the language of non	Hamiltonian
graphs� is inNP� This is not immediately clear� Recall that NP is the class of languages having
easy to verify membership proofs� What easy to verify proof can there be to convince one that
a graph has no Hamilton cycle� It is not known whether or not such a proof always exists� It
is� therefore� conceivable that the class consisting of the complement of the language in NP is
di�erent from NP� This class is denoted by co	NP � That is�

co	NP � fL � �� � L � NPg�

In general� for a class C� the class co	C is de�ned by

co	C � fL � �� � L � Cg�

As an example� consider the language L of �	colourable �bipartite� graphs� The language is
clearly in NP �guess the colouring and verify it�� Is it in co	NP� What do we need to show
to put L in co	NP� We need to show that L� the language of non	bipartite graphs� is in NP�
It might� at �rst� seem hopeless to be able to obtain an easy to verify proof for non	bipartite
graphs� Recall the following fact from graph theory�

Fact� A graph is not �	colourable i� it has a cycle with an odd number of vertices�

So� to show that G is not bipartite� we just guess a sequence of vertices� and verify that it
indeed forms an odd cycle in the graph� This is not hard to do� Thus� L � NP and� using what
we already know about L� we may write L � NP co	NP �

Remarks

For the material covered in this lecture� the text book of Lewis and Papadimitriou� Elements of
the Theory of Computation �LP���� constitutes a more than adequate reference� Our discussion
of alphabets� strings and languages and the classes P and NP are based on the treatment in
that book� A formal description of the Turing Machine model� which we chose to omit� can
also be found there� The de�nitions of O�f�n��� �f�n��� o�f�n�� and ��f�n�� are taken from
the book of Leiserson� Cormen and Rivest� Introduction to Algorithms �CLR��� p� ��� The
standard text treating complexity classes arising from time and space bounded computations is

�When considering a language L of graphs having a certain property� it will be convenient to take L to be the
language of those graphs that do not have the property�

Hopcroft and Ullman�s Introduction to Automata Theory� Languages and Computation �HU����
The passage attributed to Mike Sipser above is taken from the paper The History and Status of

the P versus NP Question �Sip����

Lecture �

Reductions� Completeness�
Relativization

Lecturer� Sanjeev Saluja Date� � February	
���

We observed an interesting property of the class P � If a language is in P � then its complement
L is also in P� Its proof rested on the following reasoning� to decide if an input x is in L� we
may invoke the algorithm for deciding membership in L and invert the answer it returns� In
other words� we showed how one can obtain an e�cient algorithm for the language L using the
e�cient algorithm for the language L� This is� indeed� a special case of a general method�

��� Reductions

Imagine we have a program A that uses a subroutine B� Further� suppose that A runs in polyno	
mial time �calls to the subroutine B take one unit of time and the answers appear immediately��
and if the subroutine B recognizes the language L� then A itself recognizes the language L�� That
is� we have an e�cient method for recognizing the language L� provided we are allowed to ask
membership questions for the language L �which are answered without delay�� Now suppose
L � P � Can we then conclude that L� � P� Yes� for we can run the e�cient algorithm BL
for the language L whenever the program A calls the program B and use the answer returned
by it� This program clearly constitutes a correct method for recognizing L�� But is it e�cient�
Surely� A still performs the same computations as before� However� it does not enjoy the luxury
of obtaining answers instantaneously� instead� it must wait for BL to give the correct answer�
True� BL runs in polynomial time� but this is measured in terms of the length of input supplied
to it� We must� therefore� verify that the inputs supplied to BL are not unreasonably long� Let
the original running time of A �assuming that the call to B are serviced immediately� be p�n�
and the running time of BL be q�n�� Then� A cannot invoke BL with an input longer than p�n��
and on this B cannot take more that q�p�n�� units of time� Since the total number of calls to B
in the original program is at most p�n�� the running time of the new algorithm for recognizing
the language L� can be at most p�n�q�p�n�� # p�n�� which is easily seen to be bounded by a
polynomial�

In complexity theory the programs� such as the program A above� that operate with the
assumption that a certain subroutine B is available� are referred to as Oracle Programs� The
subroutine B is called the oracle and the questions that A asks of B are referred to as queries�
For concreteness� let us �x some of the modalities for invoking the oracle� We shall assume that
every oracle program has two special variables Query and Answer� When the oracle is invoked�
the query should have been assigned to the variable Query� and as soon as the oracle is invoked
the answer �!Yes� or !No�� will appear in the variable Answer�

Oracle programs that enable us to propose solutions for one problem assuming that one
exists for another are among the most frequently studied objects in complexity theory� When
the oracle program A is supplied the language L via oracle� we denote the resulting algorithm

��

by A�L�� Thus� in our example above� we can say that A�L� recognizes the language L�� We
say that the oracle program A runs in polynomial time if there exists a polynomial p�n� such
that for all languages L� the running time of A�L� is bounded by p�n�� Such oracle programs
are called P�oracle programs�

We may similarly consider nondeterministic and space bounded oracle programs� If A is a
nondeterministic oracle program and L is a language then A�L� is a nondeterministic algorithm�
Then the usual criterion for acceptance used for nondeterministic programs applies to A� we
say that A�L� recognizes the language L� if� for all x � L�� there is at least one sequence of
nondeterministic choices that causes A�L� to accept� and� for x �� L�� no sequence of choices can
cause A�L� to accept� If the nondeterministic oracle program A has the property that there is a
�xed polynomial that bounds the running time of A�L� for every language L� then we refer to
it as a nondeterministic polynomial time oracle program or NP�oracle program�

It will be useful to introduce another form of polynomial time computation� called co	NP 	
computation� A co	NP computation proceeds by making guesses just like an NP computation�
the di�erence lies in the criterion for acceptance� For an NP computation to accept an input�
it su�ces that there exist some sequence of guesses leading to acceptance� In contrast� a co	NP
computation accepts the input precisely when all possible computations� induced by the di�erent
sequences of guesses� lead to acceptance� If the above acceptance criterion is enforced on an
oracle program that makes guesses� then we call it a co�NP�oracle program�

Let us consider the space complexity of oracle programs� We say that A�L� has space
complexity s�n� if the maximum number of bits of memory accessed by A on any input of
length n is s�n� for all languages L� Note that we count the number of bits used� so programs
cannot hide the space used by using large word size� Also� the variable Query is treated as
any other variable and the number of bits used to maintain it must be taken into account while
considering the space used by the program� We say that A is a polynomial space oracle program�
or PSPACE	oracle program if its space complexity is bounded by some polynomial�

De�nition ��� �Reductions� � We say that a language L� is polynomial time �Turing�

reducible to the language L if there exists a P�oracle program A such that A�L� recognizes
L� we denote this by L� 	P

T L�

� We say that a language L� is nondeterministic polynomial time �Turning� reducible to the

language L if there exists a NP�oracle program A such that A�L� recognizes L� we denote
this by L� 	NP

T L�

� We say that a language L� is co�nondeterministic polynomial time �Turing� reducible to

the language L if there exists a co�NP�oracle program A such that A�L� recognizes L� we
denote this by L� 	co�NPT L�

� We say that a language L� is polynomial space �Turing� reducible to the language L if

there exists a PSPACE�oracle program A such that A�L� recognizes L� we write this as

L� 	PSPACE
T L�

When discussing the relationship between language recognition problems� one often considers
various restricted kinds of reductions� In many�one reductions� the oracle program is allowed
to query the oracle exactly once� moreover� the answer returned by the oracle is immediately
output �as it is� by the program� Thus� in this case� the entire computation of the program is
directed towards generating the one appropriate query to the oracle�

De�nition ��� A language L� is polynomial time many�one reducible to the language L �written

as L� 	P
m L� if there exists a polynomial time computable function f � �� � �� such that

x � L� �� f�x� � L�

Other restricted kinds of reductions are truth	table reductions� They are intermediate in
power between Turing reductions and many	one reductions� In a truth	table reduction all the
queries have to be presented to the oracle simultaneously� that is� the oracle program cannot
decide what queries to ask based on the answers to the previous queries� However� after receiving
all the answers to the queries� it can resume its computation and produce the �nal !Yes� or !No��
We write L� 	P

tt L to denote that the language L� is polynomial time truth	table reducible to
the language L� A truth	table reduction where the number of queries asked is bounded by a
constant �independent of the input� is called a bounded truth table reduction and denoted by
	P
btt �

Proposition ��� �� L� 	P
T L� �� L� 	P

T L� �� L� 	P
T L� �� L� 	P

T L��

�� If L� � P then� for every language L�� L� 	P
T L��

� If L� 	P
T L� and L� 	P

T L� then L� 	P
T L� �transitivity��

�� If L� 	P
m L� and L� 	P

m L� then L� 	P
m L��

Properties � and � are easy to verify and left to the reader� To see � assume that A��L�
recognizes L� and A��L�� recognizes L�� Consider the oracle program A� which functions as
A�� and when it needs to invoke the oracle� it instead invokes A� on the query� A�� however�
functions as before� and is allowed to consult its oracle� Clearly A��L�� recognizes L�� It remains
to verify that the running time of A� is bounded by a polynomial� Since A� runs in polynomial
time� any input supplied to A� will have length bounded by a polynomial in the length of A��s
input� As we saw before� this implies that the running time of the combined algorithm is also
bounded by a polynomial� Property � can be proved using the same reasoning�

Relativized complexity classes� So far we have considered oracle programs recognizing
languages and have developed various notions of reductions based on the power of the oracle
programs� Now �x a language L and denote the class of languages recognized by P	oracle
programs with access to an oracle for L� by P�L�� That is

P�L� � fL� � �� � L� 	P
T Lg�

Similarly�

NP�L� � fL� � �� � L� 	NP
T Lg�

co	NP�L� � fL� � �� � L� 	co	NPT Lg�
PSPACE�L� � fL� � �� � L� 	PSPACE

T Lg�
The classes obtained by considering computation relative to an oracle are called relativized
complexity classes� We may extend this notation by permitting the language L to vary within
some class C� This leads to the complexity class

P�C� �
�
L�C

P�L��

and� similarly�

NP�C� �
�
L�C

NP�L��

co	NP�C� �
�
L�C

co	NP�L��

PSPACE�C� �
�
L�C

PSPACE�L��

As we have observed earlier a P	oracle program with access to an oracle for a language in P
recognizes a language in P � Thus� using the notation introduced above� we may write P�P� � P�
and since P � P�P� �Why��� we may write P�P� � P� Many such relationships between the
relativized complexity classes can be deduced� we collect some of them below for later reference�

Proposition ��� �� P�P� � P�
�� PSPACE �PSPACE � � PSPACE�

� P�A� � P�A� and NP�A� � NP�A��
�� For all languages A� P�A� � NP�A��
�� For all languages A� NP�A� � PSPACE �A��

Part � was discussed above� the next two can be proved using similar reasoning� Parts � and
� are instances of relativizing statements� We have seen in the last class that P � NP and
NP � PSPACE� Now� � and � tell us that these inclusions hold relative to every oracle�
To see �� consult the de�nition of P�A� and NP�A� and observe that for any language L�
L � P�A� �� L � NP�A�� because a P	oracle program is also a NP	oracle program �just that
it makes no guesses��

To see �� we �rst characterize the languages in NP�A� in a manner similar to the charac	
terization ����� of last week� It can be shown using the same reasoning that for every language
L � NP�A� there exists a predicate P �x� y� that can be computed in polynomial time with

access to an oracle for A such that for all x � ��

x � L �� �Py P �x� y��
Alternatively� we may say that for every language L � NP�A� there exists a language L� � P�A�
such that for all x � ��

x � L �� �Py �x� y� � L��

�By the way� if L � co	NP�A�� then there exists a language L� � P�A� such that for all x � ��

x � L �� �Py �x� y� � L��

�
Now� a PSPACE	oracle program with access to A can systematically go through all possible

strings y and each time check of �x� y� � L� �this is feasible because L� � P�A� and the program
has access to A��

We just saw some statements about complexity classes where the introduction of an oracle
did not present any di�culty in adapting the old proofs to the new setting� Whenever a proof
has the property that the reasoning used can be applied in the presence of any oracle� we say�
informally� that the proof relativizes� Most of the proofs in classical computability theory� which
are based on simulations or diagonalization� relativize� It is only recently that non	relativizing
proofs have been discovered� we will see some of these later in this course�

��� Completeness

In this section we shall use many	one reductions only� Reductions permit us to compare the
complexity of language recognition problems� For example� if L� 	P

m L�� then we may say that
the language L� is at least as hard as the language L�� It often happens that there are problems
to which languages from an entire class reduce� Such languages are called hard languages and
de�ned formally as follows�

De�nition ��	 �Hard� Complete� For a class C� a language L is C�hard if for every language
L� � C� L� 	P

m L� If� in addition� the language L itself is in C then we say that L is C�complete�

Proposition ��� �� If L� is C�hard and L� 	P
m L� then L� is C�hard�

�� If L� is C�complete� L� � C and L� 	P
m L�� then L� is C�complete�

� If L is C�hard then L is co�C�hard�
�� If �LinNP�complete such that L � P then NP � P�

We will see in our study that complete languages exist for many complexity classes� For
example� the language SAT� consisting of satis�able Boolean expressions� was shown to be NP	
complete by S� A� Cook� A logical �or Boolean� variable is a variable that may be assigned the
value true�or �� or false �or ��� If v is a logical variable� then v� the negation of v� has the value
true if and only if v has the value false� A literal is a logical variable or the negation of a logical
variable� A clause is a sequence of literals separated by the Boolean or operator ���� A logical
expression is said to be satis�able if it evaluates to true� under some assignment of values to its
variables�

A logical expression in conjunctive normal form �CNF� is a sequence of clauses separated by
the Boolean and operator ���� An example of a logical expression in CNF is

�p � q � s� � �q � r� � �p � r� � �r � s� � �p � s � q�
where p� q� r and s are logical variables� The language of satis�able CNF expressions is denoted
by CNF	SAT� A CNF expression in which there are exactly three literals per clause is called a
	CNF expression� and the language of satis�able 	CNF expressions is called SAT�

Theorem �� �Cook�s Theorem� SAT is NP�complete�

We shall not prove this theorem in this course� However� in the next class we will discuss
certain connections between polynomial time computations and circuits� these will� perhaps�
help in making this result less mysterious� It can also be shown that the two restrictions of SAT
described above are NP	complete�

Theorem ��� CNF�SAT and
SAT are NP�complete�

Historically� SAT was the �rst language that was shown to be NP	complete� it still occupies
the pride of place among the hundreds of problems that have since then been show to be NP	
complete� A substantial part of the work done around the P ��NP question consists of showing
that certain problems are NP	complete and there are entire books devoted to just cataloging
NP	complete problems� Many of the NP	completeness proofs require ingenious combinatorial
constructions� We will not discuss these methods� however� to get some feeling for what this
involves� we shall present an example�

Theorem ��� The independent set problem is NP�complete�

Proof� Recall that the independent set problem corresponds to the following language�

L � fhG� ki � G has an independent set of size kg�
We have already seen in the last class that L � NP� We shall show that SAT 	P

m L� Then
by appealing to Proposition ��� ���� we can conclude that L is NP	complete�

Consider a CNF expression � and let its clauses be C�� C�� � � � � Cm and let the variables
be x�� x�� � � � � xn� For the expression �� we shall produce the undirected graph G� such that
hG��mi � L i� � is satis�able� The graph G� is de�ned as follows�

V �G�� � fhi� li � l is a literal in Cig�
E�G�� � f�hi� li� hi� l�i� � l and l� are distinct literals of clause Cig

�ffhi� li� hj� l�ig � i �� j and l and l� are complementary literalsg�
Observe that one can easily produce the representation of the graph G� when given the

expression �� It now remains to show two things�

�� � is satis�able �� hG��mi � L� Consider a satisfying assignment of �� Then in each
clause Ci there is a literal li that is satis�ed by this assignment� But then the set fhi� liigmi��
is an independent set of the graph G�

�� hG��mi � L �� � is satis�able� Note that the vertices with the same value for the �rst
component are completely connected� Hence any independent set of G� can include at
most one vertex for each clause� Since hG��mi � L� G� has an independent set of size at
least m� therefore� this independent set must consist of m vertices of the form hi� lii� one
for each i� It is easy to see that there is an assignment that satis�es all the li �because no
two li can be complementary�� This assignment satis�es ��

For example� consider the CNF expression � � C� � C� � C�� where C� � �x� � x� � x���
C� � �x� � x� � x�� and C� � �x� � x� � x��� The graph G� is shown in Figure ���� The
marked nodes of the graph form an independent set� and represent the satisfying assignment
x� � �� x� � �� x� � ��

x2 3xv vx
1C1 =

3x
x 2

x 1
v

v
C 2

=

x
1

3
x

x
2

v
v

C
3

=

x
1< 1 < , x21< < , 3x1< < ,

x
12< < ,

x22< < ,

3x2< < ,

x
1 < 3< ,

x2< < 3 ,

3
x < < 3 ,

Figure ���� The graph G� for � � �x� � x� � x�� � �x� � x� � x�� � �x� � x� � x���

��� The polynomial time hierarchy

We have observed earlier that P�P� � P� What about NP�NP�� Is it equal to NP� While it
is easy to see NP � NP�NP�� the reverse containment is not clear� Recall that in our proof

of P�P� � P we used the following reasoning� the calls to the oracle of a P	oracle program can
be replaced by a direct polynomial time computation because the oracle supplied is also in P �

Let us� then� try and mimic this idea in the case of NP�NP�� Suppose the NP	oracle
program A has made some nondeterministic choices� and� based on them� has constructed the
query x that it wants to present to the oracle for the language L � NP � If x � L� then there is
an easy to verify proof of this fact� The program A can guess this proof and verify it quickly�
No problem" But what if x �� L� The oracle in normal course would have returned a !No�� Can
our NP	program guess and verify this answer on its own� This brings us back to the question
of whether co	NP � NP � which we do not know how to answer� Indeed� it is easily seen that
co	NP � NP�NP�� thus as long as we cannot prove co	NP � NP it is unlikely that we will
succeed in showing that NP�NP� � NP�

We must� therefore� concede that the class NP�NP� is possibly a much larger class than
NP � This class is usually denoted by �P

� �one uses �
P
� for P and �P

� for NP��
A similar analysis can be carried out for co	NP oracle programs with an NP oracle� The

resulting class is called $P
� � that is� $

P
� � co	NP�NP�� If we iterate this procedure� we obtain

an entire hierarchy of complexity classes� This is formally de�ned as follows�

De�nition ���� �Polynomial time hierarchy� The polynomial time hierarchy is the struc�

ture formed by the classes �P
k and $P

k � for k
 �� where
�� �P

� � $
P
� � P

�� �P
k�� � NP��P

k �� for k
 �

� $P

k�� � co�NP��P
k �� for k
 ��

The class PH is de�ned by PH �
�
k��

�P
k �

�
k��

$P
k �

We list below some of the properties of these classes�

Proposition ���� �a� �P
k � �P

k���

�b� $P
k � �P

k���

�c� $P
k � co��P

k � for k
 ��
�d� �P

k�� � NP�$k� for k
 ��
�e� $P

k�� � co�NP�$P
k � for k
 ��

�f� The classes �P
k and $P

k are closed under polynomial time many�one reductions�

Theorem ���� PH � PSPACE�

Proof� It is enough to show that �P
k � PSPACE for all k
 �� We proceed by induction�

Basis� For k � �� �P
k � P and P � PSPACE�

Step� Assume that r
 � and �P
r � PSPACE� we shall show that �P

r�� � PSPACE� Now�

�P
r�� � NP��P

r � � NP�PSPACE� � PSPACE�PSPACE� � PSPACE�

Here the �rst inclusion claimed is justi�ed using the de�nition� the second using the in	
duction hypothesis� and the remaining using Proposition ����

We have stated above that all classes in the polynomial time hierarchy are closed under poly	
nomial time many	one reductions� In fact� the class NP is even closed under nondeterministic
polynomial time many	one reductions� That is�

L� 	NP
m L� and L� � NP �� L� � NP �

We leave the proof to the reader� Contrast this with nondeterministic polynomial time Turing
reductions�

What happens if L� 	NP
m L� and L� � co	NP� Since� L� 	NP

m L�� we have L� 	NP
T L�� thus�

L� � NP�co	NP� � �P
� � It turns out that for every language L� in �

P
� � there is a language

L� � co	NP such that L� 	NP
m L�� Although this fact is not important on its own� the proof is

instructive� The main idea is as follows� Let L� � �P
� � Then L� � NP�L��� where L� � NP�

That is� there is an oracle machine A such that L� is recognized by A�L��� Let us examine the
computation of A�L�� more closely� A makes some nondeterministic choices and then based on
these presents its �rst query to the oracle� then based on the answer presents the second query�
and so on� We will not allow A to ask questions again and again� So� whenever it needs to ask a
question� it will just guess the answer and proceed� This way it will� in the end� have collected
a set of queries and the possible answers� If the original program would have rejected with this
pattern of answers� then the new program rejects and stops� On the other hand� if the original
program would have accepted under these conditions� then we proceed to verify that the answers
we guessed were indeed correct� If we had guessed the answer !Yes� for some query� then the
veri�cation is straightforward � we just invoke the nondeterministic algorithm for L� �remember
L� � NP�� What about the queries for whom we guessed the answer !No�� We will collect all
these queries and present them at once to an oracle L� which will say !Yes� precisely when all
the queries are not in L�� Now� to complete the proof� we must show why such a language L�

exists in the class co	NP �
L� � fhx�� x�� � � � � xri � no xi is in L�g�

The reader can convince herself that L� � co	NP �hint� we need to check that each xi is in L��
and L� � co	NP��

��� Interpreter programs and canonical complete sets

It is natural to think of computer programs as being themselves coded as strings over some
alphabet� Consider another program that takes as input the code of a program and its input
and executes it� That is the program takes as input the pair hdAe� xi� where dAe is the code of
the program A and x � ��� and produces the output A�x�� The existence of such a program is
crucial to many of the results in classical computability theory� In the usual treatment of this
subject� the role of such a program is played by the universal Turing machine� Since we have
been dealing with programs� we will call it the Interpreter Program� and denote it by I� We
will make certain additional assumptions about the interpreter program� We shall assume that
the simulation performed is step by step� That is� the interpreter takes a step in the code of
A and executes it� goes to the next step� executes it� and so on� It is not allowed to combine
the operations of many steps of A� It might happen that one step of program A requires many
steps to interpret� but we will assume that the simulation is e�cient in the following sense�
the running time of the computation I�hdAe� xi� is polynomially bounded in the running time
of the computation A�x�� Similarly� we assume that the space required for the simulation is
polynomially bounded in terms of the space required for A�x��

One can also consider a nondeterministic interpreter program IN � that takes inputs of the
form hdAe� xi� where A is a nondeterministic program and x � ��� The interpreter IN accepts
this input i� the A accepts x� Note that IN is a nondeterministic program� so when we say it
accepts an input� we mean that there exists a sequence of guesses that leads to acceptance� As
before� we will assume that the simulation performed by IN is e�cient�

The existence of e�cient interpreter programs enables us to write complete problems for
many classes right away� For example�

L � fhdAe� x� �ti � A accepts x in at most t stepsg

is NP	complete� Here �t is the string consisting of t ��s� To see that L � NP � we use the
interpreter program to simulate A on x for t steps and accept i� the corresponding computation
A�x� halts in t steps and accepts� Since the simulation is e�cient� the running time of the
interpreter is bounded by a polynomial in t� and hence a polynomial in the length of the input�
Next we see why L is NP	hard� Consider any language in L� � NP � We wish to show that
L� 	P

m L� Since L� � NP� there exists a nondeterministic program AL� and a polynomial p�n�
such that AL� recognizes L� in time bounded by p�n�� Then� the function f � �� � �� de�ned
by

f�x� � hdAL�e� x� �p�jxj	i
reduces L� toL� It is easy to see that f can be computed in polynomial time�

Similar complete languages can be constructed for other languages� For example� the lan	
guage

fhdAe� x� �si � A accepts x using at most space sg
is complete for PSPACE� Such complete sets that exploit the existence of the interpreter program
are called canonical complete sets�

��	 P ��NP and relativization

Questions about classes of languages have been studied for a long time in Computability Theory�
Formidable techniques have been developed there to show inclusion or separation results between
these classes� It was� therefore� natural to expect that some adaptation of these methods would
help us answer the P ��NP question� It was observed that most of the methods developed in
computability theory give proofs that work even in the presence of an oracle� We are about to
show that by relativization di�erent answers are possible for the P ��NP question� Thus the
methods that give the same answer for all oracles are not going to help us decide this question�

Theorem ���� There exist languages A and B such that P�A� � NP�A� but P�B� �� NP�B��

Proof� Let A be he canonical PSPACE	complete set de�ned earlier� Then

PSPACE � P�A� � NP�A� � PSPACE �A� � PSPACE�

Here the �rst inclusions follows from the de�nition of PSPACE	completeness� the second holds
because P	oracle programs are a special case of NP	oracle programs� and the next two from
Proposition ���� Thus� P�A� � NP�A� � PSPACE�

Now we shall show the existence of the language B� Consider an enumeration of determin	
istic polynomial time	bounded oracle Turing machines that witness the reducibility 	P

T � say
P��P�� � � �� We lose no generality by assuming that for each i� machine Pi operates in time
pi�n� � i# ni�

For any set A � f�� �g�� let L�A� � fx � f�� �g� � there exists y � A such that jyj � jxjg�
It is clear that for every A� L�A� � NP�A�� on input x a nondeterministic machine need only
guess a string y such that jyj � jxj� and then query the oracle with y� if the oracle answers !Yes��
then the machine accepts x� otherwise� it rejects�

A set B will be constructed such that L�B� is not in P�B�� hence� P�B� �� NP�B�� The
construction of B will proceed in stages�

Stage 	� Let B���� � and n� � ��
Stage i� Choose n su�ciently large that n � ni�� and pi�n� � �n� Consider the computation

of the deterministic oracle machine Pi relative to B�i � �� on input xi � �n� If Pi accepts xi
relative to B�i� ��� then let B�i�� B�i� �� and let ni � �n� If Pi does not accept xi relative
to B�i� ��� then let z be the �rst string of length n in the sequence �� �� �� ��� ��� ��� ��� ���� � � �
such that Pi does not query the oracle about z during this computation� Since there are �

n

strings of length n in f�� �g� and Pi�s computation on xi has at most pi�n� steps� the choice of n
such that pi�n� � �

n guarantees the existence of such a z� In this case� let B�i�� B�i����fzg
and let ni � �n�

Let B � �i��B�i�� At stage i � �� the choice of n such that n � ni�� and ni � �n guarantees
that B has at most one string of length n� more generally� B has at most one string of each
length� The choice of pi�n� � �

n and ni � �
n guarantees that in Pi�s computation on xi relative

to B�i� ��� any string for which the oracle is queried in this computation will never be added
or deleted from B at a later stage of construction� Thus� on input xi� the computation of Pi
is the same relative to B as it is relative to B�i � ��� any string added at a later stage is not
considered at this stage �because it would be too long��

For each i� Pi rejects xi relative to B if and only if Pi rejects xi relative to B�i � �� if and
only if there is some string of length jxij in B if and only if xi � L�B�� Thus� for every i� Pi�B�
does not recognize L�B� so that L�B� is not in P�B��

Remarks

The area of Structural Complexity Theory is devoted to the study of relationships between
complexity classes� Everything we have discussed about Structural Complexity Theory � con	
tainments� oracles� relativization� hierarchies � is contained in the book of Balc%azar� D%&az and
Gabarr%o� Structural Complexity Theory I�

Several books on algorithms contain material on NP	completeness� We have taken the
description of SAT and Cook�s theorem from the book Computer Algorithms by Sara Baase� The
standard source on NP	completeness is the book Computers and Intractability� A guide to the

Theory of NP�completeness by Garey and Johnson �see also David Johnson�s NP	completeness
column in the Journal of Algorithms�� The proof of Theorem ��� was taken from �CLR��� and
the proof of Theorem ��� from a survey article of Book �Boo����

Homework �

Date� � February	
��� Due date� � March	
���

Note�

�a� The phrase NP	machine �similarly P	machine� will denote a nondeterministic program
�respectively a deterministic program� whose running time is bounded by a polynomial�

�b� The word !set� will denote a language i�e� a subset of f�� �g��

�c� For x � f�� �g�� w�x� denotes the number of ��s in x�

Problems�

�� �a� An NP machine N is said to be ranked if there is a polynomial p�n� such that on any
input of size n� the machine N always makes p�n� nondeterministic coin tosses� i�e� the
computation tree of N on an input of size n is a complete binary tree of depth p�n��
Let NPRanked be the class of languages recognized by some ranked NP	machine�
Show that NPRanked � NP �

�b� For a function f � N � N� an NP machine N is said to be f�n��rank�bounded if it
makes at most O�f�n�� coin tosses on any input of size n and NP�f�n�� denotes the
class of languages which are recognized by f�n��rank�bounded NP machines� Show
that NP �log n� � P �

�� �a� For any set T and positive integer k� let T k denote the set fhx�� x�� ���� xki � �i xi � Tg�
We call a set T a tally set if T � f�g�� Show that there is a tally set T � such that
T k 	P

m T ��

�b� Suppose A 	P
btt T for a tally set T � Show that then A 	P

m T � for some tally set T ��

�c� Show that if A 	P
T T for some tally set T � then A 	P

tt T
� for some tally set T ��

� �a� Recall from Lecture � that L � NP i� there is a polynomial time computable �	input
predicate R and a polynomial p�n� such that for all x � f�� �g��

x � L� �y�jyj � p�jxj� and R�x� y���

Show that L � co	NP i� there is a polynomial time computable �	input predicate R
and a polynomial p�n� such that for all x � f�� �g��

x � L� �y � f�� �gp�jxj	 R�x� y��

�b� For any positive integer k� show that L � �P
k i� there is a polynomial time computable

�k # ��	input predicate R such that� for all x � f�� �g��

x � L� �P y��P y��P y� � � �QP yk R�x� y�� ���yk��

��

�c� Show that L � $P
k i� there is a polynomial time computable �k # ��	input predicate

R such that� for all x � f�� �g��

x � L� �P y��P y��P y� � � �QP yk R�x� y�� ���yk��

Hint � Show �b� and �c� together by induction on k�

�� �a� A class C is said to be NP	closed if it contains NP and is closed under nondetermin	
istic polynomial time reductions� Let C� be the intersection of all NP	closed classes�
Show that C� is NP 	closed and C� � PH�

�b� Show that if for any positive integer k� �P
k � $P

k � then PH � �P
k � $P

k � i�e� the
polynomial hierarchy collapses to its k	th level�

�� �a� A Boolean function f � f�� �g� � f�� �g is called a slice function whenever there is
a function k�n� with the following property � if w�x� � k�jxj�� then f�x� � �� if
w�x� � k�jxj�� then f�x� � �� otherwise f�x� is either � or �� Show that a slice
function has polynomial size circuits i� it has polynomial size monotone circuits�

Hint � Show and use the fact that sorting of binary bits can be done using polynomial
size monotone circuits�

�b� Show that there is a slice function whose characteristic language is NP	complete�
�The characteristic language of f means the set of all the x for which f�x� � ���

�Together these two problems show that the question of whether every NP language has
polynomial	size circuits can be reduced to a similar question about monotone circuits��

�� Show that if SAT is in BPP � then SAT is in RP �
�� Show that the class of languages recognized by games against nature is exactly the class
PSPACE�

�� Show that ��� a set has polynomial size circuits i� ��� it is polynomial time Turing reducible
to a sparse set i� �� it is polynomial time truth table reducible to a tally set�

Hint � Show that ��� �� �� �� ��� �� ���� Use the fact that circuits can be e�ciently
encoded as strings in f�� �g��

Lecture �

Circuit Complexity

Lecturer� Jaikumar Radhakrishnan Date�
� February	
���

In the last two lectures we studied complexity classes that were de�ned by considering various
forms of resource bounded computation� We also considered relativized complexity classes and
studied the classes of the polynomial time hierarchy� these classes arose while providing NP	
oracle programs with oracles that were also in NP � and iterating this process�

The main aim of this lecture is to introduce the area of Circuit Complexity� But before that
we shall carry our discussion of the classes of the polynomial hierarchy a little further� Our
de�nition of the hierarchy used oracle programs� unfortunately� this did not give us any means
of picturing any form of computation that naturally leads to these classes� It turns out that
the classes of the polynomial hierarchy can be obtained by a generalization of the notion of
nondeterministic computation� called alternating computation�

��� Alternation and the hierarchy

We had de�ned NP to be the class of those languages that are recognized by polynomial time
nondeterministic �guessing� programs� We then characterized NP as follows� L � NP i� there
exists a polynomial time computable predicate RL�x� y� such that� for all x � f�� �g��

x � L�� �P y RL�x� y�� ����

We may� using this� write down a program for recognizing L�

� Input x �let jxj � n��

� Existentially check for y � f�� �gp�n	 if RL�x� y��

Here the Existentially check � � � step can described by a computation tree of depth p�n�� at
each of whose leaves we compute RL�x� y�� The tree accepts i� the computation corresponding
to at least one of the leaves accepts� Earlier we had used a sequence of guesses to implement
this step� we now use this shorthand to make our notation concise�

A characterization in the same spirit as ���� can be obtained for the class co	NP � L � co	NP
i� there exists a polynomial time computable predicate QL�x� y� such that� for all x � f�� �g��

x � L�� �Py Q�x� y�� ����

This leads to the following program for L

� Input x �let jxj � n��

� Universally check for y � f�� �gp�n	 if QL�x� y��

��

The Universal check � � � step can be pictured using a computation tree in the same way as
we did for the existential check� however� there is a twist in the acceptance criterion � the tree
accepts i� all the computations at the leaves accept�

We have thus interpreted the classes NP and co	NP using programs that are allowed to
make existential and universal checks respectively� What if we combine both kinds of checks
in the same program� For example� consider the following program� where R�x� y�� y�� is a
polynomial time computable predicate and p��n� and p��n� are polynomials�

� Input x �let jxj � n��

� Existentially check for y� � f�� �gp��n	 if
Universally check for y� � f�� �gp��n	 if
R�x� y�� y��

Let the language recognized by this program be L� How complex is L� It is not clear
anymore that L is contained in either in NP or co	NP � because we are using both kinds of
checks simultaneously� What we know about L is this� for all x � f�� �g��

x � L �� �Py� �Py� R�x� y�� y���

But this exactly matches the requirements for the class �P
� � derived in Homework �� Problem �

In fact� that problem tells us that every language in �P
� can be recognized using a polynomial

time program which starts with an existential check� follows it with a universal check� and then
computes a polynomial time predicate�

Similarly� one can write programs with more existential and universal checks� Such pro	
grams are called alternating programs because the computation switches between existential an
universal modes� In an NP	program �or a �P

� 	program� there are only existential checks� in a
co	NP	program �or a $P

� 	program� there are only universal checks� In general� a �
P
k program

has at most k checks� starting with an existential check �that is� at most k � � switches of
modes�� Similarly $P

k program has k checks starting with a universal check �again at most k��
switches of modes�� In particular� �P

� 	programs and $
P
� programs have no checks at all� and�

therefore� are P	programs� Of course� all these de�nitions assume that the checks are bounded
by a polynomial and the predicate used at the end is also polynomial time computable�

Theorem ��� �� L � �P
k i� L is recognized by a �P

k �program�

�� L � $P
k i� L is recognized by a $P

k �program�

Proof� Use Homework �� Problem �

����� Alternation and PSPACE

In the alternating programs considered above� we had �xed the number of alternations in the
beginning� that is� the number of mode changes� or alternations� did not depend on the input�
It is natural to consider also those programs that need more and more alternations as the input
becomes longer and longer� We refer to these programs as alternating polynomial time programs�
We have the following remarkable theorem� whose proof we shall not discuss now�

Theorem ��� L � PSPACE i� L is recognized by an alternating polynomial time program�

��� Circuit Complexity

����� The circuit model

A Boolean circuit is a directed acyclic graph� The nodes of indegree � called input nodes are
labeled with a variables� a negated variable or a constant �� or ��� The internal nodes called
gates have indegree two and are labeled with an AND or an OR� One of the nodes of the circuit
is designated the output node� The size of a circuit is the number of gates in it�

A Boolean circuit computes a Boolean function in a natural way� For a function f � f�� �gn �
f�� �g� the circuit complexity of f is the size of the smallest circuit computing f � For g � f�� �g� �
f�� �g and h � N � N� we say that g has circuit complexity h if for all n� C�gn� � h�n�� where
gn is g restricted to f�� �gn� The circuit complexity of a language is the circuit complexity of its
characteristic function�

In a monotone circuit no negated variables are allowed to appear as labels of the input nodes�

����� Circuits and P

Theorem ��� If L � P� then L has polynomial size circuits��

What about the converse of this theorem� Is it true that all languages that have polynomial
size circuits are in P� It is known that there are subsets of f�g� that are not recognized by any
program at all� Clearly� these languages cannot be in P � On the other hand� every subset of
f�g� has linear size circuits �Why��� Hence� the converse of the above theorem does not hold�

Observe� however� that in the above counterexample� we showed only that a family of small
circuits exists� we made no claims about how the circuits are themselves to be obtained� In fact�
the family of circuits promised by Theorem � is quite regular� that is� there exists a polynomial
time program that� when presented the input n in unary� will produce the description of the nth
circuit in the family� We shall show below that if this condition is imposed on the circuits� then
the converse of Theorem � does hold�

A family of circuits fC�� C�� � � �g is said to be P	uniform if the exists a polynomial time
program to generate the description of Cn given n in unary�

Theorem ��� If L has P�uniform �and hence� polynomial size� circuits then L � P�
Proof� Let the P	uniform family of circuits recognizing L be fC�� C�� � � �g� Assume that the
subroutine A generates the description of Ci in polynomial time given input �

i� Then the
following polynomial time program recognizes L�

� Input x �let jxj � n��

� C � A��n��

�� Output C�x��

�A formal proof of this theorem will require some technical notions associated with Turing machines� We will�
therefore� not describe it here� however� we will describe the main idea of the proof informally� Let P be the
P�program recognizing the language L� Now as the program runs it passes through various con�gurations� Our
task then is to check if it is possible for the program to reach the �nal accepting con�guration from the initial
con�guration determined by the input� We encode the con�gurations of the program as strings over f�� �g� Each
string has polynomial length and the number of strings is also bounded by a polynomial 	because the program
runs in polynomial time
� It can be shown that each bit of a con�guration can be computed from the bits of
the previous con�guration using a circuit of constant size� Finally� we can put together these small circuits and
compute the answer based on the input�

In light of the above theorems� the class of languages that have polynomial size circuits
assumes importance� It has received considerable attention in complexity theory and various
characterizations in terms of programs have been discovered for this class� We discuss one of
them below� some others are discussed in the homework�

De�nition ��	 We say that a language L is in P	poly if there exists a sequence of advice
fa�� a�� � � �g � f�� �g�� a polynomial p�n�� and a language L� � P� such that

� �n � N� janj 	 p�n��

� �x � f�� �g� x � L �� hx� ajxji � L��

Theorem ��� L is in P	poly i� L has polynomial size circuits�

Proof� ���� Suppose L � P	poly� Then there exists a sequence of advice fa�� a�� � � �g and a
language L� � P satisfying De�nition ��� By Theorem �� L� has polynomial size circuits�
say fC�� C�� � � �g� The circuits fC �

�� C
�
�� � � �g for the language L are obtained as follows� C �

i is
obtained from Ci�jaij by presetting the advice ai�

���� We encode the polynomial size circuits for L as advice� Since a polynomial size circuit can
be evaluated on any input e�ciently� this constitutes a valid advice sequence�

����� Circuits and NP

We now turn to the classNP � and derive the following form of Cook�s theorem from Theorem ��

Theorem �� �Cook� If L � NP� then for each n � N� there exists a
�CNF formula �n�x� y��
obtainable in polynomial time given n in unary� such that

x � L �� �y �jxj�x� y��

Proof� Since L is in NP � there exists a language L� � P and a polynomial p�n� such that

x � L �� �y � f�� �gp�n	hx� yi � L��

Now� since L� � P � it has P	uniform circuits� say fC�� C�� � � �g� Thus� for all n� and all x �
f�� �gn�

x � L �� �y � f�� �gp�n	 Cn�p�n	�hx� yi��
We are almost done� The only problem is that Cn�p�n	 is a circuit and not a 	CNF expression�
We next show how this circuit can be turned into a 	CNF expression �n�x� y� y

�� �where y� are
some new variables� such that� for all x � f�� �gn and y � f�� �gp�n	�

Cn�p�n	�hx� yi� �� �y� � f�� �gp��n	 �n�x� y� y��� ���

Observe that the theorem will follow from this by combining y and y� to form a single string
taking values in f�� �gp�n	�p��n	�

Now it remains only to show ���� For each node g of the circuit Cn�p�n	 we introduce a
new variable y�g� Further with each node g of the circuit we associate a Boolean expression �g as
follows� If g is an AND or an OR gate then the expression �g ensures that the variables corre	
sponding to the two gates g� and g�� immediately preceding g� and the variable corresponding to
the gate g are mutually consistent� Note that this condition depends on just the three variables

y�g� y�g� and y
�
g� � Hence� we may write �g as a 	CNF Boolean expression involving these three

variables� For example� if g is an AND gate� then

�g � �y�g � �y�g� � y�g��� � ��y�g� � y�g��� y�g� � �y�g � y�g�� � �y�g � y�g�� � �y�g� � y�g� � y�g��
If g is an input node with literal l as label� then the condition �g ensures that y

�
g � l� That is

�g � �y�g � l� � ��l � y�g��
Finally� let

�n�x� y� y
�� � y�g� �

�
g

�g�

where g� is the output node of the circuit� Clearly� �n is in CNF with at most three variables
per clause� we can easily ensure that each clause has exactly three variables �How��� What is
more important� �y� �n�x� y� y�� i� Cn�p�n	�hx� yi�� In fact� if Cn�p�n	�hx� yi� then there exists a
unique y� such that �n�x� y� y�� �Why���

����� Circuits and P �NP

We saw in Theorem � that every language in P has polynomial size circuits� Thus� by showing
that some language in NP does not have polynomial size circuits� we would succeed in showing
that P �� NP� The circuit model does appear to be more static and easy to reason about than
programs� It is� therefore� hoped that some argument based on circuits will show that P �� NP�
However� as things stand today� this goal is far from being realized� No function in NP has
been shown to require superlinear circuit size"

On the other hand� it is conceivable that NP has polynomial size circuits� even though
P �� NP� Such circuits cannot� of course� be P	uniform� Theorem �� below shows that if NP
has polynomial size circuits then the polynomial hierarchy collapses� It is� therefore� believed
that NP does not have polynomial size �uniform or non	uniform� circuits�

We need the following important lemma�

Lemma ��� �Self reducibility� There exists a polynomial time program CircuitChecker that
takes a
�CNF formula �� j�j � n� and a circuit C with n inputs� such that

� If C recognizes
SAT for inputs of length n and � is satis�able� then CircuitChecker
accepts�

� If � is not satis�able then CircuitChecker rejects�

Proof� The main idea is to repeatedly use the circuit and extract a satisfying assignment for
�� If the circuit is good then we will succeed in extracting the assignment� If we fail to get the
satisfying assignment we will reject�

Program CircuitChecker

� Input �� C� Let the variables of � be x�� x�� � � � � xm�

� If C��� � � then reject�

��
 � ��

�� For i � � to m do
f if C�
jxi��� � � then ai � � else ai � ��
 �
�xi � ai� g

�� If ��x� � a��x� � a�� � � � �xm � am� � � then accept else reject�

Theorem ��� If NP has polynomial size circuits then PH � �P
� �

Proof� We shall use the following consequence of Homework �� Problem ��b�� if �P
� � �

P
� � then

�P
� � PH� Thus it is su�cient to show that �P

� � �P
� � Let L be a language in �P

� � Then� as
discussed earlier� L is recognized by a �P

� 	program� say

Program P

� Input x �jxj � n��

� Existentially check for y� � f�� �gp��n	 if
Universally check for y� � f�� �gp��n	 if
Existentially check for y� � f�� �gp��n	 if
R�x� y�� y�� y���

Let us isolate from this program the last check�

Program Q

� Input x� y�� y� �jxj � n� jy�j � p��n�� jy�j � p��n���

� Existentially check for y� � f�� �gp��n	 if
R�x� y�� y�� y���

This is an NP	program� hence �by Theorem ��� the language it recognizes is in NP � In
particular� by Cook�s theorem� it is many	one reducible to SAT� That is� every input to this
program of the form hx� y�� y�i can be transformed e�ciently to a 	CNF expression �x�y��y�
whose membership in SAT determines if the program Q accepts hx� y�� y�i� Thus we may
rewrite program P� as

Program P

� Input x �jxj � n��

� Existentially check for y� � f�� �gp��n	 if
Universally check for y� � f�� �gp��n	 if
Accept i� �x�y��y� � SAT �

Now since SAT is in NP � using the assumption of the theorem� we conclude that it has
polynomial size circuits� Thus there exists circuit C of polynomial size that determines if
�x�y��y� � SAT � �We may assume that j�x�y��y� j depends only on the lengths of x� y� and
y�� and not on their actual values� �Why��� Thus to check the last step in the above program
we can use the circuit C� But we do not know C� Let us guess C in the beginning� But our
guess could be wrong� causing us to accept formulas that are not satis�able� Here we will use
the Lemma �� and invoke the CircuitChecker program� It will ensure that we never accept
expressions that are not satis�able� Thus we have the following program for recognizing the
language L�

Program P�

� Input x �jxj � nj��
� Existentially check for circuits C if

Existentially check for y� � f�� �gp��n	 if
Universally check for y� � f�� �gp��n	 if
CircuitChecker�C� hx� y� � y�i��

Note that we existentially check �guess� circuits only of some polynomial size in the �rst
step� the size is determined by the length of �x�y��y� and the bound on the circuit complexity of
SAT given by our assumption� It is easy to verify that this programs recognizes L� and that
each of the steps used is e�cient� We omit the details�

But this is a �P
� 	program� Hence L � �P

� �

��� Razborov lower bound for monotone circuit size

As remarked earlier� in spite of numerous attempts� no non	trivial lower bounds are known for
any problem inNP � Hence� it is natural to try and show good lower bounds when the circuits are
restricted in a certain way� By considering the restricted model of monotone circuits� the Russian
scientist A� A� Razborov showed that the Clique function cannot be solved using polynomial
size monotone circuits� The clique function� CLIQUEk�n has

	n
�

variables� one for each potential

edge in a graph on n vertices� and outputs � precisely when the graph has a clique �complete
subgraph� on k vertices� The language associated with this function is the following�

Lclique � fhG� ki � G has a clique of size k g�

It is easy to see that L is in NP � Razborov�s result shows that L does not have polynomial size
monotone circuits�

To prove lower bounds on monotone circuit complexity� the behaviour of small monotone
circuits must be shown to be constrained� In Razborov�s method to be described below� certain
input settings will be designated �test� inputs that compare the circuit�s behaviour with the
behaviour of the clique function�

A positive test graph is a graph on n vertices that consists of a clique on some set of k
vertices� and no other edges� these graphs are called �positive� because the function CLIQUEk�n
outputs � on them� Observe that there are

	n
k

such graphs� A negative test graph is formed by

assigning each vertex a color from the set f�� �� � � � � k��g� and then putting edges between those
pairs of vertices with di�erent colors� these graphs are called �negative� because the function
CLIQUEk�n outputs � on them� There are �k � ��n possible colorings� and although di�erent
colorings can lead to the same graph� negative test graphs formed from di�erent colorings will
be considered di�erent for counting purposes�

Positive and negative test graphs are designed to measure how closely a circuit agrees with
the function CLIQUEk�n� The main goal of Razborov�s method is the following�

Goal� Show that every small monotone circuit either outputs � on most positive test graphs or
outputs � on most negative test graphs�

How can the goal be established� Monotone circuits can be amorphous� so to analyze their
behaviour directly is di�cult� Instead� every small monotone circuit will be approximated by a
special type of monotone circuit� called an approximator circuit� The behaviour of approximator
circuits will be much easier to analyze than the behaviour of arbitrary monotone circuits�

The class of approximator circuits will now be de�ned� For a subset X of vertices� set the
clique indicator of X �written dXe� to be the function of 	jXj

�

variables that is � if the associated

graph contains a clique on the vertices X� and is � otherwise� An approximator circuit is an OR
of at most m clique indicators� each of whose underlying vertex sets have cardinality at most l�
Here l
 � and m
 � will have �xed values� depending only upon the values of k and n�

Approximator circuits will be important for establishing the goal� Every monotone circuit
C will be assigned an approximator 'C� The goal will be proved by dividing it into the following
two subgoals�

Subgoal �� Show that if C is a small monotone circuit� then C 	 'C holds for most positive
test graphs� and C
 'C holds for most negative test graphs�

Subgoal �� Show that every approximator either outputs � on most positive test graphs or
outputs � on most negative test graphs�

How can arbitrary monotone circuits be approximated by such special approximator circuits�
The approach to be taken is a �bottom	up� construction� Every subcircuit of the original circuit
is assigned its own approximator� starting from the input variables and then working up� An
input variable is of the form xi�j� where i and j are two di�erent vertices� it is equivalent to the
clique indicator dfi� jge� Hence an input variable is already an approximator�

Suppose that each proper subcircuit of a circuit C has been assigned an approximator circuit�
What approximator should be assigned to the entire circuit� Assume� for argument�s sake� that
the top gate of the circuit C is an OR	gate� One natural idea to form the desired approximator
is to OR together the approximators of the two subcircuits feeding into the top gate� Let the
two approximators be denoted by A �

Wr
i�� dXie and B �

Ws
i�� dYie� where r and s are at most

m� The OR of the two approximators is an OR of r # s clique indicators� Unfortunately� r # s
can be as large as �m� so the OR of the two approximators need not be an approximator itself�

How can the number of clique indicators be reduced� The procedure used here is to replace
several clique indicators with their �common� part� To implement this procedure� a combi	
natorial object called a sun(ower is introduced� A sun�ower is a collection of distinct sets
Z�� Z�� � � � � Zp� called petals� such that the intersection Zi Zj is the same for every pair of
distinct indices i and j� the common part Zi Zj is called the center of the sun(ower� In the
application to approximator circuits� each petal will be a subset of vertices�

Sun(owers can be used to reduce the number of clique indicators� Fix a value for p
 ��
and look at the current collection of vertex sets fX�� � � � Xr� Y�� � � � Ysg� If some p of these vertex
sets form a sun(ower� replace these p sets with their center� This operation is called plucking�
Repeatedly perform such pluckings until no more are possible� This entire procedure is called
the plucking procedure� Since the number of vertex sets decreases with each plucking� at most
�m pluckings will occur� Regarding the number of vertex sets remaining after the plucking
procedure is completed� the following combinatorial lemma on sun(owers is useful� due to Erd)os
and Rado�

Lemma ���� Let F be a collection of sets each of cardinality at most l� If jFj � �p � ��l � l"�
then the collection contains a sun�ower with p petals�

Proof� The proof is by induction on l� The case l � � is obvious� For l
 �� letM be a maximal
subcollection of disjoint sets in F � and let S be the union of the sets in M� If jMj
 p� then
M itself forms the desired sun(ower and we are done� Otherwise we have jSj 	 �p� ��l� Since
M is maximally disjoint� the set S intersects every set in F � By averaging� some element i in
S intersects a fraction at least �	��p� ��l� of the sets in F � Consider the following collection of
sets of cardinality at most l � � �

F � � fZ � fig � i � Z and Z � Fg
From the choice of i� we have

jF �j
 �jFj	�p� ��l� � �p� ��l�� � �l � ��"
Thus by induction� the collection F � contains a sun(ower with p petals� Adding i back to all
these petals gives the desired sun(ower in F �

To apply the Erd)os�Rado lemma to the present situation� set m � �p� ��l � l"� The lemma
implies that after the plucking procedure is completed� at most m vertex sets remain� The
clique indicators of the remaining vertex sets are then ORed together to form the approximator
for the entire circuit� The resulting approximator is called the approximate OR of the two
approximators A and B� written A tB�

The second case to consider is when the top gate is an AND	gate� again� let A �
Wr
i�� dXie

and B �
Ws
i�� dYie be the approximators of the two subcircuits feeding into the top gate� �For

technical reasons� assume without loss of generality that none of the sets Xi or Yi are singleton
sets�� Forming the AND of the two approximators yields� by the distributive law� the expressionWr
i��

Ws
j���dXie � dYje�� Two reasons why this expression is not an approximator itself are that

the term dXie � dYje is not a clique indicator and that there can be as many as m� terms�
To overcome these di�culties� apply the following three steps� First� replace the term dXie�

dYje by the clique indicator dXi � Yje� Second� erase those clique indicators dXi � Yje for which
the cardinality of Xi�Yj is more than l� Finally� apply the plucking procedure �described above
for OR gates� to the remaining clique indicators� there will be at most m� pluckings� These
three steps guarantee that a valid approximator is formed� The resulting approximator is called
the approximate AND of the approximators A and B� written A uB�

The two operations described above� approximate OR and approximate AND� complete the
bottom	up construction of the approximator 'C from the monotone circuit C�

��� Lower bound for the clique function

The previous sebsection observed that lower bounds on the monotone circuit complexity of the
clique function follow from proving two subgoals� In this subsection� the two subgoals will be
formally stated and proved� The proof given here will combine Razborov�s original proof with
some of the improvements due to Alon and Boppana� The second subgoal is demonstrated �rst�
since it is the easier o� the two subgoals�

Lemma ���� Every approximator circuit either is identically 	 or outputs � on at least �� �	 l
�

	�k � ��� � �k � ��n of the negative test graphs�

Proof� Let A �
Wr
i�� dXie be an approximator circuit� If A is identically �� then the �rst

conclusion holds� If not� then A
 dX�e� A negative test graph is rejected by the same
clique indicator dX�e i� its associated coloring assigns some two vertices of X� the same color�
Suppose a random coloring is chosen� with each of the �k� ��n possible colorings equally likely�
The probability that some two vertices of X� are assigned the same color is bounded above
by
	jX�j

�

	�k � �� 	 	l

�

	�k � ��� Hence the probability that dX�e outputs � on the associated

negative test graph is at least ��	 l�
	�k���� Rewriting this probabilistic statement as a counting
statement yields the desired result�

Subgoal � will be established by the following two lemmas on the relationship of a circuit C
to its approximator 'C�

Lemma ���� For every monotone circuit C� the number of positive test graphs for which the

inequality C 	 'C does not hold is at most size �C� �m� � 	n�l��k�l��

�

Proof� Let A �
Wr
i�� dXie and B �

Ws
i�� dYie be two approximations� Both of the inequalities

A � B 	 A t B and A �B 	 A u B will be shown to fail for at most m� � 	n�l��k�l��

positive test

graphs� This will imply the lemma because in the transformation from C to 'C there are size�C�
approximate AND and OR gates�

The inequality A � B 	 A t B is always true� since A t B is obtained from A � B by the
plucking procedure� Each plucking can only enlarge the class of accepted graphs�

Next� consider the inequality A � B 	 A u B� The �rst step in the transformation from
A � B to A uB is to replace dXie � dYje by dXi � Yje� These two functions behave identically
on positive test graphs� The second step is to erase those clique indicators dXi � Yje for which
jXi � Yjj
 l # �� For each such clique indicator� at most

	n�l��
k�l��

of the positive test graphs

are lost� Since there are at most m� such clique indicators� at most m� � 	n�l��k�l��

positive test

graphs are lost in the second step� The third and �nal step� applying the plucking procedure�
only enlarges the class of graphs accepted� as noted in the previous paragraph� Summing up the
three steps� at most m� � 	n�l��k�l��

positive test graphs fail to satisfy A �B 	 A uB� completing

the proof�

Remarks

Alternating computation was introduced by Chandra� Kozen and Stockmeyer �CKS���� a de	
tailed treatment is also available in �BDG��b�� The relation between standard complexity classes
and circuit complexity is discussed in �BDG��a� Chap� ���

Before Razborov�s theorem� no superlinear lower bounds were known for the monotone cir	
cuit complexity of some explicit monotone function in NP � Razborov �Raz��a� showed a su	
perpolynomial �n
�log n	� lower bound for the clique function� This was strengthened by Alon
and Boppana �AB��� to exp� ��n	 log n������� The proof given above is copied from the survey
article of Boppana and Sipser �BS����

When these result �rst appeared� it was considered possible to approach the P ��NP ques	
tion using circuit complexity� If it could be shown that all monotone problems in P had polyno�

mial �or subexponential� sized monotone circuits� then one could conclude from the above that
P �� NP� It turned out that this hope was misplaced� Razborov �Raz��b� showed a lower
bound for the monotone circuit complexity of perfect matching problem on bipartite graphs�
Tardos �Tar��� showed an exponential lower bound for the monotone complexity for another
monotone problem in P �

Lecture �

Randomization

Lecturer� Jaikumar Radhakrishnan Date�
� February	
���

��� Razborov
s proof continued

Lemma ��� For every monotone circuit C� the number of negative test graphs for which C
 'C
does not hold is at most size�C� �m� � �	 l�
	�k � ���p � �k � ��n�
Proof� Let A �

Wr
i�� dXie and B � �si��dYie be two approximators� The inequalities A �B

AtB and A�B
 AuB will be shown to fail for at most m� � �	 l�
	�k� ���p � �k� ��n negative
test graphs� As in the proof of Lemma ���� this will imply the desired result�

First� consider the inequality A �B
 A tB� Recall that A tB is obtained by performing
�m pluckings on A � B� Each plucking will be shown to accept only a few additional negative
test graphs� Color the vertices randomly� with all �k � ��n possible colorings equally likely� and
let G be the associated negative test graph� Let Z�� Z�� � � � � Zp be the petals of a sun(ower with
center X� What is the probability that dZe accepts G� but none of the terms dZ�e� dZ�e� � � � � dZpe
accept G� This event occurs i� the vertices of Z are assigned distinct colors �called a proper
coloring or PC�� but every petal Zi has two vertices colored the same� We have

Pr�Z is PC and Z�� Z�� � � � � Zp are not PC� 	 Pr�Z�� Z�� � � � � Zp are not PC j Z is PC�

�
pY
i��

Pr�Zi is not PC j Z is PC�

	
pY
i��

Pr�Zi is not PC��

The �rst inequality holds by the de�nition of conditional probability� the second inequality holds
by the mutual independence of the events fZi is not PC j Z is PCg� and the third inequality
holds because the event �Z is PC� is negatively correlated with the other events� As in the
proof of Lemma ���� we have Pr�Zi is not PC� 	

	 l
�

	�k � ��� Substituting this inequality into

the chain of inequalities in the previous paragraph shows that

Pr�Z is PC and Z�� Z�� � � � � Zp are not PC� 	 �
�
l

�

�
	�k � ���p

Thus to the class of negative test graphs accepted each plucking adds at most �
	 l
�

	�k � ���p �

�k � ��n new graphs� There are at most �m pluckings� so the number of negative test graphs
violating the inequality A �B
 A tB is at most �m � �	 l�
	�k � ���p � �k � ��n� This settles the
case of approximate ORs�

Next� consider the inequality A � B
 A u B� In the transformation from A �B to A u B�
the �rst step introduces no new violations� since dXie � dYje
 dXi � Yje� The second step of

�

erasing large clique indicators also introduces no new violations� This step was analyzed in the
previous two paragraphs� the only di�erence now is that there can be m� pluckings instead of
just �m� This settles the case of approximate ANDs� thus completing the proof�

Subgoals � and � have thus been proved� combining them yields the following exponential
lower bound on the monotone circuit complexity of the clique function�

Theorem ��� For k 	 n���� the monotone circuit complexity of the function CLIQUEk�n is

n
�
p
k	�

Proof� Set l �
jp

k
k
and p �

l
��
p
k log� n

m
� and recall that m � �p � ��l � l"� Let C be a

monotone circuit that computes the function CLIQUEk�n� By Lemma ���� the approximator
'C either is identically � or outputs � on at least ��	�� � �k � ��n of the negative test graphs� If
the former case holds� then apply Lemma ��� to obtain

size�C� �m� �
�
n� l � �
k � l � �

�

�
n

k

�
�

A simple calculation shows that in this case size�C� is n
�
p
k	� Suppose instead that the latter

case holds� Applying Lemma ��� shows that

size�C� �m� � ��p � �k � ��n
 ��	�� � �k � ��n

Another simple calculation shows that in this case size�C� is n
�
p
k	�

��� Primality

Prime numbers have been studied for centuries� today they play crucial roles in coding theory
and cryptography� Given a number in binary� how hard is it to determine if it is a prime� That
is� we want to know how hard it is to recognize the following language�

PRIMES � fn � N � n is a primeg�

One method of determining if a number n is a prime� suggested by the de�nition of prime� is to
use trial division� That is� for k � �� �� � � � �

p
n� check whether k jn� Unfortunately� this cannot

be called an e�cient method� because the size of the input is only dlogne and� therefore� pn
is exponential in the size lenght of the input� In fact� it is not known if PRIMES � P� so we
do not know if polynomial time deterministic algorithms exist for this problem� What about
nondeterministic programs�

Consider the following nondeterministic program�

Input� n coded in binary�
Existentially check for all n� � f�� � � � � � n� �g if n� jn�

If n is not a prime then the above algorithm accepts �on some computation path�� if n is
a prime then the algorithm rejects �on all computation paths�� Now it is easily seen that the
numbers �� � � � � � n� � can each be coded using strings of length no more than the length of n�
Moreover� division is a polynomial time operation� Thus the above algorithm shows that the
language of composite numbers is in NP� Thus compositeness has easy to verify proofs� Hence�
we have the following theorem�

Theorem ��� PRIMES � co�NP�
It is not so clear� however� that easy to verify proofs exist for primality also� Yet� the following
remarkable theorem shows that !every prime has succinct certi�cate��

Theorem ��� PRIMES � NP�
Before we prove this� we will need to develop some background in elementary number theory� Fix
n � N� and consider arithmetic modulo n� That is� our numbers will be Z�

n � f�� �� � � � � n� �g�
and addition and multiplication will be performed modulo n� Z�

n will denote the set f�� �� � � � � n�
�g�

Now let a � Z�
n� and compute its successive powers a� a

�� � � � � an�� �modulo n� of course�� If
fa� a�� � � � � an��g � Z�

n� that is� if all the elements of Z
�
n can be generated in this manner� then

we refer to a as a generator of Z�
n and say that Z

�
n is cyclic� For example� let n � ��� Then

for a � �� the sequence of powers is ��� �� �� �� ��� �� �� � �� ��� hence � is a generator modulo n�
However� for a � �� the sequence of powers is ��� �� �� � ��� hence � is not a generator� Note that
if a is generator then an�� � � �mod n�� We shall need the following fact from number theory�
a proof of which can be found in any standard text on number theory�

Lemma ��	 Z�
n is cyclic i� n is prime�

Imagine that someone wants to convince us that the number n is prime� To be sure we ask for
a generator a for Z�

n and check that a
n�� � � �mod n�� Note that we cannot compute an�� by

repeated multiplication �remember jnj � dlogne�� So we need to be more clever� We will use
the method of squaring described in the following algorithm�

Powering�a�b�n�
c � �
d � �
let hbk� bk��� � � � � b�i be the binary representation of b
for i � k downto �

do d � �d � d� �mod n�
if bi � �

then d � �d � a� �mod n�
return d

The reader can convince herself of the correctness of this procedure� Note that the number of
multiplications performed is at most jnj and the numbers are never allowed to become large
because we reduce them modulo n immediately after each multiplication� Thus� we easily verify
that an�� � � �mod n�� But is this enough� No� Consider n � ��� a � � check that a�� � �
�mod ��� �because �� � � �mod ����� In this counterexample� a started cycling much earlier
than �� steps� So we need to watch out for this� Let ord�a� be the smallest number �� �� for
which as � � �mod n�� Note that if an�� � � �mod n�� then ord�a� jn��� Hence all we need
to check is that as �� � for all s that are proper divisors of n� ��

We thus have the following lemma �Why���

Lemma ��� Let pe�� p
e�
� � � � perr be the prime decomposition of n � �� Let ni � �n � ��	pi� for

i � �� �� � � � � r� Suppose an�� � � �mod n� and for i � �� �� � � � � r� ani �� � �mod n�� Then a
is a generator of Z�

n�

This will take us further� We will ask for the prime decomposition of pe�� p
e�
� � � � perr of n� ��

and for each i we check that ani �� � �mod n�� where ni � �n� ��	pi� Are we done now� No�

What guarantee do we have that the prime decomposition provided to us is correct� True� we
can easily check that pe�� p

e�
� � � � perr � n��� but how do we ensure that the pi�s are primes� We use

the same algorithm� that is� we recurse" Stated formally� we have the following nondeterministic
algorithm for PRIMES�

Input n�
if n � � then accept

if n � � or n is even �greater than �� then reject
if n is odd and greater than �

then guess a � f�� � � � � � n� �g and verify that
an�� � � �mod n�

guess a prime factorization pe�� p
e�
� � � � perr for n� �

for each i recursively check if pi is a prime
check that n� � � pe�� p

e�
� � � � perr

for each i check that ani �� � �mod n�
if all these conditions hold then accept�

We leave it to the reader to verify that this algorithm runs in polynomial time�

��� Randomized computation

When we introduced nondeterminism� we assumed that our program has the ability to make
guesses� However� we assumed nothing about the pattern of guesses or their likelihood � each
was equally valid� Nor did we demand that for the input to be accepted the number of guess
sequences leading to acceptance must be large 	 even if just one among the many guesses led to
acceptance� we were satis�ed�

Now we change our viewpoint� Suppose the bits guessed by the program are random� That
is� each guess is � or � with probability �	�� independent of other guesses� Thus each sequence of
guesses has a probability associated with it� Such algorithms are called randomized algorithms�
For randomized algorithms� we may talk of the probability that the program accepts the input�
that is� the sum of the probabilities of the guess sequences leading to acceptance� Thus it follows
from Theorem �� that there is a polynomial time randomized algorithm A such that

� if x � PRIMES then Pr�A accepts x� � ��

� if x �� PRIMES then Pr�A accepts x� � ��

and from Theorem ��� that there exists a randomized algorithm B such that

� if x � PRIMES then Pr�B accepts x� � ��

� if x �� PRIMES then Pr�B accepts x� � ��

Consider algorithm A� Is it a good algorithm� It di�erentiates between primes and com	
posites� But can we really rely on its verdict� It is possible� for example� that the program
accepts composite numbers of length n with probability � � �	�n� Now suppose the algorithm
accepts an input of length n� Can we be reasonably certain the number is prime� No� because
the algorithm accepts composites also with very high probability� For a randomized algorithm
to be useful� the acceptance probabilities for the inputs in the language and the inputs not in
the language must be well separated� In fact� there do exist algorithms that accept primes and
composites with vastly di�ering probabilities� Before we state this precisely� let us formally
de�ne the randomized complexity classes�

De�nition �� A language L is in BPP � bounded error probabilistic polynomial time� i� there
exists a polynomial time randomized algorithm A such that

� For all x � L� Pr�A accepts x�
 	�
� For all x �� L� Pr�A rejects x�
 	�

A language L is in RP �randomized polynomial time� i� there exists a polynomial time random�

ized algorithm A such that

� For all x � L� Pr�A accepts x�
 	�
� For all x �� L� Pr�A rejects x� � �

A language L is in PP i� there exists a polynomial time randomized algorithm such that

� For all x � L� Pr�A accepts x� � �	�

� For all x �� L� Pr�A accepts x� 	 �	�

Thus if a language L is in co	RP then there exists an algorithm A such that

� For all x � L� Pr�A accepts x� � ��

� For all x �� L� Pr�A rejects x�
 	��
The following is a direct consequence of our de�nitions�

Proposition ��� P � RP � NP BPP�
In the next class we will study the properties of these randomized complexity classes and their

relationship with the classes of the polynomial time hierarchy� We will also see that the class
BPP has polynomial size circuits� Let us now return to the possibility of randomized solutions
to the problem of recognizing primes� The following beautiful theorem is often considered to be
the �rst result dealing with randomized complexity�

Theorem ��� �Rabin� Solovay
Strassen� ���� PRIMES � co�RP�

More recently� using some formidable machinery� it has been shown that PRIMES � RP�
Theorem ���� �Adleman
Huang� ����� PRIMES � RP�

Reducing the error� In our de�nition of the class BPP � we admitted algorithms with prob	
ability of error as high as �	�� In many of our applications later� it will be necessary to assume
that this probability of error is very small� We show below how this error probability can be
reduced signi�cantly� while still maintaining that the running time of the algorithm is bounded
by a polynomial in the input length�

Theorem ���� �a� L � BPP i� for every polynomial p � N � N� there exists a polynomial

time algorithm recognizing L with error probability at most ����
p�jxj	 on input x�

�b� L � RP i� for every polynomial p � N � N� there exists a polynomial time algorithm A
recognizing L such that for

� If x � L then Pr�A accepts x�
 �� ����p�jxj	

� If x �� L then Pr�A rejects x� � ��

Proof�

�a� The reverse implication is trivial and so we prove only the if direction� Since L � BPP
there is a polynomial time randomized algorithm A recognizing L with error probability at
most �

� � The idea is to run the algorithm many times� independently� and use the answer
it returns most frequently�

Consider the following algorithm where q�n� � p�n��

Input x� �jxj � n��
Run the algorithm A �q�n� # � times� independently�
If the number of executions that accept is at least q�n� # �
then accept
else reject�

Clearly the algorithm runs in polynomial time� We claim that the algorithm has error
probability at most ��� �

p�jxj	� Indeed the error probability of the algorithm is at most

q�n	X
j��

�
�q�n� # �

j

�

�

�j �
�

��q�n	���j
	

q�n	X
j��

�
�q�n� # �

j

�

��

���q�n	��	��

	

��

�q�n	
��q�n	

	

�

�q�n	

	

�

�

�p�n	
�

�b� This is even easier� We just run the algorithm many times and accept if even one execution
accepts� We omit the calculations�

��� Proof systems

We return now to the class NP � which we view as the class of languages L whose proof of
membership can be e�ciently veri�ed� In this framework� we have a program that takes as
input a string x and a proof �also coded as a string� and after a polynomial time computation
decides to accept or reject� If it accepts then surely x is in the language L �that is� nothing can
cause the program to accept if x �� L�� and if x � L then there does exist a proof that satis�es
the program �thus causing it to accept��

In this model� we require that the proof of membership be given �rst and all at once�
However� when trying to model the process of one party trying to convince another of the truth
of some statement� it is natural to expect that the two parties exchange messages many times�
For example� the prover might present some evidence� and the veri�er� while scrutinizing it�
might require some additional pieces of evidence along the way� Or� say� the veri�er might ask
the prover questions and decide to accept if it considers the answers satisfactory�

Would interaction add to the power of the framework we considered above� Is it possible
that if our polynomial time machine were allowed to ask questions and receive answers from an
in�nitely powerful agent� then it could be convinced of membership for even languages outside of
NP� Unfortunately� the answer is !No�� The veri�er is deterministic� its actions are determined
entirely by its input and the messages it receives� In particular� the questions it could ask a
prover are also determined by the input and the answers it received to the previous questions�
Thus� the prover �who we assume is in�nitely powerful� can right in the beginning provide
all the answers in a single message� The veri�er can then compute as usual and consult this
message whenever it is in need of an answer to some question �without even bothering to write
the questions down�� Hence� we conclude that adding interaction will not give the system any
more power� as long as the veri�er is deterministic�

����� Randomness and interaction

Let us now allow the veri�er to toss coins� As before� we have two agents � a prover and a
veri�er� The prover is assumed to be all powerful� However� the veri�er is now a polynomial
time randomized program� The two parties interact according to some rules �the protocol� after
which the veri�er decides to accept or reject�

We must now postulate the conditions that a protocol must satisfy in order for it to recognize
a language� First� if the input is in the language� the veri�er must accept with high probability�
That is� there must exist a prover such that� for all inputs in the language� for most coin toss
sequences of the veri�er� the protocol concludes with an accept� On the other hand� if the input
is not in the language� no prover� however malicious� can cause the veri�er to accept for more
than a small fraction of the coin toss sequences�

This outline is rather informal� Before we make this precise and consider the complexity
classes arising from such proof system� let us consider an example� Consider the problem of
graph�nonisomorphism� That is� the input is a pair of graphs hG�� G�i and the prover wishes to
convince the veri�er that they are not isomorphic�� The language corresponding to this problem�

NON	ISO � fhG�� G�i � G� is not isomorphic to G�g�

is not known to be in NP � so we do not know if an e�cient proof method with a deterministic
veri�er exists� Consider the following protocol� Assume that G� and G� are both graphs with
vertex set f�� �� � � � � ng�
Veri�er� Pick i � f�� �g at random �Pr�i � ���Pr�i � �� � �	��� Randomly permute the vertices

of the graph Gi �each of the n" permutations is equally likely�� send the resulting graph
H to the prover�

Prover� If H is isomorphic to G� then send �� else send ��

Veri�er� Check if the answer sent by the prover is the same as i�

Is this a good protocol for the language NON	ISO� Suppose G� and G� are not isomorphic�
Can the prover always send the correct answer j� Yes� because H can be isomorphic to only one
of G� and G�� Since the prover is all powerful� she can know the graph from which H originated�
Thus there is a prover that can cause this veri�er to accept for every coin toss sequence�

It remains still to show that� if the two graphs are isomorphic� then no prover can cause the
veri�er to accept with signi�cant probability� Suppose G� and G� are isomorphic� Then t is

�The graph G� and G� are said to be isomorphic if there is a way of renaming the vertices of one graph and
make it identical to the other�

intuitively clear that any prover� when given a graphH � cannot predict which graph it originated
from� in fact the original graph is as likely to be G� as it is to be G�� Thus the probability
that the veri�er accepts is exactly �	�� �The reader should verify this formally�� To reduce the
probability of error� we can run a large number of parallel executions of this protocol� That is
in the �rst step the veri�er independently chooses i�� i�� � � � � im � f�� �gm randomly so that each
ij can be � or � with equal probability� independently of the others� Then the veri�er sends
to the prover m graphs H��H�� � � � �Hm where Hj is obtained from Gij by randomly permuting
its vertices� Then for j � �� �� � � � �m� the prover must correctly tell the veri�er the graph from
which Hj originated �that is the value of ij�� It can be veri�ed that this reduces the probability
of error to ��	��m�

Remarks

The study of primality testing and related number theoretic problems is the subject of the survey
article of Lenstra and Lenstra �LL���� Theorem ��� is due to Pratt �Pra���� The procedure
Powering is taken from �CLR��� p� ����� the e�cient the nondeterministic algorithm for showing
that PRIMES � NP is taken from �BDG��a� p� ���� Randomized algorithms are described
in �BDG��a� Chap� ��� Theorem ���� is taken from �BDG��a� p� ����

Interactive proof systems were introduced independently by Goldwasser� Micali and Rack	
o� �GMR��� and Babai �Bab��� �see also Babai and Moran �BM����� The article of Gold	
wasser �Gol��� and the lecture notes of Beigel�s course �BCD��� contain most of the material
we propose to discuss� The elegant and compelling example of graph	nonisomorphism is due to
Goldreich� Micali and Wigderson �GMW����

Lecture �

Arthur�Merlin Games

Lecturer� Jaikumar Radhakrishnan Date� �� February	
���

In this lecture we continue our study of the complexity classes that arise when randomness
is introduced in the computation� First� we compare the power of these classes with the classes
in the polynomial hierarchy and other non	randomized classes� After this we formally de�ne the
class of languages that have e�cient interactive proofs and study its properties�

	�� Randomized classes

In the last class we started by viewing NP	programs as randomized programs� These random	
ized programs never accepted inputs not in the language� and for inputs in the language� they
accepted with some positive �but perhaps extremely small� probability� Although such a minor
separation in the behaviour of the program for inputs in and not in the language is unacceptable
for the classes BPP and RP � it is similar to the conditions for the class PP � Indeed� any NP	
program can be transformed to a randomized algorithm so that the error probability satis�es
the requirements for the class PP �

Theorem 	�� NP � PP�

Proof� Let L � NP and let PL�x� y� be a predicate and p�n� a polynomial such that

x � L �� �y � f�� �gp�jxj	 PL�x� y��
Consider the following randomized algorithm�

Input� x �jxj � n��
Randomly check for i � f�� �g if
Randomly check for y � f�� �gp�n	 if
�i � � or PL�x� y���

Now� it can be easily veri�ed that if x � L� then the probability that this algorithm accepts
is more that �	�� and if x �� L� then the probability that the algorithm accepts is exactly �	��
Hence� L � PP �

����� The class BPP

That RP � NP is a direct consequence of our de�nitions� What is the relationship between
NP and BPP� It is not known if either is contained in the other� We had seen that if NP
has polynomial size circuits� then the polynomial hierarchy collapses� It is� therefore� considered
unlikely that NP has polynomial size circuits� Does BPP have polynomial size circuits� Before
answering this question we need to obtain a characterization of BPP similar to the one for NP
used above�

��

A language L is in BPP if and only if there exists a polynomial time computable predicate
P �x� y� and a polynomial p�n�� such that for all x � f�� �g�

x � L� Pr
y�f���gp�jxj�

�P �x� y��

�
� �����

x �� L� Pr
y�f���gp�jxj�

�P �x� y�� 	 �

�
� �����

By reducing the error probability �Theorem ������ we may replace the bounds �	�� �	�� by
��� ��q�n	� ��q�n	� for any polynomial q�n��

Theorem 	�� BPP has polynomial size circuits�

Proof� Let L � BPP and let QL � f�� �g� � f�� �g be its characteristic vector� Now consider
the characterization �����	����� � By reducing the error probability we may assume that

Pr
y�f���gp�n�

�QL�x� �� P �x� y�� � ��n� ����

For x � f�� �gn� let E�x� � fy � f�� �gp�n	 � QL�x� �� P �x� y�g� By ����� we have that
jE�x�j � �p�n	 � ��n� and therefore

j
�

x�f���gn
E�x�j 	

�
x�f���gn

jE�x�j � �p�n	�

Since the number of strings y of length p�n� is �p�n	� we conclude that� for each n � N� there
exists y � f�� �gp�n	 such that� for all x � f�� �gp�n	� y �� E�x�� Let 'yn denote such a y for
input lenght n� thus� for all x � f�� �gn� QL�x� � P �x� 'yn�� We shall use these 'yn to obtain the
polynomial size circuits for L�

Now� the predicate P �x� y� is computable in polynomial time� Hence� by Theorem �� there
exist polynomial size circuits� say C�� C�� C� � � �� where Ci computes P �x� y� correctly on inputs
�x� y� of length i� To obtain the circuits the language L we hard	code the strings 'yn obtained
above� That is� we obtain circuits 'C�� 'C�� � � �� de�ned by 'Cn�x� � Cn�p�n	�x� 'yn� recognizing the
language L�

Although� we cannot decide whether or not BPP � NP � the following theorem locates BPP
in the polynomial time hierarchy�

Theorem 	�� BPP � �P
� $P

�

Proof� It follows from the de�nition of BPP that BPP � co	BPP � Hence� it su�ces to show
that BPP � $P

� � Let L � BPP � We again use the characterization �����	����� with error
reduced to ��n� We shall show that there is $P

� program that recognizes L for all but �nitely
many input lengths �why is this enough���

Consider the following $P
� program� For two �	� vectors v and w of the same lenght v � w

denotes the �	� vector of the same length whose ith component is the exclusive �sum modulo ��
of of the ith components of v and w�

Input x �jxj � n��
m � p�n��
Universally check for z�� z�� � � � � zm � f�� �gp�n	 if
Existentially check for 'z � f�� �gp�n	 ifVm

i�� P �x� zi � 'z��

We claim that the above program recognizes L� We need to show two things�

�� If x � L then for all z�� z�� � � � � zm � f�� �gp�n	� there exists a 'z such that Vm
i�� P �x� zi� 'z��

Indeed� we shall show that for each choice of the zi�s� a randomly chosen 'z will have this
property with high probability� Fix z�� z�� � � � � zm � f�� �gp�n	 and notice that if 'z is chosen
randomly from f�� �gp�n	� then zi � 'z is also a random vector in f�� �gp�n	 �with uniform
distribution� of course"�� Therefore� for i � �� �� � � � �m�

Pr
�z�f���gp�n�

��P �x� zi � 'z�� 	 ��n�

Thus
Pr

�z�f���gp�n�
��i�P �x� zi � 'z�� 	 m � ��n � �

�for n large enough�� Hence there exists a 'z � f�� �gp�n	 such that Vm
i�� P �x� zi � 'z�� Thus

inputs in the language are accepted by the program�

�� If x �� L� then there exists a choice of zi�s from f�� �gp�n	 such that� for all 'z � f�� �gp�n	�
there exists an i � f�� �� � � � �mg such that P �x� zi � 'z� � false�

This time we will show that if the zi are chosen randomly and independently� then they
will have the required property with high probability� Indeed� we have for any �xed 'z that

Pr��iP �x� 'z � zi�� 	 ���n�m�

Thus
Pr��'z � f�� �gp�n	�i P �x� 'z � zi�� 	 �p�n	���n�p�n	 � ��

Thus� there exists a choice of zi�s with the required properties� Hence� the program rejects
all inputs not in the language�

	�� Arthur vs� Merlin

We now return to interactive proof systems� In our framework� there will be two parties � Arthur
the veri�er� and Merlin the prover� They are expected to alternately become active and send
messages or make moves� These messages� in the end� determine if the input is to be accepted�
In order to keep the proof system e�cient� we require that the total time taken be bounded by
a polynomial� Arthur will be a randomized program� that is� he will be allowed to toss coins
and determine the next message to be sent based on the outcome of the tosses� the message
he has received and the input� Merlin� on the other hand will be assumed to be all powerful�
His messages to Arthur will be determined by the input� the messages it has received� and the
outcome of Arthur�s coin tosses��

Now� the only source of unpredictability in Arthur�s behaviour is the randomness resulting
from coin tosses� Hence� the omnipotent Merlin can completely determine Arthur�s actions
using the outcome of the coin tosses �which our framework allows him to know� and the input�
In our de�nition below� we therefore do not require Arthur to compute his messages� all that
he does is toss a certain number of coins and send the outcome to Merlin� However� to make

�Notice that the protocol for graph non�isomorphism presented in the last class does not conform to this
framework� making the coin tosses available to the prover would enable her to always give the right answer� even
for inputs not in the language� We will deal with this subtlety later in this lecture�

our description sensible� and the purport of Arthur�s message clear� Arthur will be allowed to
compute his messages instead of tamely tossing coins and relegating the rest to Merlin�

Thus we have the following notion of a protocol� The protocol speci�es who is to start
communicating� the number t�n� of messages to be exchanged by the parties� the length l�n�
of these messages and the acceptance criterion R���� where n is the length of the input� If it is
Arthur�s turn to send the ith message� then the ith message consists of a string of l�n� random
bits� We denote Arthur�s messages by r�� r�� � � �� We model Merlin�s actions using a function
M � f�� ���g � f�� �g� If Merlin has received messages r�� r�� � � � rk so far and it his turn to
communicate now� then his next message will be M�x�r��r�� � � ��rk�� where x is the input �
At the end the acceptance criterion R is enforced� Suppose on input x the execution produces
the messages r��m�� r��m�� � � � � rk�mk� then we accept i� R�x�r��m��r��m� � � ��rk� is true�

We will assume that l�n� and t�n� are polynomials and R is a polynomial time computable
predicate� Note that the functionsM is not speci�ed by the protocol� Also� for any input x� and
any Merlin� acceptance is a random event determined by the outcome of Arthur�s coin tosses�

De�nition 	�� �Arthur
Merlin games� We say that L � AM�q�n�� if there exists a protocol

$ � �l�n�� t�n�� R�� with the number of moves t�n� � q�n�� with Arthur making the �rst move�

such that for all x � f�� �g�� $ accepts x with error probability at most �	�� that is�

x � L� �M � f�� ���g� � f�� �gl�n	 Pr�$ accepts x�
 	��

x �� L� �M � f�� ���g� � f�� �gl�n	 Pr�$ accepts x� 	 �	��
In this case we say that $ recognizes L� The class AM�poly� is the class of languages recognized by

Arthur�Merlin protocols making a polynomial number of moves� Similarly� we de�ne MA�q�n���
where Merlin makes the �rst move� When q�n� is a small constant� we will denote the class

AM�q� and MA�q� by a string of A�s and M�s such as AM for AM��� and MAM for MA�� etc�

Note how the acceptance probabilities resemble those for the class BPP � In fact� there is a
version of these games where the error probabilities resemble those for the class PP �

De�nition 	�	 We say that L is recognized by a game against nature if there is a protocol $
such that for all x � f�� �g��

x � L� �M � f�� ���g� � �� �l�n	 Pr�$ accepts x� � �	��

x �� L� �M � f�� ���g� � �� �l�n	 Pr�$ accepts x� 	 �	��

Theorem 	�� The class of languages recognized by games against nature is PSPACE�

Proof� See Homework �� Problem �� �For one direction simulate the games using a PSPACE	
program� for the other� recall the alternating computation characterization of PSPACE �Theo	
rem ���� interpret existential checks as Merlin�s moves and universal checks as Arthur�s moves�
Then use a trick similar to Theorem �����

As in the case of BPP � the error bounds in De�nition ��� can be made exponentially small�

����� Finite levels of the AM hierarchy

Theorem 	� L � AM�q�n�� i� there is a q�n��move protocol that recognizes L with error

probabilities ��m�n	 for any polynomial m�n��

Proof� The !if� direction is trivial� For the only if direction we show how the error can be
reduced from �	� to ��m�n	� The idea is to run many copies of the protocol in parallel and use
the answer returned most often� The calculations are identical to those for Theorem ����� We
do not repeat them here�

Theorem 	�� MA � AM

Proof� Let L � MA� Then there exists a two move protocol with Merlin making the �rst
move that recognizes L� Hence L is recognized by a program of the following form with error
probability at most �	��

Input x �jxj � n�
Existentially check for y� � f�� �gl�n	 if
Randomly check for y� � f�� �gl�n	 if

R�x� y�� y���

The idea now is to �rst reduce the error in the randomized check� This would enable us to
perform the existential and randomized checks in the opposite order� Consider the language L�

consisting of pairs hx� y�i �jxj � n� jy�j � l�n�j� such that

hx� y�i � L� �� Pr
y��f���gl�n�

�R�x� y�� y���

�
�

Since the error probability of the protocol is at most �	�� we have

hx� y�i �� L� �� Pr
y��f���gl�n�

�R�x� y�� y��� 	 �

�
�

Hence we have the following randomized algorithm for recognizing L� with error probability at
most �	��

Input hx� y�i �jxj � n� jy�j � l�n���
Randomly check for y� � f�� �gl�n	 if
R�x� y�� y��

Since L� is BPP � we have� using characterization �����	����� and the Theorem ����� that L� is
recognized with error probability at most ���l�n	��	 by a program of the following form�

Input �x� y�� �jxj � n� jy�j � l�n��
Randomly check for y�� � f�� �gl��n	 if

R��x� y�� y���

Returning to our original language L� we get the following program for recognizing it with error
probability at most ���l�n	��	

Program A
Input x �jxj � n�
Existentially check for y� � f�� �gl�n	 if
Randomly check for y�� � f�� �gl��n	 if

R��x� y�� y���

We claim that the following program accepts L with error probability at most �	��

Program B
Input x �jxj � n�
Randomly check for y�� � f�� �gl��n	 if
Existentially check for y� � f�� �gl�n	 if

R��x� y�� y���

To verify the claim we need to consider two cases�

�� x � L� By the properties of program A there exists a 'y � f�� �g so that for all but
���l�n	��	 � �l��n	 of the strings y�� � f�� �gl

��n	� R��x� y�� y��� is true�

Hence for all these string y�� there exists a string y� � f�� �gl�n	 such that R��x� y�� y���
Thus Program B accepts x with probability at least �� ���l�n	��	
 	��

�� x �� L� For y� � f�� �gl�n	� let

E�y�� � fy�� � f�� �gl
��n	 � R��x� y�� y���g�

Since Program A has error probability at most ���l�n	��	� we have that jE�y��j 	 �l
��n	 �

���l�n	��	� Hence�

j
�

y��f���gl�n	
E�y��j 	

X
y��f���gl�n�

jE�y��j 	 ���l�n	��	 � �l�n	 � �l��n	 	 �l��n		��

Thus� for at least �	���l
��n	 strings y��� there exists no y� � f�� �gl�n	 such that R��x� y�� y���

is true� Thus the above algorithm rejects such inputs with probability at least 	��

To complete the proof that we just observe that the required protocol can easily be obtained
from Program B�

In fact� the method used above gives the following result�

Theorem 	�� MAM � AM

Proof� �Sketch� Let L � MAM� Then we have a program of the following form that recognizes
L with error probability at most �	��

Input x �jxj � n�
Existentially check for y� � f�� �gl�n	 if
Randomly check for y� � f�� �gl�n	 if
Existentially check for y� � f�� �gl�n	 if

R�x� y�� y�� y���

The idea now is to decrease the error by amplifying the probabilities �see Theorem ���� for
the AM type protocol in the last � steps� This gives a program that recognizes L with error
probability at most ���l�n	��	�

Input x �jxj � n�
Existentially check for y� � f�� �gl�n	 if
Randomly check for y�� � f�� �gl��n	 if
Existentially check for y�� � f�� �gl��n	 if

R��x� y�� y��� y���

Now we switch the �rst two checks to obtain the following program�

Randomly check for y�� � f�� �gl��n	 if
Existentially check for y� � f�� �gl�n	 if
Existentially check for y�� � f�� �gl��n	 if

R��x� y�� y��� y����

A straightforward calculation �see proof of Theorem ���� shows that this recognizes L with error
probability at most ��	��� As usual we collapse the last two existential checks into one and as
before transform this program into a protocol�

Theorem 	��� For all k� AM�k� � AM

Proof� �Sketch� We shall only consider the cases k � and k � �� The method easily generalizes
to other values of k� Let L � AM�� � AMA� The idea is to use Theorem ��� to switch the MA
occurring at the end to AM� Then we get L � AAM� But AAM � AM because the two messages
of Arthur can be converted into one long message� Similarly if L � AM��� � AMAM � then we
use Theorem ��� to convert the last MAM to AM� and then collapse the two occurrences of A
into one�

For the general case we repeatedly apply one of Theorems ��� and ��� and reduce the chain
of alternating A�s and M�s to just AM�

Note� It is important in the above Theorem for k to be a constant� The reason is that in
each application of Theorem ��� or Theorem ���� we need to increase the running time by a
polynomial factor � to bring the error down�� We cannot a�ord to do this more than a constant
number of times� because we wish to keep the running time bounded by a polynomial�

����� Arthur Merlin games and PH

Clearly � BPP � AM because BPP is the same as AM���� Also NP � AM because languages
in NP can be recognized by protocols where Arthur does nothing and Merlin sends just one
message�

It is natural therefore to ask how big the class AM is� Does it �t in the polynomial time
hierarchy� Indeed� the following theorem shows that AM is contained in the second level of the
hierarchy�

Theorem 	��� �a� AM � $P
� �

�b� MA � �P
� $P

� �

Proof�

�a� Let L � AM� The idea is to �rst reduce the error probability and replace the randomized
check � Arthur�s move � by a Universal check followed by an existential check� Now we have
two adjacent existential checks� these can be collapsed into one yielding a $P

� program for
recognizing L�

The randomized check can be replaced by a universal check followed by an existential
check using the technique we employed to show that BPP � $P

� � The details are left to a
homework�

�b� That MA � $P
� follows from part �a� because MA � AM �Theorem ����� On the other

hand� MA � �P
� is an easy consequence of Theorem ��� The details are left as homework�

We have seen that BPP � NP � AM� Also we have an upperbound AM � $P
� � How large

is the class AM� We saw earlier that permitting the veri�er to use randomness� enabled us to
recognize languages that were in co	NP � but were not known to be in NP � Can all of co	NP
be recognized by such protocols�

����� AM vs� co�NP

We shall show that if co	NP is contained in AM then the polynomial hierarchy collapses� First
we need a lemma�

Lemma 	��� If co�NP � AM then co�AM � AM

Proof� Let L � co	AM� Then L is recognized by a program of the following form �Why���

Program A
Input x �x � n�
Randomly check for y� � f�� �gp��n	 if
Universally check for y� � f�� �gp��n	 if

R�x� y�� y���

We shall also assume that the error probability is at most �	��� Consider the language
corresponding to the last Universal check� that is�

L � fhx�� y�i � jy�j � p��jxj� � �y� � f�� �gp��jxj	R�x� y�� y��g�

Clearly L is in co	NP � Hence by the assumption in the theorem� we have that L � AM� Hence
L is recognized with probability at most �	�� by a program of the following form�

Program B
Input hx�� y�i �jxj � n� jyj � p��n���
Randomly check for y�� � f�� �gp���n	 if
Existentially check for y� � f�� �gp��n	 if

R��x� y�� y��� y���

We may also rewrite Program A as follows�

Input x �jxj � n�
Randomly check for y� � f�� �gp��n	 if
Randomly check for y�� � f�� �gp���n	 if
Existentially check for y� � f�� �gp��n	 if

R��x� y�� y��� y��

We claim that the probability of error at most �	�� Roughly the reason is as follows� By
the property of Program A the error for the �rst random check is at most �	��� and by the
property of Program B� the error in the second random check is also at most �	��� Thus the
total probability of error �	�� # �	�� 	 �	� as required� We leave the details to the reader�

We are now in a position to prove the result claimed above�

Theorem 	��� If co�NP � AM then PH � AM � $P
�

Proof� Suppose co	NP � AM� We will show that� for each k
 �� �P
k � AM� The case k � �

is trivial� since �P
� � NP � AM� Assume that k
 � and �P

k�� � AM� we will now show that
�P
k � AM� Let L � �P

k � Then there is a language L
� � co	NP such that L is recognized by a

program of the form

Input x �jxj � n�
Existentially check for y� � f�� �gp��n	 if

�x� y� � L��

Since co	NP � AM� we have L� � co	AM� Then using Lemma ����� we have that L� � AM�
Thus we have a program of the following form that recognizes L with probability of error at
most �	��

Input x �jxj � n�
Existentially check for y� � f�� �gp��n	 if
Randomly check for y� � f�� �gp��n	 if
Existentially check for y� � f�� �gp��n	 if

R��x� y��

But then� L � MAM� By Theorem ���� L � AM� Thus �P
k is contained in AM� completing the

induction�

It is therefore believed that co	NP is not likely to have short interactive proofs� This intuition
is strengthened by the following relativized result� which suggests that co	NP does not have
polynomial length interactive proofs�

Theorem 	��� There exists an oracle B such that co�NP�B� �� AM�poly��B�

The theorem suggests that perhaps not all languages in co	NP have polynomial interactive
proofs even if no bound is imposed on the number of moves� However this is an important
example of a relativized separation that is false in the real world * we will see later in the
course� that without oracles co	NP � AM�poly��

Public coins vs� Private coins� As remarked earlier� the protocol for graph non	isomorphism
given in the last lecture does not conform to the Arthur	Merlin games framework� Protocols
where the veri�er does not disclose the outcome of the coins directly are called private coin

protocols� and the class of languages recognized �error 	 �	�� by such protocols using k	moves
is denoted by IP�k�� Thus� we know that NON	ISO � IP����

The following theorem shows that private coin protocols can always be replaced by public
coin protocols �that is Arthur	Merlin games��

Theorem 	��	 For any polynomial q�n�� IP�q�n�� � AM �q�n� # ���

This is a deep and beautiful result� We will not be able to present its proof in our lectures� We
will content ourselves by providing a public coin protocol for recognizing NON	ISO� Some of
the ideas employed in the proof of the above theorem will already be encountered in the special
case�

First� we need to prepare some background related to hashing�

De�nition 	��� �Linear hash function� Let D be a b�k Boolean matrix� Let hD � f�� �gk �
f�� �gb be the linear function de�ned by hD�x� � Dx �we are using modulo � arithmetic�� A
random linear function is obtained by selecting the bk entries randomly and independently�

For C � f�� �gn� we let h�C� � fh�x� � x � Cg�

Lemma 	�� Let m� b � �� C � f�� �gm� and c � jCj	�b 	 �� Let h � f�� �gm � f�� �gb be a
random linear function and z a random element of f�� �gb� Then

Pr�z � h�C��
 c� c�

�
�

Proof� We �rst have the following claims�

�� For x� y � f�� �gm �x �� y�� Pr�h�x� � h�y�� � ��b�

�� Pr�z � h�C��

X
x�C

Pr�z � h�x���
X

x�y�C�x ��y
Pr�z � h�x� � h�y���

For �� observe that the probability of a bit of h�x� agreeing with a bit of h�y� is exactly �	�
�these events being independent for the various bits�� To see �� for each w � f�� �gm� de�ne the
event

Aw � �z � h�w���

Then� Pr�z � h�C�� � Pr�
S
w�C Aw�� which by the inclusion	exclusion principle gives ��

Now� for x� y � C �x �� y�� Pr�z � h�x� � h�y�� � ���b� Thus� from � and �� we have

Pr�z � h�C��
 jCj
�b

�
�
jCj
�

�
	��b
 jCj

�b
� jCj�

�
� �
��b

� c� c�

�
�

Theorem 	��� NON�ISO � AM �

Proof� To understand the main idea of the proof� let us make a simplifying assumption� the
graphs we are provided have no non	trivial automorphisms� that is� every permutation of the
vertices results in a new graph� Suppose the input graphs are G� and G�� Assume they have
the same vertex set f�� �� � � � � ng� Consider the set

LIKE�G�� G�� � fH � H �� G� �H �� G�g�
How big is LIKE�G�� G��� If G� ��� G�� then jLIKE�G�� G��j � �n"� otherwise jLIKE�G�� G��j �
n" �Why��� Now Merlin has to convince Arthur that jLIKE�G�� G��j is more than n"� Let Gn
be the set of all the ��

n
�� graphs on n vertices� Thus if Arthur picks a graph in Gn at random�

he is twice as likely to pick a graph in LIKE�G�� G�� when the graphs are not isomorphic than

when the graphs are isomorphic� Unfortunately� n" is a much smaller number than ��
n
��� so

Arthur cannot pick a random graph G in Gn and expect Merlin to convince him that the graph
is isomorphic to one of G� and G�� To get around this problem we use random hash functions
to map Gn to a domain of smaller size�

Assume that the elements of Gn are coded as strings of length
	n
�

� Let q�n� � dlog� n"e# ��

Take a random linear hash function h � f�� �g�n�� � f�� �gq�n	� and apply Lemma ���� with
C � LIKE�G�� G��� If G� ��� G�� then c � �n"	�

q�n	 and

Pr�z � h�LIKE�G�� G����
 c� c�	� � c�� � c	��
 c	��
On the other hand� if G�

�� G�� then jh�LIKE�G�� G���j 	 jLIKE�G�� G��j � n"� Thus� Pr�z �
h�LIKE�G�� G���� 	 n"	�q�n	 � c	�� We can use this fact to give a protocol as follows�

Arthur� Choose a random linear hash function h � f�� �g�n�� � f�� �gq�n	 and z � f�� �gq�n	 and
send them to Merlin�

Merlin� If there exists a 'G � LIKE�G�� G�� such that h� 'G� � z� then send 'G to Arthur along
with a proof that 'G is isomorphic to one of G� and G� �that is an index i � f�� �g and a
permutation � of f�� �� � � � � ng��

Arthur� Check that h� 'G� � z� verify that 'G is in LIKE�G�� G���

The discussion above shows that if G� ��� G�� then the faithful Merlin will convince Arthur
with probability at least c	�� on the other hand� ifG�

�� G�� then no Merlin can convince Arthur
with probability more than c	�� We have thus achieved a constant separation in the acceptance
probabilities for the two cases� This can indeed be converted to a �	� � 	� separation� �We
leave the details to the reader��

Now let us consider the problem without the assumption that G� and G� have no non	trivial
automorphisms� Consider the following set

ALIKE�G�� G�� � fhH��i � �H �� G� �H �� G�� and � is an automorphism of Hg�

Note that if G�
�� G� then jALIKE�G�� G��j � n" and if G� ��� G�� then jALIKE�G�� G�� � � �n"

�Why��� The rest of the proof remains the same as before� except that now Merlin has to provide
not only the proof that graph 'G is isomorphic to one of G� and G�� but also an automorphism
� of 'G� Arthur� in turn� has to check that h�h 'G��i� � z� 'G is isomorphic to one of G� and G��
and that � is indeed an automorphism of 'G� We omit the details�

Corollary 	��� If the graph isomorphism problem is NP�complete� then PH collapses to AM�

The reader might have noticed that in the private coin protocol of last class� the prover could
convince the veri�er with probability � whenever the graphs were not isomorphic� The public
coin protocol presented above has two	sided error� However� it is possible to provide a di�erent
protocol where non	isomorphic graphs will be accepted without fail� �The protocol will err only
for pairs of isomorphic graphs� whom it will sometimes accept�� Indeed� this is a special case of
a general theorem�

Theorem 	��� If L � AM�q�� then there exists an Arthur�Merlin protocol with at most q # �
moves� where the error is restricted to inputs not in the language�

Remarks

Theorem ��� is due to Bennett and Gill �BJ��� �earlier Adleman �Adl��� had shown that RP has
polynomial size circuits�� Sipser and G%acs showed that BPP � PH� the proof presented in the
lecture is due to Lauteman �Lau��� The notion of games against nature as well as Theorem ���
are due to Papadimitriou �Pap���

The results relating to the �nite levels of the AM hierarchy appeared in the original paper
of Babai �Bab��� �see also �BM����� Theorem ���� is from �BM���� Theorem ��� is due to
Boppana� Hastad and Zachos �BHZ���� The relativized separation in Theorem ���� was shown
by Fortnow and Sipser �FS����

Theorem ���� was shown by Goldwasser and Sipser �GM���� Theorem ���� follows from
their result� The direct proof presented in the lecture is from �BHZ���� Linear hash functions
were introduced by Carter and Wegman �CW���� The original form of Lemma ���� is due
to Sipser �Sip��� the simpli�ed version used by us in the lecture is due Boppana �GM����
Theorem ���� is due to Goldreich� Mansour and Sipser �GMS����

Lecture �

Toda�s Theorems

Lecturer� Sanjeev Saluja Date� � March	
���

��� Counting classes

Recall from Homework � that a nondeterministic polynomial time machine N is ranked if there is
a polynomial p�n� such that the computation tree of N on inputs x� is a complete binary tree of
depth p�jxj�� For a ranked nondeterministic polynomial time machine �an NP	machine� N� let
�N� �N denote the functions which count the number of accepting and rejecting computations
of N respectively� that is� on input x� �N�x� gives the number of accepting computations of N�
and �N�x� gives the number of rejecting computations of N� Note that the classes NP� PP
and BPP can be de�ned using the number of accepting and rejecting computations of ranked
NP	machines�

Proposition ��� �a� L � NP i� there exists a ranked NP�machine N such that� for all x�

x � L �� �N�x� � ��

�b� L � PP i� there exists a ranked NP�machine N such that� for all x�

x � L �� �N�x� � �N�x��

Equivalently� L � PP i� there exists a ranked NP�machine N and a polynomial p�n�
giving the depth of computation tree of N� such that� for all x�

x � L �� �N�x� � �p�n	���

�c� L � BPP i� there exists a ranked NP�machine N and a polynomial p�n� giving the depth
of computation tree of N such that� for all x�

� x � L� �N�x�
 �
��

p�jxj	

� x �� L� �N�x� 	 �
��

p�jxj	�

Notice how each of the classes above is de�ned using the count of accepting and rejecting
computations of NP	machines� Such classes are broadly referred to as counting classes in
complexity theory� Two other important counting classes that we are going to study in this
lecture are �P and �P �

De�nition ��� �a� L � �P i� there is a ranked NP�machine N such that� for all x�

x � L �� �N�x�is odd�

��

�b� �P is a class of functions f � N� N f � �P i� there exists a ranked NP�machine N�
such that� for all x� f�x� � �N�x��

These classes are interesting and important as they contain several natural computational prob	
lems�

Proposition ��� �a� The language

�SAT � f� � � is CNF formula with odd number of satisfying assignmentsg�

is in �P�
�b� The function which� given an undirected graph G� returns the number of matchings in G�

is in �P�
Our main objective in this lecture is to relate the complexity of languages in polynomial

hierarchy with the counting classes PP � �P � �P � To begin with� we note a relationship between
the complexity of languages in PP and functions in �P� We also consider some counting

operators which go into the de�nition of counting classes and derive some properties about
them� these will be useful in proving the main results�

Lemma ��� �a� Any function in �P can be computed in deterministic polynomial time using
a language in PP as an oracle that is� �P � PF�PP��

�b� Any language in PP can be recognized in deterministic polynomial time using a function

in �P as an oracle that is� PP � P��P��
�c� P�PP� � P��P�

Proof� See Homework ��

��� Counting operators

Given a complexity class C� we can de�ne new classes � � C� P � C� BP � C as follows�

De�nition ��	 �a� L � � � C i� there exists a set A � C and a polynomial p�n� such that

L � fx � the number of w�s in f�� �gp�jxj	 such that hx�wi � A is oddg�

�b� L � P � C i� there exists a set A � C and a polynomial p�n� such that

L � fx � the number of w�s in f�� �gp�jxj	 such that hx�wi � A is � �p�jxj	�� g�

�c� L � BP � C if and only if there exists a set A � C and a polynomial p�n� such that for all

x� the number of w�s in f�� �gp�jxj	 such that �hx�wi � A� x � L is� � �
��

p�jxj	�

Let us derive some properties of these operators which will be useful later�

Proposition ��� �a� � � P � �P P � P � PP BP � P � BPP�
For any complexity classes C� C� and C��

�b� BP � C � P � C�

�c� C� � C� implies �i� BP � C� � BP � C� �ii� P � C� � P � C� �iii� � � C� � � � C��
Lemma �� �Ampli�cation property� Let C be a complexity class which is closed under

majority reductions� that is� if L � C then L� � C where

L� � fhx�� x�� ���� xki � more than half of xi�s are in Lg�
Let A � BP � C and p�n� be any polynomial� Then there is a set B � C and a polynomial q�n��
such that for all x� the number of w�s in f�� �gq�jxj	 for which �x � A �� hx�wi � B� is at
least ��� ��p�jxj	��q�jxj	� that is� the error probability is at most ��p�jxj	�

Corollary ��� BP � �P is an ampli�able probabilistic class�

Lemma ��� �Absorption property of BP � operator� For any class C closed under majority re�

ductions� BP �BP � C � BP � C�
The proofs of the above two lemmas are very similar to the ampli�cation result for BPP

�see Theorem ����� and are left as exercises �see Homework ���

Corollary ���� BP � BP � �P � BP � �P�
Proposition ���� �Absorption property of �� operator� Let the complexity C be closed

under many�one polynomial time reductions� � � � � C � � � C� Therefore� � � �P � �P�
Lemma ���� � �BP � �P � BP � �P�
Proof� Let L � ��BP ��P � Then there is a language L� � BP ��P and a polynomial p�n� such
that for all x� x � L i� number of y�s in f�� �gp�jxj	 such that hx� yi is in L� is odd� Since BP ��P
is an ampli�able class� there is a language L�� � �P and a polynomial q�n� such that for all hx� yi�
the fraction of z�s in f�� �gq�jhx�yij	 such that �hx� yi � L� �� hhx� yi� zi � L��� is
 �� �

��p�jhx�yij�
�

Let p��n� be a polynomial so that for any x and any y � f�� �gp�jxj	 � jhx� yij � p��jxj��
Since there are at most �p�jxj	 di�erent y�s� and for any given y� there are at most ���p�p

��jxj		

fraction of z�s which are wrong witnesses� it follows that for any x� there is at least �����p�p��jxj		
fraction of witnesses z�s in f�� �gq�jhx�yij	 which work correctly for all y�s in f�� �gp�jxj	� i�e� for
every hx� yi� It follows now that L � BP � fKg where the set K is de�ned as fhx� zi � jzj �
q�p��jxj�� and the number of y�s in f�� �gp�jxj	 such that hhx� yi� zi � L��� is odd g� Also it is easily
seen that K � � � �P � �P � Therefore L � BP � �P�

��� Toda
s �rst theorem� PH randomly reduces to �P

We �rst claim a reduction between adjacent levels of the polynomial hierarchy using which we
show that every language in the polynomial hierarchy is randomized polynomial time reducible
to some language in �P�
Lemma ���� For each k
 �� �P

k � BP � � � $P
k���

To prove the above lemma we will need the following proposition� which is a very powerful
combinatorial tool�

Lemma ���� Let n
 � and let S � f�� �gn be a nonempty set� Suppose w�� w�� ���� wn are

randomly chosen from f�� �gn� Let S� � S and let Si � fv � Sjv �w� � v �w� � ��� � v �wi � �g
for each � 	 i 	 n�Let Pn�S� be the probability that jSij � � for some � 	 i 	 n� Then

Pn�S�
 �
� �

Proof� See Homework ��

Proof of Lemma ����� Let L � �P
k � Then as we have seen in Homework �� there is a

set A � $P
k�� and a polynomial p�n� such that for every x� x � L i� hx� yi � A for some

y � f�� �gp�jxj	� We de�ne a set C as follows�
C � fhx�w�� w�� ���� wp�jxj	i � jwij � p�jxj� for each � 	 i 	 p�jxj� and there exists � 	 i 	 p�jxj�
such that there are odd number of y�s in f�� �gp�jxj	 for which �hx� yi � A and y �wj � � for each
� 	 j 	 i�g�

We want to show now that C � � �$P
k��� We �rst need the following closure property of the

class � �$P
k���

Claim ���	 For every i
 �� if L � � � $P
i � then L� � � � $P

i where L� � fhx�� x�� ���� xki for
some k j at least one of xi�s is in L g� In other words� $P

i is closed under disjunctive reductions�

�Disjunctive reductions are de�ned as follows � A set A is said to be disjunctively reducible to
a set B if A is polynomial time Turing reducible to B and the oracle machine accepts the input
if and only if at least one of the queries is answered yes��
Proof� Since L � � �$P

i � there is a set R � $P
i and a polynomial q�n� such that for all x� x � L

i� the number of y�s in f�� �gq�jxj	 for which hx� yi � R� is odd� Consider the following language�
K � fhx�� x�� ���� xk� b�� b�y�� b�y�� ���� bkyki for some k � jbij � �+jyij � q�jxij� for all i and either
�b� � � and b�y�b�y����bkyk is an all zero string� or �b� � � and for all � 	 i 	 k� ��bi � � � yi
is all zero string� or � bi � �� hxi� yii � R���g

It is easy to show that K � $P
i � Also note that for any hx�� x�� ���� xki� the number of strings

of type hx�� x�� ���� xk� b�� b�y�� b�y�� ���� bkyki in K is given by the expression

kY
i��

��hxii# �� # ��

where �hxii denotes the number of y�s such that hxi� yi � R� Note that the above expression is
odd if and only if at least one of the �hxii�s is odd� Therefore L� � � � fKg � � � $P

i �

Consider the set C � � fhx�w�� w�� ���� wp�jxj	� ii � � 	 i 	 p�jxj� and jwj j � p�jxj� for each
� 	 j 	 p�jxj� and there are an odd number of y�s in f�� �gp�jxj	 for which � hx� yi � A and
y � wj � � for each � 	 j 	 i� g� Note that C � � � � $P

i and C is disjunctively reducible to C ��
Therefore C is also in � �$P

i �
Let x be any string and let w�� w�� ���� wp�jxj	 be randomly chosen from f�� �gp�jxj	� De�ne S�

� fy � f�� �gp�jxj	 � hx� yi � Ag and de�ne Si � fy � S� � w� �y � w� �y � w� �y � ��� � wi �y � �g
for each � 	 i 	 p�jxj�� Let Pp�jxj	�S�� be the probability that jSij � � for some � 	 i 	 p�jxj��
Then it follows that Prfw����wp�jxj	 � f�� �gp�jxj	� j hx�w�� w�� ���� wp�jxj	i � Cg
 Pp�jxj	�S���
Hence from Proposition ����� we have

�a� x � L� Prfu � f�� �gp�jxj	� � hx� ui � Cg
 �
� � and

�b� x �� L� Prfu � f�� �gp�jxj	� � hx� ui � Cg � ��
Furthermore by using a probability ampli�cation technique� we can amplify the probability in
�a�� without changing the probability in �b�� so that it is at least 	�� Thus we have L �
BP � � � $P

k���
End of Proof of Lemma ����

Now we can show that every language in PH is randomized reducible to some language in
�P�
Theorem ���� PH � BP � �P�
Proof� We will show using an induction on k that �P

k � BP � �P� for all k�

Basis �k � ��� �P
� � P � BP � �P is easily seen because P � �P�

Induction Step� Assume that �P
k�� � BP � �P� Since BP � �P is closed under complemen	

tation �prove it"�� it follows that $P
k�� � BP � �P�

Now �P
k � BP �� �$P

k�� � BP �� �BP ��P � BP �BP ��P � BP ��P � The �rst inclusion
follows using Lemma ���� the second using induction hypothesis� the third using Lemma ����
and the fourth using Corollary �����

��� Toda
s second theorem� Turing reductions to �P

In this section� we will show that every language in P � �P is computable in polynomial time
using at most one query to the oracle of some function in �P � Formally�
Theorem ��� P � �P � P ��P�����

The above theorem along with Theorem ���� will imply that every set in PH is polynomial
time Turing computable using at most one query to the oracle of some function in �P� We will
need the following ampli�cation	like property of �P to prove the above theorem�

Lemma ���� Let X be any set in �Pand let q�n� be any polynomial� Then� there exists a

ranked NP�machine MX satisfying the following conditions� For each input y of length n�

�� �MX�y� � �
q�n	 � k � � for some k � � if y � X� and

�� �MX�y� � �
q�n	 � k� for some k�
 � if y �� X�

Before proving the above technical lemma� we �rst see how Theorem ���� can be proved
using the above lemma�

Proof of Theorem ���� Let L � P � �P � Then there is a set X � �P and a polynomial
p�n� such that for all x� �x � L �� jfy � f�� �gp�jxj	 � hx� yi � Agj � �p�jxj	���� Let p��n� be a
polynomial such that for all x and y � f�� �gp�jxj	 � jhx� yij � p��jxj�� Let q�n� be a polynomial
such that q�p��n�� � p�n� for each n
 �� Then from Lemma ����� there is a ranked NP	machine
MX satisfying that for each input y of length n�

�� �MX�y� � �
q�n	 � k� � � for some k � � if y � X� and

�� �MX�y� � �
q�n	 � k� for some k
 � if y �� X�

Let t�n� be a polynomial which gives the depth of the computation tree of MX on inputs of
length n� Then we de�ne functions g� h as follows� for each x�

g�x� � jfw � f�� �g� � jwj � p�jxj� and hx�wi � Xgj
h�x� � jfwv � f�� �g� � jwj � p�jxj�� jvj � t�jhx�wij��

and v is an accepting computation path of MX on input hx�wigj�
By de�nition� x � L �� g�x� � �p�jxj	��� Furthermore from ��� and ��� above�

h�x� �
X

jwj�p�jxj	�hx�wi�X
�M�hx�wi� #

X
jwj�p�jxj	�hx�wi��X

�M�hx�wi�

� �q�p
��jxj		 � k� � g�x� # ��p�jxj	 � g�x�� � �q�p��jxj		 � k� �for some k� � � and k�
 ��

� �q�p
��jxj		 � k� � g�x� �for some k� � ���

From this last inequality� we have h�x� � �g�x� �mod �q�p��jxj		� since g�x� 	 �p�jxj	 � �q�p��jxj		�
It is easy to see now that g�x� can be computed using at most one query to an oracle for the
function h�x�� In other words� L can be decided in polynomial time using at most one query to
the oracle for h�x�� Finally note that the function h�x� is in �P which completes the proof�
End of Proof of Theorem ���

Proof of Lemma ����� We will need the following de�nitions�

De�nition ���� Let M be an NP machine� The we de�ne a function fM � f�� �g� �N � N
recursively as follows� For each y � f�� �g� and each i
 ��

�� fM �y� �� � �M�y��

�� fM �y� i� � � �fM �y� i� ���� # � � �fM �y� i� ����� and

� For each y � f�� �g�� gM�q�y� � fM �y� dlog q�jyj�e�� where the base of logarithm is ��

The following lemma follows easily from the above de�nition �using an induction on i��

Lemma ���� let M be an NP�machine� Then for each y and each i
 ��
�� fM �y� i� � �

�i � k� � � for some k� � � if �M�y� is odd� and

�� fM �y� i� � �
�i � k� for some k�
 � if �M�y� is even�

Hence for each polynomial q�n� and each y�

� gM�q�y� � �
q�jyj	 � k� � � for some k� � � if �M�y� is odd� and

�� gM�q�y� � �
q�jyj	 � k� for some k�
 � if �M�y� is even�

We see that gM�q function has the conditions desired in Lemma ����� It is enough to show
now that the function gM�q is in �P � Note that the function gM�q�y� is a polynomial function
in �accM �y�� Further any term in the polynomial function has degree at most polynomial and
coe�cient at most exponential in jyj� In fact� given y� all the terms of the above polynomial
function can be found in polynomial time by expanding the recurrence equation� Further� since
each term has degree at most polynomial in jyj and coe�cient at most exponential in jyj� it can
be expressed as a function in �P �prove it"�� Therefore� the function gM�q which is a sum of
these terms is also in �P�
End of Proof of Lemma ����

We can combine Theorem ����� Theorem ���� and Lemma ��� to conclude the following�

Theorem ���� PH � P�P �� � PPP i�e� every language in polynomial hierarchy can be

recognized in polynomial time using an oracle for some language in PP �

Remarks

Lemma ���� was shown by Valiant and Vazirani �VV���� Toda�s theorems appeared in �Tod����

Homework �

Date�
� March	
��� Due date� � April	
��

Problems�

�� Show that the class PP is closed under complement� That is� show that if a language L
is in PP � then its complement L is also in PP �

�� Show that AM � $P
� �

Hint� Use the idea described in class for showing that BPP � $P
� �Theorems ��� ������

� The function �SAT takes as input a Boolean expression � and returns the number of
satisfying assignments of �� The function �SAT takes as input Boolean expressions in
	CNF and returns the number of satisfying assignments it has�

�a� Show that �SAT and �SAT are in �P�
We say that a function F � f�� �g� � N is �P	complete if
� F � �P �
� For all functions G � �P� there is a polynomial time computable function fG �
f�� �g� � f�� �g� such that for all x � f�� �g�� F �fG�x�� � G�x��

Thus� if we can compute F in polynomial time� then we can compute any function in �P
in polynomial time�

�b� Assume that �SAT is �P	complete� Show that �SAT is also �P	complete�
Hint� Show how to transform a Boolean expression into a 	CNF expression keeping
the number of satisfying assignments the same �see Theorem ��� Cook�s theorem��

�� The classes EXP and NEXP are de�ned as follows�

EXP �
�
k��

DTime��n
k

��

NEXP �
�
k��

NTime��n
k

��

�a� Show that if P � NP � then EXP � NEXP�
Hint� Consider the language

L� � fhx� dNe� �ti � the nondeterministic machine N accepts x in at most t stepsg�

Observe that L� � NP�
�b� Show that if NP � DTime�nlog n�� then EXP � NEXP�

�� Show the following�

�a� If the functions F and G are in �P then their product F �G is also in �P�

��

�b� If a language L is in �P� then L� is also in �P � Here we de�ne L� to be the language

fhx�� x�� � � � � xki � �i xi � Lg�

�c� P��P� � �P �
�� �a� Let F be a �eld and p�x� a polynomial with coe�cients from F of degree d� Suppose

p is not identically � over F � Show that p�x� � � for at most d values x � F �
�b� Let p�x�� x�� � � � � xm� be a polynomial with coe�cients from the �eld F of combined

degree at most d� �That is� the sum of the degrees of the variables in any term is at
most d� for example� the polynomials x��x� # x��x

�
� # x� # �x� # �� �over reals� has

combined degree ��� Suppose p is not identically � over Fm� Let I � F � Show that
p takes the value � for at most d	jIj fraction of the values x � Im�

�� The purpose of this exercise is to prove the result of Valiant and Vazirani that was used
in the proof of Toda�s theorem� We think of f�� �g as a �eld where multiplication is
just Boolean AND� and addition is done modulo �� We will use two terms� vector and
hyperplane� for elements of f�� �gn� We think of a vector in f�� �gn as an n � � matrix
�just one column and n rows�� we think of a hyperplane as a � � n matrix �just one row
and n columns�� The dot product of a hyperplane h and a vector v� denoted by h � v� is
obtained by the usual matrix multiplication �modulo ��� For a hyperplane h and a set of
vectors S� S�h� is the set fv � S � h � v � �g�
In the following when the dimension of the vector or hyperplane is not speci�ed� then it
should be assumed to be n� When we say that h is a random hyperplane� we mean that
h is chosen from f�� �gn so that each of the �n possibilities is equally probable� We will
assume that the reader is familiar with the notions� linear independence �abbreviated as
l �i ��� rank� linear transformation� and non	singular matrix�

�a� Let e�� e�� � � � � er �r � �� be unit vectors in f�� �gn� where ei has a � in precisely the
ith row� Let h be a random hyperplane� Show that

Pr��i h � ei � � j �j h � ej � �� � �

�r � � �

�b� Let v be a vector and H a set of hyperplanes such that �h � H h �v � �� Show that if
h� � v � �� then h� is linearly independent of H� Now let e�� e�� � � � � er be unit vectors
as in part �a� such that h � ei � � for i � �� �� � � � � r and all h � H� Conclude using
part �a� that for a randomly chosen chosen hyperplane h

Pr��i h � ei � � j ��j h � ej � �� � �h is l �i � of H�� � Pr��i h � ei � � j �j h � ej � ��
�

�

�r � � �

�c� Let S be a set of vectors� Let rank�S� � r
 � and let H be a set of hyperplanes
such that � h � H �v � S h � v � �� Let h be a random hyperplane� Conclude from
�a� and �b� that

Pr�rank�S�h�� �� � j �rank�S�h�� � r� � �h is l �i � of H��
 �r � �
�r � � �

Hint� Let H � fh�� h�� � � � � htg� Pick linearly independent vectors v�� v�� � � � � vr from

S� Find a full rank linear transformation T � f�� �gn � f�� �gn �T corresponds to a
non	singular matrix� we call it T also� such that

Tvi � ei for i � �� �� � � � � r�

Consider the linear transformation 'T that takes a hyperplane h to hT��� Observe
that this is a one	one onto map between hyperplanes� Moreover� h � vi � � 'T �h�� �
ei� Furthermore� h is linearly independent of H i� 'T �h� is linearly independent of
'T �H�� Now apply �a� and �b� to the range of these transformations and carry their
conclusions to the domain�

�d� Show the following using induction on the rank of S� Let S be a set of vectors
such that �n �� S and rank�S�
 �� Let h�� h�� � � � � ht be hyperplanes such that
hi � v � � for i � �� �� � � � � t and v � S� Let ht��� ht��� � � � � hn�� be randomly chosen
hyperplanes such that fh�� h�� � � � � hn��g is linearly independent� Let Si � fv � S �
h� � v� h� � v� � � � � hi � v � �g� Then

Pr��i �t 	 i 	 n� �� jSij � ��
 �r��

�r � � �
Proof� Basis� rank�S� � �� Then jStj � � with probability ��
Induction step� Let rank�S� � r � �� Check that rank�Sn��� 	 � � r� let i� be the
smallest index such that rank�Si�� � r �t # � 	 i� 	 n � ��� Let S� � Si� � Use
part �c� to conclude that

Pr�rank�S�� �� ��
 �r � �
�r � � �

Then using the induction hypothesis conclude that

Pr��i �i� 	 i 	 n� �� jS�i j � � j rank�S�� �� ��

�r��

�r�� � � �
From these conclude that

Pr��i �t 	 i 	 n� �� jSij � �� � Pr�rank�S�� �� ��
� Pr��i �i� 	 i 	 n� �� jS�i j � � j rank�S�� �� ��

 �r��

�r � � �

�e� Show the following� Here Si is de�ned as in part �d��

Lemma � Let S be non	empty set of vectors�

�i� If �n � S and h�� h�� � � � � hn are linearly independent hyperplanes� then jSnj � ��
�ii� If �n �� S and h�� h�� � � � � hn�� are randomly chosen linearly independent hyper	

planes� then

Pr��i �� 	 i 	 n� �� jSij � ��
 �

�
�

Lemma � If h�� h�� � � � � hm are randomly chosen hyperplanes then

�i� Pr�h�� h�� � � � � hn�� are l �i ��
 �	��
�ii� Pr�h�� h�� � � � � hn are l �i ��
 �	��

Theorem If h�� h�� � � � � hn are randomly chosen hyperplanes and S is a non	empty
set of vectors� then

Pr��i �� 	 i 	 n� jSij � ��
 �	��

Lecture �

AM�poly� � PSPACE

Lecturer� Jaikumar Radhakrishnan Date�
� March	
���

In the last lecture we saw that all language in PH can be recognized in �deterministic�
polynomial time given an oracle for �P� This discovery led researchers to study the class �P
more closely� In particular� the permanent value problem� was examined more closely because it
was known to be �P	complete� The permanent value problem is the following� given a n � n
matrix M � fmi�jg with �	� entries� determine

perm�M� �
X
��Sn

nY
i��

mi���i	

where Sn is the set of all permutations of f�� �� � � � � ng� That is� the permanent function is
similar to the determinant� with the di�erence that we ignore the sign of the permutation ��

The inherently algebraic de�nition of the permanent function prompted the application of
interesting algebraic techniques in interactive proofs� These then led to the startling conclusion
that every function in �P can be computed using an Arthur	Merlin protocol in polynomial
time� that is� given an input x� Merlin will supply a value y and convince Arthur that indeed
f�x� � y� In other words� the language

Lf � fhx� f�x�i � x � f�� �g�g�

is in AM�poly�� It follows� therefore� that PH � AM�poly� �Why��� Later these techniques were
applied to show that the class AM�poly� is the same as PSPACE� However� the original proofs
have since been simpli�ed� and now these results can be described without using the permanent
function�

In this lecture� we will study these results� First we will show that PH � AM�poly�� In the
second half of the lecture we will extend this to get PSPACE � AM�poly��

�� PH � AM�poly�

We proceed indirectly� We �rst show that any function in �P can be computed using an
Arthur	Merlin protocol� We �rst see how Arthur	Merlin protocols compute functions� On input
x� Merlin �rst supplies a value y and then interacts with Arthur for polynomial amount of time�
In the end� the protocol either accepts or rejects� We require the following properties of the
protocol�

�� There is a Merlin such that� for all inputs x� the value y supplied by Merlin is always f�x�
and then

Pr�Arthur accepts� � ��

��

�� For all Merlin and all inputs x� if the value y supplied by Merlin is not f�x� then

Pr�Arthur accepts� 	 �	��

We will use the function �	SAT de�ned in Homework �� problem � This function takes
a Boolean expression � in 	CNF and returns the number satisfying assignments it has� It
is known that �	SAT is complete for �P in the following sense� Fix a function f in �P�
then for any input x� we can obtain� in polynomial time� a 	CNF expression �x such that
f�x� � �	SAT��x��

Thus to show that every function in �P is computable using an Arthur	Merlin protocol� it
su�ces to provide a protocol for computing the function �	SAT� For the rest of this section�
we will mainly be concerned with deriving such a protocol� That PH � AM�poly� is a relatively
easy consequence�

����� Arithmetization of 	��SAT

Consider a 	CNF expression ��x�� x�� � � � � xn�� we denote the number of satisfying assignments
of � as ��� Our �rst task is to produce an arithmetic expression whose value is exactly ���
Consider a clause c of �� Say the three variables in � are xi� xj and xk� We wish to obtain a
polynomial that evaluates to the same value as c for all �	� assignments to these variables� that
is� the polynomial should be � if c evaluates to false under the assignment� and � if c evaluates
to true� For example if xi and xj appear negated in c but xk appears non	negated� then the
polynomial we want is � � xixj�� � xk�� It is easy to see that such a polynomial pc� exists for
each clause c� Let

F �x�� x�� � � � � xn� �
Y
c

pc�

For example if ��x�� x�� x�� x�� � �x� � x� � x�� � �x� � x� � x��� then
F �x�� x�� x�� x�� � ��� ��� x��x���� x����� � ��� x��x�x���

The important property of F �x�� x�� � � � � xn� is that for any assignment � � f�� �gn� ���� is
true i� F ��� � �� Then it is easy to see that

�� �
�X

x���

�X
x���

� � �
�X

xn��

F �x�� x�� � � � � xn�� �����

The expression on the right evaluates to a number �call this expression E��� whose value
Merlin claims is y� Can Merlin convince Arthur� In the course of our proof we will need to
consider various polynomials� For example�

E��x� �
�X

x���

� � �
�X

xn��

F �x�� x�� � � � � xn�

is a polynomial in x�� In general� we have the polynomial

�X
xi��

� � �
�X

xn��

F �x�� x�� � � � � xn��

Note that the degree of any variable in F �and hence in any intermediate polynomial Ei� is
at most m where m is the number of clauses in �� We will use the fact that this degree is
polynomially bounded to obtain a protocol for verifying Merlin�s claim that the expression on
the right in ����� evaluates to y�

����� The protocol

The idea is as follows� Merlin �rst sends the value y� He must now convince Arthur that E� � y�
Note that

E� � E���� #E�����

So� Arthur now asks for the polynomial E��x��� Note that the degree of x� in E��x�� is at most
the degree in F �x�� x�� � � � � xn�� hence it is bounded by m� Also� the coe�cients for the various
powers of x� are bounded because we are operating modulo a prime number bigger then �

n���
Now� Merlin sends the polynomial� that is� the m#� coe�cients each coded in N bits� We do
not know if the polynomial Merlin has sent is really E��x��� so we will call it 'E��x��� Arthur
checks if y � 'E��x�� # 'E��x��� Verify that

'E��x�� �
�X

x���

�X
x���

� � �
�X

xn��

F �x�� x�� � � � � xn� � E��x���

How does Merlin convince Arthur that is indeed true� here is the main idea� Arthur just picks
a random value � � f�� � � � � p� �g for x�� Now he can easily evaluate �� � 'E��x����� �degree
is small and coe�cients are bounded�� So� he is now left with the task of verifying that

�� �
�X

x���

�X
x���

� � �
�X

xn��

F ��� x�� � � � � xn� � E�����

The idea is the same as before� Observe that

'E���� � E���� �� #E���� ���

So� Arthur will just ask for the polynomial E���� x�� in x�� Say Merlin sends 'E��x��� So Arthur
now checks if �� � 'E���� �� # 'E���� ��� and is left now with the task of verifying that

'E��x�� �
�X

x���

�X
x���

� � �
�X

xn��

F ��� x�� � � � � xn� � E���� x���

As before this is accomplished by picking a random value from f�� � � � � p� �g for x�� say �� and
checking if

'E���� � �� ��
�X

x���

�X
x���

� � �
�X

xn��

F ��� �� x�� � � � � xn� � E���� ���

This situation is the same as before� except that we have one summation less� Thus we continue
this way� eliminating one summation each time by substitution of a random value for the variable�
In the end� we would have got rid of all the summations and be left with the task of verifying
that

�n � En��� �� � � � � n� � F ��� �� � � � � n��

But this� Arthur can do on his own by evaluating F after substituting the corresponding values
of F ��� �� � � � � n�� We state the protocol formally as follows

Set N � mn
Merlin� Sends a prime p such that �N � p � �N��

and a proof that p is a prime� �Remember PRIMES � NP �
Also� the value y for ���

Arthur� Checks the proof for p to be a prime�
Set �� � y�
for i �
 to n do
Merlin� Sends 'Ei�xi�� a polynomial over Zp of degree at most m�
Arthur� Checks that 'Ei��� # 'Ei��� � �i�� else Reject and Halt�
Chooses i � Zp randomly�
�i � 'Ei�i�
end

Arthur� If �n � F ��� �� � � � � n� then
Halt and Accept

Else
Halt and Reject

To show that this protocol is correct we need to establish two things� First� that there
exists an honest Merlin� who succeeds with probability �� This is easy� for such a Merlin
needs to send the prime p �with a proof of primality� correctly and then send the polynomial
'Ei�xi� � Ei��� �� � � � � i��� xi� truthfully� It is easy to see that this strategy always leads to
acceptance�

Next we need to show that if y �� ��� then no Merlin can convince Arthur with probability
greater than �	�� Before we formally prove this let us see how the dishonest Merlin could cheat
Arthur� We know that initially �why��

�� �� E���� #E�����

Now Merlin has to send 'E��x��� If 'E��x�� � E��x��� then Arthur will notice that �� �� 'E���� #
'E���� and reject immediately� So Merlin must contrive a polynomial 'E��x�� di�erent from
E��x��� Now Arthur chooses a random value � for x�� What is the probability that

'E���� � �� � E�����

If this happens then � is a root of the polynomial 'E��x�� � E��x��� a nonzero polynomial of
degree at most m� Hence the probability of this is at most m	p� We have chosen p large to
guard against this event�

So with high probability we have �� �� E����� That is� Merlin is left again with a lie� An
identical argument will lead us to conclude that if Arthur is not extremely unlucky then the lie
will persist in the next step� that is� �� �� E���� ��� After n steps� Merlin will still be left with
a lie� that is�

�n �� En��� �� � � � � n� � F ��� �� � � � � n��

But now Arthur would reject immediately� The only thing we need to worry about is hitting a
root of a non	zero low degree polynomial at on of the steps� The probability that this happens
is at most m	p for any step� thus the total probability of error is at most mn	p� We now
proceed to state this reasoning formally�

Lemma �� If y �� �� then Pr�Arthur accepts� 	 mn	p�

Proof� Fix a Merlin who provides y �� ��� Suppose Arthur accepts� Then Merlin must have
provided polynomials 'Ei�xi�� for i � �� �� � � � � n such that

�i�� � 'Ei��� # 'Ei����

Since Arthur did accept in the end� we have

�n � 'En�n� � En��� �� � � � � n��

On the other hand we know that Merlin told a lie to begin with� that is� �� �� E�� Hence� there
was a stage i such that

�i�� �� Ei����� �� � � � � i��� � �i � Ei��� �� � � � � i��

For i � �� �� � � � � n� de�ne the event Ai as follows

Ai � �i�� �� Ei����� �� � � � � i��� � �i � Ei��� �� � � � � i��

That is Ai represents the situation when Merlin entered the ith stage with a lie and left with a
truth� We wish to estimate Pr�Ai�� Suppose Ai holds� Our de�nition gives

Ei����� �� � � � � i��� � Ei��� �� � � � � i��� �� #Ei��� �� � � � � i��� ��� �����

Since Arthur did not reject in the ith stage� we have

�i�� � 'Ei��� # 'Ei���� ����

Thus� from ����� and ����� we have that as polynomials 'Ei�xi� �� Ei��� �� � � � � i��� xi��
Now

Pr�Ai� � Pr��i�� �� Ei����� �� � � � � i��� � �i � Ei��� �� � � � � i��

	 Pr� 'Ei�xi� �� Ei��� �� � � � � i��� xi� � 'Ei�i� � Ei��� �� � � � � i��

	 m

p
�

Then�

Pr�Arthur accepts� 	 Pr�
n�
i��

Ai� 	
nX
i��

Pr�Ai� 	 mn

p
�

Theorem �� PH � AM�poly��

Proof� Follows from the correctness of the protocol for �	SAT� the �P	completeness of
�	SAT and Toda�s second theorem� Details omitted�

�� PSPACE � AM�poly�

����� Quanti
ed Boolean Formulas

For a 	CNF Boolean expression ��x�� x�� � � � � xn�� we may think of the satis�ability problem as
determining the truth value of the statement

�x���x�� � � � ��xn ��x�� x�� � � � � xn��

If we generalize this idea and allow universal quanti�ers in addition to existential quanti�ers�
then we get quanti�ed Boolean formulas� For example� �x��x� �x��x����x��x�� is a quanti�ed
Boolean formula� In fact� it is a true quanti�ed Boolean formula� The combination of quanti�ers

in this manner might suggest to the reader some similarity with the polynomial time hierarchy�
Indeed there does exist such a connection� but we will not pursue it here� Our purpose now is to
describe the connection between quanti�ed Boolean formulas and the class PSPACE� Consider
the set of true quanti�ed Boolean formulas�

QBF � f, � , is a true quanti�ed Boolean formulag�
Theorem �� QBF is PSPACE�complete �under polynomial time many�one reductions��

We shall not prove it here� A proof of this can be constructed using the connection between
PSPACE and polynomial time alternating computation �Theorem ���� This theorem tells us
that for any language L in PSPACE� there is polynomial time computable function fl� such
that� for all x � f�� �g��

x � L �� f�x� � f�x� � QBF�
Thus� if we have an Arthur	Merlin protocol for recognizing QBF� then we have a protocol for
recognizing any language in PSPACE� In the rest of this lecture� we will provide a protocol for
recognizing QBF�

����� Arithmetization of QBF

Consider the quanti�ed Boolean formula

, � �x��x��x� � � � �xn��x�� x�� � � � � xn��
where ��x�� x�� � � � � xn� is a 	CNF expression� �We will assume that all quanti�ed Boolean
expressions given to us have this form�� How does one arithmetize this� To begin with� we
know how to arithmetize ��x�� x�� � � � � xn� to obtain the polynomial F �x�� x�� � � � � xn�� Recall
that F has degree at most m �where m is the number of clauses in �� and agrees with � for
all �	� assignments to the variables� Now consider the expression �xn ��x�� x�� � � � � xn�� This
expression has n � � free variables� and for each substitution of values to these variables the
expression itself evaluates to either true of false� We want a polynomial that has the same
behaviour� We already know how to arithmetize � to obtain the polynomial F � Using F we can
now write a new polynomial

Q�
xn�� F �x�� x�� � � � � xn�� which stands for

F �x�� x�� � � � � xn��� �� � F �x�� x� � � � � xn��� ���
Next consider the previous quanti�er �xn��� We are interested in �nding a polynomial for

�xn���xn��x�� x�� � � � � xn��
assuming we know how to build the polynomial G�x�� x�� � � � � xn��� for �xn ��x�� x�� � � � � xn��
The polynomial we seek is given by

�� ���G�x�� x�� � � � � xn��� ��� � ���G�x�� x�� � � � � xn��� ����

We denote this by
�a

xn����

G�x�� x�� � � � � xn����

In other words the polynomial for �xn���xn��x�� x�� � � � � xn� is
�a

xn����

�Y
xn��

F �x�� x�� � � � � xn��

We have thus arrived at the following method for transforming the quanti�ed Boolean formula
, into an arithmetic expression using operators

�
and

Q
�

�� Replace the 	CNF expression ��x�� x�� � � � � xn� by the polynomial F �x�� x�� � � � � xn� as in
the previous section�

�� Replace the quanti�er �xi by the operator ��
xi���

� Replace the quanti�er �xi by the operator Q�
xi���

We will denote the �nal expression thus obtained by E�� For example� if , � �x��x��x� �
x�� � �x� � x��� then

E� �
�Y

x���

�a
x���

��� ��� x����� x����� � x�x����

The expression E� always evaluates to a � or a ��

Lemma �� E� � � i� , is true�

Proof� Intuitively� this is obvious� A formal proof will show the following somewhat stronger
statement using induction on the number of quanti�ers�

Let ,�x�� x�� � � � � xr� be a quanti�ed Boolean expression with r free variables� and let
E�x�� x�� � � � � xr� be the arithmetic expression obtained from it by using the procedure
above� Then for each substitution � of values for x�� x�� � � � � xr from f�� �gr � E��� � �
i� , is true�

We omit the details�

We have thus arrived at a way of representing quanti�ed Boolean expressions using arith	
metic operations� Can we now devise a protocol based on this� Let us consider the arithmetic
expression

�Y
x���

�a
x���

� � �
�Y

xn��

F �x�� x�� � � � � xn�

and try to use the ideas of the last section� In the �rst step Arthur eliminates the �rst operator
�Y

x���

and asks Merlin to send us the polynomial G�x�� corresponding to the rest of the arithmetic

expression� that is

G�x�� �
�a

x���

�Y
x���

� � �
�Y

xn��

F �x�� x�� � � � � xn��

Once Arthur has the polynomial 'G�x��� he check that 'G��� � 'G��� � � �for Merlin claims that
, � QBF� and pick a random value � for x� and compute �� � 'G���� Then Merlin must
convince Arthur that

�� �
�a

x���

�Y
x���

� � �
�Y

xn��

F ��� x�� � � � � xn��

We then proceed by eliminating the operators one after other� and in the end check that �n �
F ��� �� � � � � n�� But ���

The problem� Consider the polynomial G�x��� How big is the degree� Unfortunately� the
degree can be exponential in n� For example if

E� �
�Y

x���

�Y
x���

�Y
x���

x��

then G��x� � x��� In general� each operator for the other variables has the potential of doubling
the degree� leading� in the end� to an exponential degree� But what is wrong with the exponential
degree� The trouble exponential degree is that the polynomial will have exponentially many
coe�cients� and Arthur will not be able to read it in polynomial time�

The solution� We will ensure that the degree of any variable in intermediate stages of
the polynomial never goes above two� How� Indeed� the polynomial F �x�� x�� � � � � xn� that
we obtain from the arithmetizing a 	CNF expression � may not have this property� The
idea is as follows� We need a polynomial that agrees with F �x�� x�� � � � � xn� on assignments
consisting of ��s and ��s� What it does for other values is quite irrelevant� Note� moreover�
that for xi � � and xi � �� xki � xi for all k � �� That is� the desired polynomial can be
obtained from F �x�� x�� � � � � xn� by simply erasing all exponents� � that is replacing them ���
For example� if F �x�� x�� x�� � x��x� # x��x

�
� # x��x� # x�x�� then the reduced polynomial is

'F �x�� x�� x�� � �x�x�#x�x�# x�x�� To apply this method in general we de�ne a new operator�
Rxi� which when applied to a polynomial reduces the powers at all occurrences of xi to � � Thus�

Rx��x��x� # x��x
�
� # x��x� # x�x�� � x��x� # x�x

�
� # x��x� # x�x��

and
'F �x�� x�� x�� � Rx�Rx�Rx�F �x�� x�� x���

Thus� by reducing the degree of all variables� we obtain the required equivalent of F �x�� � � � � xn��
But� even now the other operators �

Q
and

�
� might cause the degrees to go up� Remember

again� that the polynomials we use are of interest only at �	� substitutions for the variables� Any
transformation that does not change the value at �	� substitutions is acceptable� In particular�
we may reduce the degree after each application of

Q
or
�
� This will ensure that the degree at

intermediate stages never goes above �� it might reach the value of � after an
Q
or
�
operator

is applied� but will revert to � when the reduce operator is applied�

����� The revised arithmetization

Recall that we wish to arithmetize a quanti�ed Boolean Formula of the form

, � �x��x��x� � � � �xn��x�� x�� � � � � xn��

First we replace ��x�� x�� � � � � xn� by the polynomial F �x�� x�� � � � � xn� and reduce its degree�
This gives us the arithmetic expression

Rx�Rx� � � � RxnF �x�� x�� � � � � xn��

Now we come to �xn��x�� x�� � � � � xn�� Naturally this leads to
�Y

xn��

Rx�Rx� � � � RxnF �x�� x�� � � � � xn��

and then to

Rx�Rx� � � � Rxn��
�Y

xn��

Rx�Rx� � � � RxnF �x�� x�� � � � � xn��

Let us do one more step� that is� for �xn���xn��x�� x�� � � � � xn�� The corresponding arithmetic
expression is

Rx�Rx� � � � Rxn��
�a

xn����

Rx�Rx� � � � Rxn��
�Y

xn��

Rx�Rx� � � � RxnF �x�� x�� � � � � xn��

In general� we replace the quanti�er �xi by Rx�Rx� � � � Rxi����
xi�� and the quanti�er �xi by

Rx�Rx� � � � Rxi��Q�
xi�� � Thus� the resulting expression has n# �n� �� # �n� �� # � � � # � �

n�n# ��	� reduce operators in addition to the �n� operators of the form
Q�
x����

��
xi��� We call

this expression E�� For this re�ned arithmetization� we have the following lemma�

Lemma �	 E� � � i� , is true�

Proof� Omitted�

����� The protocol

The idea of the last section can now be put to use without any trouble� Arthur and Merlin
communicate to eliminate one operator at each stage� In the end� no operators are left and
Arthur checks the required condition directly by computing�

Initially� he wishes to be convinced that

y � �� ��
�Y

���

Rx�
�a

x���

� � � Rx� � � � Rxn F �x�� x�� � � � � xn��

So he asks Merlin for the polynomial

G��x�� � Rx�
�a

x���

� � � Rxn F �x�� x�� � � � � xn��

This a polynomial of degree �" So Merlin can easily provide this to Arthur� Call the polynomial

that Merlin sends be 'G�x��� Arthur veri�es that
�Y

x���

'G�x�� � �� �by computing 'G��� � 'G�����
Then to guard against Merlin sending him the wrong polynomial� he picks a random value �
for x�� and obtains �� � G���� He now needs to be convinced that

�� � �Rx�
�a

x���

� � � Rxn F �x�� x�� � � � � xn������

Here� the ��� means that the polynomial in the parenthesis �with free variable x�� is to be
evaluated at the value ��

The next operator operator� Rx�� is dealt with similarly now� Arthur asks for the polynomial

G��x�� �
�a

x���

Rx� � � � RxnF �x�� x�� � � � � xn��

On receiving 'G��x�� from Merlin� Arthur checks if �� � �Rx� 'G��x������ picks a value
�
� for

x� and computes �� � 'G��
�
�� and now needs to be convinced that

�� � �
�a

x���

Rx� � � � RxnF �x�� x�� � � � � xn�������

In general� when Arthur needs to be convinced that

� � �Rxi p�x�� x�� � � � � x�� � � � � xr����� � � � � i� � � � � r��

he proceeds as follows� First� rewrite this as

� � �Rxi p��� �� � � � � i��� xi� i��� � � � � r���i��

Now Arthur asks for the polynomial G�xi� � p��� �� � � � � i��� xi� i��� � � � � r�� and gets 'G�xi�
say� He veri�es that �Rxi 'G�xi���i� � �� computes �� � G��i� by choosing a random value �

for xi� and reduces the task to the question

�� ��P ��� �� � � � � i��� �i� i��� � � � � r��

The case of the
�a

xi��

operators as that of the
�Y

xi��

� We omit its discussion�

The entire protocol for QBF can now be stated as follows�

Merlin� a prime p � ��n�m# n�� �n�m# n�� and a proof that p is a prime�
Arthur� � � ��

for i � � to n� � do
Merlin� q� linear polynomial over Zp�
Arthur� If i is odd �resp� even� then

check that
Q�
x�� q�xi� � �

�resp�
��
xi�� q�xi� � �� else Halt and Reject�

Arthur� Choose i�� uniformly and randomly in Zp�
Arthur� � � q�i���
for j � � to i# � do
Merlin� q a polynomial over Fp with degree at most

�resp� �m� if i � n �resp� i�n��
Arthur� Check that Rxj�q��j� � � else Halt and Reject�
Arthur� Choose a new i uniformly and randomly in Fp�
Arthur� � � q�i�

end
end

Arthur� If � � F ��� �� ldots� n� then
Halt and Accept

Else
Halt and Reject

Lemma �� �a� If , � QBF then there exists a Merlin such that Pr�Arthur accepts� � ��

�b� If , �� QBF then for all Merlin Pr�Arthur accepts� 	 �	��

Proof� Part �a� is obvious�
For part �b� the analysis is the analysis is the same as in the case of �	SAT� The error is

introduced only if we pick a root of some low degree polynomial some stage� While dealing with
the last n reduce operators� the polynomial may have degree at most m� For the remaining
reduce operators the degree is at most �� For each of the other operators the degree is �� Thus
the sum of the degrees of all the polynomials encountered is at most n�m#n�� It follows from
our choice of the prime p in the protocol that the probability of error is at most n�m#n�	p 	 �	��
Details omitted�

Theorem � PSPACE � AM�poly��

Corollary �� PSPACE � AM�poly��

Proof� AM�poly� � Games Against Nature � PSPACE � AM�poly��

Remarks

The permanent value problem was shown to be �P	complete by Valiant �Val���� The re	
sult P ��P� � AM�poly� was shown by Lund� Fortnow� Karlo� and Nisan �LFKN��� �see
also �LFKN����� their original proof used the �P	completeness of the permanent value problem�
The proof given above is taken from Lund�s Ph� D� thesis �Lun���

The language QBF was shown to be PSPACE	complete by Stockmeyer and Meyer �SM��
�see also �BDG��a� p� ����� Theorem ��� was shown by Shamir �Sha��� �see also �Sha����� the
proof described above is due to Shen �She���� who introduced the reduce operator to keep the
degrees under control� An alternative proof of this result� attributed to Hartmanis� appears
in �BCD����

Lecture 	

Probabilistically Checkable Proofs

Lecturer� Jaikumar Radhakrishnan Date� �� March	
���

We saw in the last lecture that the class AM�poly� coincides with PSPACE� Earlier �Home	
work �� Problem ��� we observed that PSPACE contains precisely those languages that are
recognized by games against nature� The only di�erence between Arthur	Merlin games and
games against nature is in the acceptance criterion� in Arthur	Merlin games� the probabilities
of acceptance for inputs in the language and inputs not in the language must be well separated
�for example� 	� � �	��� whereas in games against nature any non	zero di�erence is enough�
We now know that this distinction in the acceptance criterion makes no di�erence to the power
of these games� A similar di�erence was encountered earlier between the classes BPP and PP �
However� it is not considered likely that these two classes are the same� Indeed� if they are
identical� then the polynomial hierarchy would collapse �why���

Having thus determined the extent of the class AM�poly�� we now turn to some variations in
the model� The �rst variation is obtained by the introduction of multiple provers�

The multiple prover model In this model we have one veri�er V interacting with many
provers� P�� P�� � � � � Pr� according to some �xed protocol $� It is assumed that a prover�s response
depends only on the input and the message she has received so far� in particular� a prover cannot
base her response on what transpires between the veri�er and the other provers� We say that a
protocol $ recognizes a language L if the following conditions are satis�ed�

�� There exist provers P�� P�� � � � � Pr� such that for all inputs x � L� Pr�$ accepts� � ��

�� For all inputs x �� L� for all provers P�� P�� � � � � Pr� such that Pr�$ accepts� 	 �
� �

We say that a language L is in the class MIP if there exists a polynomial time multiprover
protocol accepting L�

The class PCP The variation of interactive proofs we consider next is called probabilistically
checkable proofs� In this model� the prover is non	adaptive � she must write down all her answers
in the beginning� Imagine that the prover �rst writes down an exponentially long table of values
�this is the proof string supplied by the prover�� and then the veri�er tosses coins to determine
which entries of the table are to be read� Once the contents of these locations are available� the
veri�er performs a polynomial time �deterministic� computation and decides to accept or reject�

In the model of probabilistically checkable proofs� two resources �besides the running time
of the veri�er� which is assumed to be polynomially bounded� are taken into account� These
two resources are the number of random bits of used and the number of bits of the proof string
read �the query bits��

A probabilistic polynomial time program with !random access� to a proof string is called a
�r�n�� q�n��	veri�er if� on inputs of length n� it uses O�r�n�� random bits and reads O�q�n�� bits
of the proof� We say that a veri�er V recognizes a language L if

��

� for all inputs x � L� there exists a proof string such that Pr�V accepts� � ��

� for all inputs x �� L and all proof strings Pr�V accepts� 	 �
� �

The class PCP�r�n�� q�n�� consists of precisely those languages that are recognized by some
�r�n�� q�n��	veri�er�

��� MIP and PCP

The classes MIP and PCP�poly�poly� are related� in fact� they are the same� In this section�
we prove this result and describe how this new class is related to the conventional complexity
classes�

Lemma ��� MIP � PCP�poly� poly��

Proof� Let L � MIP� Say L is recognized by a protocol $ that runs in time nk using r provers
P�� P�� � � � � Pr �we assume that r � �n

k
�� We will use $ to construct an �nk

�
� nk

�
�	veri�er that

recognizes L� The table to be used by this veri�er will store all possible responses of the provers
in the protocol $� Note that the message sent by any prover can depend only on the messages
received by it previously� Hence the cells of our table will be indexed by tuples of the form
hi�m��m�� � � ��mki� where i � f�� �� � � � � rg� and m��m�� � � � �mk � f�� �g�� The content of
this cell will be the string that prover Pi sends as the response when it receives its kth message
mk� having previously received the k � � messages m��m�� � � � �mk���

Now our veri�er simulates the protocol $� and whenever in need of consulting a prover� he
just looks up the corresponding cell in the table �we assume that he remembers all the messages
that he sent to the provers� so that he can produce the address�� Now a routine back and forth
argument lets us conclude that the veri�er accepts the input x with probability p i� there exist
provers that induce the original protocol to accept with probability p� Moreover� it can easily
be checked that the veri�er that we just constructed is an �nk

�
� nk

�
�	veri�er� for some constant

k�� It follows that L � PCP�nk� � nk���

Lemma ��� PCP�poly� poly� � MIP�

Proof� Let L be recognized by the �nk� nk�	veri�er V � This time we will use V to construct a
two prover protocol $ for recognizing L� Recall that V obtains information from a table� The
two provers� P� and P�� of our protocol $ are both expected to return values according to the
table� That is� the queries to these provers will be addresses of cells in the table� their response
should be the content corresponding to the address supplied� The protocol is as follows� Here
V� is the veri�er of the protocol $�

Input x �jxj � n��
For i � �� �� � � � � n�k

f
V� simulates V by consulting prover P� whenever in need of contents of any cell�
Let the queries asked by the veri	er be q�� q�� � � � � ql and
the corresponding responses be r�� r�� � � � � rl �note l 	 nk��
If these cause the original veri	er V to accept then

f
Pick i � f�� �� � � � � rg at random and check that
the response of P� to qi is ri� otherwise� reject and halt�

g
else reject and halt�

g
Accept�

Thus the veri�er uses the �rst prover as the table and simulates the old veri�er� then he checks
that the two provers are consistent by picking a random query to see if their responses match�
Why does this work�

�� For x � L� both provers answer faithfully based on the correct proof �with respect to
veri�er V �� It is easy to see that the above protocol then accepts with probability ��

�� For x �� L� we need to show that the probability of acceptance is at most �	�� We claim
that in any iteration of the loop� the probability of acceptance is at most �� � �	���nk���
irrespective of what happened in the previous iterations� It will then follow that the overall
probability of acceptance is at most

�� �

��nk

�n�k
	 exp��n

k

��
� 	 �

�
�

To prove the claim� consider the situation at the beginning of an iteration� If the answers
provided by the prover P� causes the veri�er to reject with probability at least �	���n

k��
then we are done� Otherwise� construct the table T of answers based on the responses
that the second prover �i�e� P�� would give at this stage for the various question� that is� in
this table cell q will contain the value returned by prover P� for the query q� Since x �� L�
the original veri�er accepts T with probability at most �	�� Since P� causes the veri�er
to reject with probability less that �	���nk�� for a fraction �� � �	���nk� � �	��
 �	
of the coin toss sequences� the veri�er when using table T would reject� but while using
the responses of P� would accept� It follows that with probability at least �	� for one
of the queries in fq�� q�� � � � � qrg� the answer returned by P� is not consistent with the
corresponding entry in T � Thus with probability ��	� � ��	r� the veri�er would pick this
query and consequently reject� Since r 	 nk� the probability of acceptance is at most

�� �

nk
� �� �

��nk

as claimed�

Theorem ��� MIP � PCP�poly� poly��

This shows that the classes MIP and PCP�poly�poly� are the same� but� how big are they�

Theorem ��� MIP � NEXP�

Proof� Let L � MIP� Then Theorem �� implies that there exists a �nk� nk�	veri�er that
recognizes L� Fix an input x � f�� �g�� The idea is as follows� We guess the contents of the
table used by this veri�er and then� using it� compute the probability of acceptance of the veri�er
for the input x� If the probability is more than �	�� then we accept� otherwise� we reject� Since
the table is exponentially long �why��� it can be guessed by a nondeterministic exponential time
program� Our de�nitions guarantee that if x � L� then there is at least one guess that would
lead to acceptance� and if x �� L� then all guesses lead to rejection�

Thus� MIP is no bigger than NEXP� On the other hand we have the following remarkable
theorem�

Theorem ��	 NEXP � MIP�

This discovery was the corner stone of all later developments in the area of Interactive Proofs�
We will not prove this theorem here� Instead� we will move on to results that use the techniques
developed while proving this result� It is hoped that after studying these results� the reader
would be able to construct a proof of the above theorem on her own�

PCP and NP� With this we begin the main topic of this course� The following is a straight	
forward consequence of the de�nition of the class NP �
Proposition ��� NP � PCP��� poly�

This observation completely characterizes the class PCP when no coins are tossed and no bound
is imposed on the number of bits of the proof to be read� A major part of our discussion from
now on will be devoted to understanding the role of randomness in probabilistically checkable
proofs� In particular� we would like to know if the number of bits of the proof read by the
veri�er can be reduced if the use of some randomness is permitted� In the rest of this lecture�
we will study the �rst of a series of results that unravel the role played by the parameters� r�n�
and q�n�� in PCP�r�n�� q�n��� As a �rst step we will show that with O�logn� random bits� the
number of bits can be reduced to poly log n� This result will form a building block for later
lectures� where the number of query bits needed will be reduced even further�

��� NP � PCP�logn�poly logn�

It will be enough to show that the set 	SAT is in PCP�log n�poly log n��

����� Arithmetization of ��SAT

Consider a 	SAT expression �� In the following� we will assume that the clauses and variables
of � are numbered� c will denote the index of a clause and v the index of a variable� A 	CNF
expression is a conjunction of clauses� these clauses themselves are disjunctions of literals� We
will represent the information contained in the expression � using the six predicates ���c� v��
���c� v�� ���c� v�� s��c�� s��c� and s��c�� �i�c� v� is true precisely if v is the ith variable of the
clause c� that is� for example�

���c� v� �

�
� if v �rst variable in clause c
� otherwise

�

Similarly� we de�ne �� and ��� The predicate si�c� is true precisely if the ith variable in clause
c is non	negated� In particular�

s��c� �

�
� if the �rst variable in c is not negated
� if the �rst variable in c is negated

�

Before we describe the arithmetization of 	SAT using these predicates� we need to �x some
conventions�

� For technical reasons� that will become clear later� we will assume that the prover is trying
convince the veri�er that �y ��X� y�� here we think of X as the input and y as the witness
�compare Cook�s Theorem� Lecture �� The inputX is known to the veri�er� The variables
and clauses of � are named using strings in f�� �� � � � � h� �gm �from now on �h� will stand

for f�� �� � � � � h� �g�� We will use the �rst component of the string to distinguish between
input variables and witness variables � if the �rst component of the string is �� then the
string is the index of an input variable� otherwise it is the index of a witness variable�

� The prover provides us the assignment A for all variables� That is A � �A�� A�� where
A� assigns values to the input variables and A� to the witness variables� Then the proof
will convince the veri�er that A satis�es �� and that the part A� in the assignment is
consistent with the input value supplied for X�

Low degree extensions� Assume that F is a �eld containing �h�� In our application h will be
much smaller than jFj� Let f � �h�t � f�� �g� Now f is de�ned only on a part of the domain F t�
We wish to extend f and obtain a function 'f that is de�ned over the entire domain� Moreover�
we want 'f to be represented by a low degree polynomial of t variables� This extension is obtained
as follows� For � � �h�t� let P� be the polynomial of degree h � � in each variable� such that
P��x� � � for all x � �h�t � f�g and P���� � �� Such a polynomial exists and is unique �why���
Then� for x � F t�

'f�x� �
X
��h�t

P��x� � f�x�� �����

We leave it to the reader to convince herself that 'f has the required properties�
In our application� we will use this method to arithmetize the expression �� For example�

we think of �� as a function from �h��m to f�� �g� Then� '�� will denote the polynomial with
�m variables of degree at most h� � in each variable that agrees with �� everywhere in �h��m�
Similarly� we may obtain low degree extensions '��� '��� 's�� 's� and 's�� Note that the polynomial
representations of these functions can be obtained by the veri�er using the formula ����� since
she has complete information about these functions� The identity of the witness variable is
determined entirely by the last m � � components in its index� Thus� we may think of the
input assignment A� as a function from �h�m�� to f�� �g�� then the veri�er can write down the
polynomial representation of 'A� �using variables x�� x�� � � � � xm��

The proof provided by the prover contains the low degree extensions 'A� and 'A�� To dis	
tinguish between the prover�s and the veri�er�s versions of 'A�� we refer to them as 'AP

� and
'AV
�

respectively� Note that the low degree extension of A� that is 'A� can be obtained from 'A� and
'A� using the formula

'A�x�� x�� � � � � xm� � ��� x�� 'A
P
� �x�� x�� � � � � xm� # x� 'A��x�� x�� � � � � xm�� �����

Veri�cation Assume that the prover has provided the assignment A in the form of a low
degree extension� We assume that the tables for 'A� and 'A� have one entry for each element of
Fm��� The veri�er now needs to check that the assignment given by the prover satis�es �� We
now proceed to arithmetize this check� For each clause c� we need to verify that

CC�c�A� �
X

v��v��v��h�m

�Y
j��

�j�c� vj��sj�c��A�vj�� � �� ����

We need to somehow combine these conditions arithmetically and obtain a single sum� For
this we pick random weights R�c� for each clause c and obtain the linear combination of the
equations ���� for the various clauses� That is� we check thatX

c

R�c� � CC�c� A� � �� �����

This last equation ����� is our arithmetization of 	SAT�

����� The protocol

In this section� we will sketch the various steps in the protocol� The details� as well as the
analysis� will be presented presented in the next lecture�

How to choose the random weights� The obvious strategy of independently picking one
random weight for each clause c requires too many random bits� We will instead pick a small
number of random numbers and use them to generate all the random weights�

Pick r�� r�� � � � � rm � F randomly� We wish to use these numbers to generate one random
weight R�c� for each clause c� Recall that c � �h�m� Let c � c�� c�� � � � � cm� Then de�ne

R�c� � rc�� r
c�
� � � � rcmm �

Note that R is determined if the random values r�� r�� � � � � rm are �xed� Since R is a function
from �h�m to F � we may consider its low degree extension 'R�c�� Now a representation of 'R�c�
can be obtained using the formula ������ However� we may obtain it more naturally as follows�
We write R�c� � R��c��R��c�� � � � Rm�cm�� where Ri�ci� � rcii � First� we construct the degree
h � � extension 'R�xi� for each Ri� Then we multiply these extensions to obtain the extension
'R�x�� x�� � � � � xm�� We only have to describe how the extensions 'Ri�xi� are obtained� First
observe that for j � �� �� � � � � h � �� there exists a degree h � � polynomial pj�x� such that
pj�x� � � for j � �h� � fjg� and pj�j� � �� Indeed� we may take pj�x� �

Q
i�h��fjg

x�i
j�i � Now�

the required low degree polynomial 'R�x� is de�ned by 'Ri�x� �
Ph��

j�� pj�x�r
j
i �

Sum check� We now return to the veri�cation of the equation ������ The idea is to �rst replace
the various functions appearing in the equation by their low degree extensions and obtain

X
c�v��v��v��h�m

'R�c�
�Y

j��

'�j�c� vj��'sj�c�� 'A�vj�� � �� �����

Note that the summation above can be broken into �m summations� each ranging over �h��
Moreover� the summand is a polynomial of degree at most ��h � �� in any variable� In the
next lecture� we will apply the method used in the interactive protocol for �P functions� to
verify ������ Note that in the last step of the protocol the veri�er is expected to compute the
polynomial at a random point� While the polynomials 'R� '�i and 's� can easily be computed
at any point using the formula ������ the value of 'A will have to be computed by referring to
the proof table and using the formula ������ However� are we not making an assumption here�
Why is it not possible for the prover to give for 'AP

� and 'A� tables that do not correspond to
any polynomial at all� In this case� the summand would no more correspond to a low degree
polynomial� and our analysis� based as it is on the important property that polynomials of low
degree cannot have many roots will not be correct� Thus it is important to ensure that the
tables supplied by the prover indeed correspond to low degree polynomials�

Low degree test� It turns out that ensuring complete agreement with some low degree poly	
nomial is not feasible� However� it will su�ce for our purposes if we can ensure that there is
some low degree polynomial that agrees with the table on a very large fraction �say ����� of the
entries� This weaker condition can be enforced using low degree tests� We will study these low
degree tests later in the course�

Consistency� As observed earlier� we need to verify that the extension provided by the prover
for the input variables and the one constructed by the veri�er himself are identical� To verify
this� we pick a random point and check that the values in the two tables are identical�

Remarks

The multiple prover model is due to Ben	Or� Goldwasser� Kilian and Wigderson �BOGKW����
The class PCP�r�n�� q�n�� was formally de�ned by Arora and Safra �AS���� it was implicit
in the work of Feige� Goldwasser� Lov%asz� Safra and Szegedy �FGL����� Fortnow� Rompel
and Sipser �FRS��� earlier studied a similar model called polynomial time probabilistic oracle
Turing machine� and showed that it equivalent in power to MIP �Theorem ���� Theorem ���
was also shown in �FRS���� the converse� Theorem ���� was shown by Babai� Fortnow and
Lund �BFL��� BFL��� �see also Homework � Problem ��

The result NP � PCP�logn�poly log n� is due to Arora and Safra �AS���� Their proof
builds on the works of Babai� Fortnow� Levin and Szegedy �BFLS���� who showed that NP �
poly logn�poly log n� and Feige� Goldwasser� Lov%asz� Safra and Szegedy �FGL����� who using a
di�erent approach showed that NP � PCP�log n � log log n� logn � log log n��

Lecture

NP � PCP�log n�poly log log n�

Lecturer� Jaikumar Radhakrishnan Date� � April	
���

In this lecture� we shall �rst complete the proof of NP � PCP�log n�poly logn� that we
started in the last class� In the second part of the lecture� we will strengthen this and show that
NP � PCP�log n�poly log n��

��� NP � PCP�logn�poly logn� continued � � �

In the last lecture� we sketched the di�erent parts of the protocol� in this lecture� we treat them
in detail�

Sum check� Recall that the prover is trying to convince the veri�er that �y ��x� y�� Here x
corresponds is the input vector known too the veri�er� The prover is expected to convince the
veri�er of this by providing an assignment for all the variables in �� such that the the value
assigned for x is compatible with the input� We have already seen how one may arithmetize the
	CNF expressions�

We restate below the equation ����� that resulted from this arithmetization�

X
c�v��v��v��h�m

'R�c�
�Y

j��

'�j�c� vj��'sj�c�� 'A�vj�� � �� �����

Recall that here 'R� '�j and 'sj are low degree extensions of functions that the veri�er can compute
using � and the random bits �that go into the choice of 'R�� on the other hand 'A is the low
degree extension obtained using the formula ������ which we restate below�

'A�x�� x�� � � � � xm� � ��� x�� 'A
P
� �x�� x�� � � � � xm� # x� 'A��x�� x�� � � � � xm�� �����

Here� 'AP
� and 'A� are not known to the veri�er� they are to be provided by the prover in the

form of tables� These tables will have Fm�� entries� each entry itself being an element of F �
The proof of correctness of the protocol we are about to present makes an assumption about

the tables 'AP
� and 'A�� We require that they correspond to some low degree polynomials �of

total degree at most mh�� Of course� there is nothing that binds the prover to supply tables
satisfying these conditions� and it is conceivable that the prover cheats the veri�er by deviating
from the assumption� However� as a �rst step� our protocol will show how we can ascertain that
a 	CNF expression is satis�able� provided the prover is somehow bound to supply tables that
correspond to low degree polynomials� Later� we will augment the protocol with low degree tests
so that this assumption is not necessary�

Denote the �m variables of c� v�� v�� v� by w�� w�� � � � � w�m� We will write Q�w�� w�� � � � � w�m�
instead of 'R�c�

Q�
j�� '�j�c� vj��'sj�c� � 'A�vj��� Thus ����� now becomesX

hw��w������w�mi�h��m
Q�w�� w�� � � � � w�m� � �� ����

��

For � 	 i 	 �m and �� �� � � � � i�� � F � let
Ei�x� �

X
hwi	��wi	������w�mi�h��m�i

Q��� �� � � � � i��� x� wi��� � � � � w�m��

Note that the degree of Ei�x� is at most the degree of wi in Q� which is at most �mh�

�� Make 'r�c�� Set �� � �� m� � �m�

� For i � � to m� do

�
 Read 'Ei�x�� a polynomial over F of degree at most ��h� ���

� Check that

P
x � h�

'Ei�x� � �i��� otherwise� Reject and Halt�

�� Pick I � F at random� and set �i � 'Ei�i��
� Compute ��m� � Q��� �� � � � � m�� using the tables for
'R� '�i� si� 'A

P
� and 'A�� and check that �m� � �m� otherwise Reject and Halt�

�� Pick � Fm�� at random and check that 'AV
� �� �

'AP
� ���

otherwise Reject and Halt�

����� Analysis

Error probability� We do not repeat the analysis of Lecture �� It is clear that if the 	CNF
expression is satis�able� then the prover can provide tables 'AP

� and
'A� �and suitable polynomials

'Ei� that will cause the veri�er to accept with probability ��
Consider a 	CNF expression that is not satis�able� We wish to show that in this case the

probability of acceptance is small� First� we show that if � is not satis�able� then with high
probability ���� does not hold� Second� we bound the probability of the protocol accepting
given that ���� does not hold� Third� we consider the possibility that the input vector implicit
in the table 'AP

� is di�erent from the actual input� and bound the probability that the protocol
accepts in that case�

If A does not satisfy �� then there exists a clause c such that CC�c�A� �� �� Now consider
equation ����� and view the left hand side as a polynomial in variables r�� r�� � � � � rm �recall the
de�nition of R�c��� The degrees of the variables r�� r�� � � � � rm in R�c� are di�erent for di�erent
values of c� Thus� if some CC�c�A� is non	zero� then the left hand side is a non	trivial polynomial
in variables r�� r�� � � � � rm of total degree at most m�h � ��� If follows that the probability that
���� holds when the ri are chosen randomly and independently is at most m�h� ��	jF j�

After this the situation is identical to the one encountered in the protocol for �P� Using
arguments similar to those used there� one can show that if ���� does not hold� then the
probability that the protocol accepts is at most �m � �mh	jFj�

Finally� we consider the consistency check between 'AV
� and 'AP

� � If these two polynomials
are not identical� the protocol accepts with probability at most �m� ���h � ��	jF j�

For the protocol to accept the input incorrectly� it must err in at least one of the three places
considered above� It follows that the probability of error is at most

m�h� ��
jFj #

��m���mh�

jFj #
�m� ���h � ��

jFj 	 �m�h

jFj �

Random bits� First consider the number of random bits needed to construct weights R�c��
Recall that we need m random elements of F to produce R� Thus the total number of random
bits used is O�m log jFj��

Second� an element of F is chosen at random in each iteration of step ���� There are at most
m� � �m iterations� Thus the number random bits needed is again O�m log jFj��

Finally� in step of the protocol� � Fm�� is chosen at random� This requires O�m log jFj�
bits�

Thus in all we need only O�m log jFj bits to implement the protocol described above�

Query bits� The proof is read by the veri�er in steps ���� � and � In each iteration of step
���� a polynomial of degree at most ��h � �� is read� In the at most m� iterations of step ����
the total number of bits read is thus at most

m����h � �� # ��dlog jFje�
In step �� three entries each of the tables 'AP

� and
'AP
� are read� requiring at most �dlog jFje bits�

Similarly� in step � the veri�er reads at most �dlog jFje bits� Thus� the total number of bits
read is at most �hmdlog jFje�

We must now choose the value of jFj� m and h such that the probability of error is small�
the number of random bits used is O�log n� and the number of bits of the proof read is at most
poly logn� We choose h to be dlog ne� then m can be taken to be -�log n	 log log n� �to ensure
that hm is more than the number of variables and clauses�� To keep the probability of error
small� we must choose jFj such that �m�h	jFj is small� We choose jFj to be -��log n����
Observe that this choice of parameters automatically ensures that the number of random bits
used �that is� O�m log jFj�� is O�log n�� Similarly� this ensures that the number bits of the proof
read is O��log n����

����� Low degree tests

As discussed earlier� the of our analysis assumes that the prover provides perfect low degree
extensions of the assignment and the input� We now wish to remove this constraint on the
prover� Thus� the tables provided by the prover need not arise from any low degree polynomial�
Instead� we shall augment our protocol with low degree tests� which will ensure that the tables
provided by the prover are of good quality�

It would be ideal to have tests that can examine tables and certify �with high probability�
that the tables arise from some low degree polynomial� that is� such a test would reject� with
high probability� any table that has even the slightest defect� However� it is not hard to see that
any such test must always read almost the entire table� this is beyond our means� for we wish
to read only poly logn bits in all�

The low degree test that we use will permit us to conclude that the tables provided by the
prover are close to certain low degree polynomials� In other words� if there is no polynomial of
low degree that agrees with the table on most of the entries� then the test would reject with
high probability�

The details of this this test will not be presented in a later lecture �Lecture ���� we shall
only summarize the various features of this test� suppose the prover claims that the table T
corresponds to a polynomial p � Fm � F � such that the total degree of p is at most d�

We will require that the prover provide some additional information in support of her claim�
The exact nature of this information will become clear later� For now� we need know only
that this information is organized in locations� where each location holds a polynomial in over
variable of degree at most d �that is� O�d log jFj� bits��

For f� g � Fm � F � let .d�f� g� � jfx � Fm � f�x� �� g�x�gj	jFmj� For a table T � Fm � F �
let

.d�T � � minf.�T� p� � p is a polynomial over F of total degree at most dg�
We need a procedure that would given a table T � a degree d� a probability of error � � �� and
a constant � � �� guarantee that .d�T � 	 �� Our test operates as follows� The veri�er uses at

most k���� �� �m log jFj random bits and reads k���� �� cells from the table and the supporting
information� He then computes a polynomial time predicate on the information read and decides
to accept or reject� The test has the following properties�

�� If the table and the supporting information are correct �.d�T � � ��� then the veri�er
accepts with probability ��

�� If .d
 �� then the probability that the veri�er accepts is at most ��

� The veri�er uses at most k���� ��m log jFj random bits and reads at most k���� ��d log jFj
bits of the proof �from at most k���� �� di�erent locations��

����� The revised protocol for NP � PCP�logn�poly logn�

To the protocol we already have� we add two low degree tests� one each for 'AP
� and

'A�� Let us
�rst check that the number of random bits used and the number of bits of the proof read are
within limits� The veri�er uses O�m log jFj� random bits� and reads O�mh log jFj� bits� It is
easy to check that for our choice of values� m log jFj � O�log n� and mh log jFj � O��log n����

It remains only to prove the correctness of this revised protocol� Clearly� if the prover is
honest the veri�er of the revised protocol would also accept with probability �� Now suppose
the 	CNF expression � is not satis�able� We have two case� In the �rst� one of the tables� 'AP

�

and 'A�� is not close to any polynomial of total degree at most mh� Then� the low degree test
would reject the proof with probability at least �� �� �Say � � �����

Thus� we need consider only the remaining case� where both the tables almost perfectly
�t some low degree polynomials� We will argue that if these tables were replaced with tables
that agree entirely with those polynomials� then the probability of acceptance will not change
signi�cantly� Since we have already determined that the probability of acceptance is small when
then tables are perfect� it will follow that the probability of acceptance is small even when the
tables are only close to perfect�

Fix d � mh� and assume .d� 'A
P
� ��.d� 'A�� � � �� to be chosen later� and 'B� and 'B� are the

tables corresponding to polynomials that �t 'AP
� and

'A� �respectively� closely� �Note 'B� and 'B�

are unique�� Consider the operation of the protocol� The tables 'AP
� and

'A� are probed by the
veri�er in steps � and � Observe that the total number of locations of these tables that are
used by the prover is at most � �� in step � and � in step �� Moreover� the location of these of
these probes are chosen randomly and are distributed uniformly over Fm��� If for none of these
locations the value provided by the prover �in 'AP

� �
'A�� di�ers from the values in the corrected

tables 'B�� 'B�� then the �nal decision of the veri�er will be identical in the two cases� Thus�

Pr�The veri�er accepts with 'AP
� �

'A�� 	 Pr�The veri�er accepts with 'B�� 'B�� # ���

We have seen already that the �rst term on the right is O�m�h	jFj�� By choosing jFj �
-��log n��� and � � ����� we make this quantity less than ����

If the input is encoded� For later application� we need to formulate a version of this protocol
where not all bits of the input are required�

Notice that in the above protocol we need the input only in step where we verify that the
assignment is consistent with the input� We use a constant number of cells of its low degree
extension 'AV

� � and for this we are required to read all the bits of the input� Now suppose that
instead of the input a table for the low degree extension 'AV

� itself is provided� Then� of course�
we can just read the values directly and compute based on them� However� we must ensure that
the table does correspond to some input� This is done by running low degree tests on the table�

The resulting protocol has the following property� If the table provided does not resemble the
low degree extension of any input� then we reject with high probability� Otherwise� we accept
wit high probability if the unique input x the table encodes is in the language �i�e� �y ��x� y���
and reject with high probability if it is not� instead of the n bits the veri�er read in the original
protocol� now he reads only polylogn bits from the table"

��� Reducing the number of probes

The protocol for NP � PCP�log n�poly logn� that we just saw uses O�log n� random bits of
reads O��log n��� bits of the proof� The information read by the veri�er is located in di�erent
parts of the proof� For example� consider the execution of step ���� in each of the m� iterations�
a polynomial is read from some location in the proof� We will need to modify this protocol
so that the veri�er is required to probe only a constant number of locations� however� we still
restrict the number of random bits used to O�log n� and the number of bits of the proof read to
poly logn�

First� observe that the locations of the proof probed by the veri�er depend only on the
random bits� that is� the veri�er does not use the actual contents previously read to compute
addresses� Thus� if all the random bits are known� then the locations probed by the veri�er are
�xed�

Assume that on a certain execution of the protocol the veri�er needs to know the value stored
at locations a�� a�� � � � � ak �these are addresses of the bits of the proof�� where k � O��log n����
We encode these addresses as strings over the set I � f�� �� � � � � h � �g� Since the entire proof
has only a polynomial number of bits� we use strings of length d � O�log n	 log h��

We now think of the proof as a function � � Id � f�� �g� and construct the extension of ��
called '� � Qd � Q� Here Q is a large �eld containing I� and '� is the low degree extension of of
�� thus deg�'�� 	 djIj� In order to reduce the number of probes� we now require the prover to
supply the function '� as a table�

The veri�er makes use of this table as follows� First he picks a� � Qd randomly and �ts
polynomials for each coordinate of the ai�s� That is� for i � �� �� � � � � d and j � �� �� � � � � k� we
have polynomials pi�j� � aj�i�� �We shall choose Q such that f�� �� � � � � kg � Q�� Note that each
pi is a polynomial �in Q�x�� of degree at most k� and it can be evaluated at any point in Q by the
veri�er� who knows a�� a�� � � � � ak� Consider the function F �t� � '��p��t�� p��t�� � � � � pd�t��� Since
'� has degree at most djIj and the pi have degrees at most k� we have that deg�F � 	 kdjIj� We
choose h � dlogne so that deg�F � 	 �log n��� Note that F is completely determined once we �x
the random bits of the original protocol r �O�log n� bits� and a� �d log jQj bits�� the polynomial
F corresponding to r and a� is referred to as Fa��r� In addition to the table '� described above�
the prover must provide of F �using at most O�kdjIj log jQj� bits for the kdjIj# � coe�cients��
Thus the new proof looks as shown in Figure ����

Now� instead of probing the table at location a�� a�� � � � � ak� the prover consults the polyno	
mial Fa��r and uses the value Fa��r�i� instead of '��ai��� To keep the prover honest the veri�er
also checks that Fa��r�t� and '��p��t�� p��t�� � � � � pd�t�� are the same polynomials by comparing
them at a random point� The details are presented in the following protocol�

The revised protocol� The veri�er performs the following steps�

� Pick r and a� at random� Using r compute the values of a�� a�� � � � � ak�
� Read Fa��r from the proof�
�� Use the values vi � Fa��r�i�� for i � �� �� � � � � k� instead of reading ��ai�
�as one would have in the original protocol�� Check that the original protocol would

: : : : : :

: : : : : :

: : : : : :

: : : : : :

: : : : : :

F ra0,
(t)

k*d*|I|*log|Q| bits

Old proof

: I {0,1}
d

: Q Q
d^

One for each value
 of ra0,

Each cell holds

Each cell holds log |Q| bits

The low degree extension of

Figure ���� The new proof

accept with these values of vi�
�� Pick t� � Q at random and veri	es that Fa��r�t

�� � '��p��t
��� p��t��� � � � � pk�t����

�� Check that '� is close to a low degree polynomial �using low degree test��

It is easy to see that all steps except the last can be executed by probing the proof in O���
locations� that even the last step requires only O��� proves will be veri�ed later �Lecture ����

We now argue that the revised protocol is correct� We show that for any input� the probability
of acceptance of the new protocol is small whenever the probability of acceptance is small for
the original protocol� �It is easy to see that if the veri�er using the original protocol accepts
with probability �� then there exists a suitable proof for the revised protocol that would also be
accepted with probability ���

To simplify the analysis� let us make an assumption� Suppose the table for '� perfectly �ts a
low degree polynomial� In this case it is clear that if the polynomials Fa��r provided by the prover
are correct then the veri�er would have reject with high probability �equal to the probability
when the veri�er uses the old protocol and he table '� restricted to Id�� Suppose for some r and
a�� Fa��r�i� �� '��ai� for some i � f�� �� � � � � kg� In that case� Fa� �r�t� and '��p��t�� � � � � pk�t�� are
di�erent polynomials �because they di�er at t � i�� and consequently di�er on all but deg�F �
values of t� Thus if Fa��r is not supplied correctly� then step � of the revised protocol would
reject with high probability� It follows that the probability that the new protocol rejects is at
least

�probability that the old protocol rejects '� restricted to Id� � ��� deg�F �

Q ��

and we are done �provided we choose jQj �� deg�F ���
Let us now consider what happens if the assumption that the table for '� perfectly �ts a low

degree polynomial is removed� Using the low degree test in step �� we can still ensure that '�
is �	close �for some small � � � to be chosen later� to a low degree polynomial� Let '�� be the
unique low degree function close to '�� We then have

Pr
a�Qd

'��a� � '���a�� � �� ��

Now� observe that if t� �� f�� �� �� � � � � kg then hp��t��� p��t��� � � � � pd�t��i is a random element
of Qd �Why� Hint� a� is chosen randomly�� Hence� from the point of view of the revised
protocol� the tables '� and '�� are essentially indistinguishable in step �� and the conclusion of
the above paragraph continue to hold� We make this precise as follows�

Let p�t�� � hp��t��� p��t��� � � � � pd�t��i� Since two distinct polynomials of degree at most kdjIj
may agree on at most kdjIj values� we have

Pr
t��Q�F �t

�� �� '���p�t��� j �i F �i� � '���ai�� 	 kdjIj	jQj�

Thus�

Pr�The revised protocol accepts� 	 Pr��The original protocol accepts '�� restricted to Id�
or ��i F �i� � '���ai� and the revised protocol accepts��

	 Pr�The original protocol accepts '�� restricted to Id�
Pr��i F �i� �� '���ai� and the revised protocol accepts��

We thus need to bound the second term above� This is bounded by most

Pr�'��p�t��� �� '���p�t����
Pr��i F �i� �� '���ai� and '��p�t��� � '���p�t��� and the revised protocol accepts��

Since '� and '�� are �	close� the probability that they di�er on a random point in Qd is at most
�� Since for all values of t� outside f�� �� �� � � � � kg� p�t�� is a random point in Qd� Thus the �rst
term is at most �# �k # ��	jQj� The second term is at most

Pr�'��p�t��� � '���p�t��� and the revised protocol accepts j �i F �i� �� '���ai��

	 Pr�F �t�� � '���p�t��� j �F �i� �� ���ai�� fbecause the protocol checks F �t�� � '���p�t���g
	 kdjIj	jQj�

Thus the probability that the revised protocol accepts can be more than the probability that
the original protocol accepts by at most

�# �k # ��	jQj# kdjIj	jQj�

To make this quantity small we choose Q � -��log n����

��� NP � PCP�logn�poly log log n�

We begin by summarizing the discussion of the previous section� The main features of the
protocol showing NP � PCP�log n�poly logn� can be stated as follows� The veri�er �rst tosses
O�log n� coins to obtain a random string r� Then� based on r and the input length� the veri�er

constructs a value a of length poly logn� based on r and the input� the veri�er produces a constant
number of entries of the low degree extension of the input assignment �call these bits b�� and
based on r reads a constant number of cells of the proof� Call these values c�� c�� � � � � ct� After
this the veri�er checks that hr� a� b� c�� � � � � cti� a string of length poly log n� satis�es polynomial
time predicate �or� say� belongs to the language L� � P��

Observe that the protocol makes use of the values c�� c�� � � � � ct only while testing membership
in the language L�� The main idea now is to check this last condition without reading all of
c�� c�� � � � � ct� We have seen above that membership in a language in NP can be checked using
just a few entries of the low degree extension of the input �whose combined length is much less
than the length of the actual input�� Since for the task that we now have at hand the ci�s serve as
input� it is conceivable that we may be able to e�ect considerable savings if the prover provides
the low degree extensions of the ci�s instead of their actual values� However� to implement this
idea we need to take care of certain technical di�culties�

�� When we had described the e�cient protocol under the assumption that the input was
presented as a low degree extension� we had assumed that the low degree extension of the entire
input was available� In our case� the entire �fragmented� input is z � hr� a� b� c�� � � � � cti� and we
therefore need the low degree extension 'z� Assume that the prover provides us the low degree
extensions of c�� c�� � � � � ct� that is� '��� '��� � � � � '�t� the low degree extensions of r� a and b� that is�
'r� 'a and 'b� can be !constructed� by the veri�er himself� Now the low degree extension of z can be
constructed as follows� Rename hr� a� b� c�� � � � � cti as hz�� z�� � � � � zt��i and assume jzij � hl� so
that jzj � �t#��hl� Since t#� is a constant much smaller than h� we think of z � �h�l�� � f�� �g�

Then� for v� � F and v� � F l� we de�ne 'z as follows�

'z�v�� v�� �
t��X
i��

pi�v�� � 'zi�v��� �����

In other words� to evaluate 'z at the point v � hv�� v�i we need to read one entry each of
'z�� '��� � � � � 'zt��� Here�

pi�x� �
t��Y

j���j ��i
�x� j�	

t��Y
j���j ��i

�i� j��

�� The method described above gives us the value of 'z�v� at any desired point in v � F l���
However� for 'z�v� to be a low degree extension� the 'zi must be low degree extensions� We must�
therefore� run low degree tests for each '�i to ensure that it is su�ciently close to low degree�
This requires only a constant number of cells to be read� and since we are now working over
elements of a �eld of size poly logn� the number of bits read is poly log logn�

With this we are in a position to prove that membership proofs for every language in NP
can be checked by the veri�er using O�logn� random bits and O�poly log log n� bits of the
proof while reading a constant number of cells of the proof� Fix a language L � NP � The
veri�er begins as in the proof of the revised protocol for L � PCP�log n�poly logn� which was
summarized at the beginning of this section� After tossing O�log n� coins� the veri�er has in
his possession the values of r� a� b and the locations where the remaining values c�� c�� � � � � ct
are to be found� However� in our present proof� in the locations corresponding to ci their low
degree extensions are stored� Now the veri�er has to deal with the problem of verifying that
hr� a� b� c�� c�� � � � � cti � L�� where L� � P� Since this language is in NP � the veri�er uses the same
protocol recursively� That is� he tosses O�log log n� coins to generate a random string r�� Based
on this and the input length� he constructs a�� He then obtains b� by using the formula ������
Finally� he reads the t locations in the proof �one of the auxiliary proofs that the prover provides

for the language L�� one for each coin toss sequence r�� each of length poly log logn� This way
the prover collects a string hr�� a�� b�� c��� � � � � c�t�i of length poly log logn on which he performs a
polynomial time computation� In� addition he checks that the tables for 'z�� 'z�� � � � � 'zt are close
to linear� by running the low degree tests on them� For this he needs O�log log n� random bits�
and a constant number of probes�

Overall the number of cells probed is constant �independent of n�� Each cell contains
poly log log n bits� Randomness required is O�log n� bits for the primary �top level� protocol
and O�log log n� bits for the the secondary protocol and the extra low degree tests� Hence the
total amount of randomness is still O�log n� bits�

SUMMARY

�� The veri�er tosses O�log n� coins to produce the random string r�

�� He constructs the input x � hr�� a�� b�� c��� � � � � c�t�i� where a� and b� do not depend on the
bits supplied by the prover� and the locations where c��� c��� � � � � c�t are stored depend only
on the random string r �jc�ij � poly log log n��

� He computes a polynomial time predicate on x and decides to accept or reject�

Remarks

The arithmetization employed in this lecture is taken from �FGL����� The use of base h encoding
instead of binary encoding �rst appeared in �BFLS��� and was again employed in �AS��� to
maintain the number of random bits used at O�logn�� The use of recursion �a key ingredient in
all later results� also appeared in �AS����

The method described in the lecture to restrict the number of probes to a constant is due to
Arora� Lund� Motwani� Sudan and Szegedy �ALM���� �see also Feige and Lov%asz �FL�����

Lecture ��

NP � PCP�poly� ��

Lecturer� Sanjeev Saluja Date� � April	
���

The protocol we describe below uses many more random bits than the one we saw last time�
but it has the advantage that the number of probes to the proof is a constant�

As before� we imagine that the prover wishes to convince the veri�er that �y ��x� y�� where
the input x and the 	SAT expression � are known to the veri�er� The proof provided by
the prover will correspond to the satisfying assignment hx� yi for �� The veri�er needs to be
convinced of the following�

�a� hx� yi satis�es ��
�b� x corresponds to the input he has�

We next show how �a� and �b� can be ensured
Let a denote the combine assignment hx� yi and let jaj � n �that is a � f�� �gn�� Consider a

clause Cj of �� First� we arithmetize this clause and obtain a polynomial 'Cj�z�� For example�
if Cj � �x� � �y� � x�� then 'Cj � �� � x��y��� � x��� So that Cj�a� is true i� 'C�a� � �� Now
the veri�er needs to check that the assignment a provided by the prover satis�es

�j 'Cj�a� � ��

The veri�er combines these conditions as a weighted sum �parity� and obtainsX
j

rj 'Cj�a� � ��

by choosing the weights rj � f�� �g uniformly and independently� Thus� if �j 'Cj�a� �� �� then

Pr
r
�
X
j

rj 'Cj�a� �� �� � �

�
�

By collecting terms� the veri�er transforms the sum as followsX
j

rj 'Cj�a� � E #
X
i�S�

iai #
X

hi�ji�S�
aiaj

X
hi�j�ki�S�

aiajak

� E #
X
i�S�

ai #
X

hi�ji�S�
bij #

X
hi�j�ki�S�

cijk

� E �
X
i

iai #
X

hi�ji�S�
�ijbij #

X
hi�j�ki�S�

�ijkcijk� ������

where

�� E is the constant term �either � or ���

��

Input� k�� k� and tables /A� /B and /C�

Output� PASS if and only if the following tests succeed�

Linearity tests� Repeat k� times
Pick x� x� � f�� �gn at random
Verify that /A�x� # /A�x�� � /A�x# x��

Pick y� y� � f�� �gn� at random
Verify that /B�x� # /B�x�� � /B�x# x��

Pick z� z� � f�� �gn� at random
Verify that /C�z� # /C�z�� � /C�z # z��

Consistency tests� Repeat k� times
Pick x� y � f�� �gn at random
Verify that SC�A�x� � SC�A�y� � SC�B�x � y�

Pick x � f�� �gn and y � f�� �gn� at random
Verify that SC�A�x� � SC�B�y� � SC�C�x � y�

Figure ����� Testing for linearity and consistency

SC
A�x�� Pick r � f�� �gn at random� Return /A�r� # /A�x� r��

SC
B�y�� Pick r � f�� �gn� at random� Return /B�r� # /B�y � r��

SC
C�z�� Pick r � f�� �gn� at random� Return /C�r� # /C�z � r��

Figure ����� Self	correction

�� b � f�� �gn� and c � f�� �gn� be de�ned by bij � aiaj and cijk � aiajak for i� j� k �
�� �� � � � � n� and

� � � and � are the characteristic vectors of the sets S�� S� and S� respectively�

Note that E and the sets S�� S� and S� depend only on � and r�
The prover shall provide the values for

P
i�S� ai�

P
hi�ji�S� bij

P
hi�j�ki�S� cijk satisfying �������

and supply a proof that they arise from some common assignment� We now describe the mech	
anism for implementing this� Fix an assignment a and recall the de�nitions of b and c given
above� The prover supplies

�� A � f�� �gn � f�� �g de�ned by A�� �Pn
i�� iai�

�� B � f�� �gn� � f�� �g de�ned by B��� �Pn
i�j�� �ijbij �

� C � f�� �gn� � f�� �g de�ned by C��� �Pn
i�j�k�� �ijkcijk�

These functions are to be provided in the form of tables containing one bit for each input vector�
Thus� the proof consists of �n # �n

�
�n

�
bits� The functions A� B and C as de�ned above are

linear functions and depend only on the value of the assignment a� To ensure that the tables /A� /B
and /C provided by the prover are also �close to� linear functions the veri�er uses the linearity tests

shown in Figure ����� �For vectors x� y � f�� �gn� x � y is a vector of size n� whose components
are indexed by pairs �i� j�� i� j � �� �� � � � � n� it is de�ned by �x � y�ij � xiyj�� Furthermore�
by the consistency checks given in Figure ����� the veri�er checks that the tables are mutually
compatible� To prove the correctness of the linearity tests� we will need the following lemma�
whose proof will be discussed in the next lecture �Lemma ������ For f� 'f � f�� �gn � f�� �g� let
.�f� 'f� � jfx � f�� �gm � f�x� �� 'f�x�gj	�n�

Lemma ���� Suppose � 	 �	� If the function f � f�� �gm � f�� �g satis�es

Pr
�x��y�f���gm

�f�'x# 'y� � f�'x� # f�'y��
 �� �	��

then there exists a linear function 'f � f�� �gm � f�� �g such that .�f� 'f� 	 ��

The following lemma allows us to compute a linear function correctly �with high probability�
even when the table supplied for it contains some errors� This method is known as self�correction
�see Figure ������

Lemma ���� Suppose f� 'f � f�� �gn � f�� �g� 'f is a linear function and .�f� 'f� 	 �� Then�

for all x � f�� �gn�
Pr

r�f���gn
�f�x# r�� f�r� �� 'f�x�� 	 ���

Proof� Observe that since 'f is a linear function� 'f�x # r� � 'f�r� � 'f�x� and Pr��f�x # r� ��
'f�x# r�� � �f�r� �� 'f�r��� 	 ���

Lemma ���� Fix �� p � ��� ��� There exist constants k�� k� such that� if there does not exist

any a � f�� �gn� such that .�A�a�� /A��.�B�a�� /B��.�C�a�� /C� 	 �� then the scheme described

in �gures �	�� and �	�� rejects with probability at least p�

Proof� We �rst choose k� so that if any of /A� /B and /C is not �	close to some linear function�
then the linearity check rejects with probability at least p�

By Lemma ����� if /f �which may be /A� /B or /C� is not �	close to linear then the linearity
test accepts with probability at most

��� �	��k� 	 exp��k��	���

To make this quantity at most �� p we choose k� large� that is� k�
 ��	�� ln��	�� � p���

Thus� we may assume that /A� /B and /C are �	close to linear� That is� there exist vectors
a � f�� �gn� b � f�� �gn� and c � f�� �gn� such that /A� /B and /C are �	close to the linear functions
described by the coe�cients a b and c respectively� We next show that the consistency check
rejects with probability at least p if bij �� aiaj for some i� j� or cijk �� aiajak� for some i� j� k�

Fact ���� If X and Y are n� n f�� �g�matrices and if X �� Y � then

Pr
x�f���gn

�xTX �� xTY �
 �

�
�

hence�

Pr
x�y�f���gn

�xTXy � xTY y�
 �

�
�

In our �rst application� we have X � �aiaj� and Y � �bij�� Note that x
T �aiaj�y � A�x�A�y��

and xTY y � B�x�y�� Although we do not have any means of obtaining A�x� and A�y� directly�
we can use /A to obtain these values� Recall that A and /A are �	close� so that

Pr
x�y�f���gn

�A�x� �� /A�x�or A�y� �� /A�y� 	 ���

Using Lemma ����� we see that

Pr�SC	B�x � y� �� B�x � y�� 	 ���

Thus� if bij �� aiaj for some i� j� then� using Fact ����� we conclude that the consistency test
accepts with probability at most �	� # ���k� � We set � � minf�� ����g� so that this quantity is
at most

��	��k� 	 �� p�

if
k�
 � ln��	�� � p���

A similar argument leads us to the conclusion that if cijk �� aiajak for some i� j� k� then the
test rejects with probability p�

We thus have a mechanism to ensure that the three tables provided by the prover are �	close
�if not identical� to tables arising from some assignment a� Assume that the three tables have
passed the linearity and consistency checks� so that �using Lemma ��� if the three tables are
not are not �	close to tables arising from some assignment then the test reject with probability
at least p �� and p will be chosen later��

Let us now return to the problem of verifying that a is a satisfying assignment of �� that is�
the equation ������� For this we need the values the values A��� B��� and C���� We cannot
use tables /A� /B and /C with con�dence� because � � and � are not necessarily truly random
vectors and the tables may return erroneous values at the locations we probe� Instead� we use
SC	A��� SC	B��� and SC	C���� by Lemma ����� the probability of error in this step is at most
��� Hence� if a is not a satisfying assignment then we accept with probability at most

��� p� # ��	� # ���k� �

By Lemma ���� we can make � � p and � arbitrarily small and choose k� so that the overall
probability of error is small� Simultaneously� we can ensure that the three table encoding the
assignment are �	close to a linear function �for any � � ���

We can thus ensure that the assignment a encoded in the tables does satisfy the 	SAT
expression �� Recall that the prover has to convince the veri�er that there exists an assignment
hx� yi were the �rst component x is the same as the input /x that is given� Let jxj � j/xj � n� We
again use the fact that if x �� /x� then

Pr
z
�xT z �� /xT z� � �	��

To use this fact� we need to compute xT y and /xT y for a randomly chosen vector y� Since /x is
available to us� we can compute /xT y directly� On the other hand� our access to x is only through
the table /A that encodes hx� yi� We use the self	corrector SC	A�z�n�n��� Thus� if x �� /x then
the probability of acceptance is at most �	� # ��� This probability of error can be made small
by repeating the test many times�

For later application� we need to consider the case where the input /x is not provided to us as
a string of length n� but as a table of �

n� bits corresponding to the �n� values of /xT z as z varies�

We need to verify two things� First� that the table provided to us as input does correspond to
some string of length n�� This is achieved by means of the linearity test� we ensure that the it
is �	close to a linear function� Second� we need to the value for /xT y �as above� for checking that
the assignment supplied is consistent with the input� We read this value directly from the table
supplied to us �since the vector y is random� we need not employ self	correction�� In this case
the entire protocol �including the probe for computing /xT y� requires only a constant number of
bits from the proof�

The number of random bits used in O�n��� To see this� observe that the linearity and
consistency tests use random vectors of length at most O�n��� Also the number of random
weights used is at most the number of clauses in �� which we may assume is O�n��� To verify
that the assignment is compatible with the input we use O�n�� random bits� Thus� for any
constant � � � we can ensure that an incorrect input is accepted with probability at most �
using O�n�� bits�

Theorem ���	 NP � PCP�n�� ���

Remarks

The result NP � PCP�poly� �� is due to �ALM����� The proof presented in this lecture is taken
from Sudan�s thesis �Sud���� In this proof a crucial role was played by Fact ����� which was �rst
observed by Freivalds �Fre����

Lecture ��

NP � PCP�log n� ��

Lecturer� Jaikumar Radhakrishnan Date�
� April	
���

In the �rst part of this lecture we present the proof of the main result of the course� namely�
NP � PCP�log n� ��� This result is obtained by combining the protocols devised in the last two
lectures� The reader will recall that we had left various claims about the existence of low	degree
tests and linearity tests unproved in the previous lectures� We will now take up those claims� In
the second part of this lecture� we prove the claim for linear functions that was used to support
the linearity test in the last class�

���� E�cient probabilistically checkable proofs for NP

In the last two lectures we devised e�cient protocols for languages in NP� We recall these
results below�

Theorem ���� NP � PCP�logn� poly log logn��

Theorem ���� NP � PCP�poly� ���

In this lecture� we shall combine these two results and show that NP � PCP�log n� ��� First�
we will need to describe certain features of the protocols that we used in proving the above
theorems� these features will be useful when we combine these protocols�

NP � PCP�log n�poly log log n� revisited� For a language L � NP � the protocol functions
as follows� The veri�er begins by tossing O�log n� coins� Using the outcome of these coin tosses
he constructs a string a� of size �log log n�

c� and reads values a�� a�� � � � � ak �k is a constant��
each of size �log logn�c from the proof supplied by the prover� Finally� the veri�er accepts or
rejects using the deterministic polynomial time computable predicate R�a�� a�� � � � � ak�� We will
assume that the protocol has the following characteristics� if x � L then there exists a proof
that the protocol accepts with probability �� if x �� L then the protocol rejects every proof with
probability �����

NP � PCP�poly� �� revisited� In the last lecture� we saw that SAT � PCP�poly� ��� Before
we proceed to apply this result� we need to modify the protocol slightly� so that it becomes more
suitable for composition with the protocol for NP � PCP�logn�poly log logn��

Consider a language L � NP � We know by Cook�s theorem that for each input of length n�
there exists a polynomial size 	CNF expression ��x� y� �jyj � p�n�� for some polynomial p�n��
such that for all x � f�� �gn�

x � L �� �y � f�� �gp�n	��x� y��

��

We will now think of hx� yi as a satisfying assignment for �� and require the prover to encode
this string �of length n# p�n�� using three tables as described in the last class� Now the veri�er
has two veri�cations ahead of him�

�� That the assignment � � f�� �gn�p�n	 provided �in encoded form� does indeed satisfy ��
�� That the �rst n bits of � �denoted by ���� n�� are the same as x�

We have already seen in the last lecture a mechanism for performing the �rst task� Thus�
the prover is expected to encode the assignment � using three tables� so that the veri�er can
probabilistically check with low error probability that � is satis�able�

In particular� the table T� is expected to store the product �mod �� of � and each vector in
f�� �gn�p�n	� The protocol has the following property� If T� is not close to some linear function
then the protocol rejects with probability at least � � �� On the other hand� if T� is close to
some linear function then let that function be 'T��x� � '� � x� where '� � f�� �gn�p�n	 �'� is unique
�why���� Now if '� does not satisfy � then the protocol rejects with probability � � �� Here �
can be made arbitrarily small�

After applying the protocol of last lecture� we are now left with the task of verifying the
second part� that is� that the �rst n bits of the assignment '�� implicit in the table T�� are the
same as x� We will use the following observation� if x �� '���� n�� then for x� � f�� �gn chosen at
random

Pr�x � x� � '���� n� � x�� 	 �

�
�

Hence the veri�er chooses x� � f�� �gn at random and checks if x � x� � '���� n� � x� �perhaps
repeating the test a few times to reduce the probability of error�� But� how does he compute
'���� n� � x�� Observe that

'���� n� � x� � '� � x��p�n	 � 'T��x
��p�n	��

Thus� '���� n� �x� can be obtained from the table T� by using the self	correction method discussed
in the last class�

������ Invisible and fragmented inputs

In our application� the input x will not be available with the veri�er directly �it will be supplied
by the prover�� Moreover� it will not be given in one piece� instead the veri�er will need to
assemble it from a constant number of fragments� We will now apply the ideas developed above
to this situation�

Given� x�� x�� � � � � xt � f�� �g�� Let jxij � ni� x � x�x� � � � xt and jxj � Pt
i�� ni � n� Let

Ni �
Pi

j�� ni�

Determine� if �y � f�� �gp�n	 ��x� y��
The prover needs to convince the veri�er that �y � f�� �gp�n	 ��x� y�� by providing a suitable
proof� We again break the task of the veri�cation in two parts�

�� The prover will �rst convince the veri�er that an assignment � � f�� �gn�p�n	 �supposedly
hx� yi� satis�es �� The veri�er needs to check that the assignment provided by the prover
�encoded in three tables� satis�es ��

�� The veri�er checks that� for i � �� �� � � � � t� xi � ��Ni�� # �� Ni��

The �rst part is the same as before� we shall not discuss it� For the second part� inspired by the
method used earlier� we may for each i choose a random string y � f�� �gni and verify that

xi � yi � '��Ni�� # �� Ni� � yi�
�Here� as before� '� stands for the unique assignment arising from the linear function 'T�� which
is within � of the table T� provided by the prover�� The value of the right hand side is given
by 'T���

Ni��yi�
n�Ni�� which� as we have seen before� can be retrieved by self correction from the

table T� encoding �� What about the left hand side� The veri�er cannot a�ord to read xi �
he is trying to do everything with a constant number of probes �remember��� We will instead
require the prover to encode xi by providing the entire ��

ni bits long� table of products� which
has one entry for each vector in �ni � The veri�er will now check that the tables provided for the
various xi are close to linear and retrieve the value of xi � yi using the self	correction method�
Thus� we have the following�

Given� x�� x�� � � � � xt� encoded as tables� �i � f�� �gni � f�� �g� i � �� �� � � � � t� A proof that
�y � f�� �gp�n	 ��x� y�� We assume that this proof is given to us by encoding � � hx� yi in
three tables T�� T� and T� as described in the last class�

We now present a protocol that will check the proof using only O��� probes�

Step �� The veri�er checks the table T�� T� and T� using the protocol of last class�

Step �� The veri�er applies the linearity test to each of the tables ��� ��� � � � � �t�

Step �� Repeat k times
For i � � to t
Pick yi � f�� �gni
Check if SC��i�yi� � SC�T���

Ni��yi�
n�Ni�

If all the tests succeed� then accept� else reject�

Theorem ���� Assume that t is a constant� Then� for all � � �� by suitably reducing the error

probabilities in steps � and �� and choosing a large constant k in step
� we can ensure that

the above protocol reads a constant number �depending on t� of bits of the proof and behaves as

follows�

�� If for some i� �i is not ��close to any linear function� then

Pr�the protocol rejects�
 �����

�� Suppose for each i� �i is ��close to some linear function� Let '�i be the �unique� linear

function closest to �i and let the string encoded by '�i be 'xi� Let 'x � 'x�'x� � � � 'xt� If ��'x� y�
is not satis�able �that is� there is no suitable value for y�� then

Pr�the protocol rejects�
 �����

� Suppose �y � f�� �gp�n	 ��'x� y� and the tables �i are perfectly linear� Then there exist tables

T�� T� and T�� such that

Pr�the protocol accepts� � ��

Proof� We do not give the proof here� The reader can easily construct one using the ideas
discussed above�

������ Composing the protocols

The veri�er begins operating according to the protocol for NP � PCP�log n�poly log logn��
However� when the time arrives for computing the polynomial time predicate R�a�� a�� � � � � ak��
the protocol shifts to the protocol for NP � PCP�poly� �� and �nishes the job by reading the
proof in O��� locations� Note that the values a�� a�� � � � � ak are not available with the veri�er�
Since he cannot a�ord to read them directly� he will use the modi�ed protocol presented above
where the values ai are encoded as tables �the table for a� the veri�er constructs himself�� The
prover must act accordingly and provide the information in the form suitable for the modi�ed
protocol�

Consider a proof $ for the protocol of NP � PCP�log n�poly log log n�� Each cell of the
proof contains w � �log log n�c bits� In the modi�ed proof for our protocol� the contents of
this cell will be provided in encoded form� That is� this cell will be replaced by �w cells� each
containing one bit� The prover is expected to place in these cells the product of the original
�w	bit� content with each vector in f�� �gw � When the veri�er wishes to check if R�a�� a�� � � � � ak�
is true� he reduces the problem to the satis�ability of the expression ��x� y� for x � a�a� � � � ak�
and uses the modi�ed protocol described in the previous section� To support this protocol� the
prover provides the assignment � � hx� yi in encoded form �using three tables�� For di�erent
coin toss sequences r of the top level protocol� the predicate R may need to be evaluated for
di�erent arguments� hence the prover must provide a separate subproof �r for each of them�

The combined protocol is as follows�

Step �� The veri�er runs the protocol for NP � PCP�log n�poly log logn�� He tosses O�log n�
coins and obtains the sequence r� and computes the value a�� He also determines the
locations where a�� a�� � � � � ak are stored �but does not read them yet��

Step �� The veri�er follows the modi�ed protocol for NP � PCP�poly� �� to con�rm that
R�a�� a�� � � � � ak� is true using the subproof �r� �The values a�� a�� � � � � ak are assumed
to be available in encoded form� the encoding for a� can be constructed by the veri�er
himself��

Theorem ���� �a� If x � L� then the prover can provide a proof such that the protocol accepts

with probability ��

�b� If x �� L� then for every proof Pr�the protocol accepts� 	 �	��
Proof�

�a� Omitted�

�b� Suppose x �� L� Consider a proof $ for the combined protocol� Now $ has two parts� $�

that is to be obtained by encoding �in a �w	bit table� the entries in the original proof of
NP � PCP�log n�poly log log n� protocol� and $� consisting of the subproof �r for each
random sequence of the �rst protocol�

For each table T in $�� obtain the closest linear function 'T � and construct the proof '$�
where the table T of the proof $� is replaced by the value a � f�� �gw such that 'T �x� � a�x�
Now we know that the �rst protocol would reject '$ with probability ����� Thus

Pr
r
��R�a�� a�� � � � � ak��
 �����

Now� we may conclude from Theorem ��� �parts ���� that

Pr�the protocol rejects j �R�a�� a�� � � � � ak��
 �����

Thus� we have Pr�the protocol rejects�
 ���� � ����

�
�

Theorem ���	 NP � PCP�logn� ���

���� Testing a linear function

This section is devoted to proving the following lemma�

Lemma ���� Suppose � 	 �	� If the function f � f�� �gm � f�� �g satis�es

Pr
�x��y�f���gm

�f�'x# 'y� � f�'x� # f�'y��
 �� �	��

then there exists a linear function 'f � f�� �gm � f�� �g such that .�f� 'f� 	 ��

We need to establish that if f satis�es the hypothesis of the lemma� then there exists a
linear function 'f close to it� We have already seen how the value of this linear function can be
reconstructed from the values for 'f using self correction� This motivates the following de�nition�

'f�'x� � Majff�'x# 'r�� f�'r�g�r�f���gm �
We are now faced with two problems� We need to show that�

�� .�f� 'f� 	 �� that is� Pr
�x�f���gm

�f�'x� �� 'f�'x�� 	 ��

�� 'f is a linear function�

Claim ��� Pr
�x�f���gm

�f�'x� �� 'f�'x�� 	 ��

Proof� By our assumption on f � we have Pr
�x��y�f���gm

�f�'x# 'y� �� f�'x� # f�'y�� 	 �	�� Now�

Pr
�x�hy

�f�'x# 'y� �� f�'x� # f�'y�� �
X

�a�f���gm
Pr
�x
�'x � 'a� � Pr

�x��y
�f�'x# 'y� �� f�'x� # f�'y� j 'x � 'a�

�
X

�a�f���gm
Pr
�x
�'x � 'a� � Pr

�y
�f�'a# 'y� �� f�'a� # f�'y��

X

�a�f��a	�� �f��a	

Pr
�x
�'x � 'a� � Pr

�y
�f�'a# 'y� �� f�'a� # f�'y���

It follows from the de�nition of 'f that if 'f�'a� �� f�'a� then

Pr
�y�f���gm

�f�'a# 'y� �� f�'a� # f�'y��
 �

�
�

Thus we have �	�

X

�a�f��a	�� �f �� �f��a	

Pr
�x
�'x � 'a� � ��	�� � ��	�� � Pr

�x
�f�'x� �� 'f�'x��� that is�

Pr
�x
�f�'x� �� 'f�'x�� 	 ��

We are now left with the task of showing that 'f is linear� Recall� that the value of 'f�'x��
according to our de�nition� is obtained by taking the most frequently occurring value of f�'x#
'r� � f�'r�� as 'r takes all possible values in f�� �gm� We next show that our hypothesis on 'f
implies that 'f�'x� agrees with f�'x # 'r� � f�'r� for more than �	 of the values of 'r� �That it
agrees f�'x# 'r�� f�'r� for at least half of all 'r is obvious since f�'x# 'r�� f�'r� � f�� �g��

Claim ���� �'x � f�� �gm Pr
�r�f���gm

� 'f�'x� � f�'x# 'r�� f�'r�� �
�

�

Proof� Fix 'x � f�� �gm and let p � Pr
�r
� 'f�'x� � f�'x# 'r�� f�'r��� �As discussed above p
 �	���

We wish to show that p � �	� By the assumption on f �

Pr
�a��b�f���gm

�f�'a� # f�'b� �� f�'a#'b�� 	 �

�
	 �

�
� ������

If 'a and 'b are chosen randomly �uniformly and independently� from f�� �gm then 'x#'a and 'x#'b
also take values in f�� �gm with uniform distribution and independently� Hence

Pr
�a��b
�f�'x# 'a� # f�'x#'b� �� f�'a#'b�� 	 �

�
� ������

�Note �'x# 'a� # �'x#'b� � �'a#'b� # �'x# 'x� � 'a#'b�� From ������ and ������� we have

Pr
�a��b
�f�'x# 'a�� f�'a� �� f�'x#'b�� f�'b�� 	 �

�
#
�

�
�

�

�

Now the left hand side is precisely �p��� p�� Hence �p��� p� 	 �	� With p
 �	�� this implies
that p � �	�

We are now ready to complete the proof of our main lemma� To show that 'f is linear� we
shall use the following fact�

If a function f � f�� �gm � f�� �g satis�es �'x� 'y � f�� �gm f�'x� # f�'y� � f�'x # 'y��
then f is a linear function�

Claim ���� 'f is linear�

Proof� In light of the fact stated above� we need only show that

�'x� 'y � f�� �gm 'f�'x� # 'f�'y� � 'f�'x# 'y��

Fix 'x� 'y � f�� �gm� Then from Claim ����� we have

Pr
�r�f���gm

� 'f�'x� � f�'x# 'r�� f�'r�� � �	

Pr
�r�f���gm

� 'f�'x# 'y� � f�'x# 'y # 'r�� f�'r�� � �	�

and� since 'x# 'r is also a random vector in f�� �gm�
Pr

�r�f���gm
� 'f�y� � f�'x# 'y # 'r�� f�'x# 'r�� � �	�

Thus� with non	zero probability� all three events hold� But then 'f�'x# 'y� � 'f�'x� # 'f�'y�� That
is�

Pr
�r�f���gm

� 'f�'x# 'y� � 'f�'x� # 'f�'y�� � ��

Since this event does not depend on the vector 'r� it must hold with probability ��

Remarks

The main result of the �rst part of this lecture� Theorem ����� is from �ALM����� The re	
sult proved in the second half� Lemma ����� is based on Blum� Luby and Rubinfeld �BLR����
their result was sharpened by Rubinfeld �Rub��� and Gemell� Lipton� Rubinfeld� Sudan and
Wigderson �GLR����� The proof presented in the lecture is based on the proof in �BCD����

Homework 	

Date� �� April	
��� Due date�
� May	
���

Problems�

�� �a� Let F be a �nite �eld containing f�� �� � � � � kg� For a�� a�� � � � � ak � F � denote by
p�a�� a�� � � � � ak��x� the �unique� polynomial in x of degree at most k such that for
i � �� �� � � � � k�

p�a�� a�� � � � � ak��i� � ai�

Show that for all a�� a�� � � � � ak � F and i � F � f�� �� � � � � kg� if a� is chosen from
F with uniform distribution� then p�a�� a�� � � � � ak��i� takes values in F with uniform
distribution�

�b� Let g�x�� x�� � � � � xm� be a polynomial with coe�cients in the �nite �eld F � For
'a� 'h � Fm� let

P�a��h�x� � g�'a# x'h� � g�a� # xh�� a� # xh�� � � � � am # xhm��

Suppose that for all 'h � F � P���h�x� is a polynomial �in x� of degree at most d� Also
assume that the total degree of g is less than jFj� Then show that the total degree
of g is at most d�

�� Show that if NP � PCP�o�log n�� �� then P � NP�
� Consider a polynomial time algorithm A for computing the clique number of graphs� Sup	
pose that the value returned by A is always within a factor of � of the correct answer�
That is�

�

�
	 A�G�

��G�
	 ��

Then show that for each � � �� there exists a polynomial time algorithm A� such that

�

� # �
	 A��G�

��G�
	 � # ��

�� The purpose of this exercise is to show that NEXP � PCP�poly� ���
�a� NEXP � PCP�poly�poly�� Assume the following variant of Cook�s theorem� For each

L � NEXP and each n � N� there exists a 	CNF expression ��x� y� such that
i� �x � f�� �gn x � L �� �y ��x� y��
ii� Typically� the size of � and the number of variables in y will be exponen	
tially large� So it would be unreasonable to expect the veri�er to write �
down� Yet� � has some structure that can be used to e�ciently arithmetize
it� In particular� if we use c for the name of a clause and v for the name of
a variable �assume that c and v are coded using nk bits�� then the predicates
���c� v�� ���c� v�� ���c� v�� s��c�� s��c�� s��c� are polynomial time computable �see
Lecture �� arithmetization of 	SAT��

��

Show that if a predicate R�x� is polynomial time computable� then one can obtain�
for each input length n�

�i� a 	CNF expression ��x� y� of polynomial size such that for all x � f�� �gn�

R�x� � true �� �y � f�� �gp�n	��x� y��

�ii� a polynomial q�x� y� over any �eld such that for all x � f�� �gn

�y � f�� �gp�n	q�x� y� � � �� x � L�

By devising a suitable sum	check protocol� show that NEXP � PCP�poly�poly��
�Make the necessary assumptions for checking low degree extensions��

�b� NEXP � PCP�poly� ��� Ensure that the protocol in part �a� has the following prop	
erty� The veri�er begins by tossing a polynomial number of coins� Based on the
outcome r of these tosses� he reads a polynomial number of bits from a constant

number of locations in the proof� Based on r and the bits read he performs a poly	
nomial time computation and accepts or rejects�

Compose the protocol obtained with the protocol for NP � PCP�poly� �� and con	
clude that NEXP � PCP�poly� ���

Lecture ��

The Low Degree Test

Lecturer� Jaikumar Radhakrishnan Date� �� April	
���

In our discussion so far we have assumed that we can test functions and ensure that they
are close to low degree� In this lecture� we present the mechanism for performing this test and
prove its correctness�

���� The test

Recall that we are given a table of values� with one entry for each vector in Fm� This corresponds
to a function f � F � F � We wish to ensure that f is close to low degree� that is there is a
polynomial of total degree at most d �say� that agrees with f for at least � � � fraction of the
values� Remember� the prover actually claims that f is perfectly low degree �not just close to
one�� In support of this claim the prover is expected to provide some additional information�
For each 'x� 'h � Fm� the prover provides the polynomial P�x��h�t� � f�'x#t'h�� If f has total degree

at most d� then P�x��h�t� has degree at most d� Using this information the veri�er performs the
following test�

Repeat k times
Pick 'x� 'h � Fm and t � F at random and check
P�x��h�t� � f�'x# t'h��

Assume that md �� jF j� Our goal in this lecture is to show the following theorem�
Theorem ���� For all �� � � �� there exists a k such that if f is not within � of some polynomial
of total degree at most d� then Pr�test rejects�
 �� ��

Note that the value of k depends only on � and �� Thus the number of probes made by the table
is constant �to read O�d log jFj� bits�� and the number of random bits needed is O�m log jFj��

���� The analysis

For 'x� 'h � Fm� let

line�'x� 'h� � f'x# t'h � t � Fg�
Di�erent pairs h'x� 'yi may give rise to the same line� We therefore de�ne an equivalence relations
on such pairs� Under this relation� two pairs h'x� 'yi and h 'x�� 'y�i are related if they give rise to the
same line� that is� if 'x� � line�'x� 'h� and 'h� � k'h� for some k � F �k �� ���

For each pair h'x� 'yi we wish to �t a low degree polynomial for f restricted to line�'x� 'h�� For
a univariate polynomial P �t�� let

Fit�P� 'x� 'h� � jft � F � P �t� � f�'x# t'h�gj�

���

Proposition ���� Consider related pairs h'x� 'yi and h 'x�� 'h�i �say 'x� � 'x# t�'h� 'h� � k'h� k �� ���
and P ��t� � P �kt# t��� Then Fit�P� 'x� 'h� � Fit�P �� 'x�� 'h���

Proof� Now P ��t� � f� 'x� # t 'h�� i� P �kt# t�� � f�'x# �kt # t��'h�� The claim follows from this
since kt# t� takes all values in F as t varies over F �

For each 'x� 'h the prover needs to supply us a polynomial that �ts f on line�'x� 'h�� We may
assume that the prover has chosen a polynomial P that maximizes Fit�P� 'x� 'h�� Since f restricted
to the line may not �t any such polynomial closely� there might be many polynomials with the
same maximum value for Fit�P� 'x� 'h�� Moreover� the proposition above suggests a relationship
between the polynomials for related pairs�

To dispense with the ambiguity and enforce the relationship suggested by Proposition �����
we assume that the polynomials provided by the prover P�x��h�t� were chosen as follows� For each

equivalence class� we pick a representative h'x� 'hi and �x a polynomial P �t� of degree at most d
that maximizes Fit�P� 'x� 'h�� call this polynomial P�x��h�t�� For the other pairs h 'x�� 'y�i related to
h'x� 'hi� the polynomial P �x�� �h� is obtained using the translation given in Proposition ����� thus we
have

Fit�P �x�� �h� �
'x�� 'h��
 Fit�P� 'x�� 'h���

for all univariate polynomials P of degree at most d�

We are now ready to state our main result�

Theorem ���� Let � 	 ������ If

Pr
�x��h�Fm

�P�x��h��� � f�'x��
 �� ��

then there exists a polynomial g � Fm � F of total degree at most d such that .�f� g� 	 ���

As in the analysis of the linearity test� we have a natural candidate for g� namely�

g�'x� � MajfP�x��h��� �
'h � Fmg�

We have� as before� two tasks ahead of us�

�� Show that f and g are close to each other�

�� Show that g corresponds to a polynomial of total degree at most d�

Before we prove these parts� we need to present our assumption in an alternative form� Assume
that

Pr
�x��h�Fm

�P�x��h��� � f�'x��
 �� ��

Now observe that P�x��h�t� � f�'x # t'h� i� P�x�t�h��h��� � f�'x # t'h�� If 'x and 'h are random and

independent vectors� then 'x# t'h and 'h are also random and independent� We may then restate
our assumption on f as

Pr
�x��h�t

�P�x��h�t� � f�'x# t'h��
 �� ��

Often we will use the assumption in this form�

Lemma ���� Pr
�x
�g�'x� � f�'x��
 �� ���

Proof� If g�'x� �� f�'x� then Pr
�h
�P�x��h��� �� f�'x��
 �	�� From our assumption on f � we have

E�x�Pr
�h
�P�x��h��� �� f�'x��� 	 ��

By Markov�s inequality� we then have

Pr
�x
�Pr
�h
�P�x��h��� �� f�'x��
 �	�� 	 ���

Thus Pr
�x
�g�'x� �� f�'x�� 	 ���

We will need the following technical lemma� We shall prove it in the next lecture �see
Lemma �����

Lemma ���	 �Technical Lemma� Let M � fmxygx�y�F be a matrix such that

�� For y � F � there exist polynomials py�x� of degree at most d such that

Pr
x�y
�py�x� � mxy�
 �� �C �

�� For x � F � there exist polynomials qx�y� of degree at most d such that

Pr
x�y
�qx�y� � mx�y�
 �� �C �

Here �C 	 ������ Then there exists a bivariate polynomial q�x� y� of degree at most d in each

variable whose restriction to at least �� � ��C�jFj values of y �respectively x� agrees with py�x�
�respectively qx�y���

Remark on constants� In the proof we shall use the following constants� The reader can
verify that they meet all the requirements� We suggest that on the reader �rst go through the
proofs without bothering about this aspect� She may later verify that the values supplied below
meet the requirements�

� � ����

� � � #
�

jFj
�� � �	��

�� � ���# ��	��	��

The constants � and �� play the role of �C of the technical lemma above� We shall assume that
jFj
 ���� and d�m �� jFj�

For Lemma ����� we need to verify that

� � 	 ����� �to invoke the technical lemma��
� �� � ���jF j � �jFj # d�	� to claim that polynomials of degree d agreeing on �� � ���jFj
points must be identical�

It is plain that our choice of � meets these requirements�
For Lemma ����� we need to verify that

�� �� 	 ����� �to invoke the technical lemma��
�� ��� � ��

� ��� ����jFj � �jFj# d�	��

It can be checked that � 	 ���� and the requirements above are met by our choice�

The proof continued � � �

Lemma ���� Let � � � # �	jF j� Then for all x � Fm

�a� Pr
�h
�g�'x� � P�x��h����
 ��

��

�
�

�b� Pr
�h�t
�P�x��h�t� � f�'x# t'h��
 �� ��

�
� ���

Proof� Fix 'x � Fm� For 'h�� 'h� � Fm� let the matrix M � fmyzg be de�ned by myz �

f�'x# y'h� # z'h���
Our assumption on f and P�x��h imply that

Pr
�x��h�t

�P�x��h�t� � f�'x# t'h��
 �� �� ������

If 'h�� 'h� are chosen randomly and z � F � f�g� the vector 'x# z'h� is random and independent
of 'h� Hence we have from ������ that

Pr
y��h���h�

�P�x�z�h���h�
�y� �� myz� 	 ��

Since Pr�z � �� � �	jFj� we get from this that

Pr
y�z��h���h�

�P�x�z�h���h�
�y� �� myz� 	 � #

�

jFj � ��

That is�
E�h���h�

�Pr
y�z
�P�x�z�h���h�

�y� �� my�z�� 	 ��

Using Markov�s inequality we get

Pr
�h���h�

�Pr
y�z
�P�x�z�h���h�

�y� �� myz�
 �� 	 �

�
�

Similarly �by interchanging the roles of y and z�� we obtain

Pr
�h���h�

�Pr
y�z
�P�x�y�h���h�

�z� �� myz�
 �� 	 �

�
�

De�ne pz�y� � Px�z�h���h��y� and qy�z� � Px�y�h���h��z�� Then with probability �� ��	� �over
choices of 'h�� 'h��

Pr
y�z
�pz�y� � myz� and Pr

y�z
�qy�z� � myz�
 �� ��

We may thus invoke the Technical Lemma above and obtain the bivariate polynomial Q�y� z� of
degree at most d in y and z such that if

Y� � fy � �z qy�z� � Q�y� z�g and Z� � fz � �y pz�y� � Q�y� z�g�
then

jY�j� jZ�j
 ��� ���jFj�
We shall show that � � Y� and � � Z�� For y �� �� and random vectors 'h�� 'h�� the vector 'x# y'h�
is a random vector independent of 'h�� Then from our assumption on f

Pr
�h���h�

�P�x�y�h���h�
��� �� my�� 	 ��

and� as before� adjusting for the event y � �� we have

Pr
y��h���h�

�P�x�y�h���h�
��� �� my�� 	 � #

�

jFj � ��

That is�
E�h���h�

�Pr
y
�P�x�y�h���h�

��� � qy��� � my��� 	 ��

and by Markov�s inequality�

Pr
�h���h�

�Pr
y
�qy��� �� my��
 �� 	 �

�
�

Thus if jY�j � fy � qy��� � my�g� then

Pr
�h���h�

�jY�j
 ��� ��jFj�
 �� �

�
�

Similarly� for Z� � fz � pz��� � m�zg� we can show that

Pr
�h���h�

�jZ�j
 ��� ��jFj�
 �� �

�
�

Thus� with probability at least ����	� �over choices of 'h� and 'h�� we have jY�Y�j
 ������jF j
and jZ�Z�j
 ������jF j� For y � Y�Y�� q�y� �� � qy��� and qy��� � my�� thus Q�y� �� � my��
Since jY� Y�j
 �� � ���jFj � �jF # d�	�� Q�y� �� must be the unique polynomial of degree
at most d that agrees with f on line�'x� 'h�� at the maximum number of places� In particular�
�y Q�y� �� � P�x��h�

�y� �� � Z�� and Fit�P�x��h�
� 'x� 'h��
 ��� ���jF j� Hence�

Pr
�h���h��t

�P�x��h�
�t� � f�'x# t'h���
 ��� ��

�
���� ���
 �� ��

�
� ���

Since the event does not depend on 'h�� we may drop it and obtain part �b� of our lemma� We
continue further and obtain part �a�� Using similar arguments� using jZ� Z�j
 �� � ���jFj�
we obtain that �z Q��� z� � P�x��h�

�z� �� � Y��� But then P�x��h�
��� � Q��� �� � P�x��h�

���� Thus�

Pr
�h���h�

�P�x��h�
��� � P�x��h�

����
 �� ��

�
�

Then there must exist h� � Fm� such that

Pr
�h�

�P�x�h���� � P�x��h�
����
 �� ��

�
�

Then P�x�h���� must be g�'x� �because �� ��	�
 �	��� Hence

Pr
h
�g�'x� � P�x��h����
 ��

��

�
�

giving part �a� of the lemma�

For 'x� 'h � Fm� let P g

�x��h
�t� be the univariate polynomial of degree at most d that �ts g most

closely on line�'x� 'h��

Lemma ��� �'x� 'h � Fm g�'x� � P g

�x��h
����

Proof� Fix 'x� 'h � Fm� For 'h�� 'h� � Fm� let M � fmxyg be de�ned by

myz � f�'x# y'h# z�'h� # y'h����

We shall show that if 'h� and 'h� are chosen randomly� then with high probability there exists a
bivariate polynomial Q�y� z� of degree at most d in y and z that matches M closely� We must
�rst prepare to apply the technical lemma� De�ne

pz�y� � P f

�x�z�h���h�z�h�
�y� and qy�z� � P�x�y�h��h��y�h�

�z��

For all y� if 'h� and 'h� are chosen randomly �and independently� then 'h� # y'h� is a random
vector in F � Thus from part �b� of Lemma ���� we may conclude that

Pr
�h���h��y�z

�qy�z� � P�x�y�h��h��y�h�
�z� � f�'x# y'h# z�'h� # y'h��� � myz�
 �� ��� ��

�
�

Hence� Pr
�h���h��y�z

�qy�z� � myz�
 �� ��� ��	��
If z �� �� and 'h� and 'h� are random �independently chosen� vectors� then the vectors 'x# z'h�

and 'h# z'h� are also random and independent� It then follows from our assumption on f that

Pr
�h���h��y

�pz�y� � P f

�x�z�h���h�z�h�
�y� � f�'x# z'h� # y�'h# z'h��� � myz�
 �� ��

Making allowance for the event z � �� we have

Pr
�h���h��y�z

�pz�y� � my�z�
 �� � � �

jFj
 �� ���
��

�
�

Then by Markov�s inequality�

Pr
�h���h�

�Pr
y�z
�qy�z� � my�z�
 �� ���
 �� �� and Pr

�h���h�

�Pr
y�z
�pz�y� � myz�
 �� ���
 �� ���

where �� � ���#��	��	��� We conclude using the technical lemma that with probability �� ���
�over choices of 'h�� 'h��� there exists a polynomial Q�y� z� for which if

Y� � fy � �z qy�z� � Q�y� z�g and Z� � fz � �y pz�y� � Q�y� z�g�

then jY�j� jZ�j
 ��� ����jFj�
We shall show that with high probability �over choices of 'h�� 'h�� the following hold�

�a� Q��� �� � g�'x��

�b� For most values of y� Q�y� �� � g�'x# y'h��

It follows from �b� that Q�y� �� � P g

�x��h
�y�� and then� form �a�� that g�'x� � P g

�x��h
����

To show that �a� holds with high probability� we de�ne

Z� � fz � m�z � P f

�x�z�h���h�z�h�
��� � pz���g�

For z �� �� we have from our assumption on f that Pr�h���h� �m�z � pz����
 �� �� hence

Pr
�h���h��z

�m�z � pz����
 �� � � �

jFj �

By Markov�s inequality� we have

Pr
�h���h�

�jZ�j
 ��� ���jFj�
 �� � # �	jF j
��

 �� ���

For z � Z� Z�� m�z � Q��� z�� Since jZ� Z�j
 �jFj # d�	�� we have �z Q��� z� � q��z� �
P f

�x��h�
�z�� From Lemma ���� �b� we get

Pr
�h�

�g�'x� � P f

�x��h�
�z��
 �� ��

��
� �

jFj
 �� ���

Thus whenever the required bivariate polynomial Q exists �with probability at least � � �����
and jZ�j is big enough �probability �� ���� and g�'x� � P f

�x��h�
��� �probability at least �� ���� we

have that g�'x� � P f

�x��h�
�z� � Q��� ��� giving us part �a��

It remains only to show that �b� holds with high probability� For this we de�ne

Y� � fy � g�'x# y'h� � qy��� � P�x�y�h��h��y�h�
���g�

From Lemma ���� �b�� we have� for all y�

Pr
�h���h�

�g�'x# y'h� � P f

�x�y�h��h��y�h�
����
 �� ��� ��

�
�

and� therefore�

Pr
�h���h��y

�g�'x # y'h� � P f

�x�y�h��h��y�h�
����
 �� ��� ��

�
�

By Markov�s inequality
Pr
�h���h�

�jY�j
 ��� ���jFj�
 �� ���

For y � Y� Y�� we have g�'x # y'h� � Q�y� ��� Since jY� Y�j
 �� � ����jFj � �jF j # d�	��
we have �y Q�y� �� � P g

�x��h
�y�� Taking into account the probability of all the events considered

above� we get that
Pr
�h���h�

�g�'x� � P g

�x��h
����
 �� ��� � ��

Since the event g�'x� � P g

�x��h
��� does not depend on 'h�� 'h�� it must hold with probability ��

Lemma ���� g has total degree at most d�

Proof� By Lemma ����� �'x� 'h P g

�x��h
��� � g�'x�� Thus the restriction of g to every line �ts a

univariate polynomial of degree at most d� We �rst conclude from this that g has total degree
at most md� It will follow that g has total degree at most d �see homework � problem � �b���

To conclude that g has total degree at most md� we use induction on m� For m � �� the
whole space is a line and our claim coincides with our assumption� Hence assume that r � �
and the assertion is true for all m � r� We shall show that it holds for m � r� For a � F � let

g�a��y�� y�� � � � � yr��� � g�a� y�� y�� � � � � yr����

Note that �a � F g�a� � Fr�� � F � and our assumption on g implies �'x� 'h � Fr�� g�a��'x� �
P
ga�

�x��h
���� Hence using the assertion for m � r� �� we may conclude that g�a� is a polynomial of

total degree at most �m� ��d� Now for 'x � hx�� x�� � � � � xmi � Fm� de�ne

g��'x� �
dX
i��

�i�xi� � g�i��x�� x�� � � � � xm��

where �i�x� �
Y

j�f��������dg�fig
�x� j�	

Y
j�f��������dg�fig

�i� j��

Note that the degree of x� in g
� is at most d� and g� is a polynomial of total degree at most

md� In particular� �x � Fm we have that deg�P g�

�x��e�
�t�� 	 d� where 'e� � h�� �� � � � � �i�

We claim that g��'x� � g�'x�� �'x � hx�� x�� � � � � xmi � Fm� For let 'x� � h�� x�� x�� � � � � xmi�
'x� � hx�� x�� � � � � xmi� Our de�nition of g�� gives

P g�

�x���e�
�i� � g�i�� 'x�� � g�i� x�� x�� � � � � xm� � P g

�x���e�
�i��

Since P g�

�x���e�
and P g

�x��h
agree on d# � values� they must be identical� That is�

g��'x� � P g�

�x���e�
�x�� � P g

�x���e�
�x�� � g�'x��

We have thus established that g is a polynomial of total degree at most md�

Remarks

Low degree tests were �rst devised in �BFL���� These were improved �by reducing the number
of random bits and the probes to the table� in �FGL���� AS���� The test presented in this
lecture is from �ALM���� �see also Rubinfeld and Sudan �RS����� the proof is based on the one
in Sudan�s Ph�D� thesis �Sud����

Lecture ��

The Technical Lemma

Lecturer� Jaikumar Radhakrishnan Date� � May	
���

In this lecture we prove the technical lemma that was used in the last lecture to prove the
correctness of the low degree test�

���� The Berlekamp�Welch decoder

Considered the following problem�

Given� xi� si � F �a �eld� for i � �� �� � � � �m� Suppose xi �� xj for i �� j� There exists a
polynomial of degree at most d such that

�� jfi � K�xi� �� sigj 	 k� and

�� �k # d � m�

Task� Find K�

We now describe their solution to this problem� It is easy to see that there exist polynomials
W �z� and N such that

deg�W � 	 k�
deg�N� 	 k # d�
W �� ��
W �xi�si � N�xi�� for i � �� �� � � � �m�

�����

�For example� let B � fxi � si �� K�xi�g� and takeW �z� �
Q
x�B�z�x� and N�z� � K�z��W �z���

To �nd K� we �rst obtain polynomials W and N satisfying ������ Berlekamp and Welch
show that if polynomials W and N satisfy ������ then W �z� divides N�z� �as polynomials��
and K�z� � N�z�	W �z�� To obtain such polynomials W and N � we express ����� as a system
of equations�

Let W �z� �
Pk

j��Wjz
j and N�z� �

Pk�d
j�� Njz

j � To ensure that W �� �� we set Wk � �� For
these� for i � �� �� � � � �m� we get a linear equation relating the coe�cient of W and N using xi�
that is

N�xi� � si �W �xi��

We then solve this system of linear equations to obtain the coe�cients and thenK�z� by dividing
N�z� by W �z��

It remains to be shown that W �z�jN�z� and K�z� � N�z�	W �z�� Since K�xi� � si for all
but at most k values of i� the polynomials K�z�W �z� and N�z� agree on at least m� k � k# d
values in F � But these are polynomials of degree at most k#d� and must� therefore� be identical�
The claims follow from this�

���

���� Application

We shall not directly use the decoding method discussed above� Instead� we will use the ideas
developed there� For this� it will be convenient to state what we use in the form of the following
lemma�

Lemma ���� Let xi� gi � F � for i � �� �� � � � �m� Suppose xi �� xj for i �� j� Let K�x� be a

polynomial over F of degree d such that jfi � K�xi� � gigj 	 k� where �k# d � m� Let e�x� and
p�x� be polynomials satisfying

deg�e� 	 k�
deg�p� 	 k # d�
e�xi�gi � p�xi�� for i � �� �� � � � �m�

�����

Then� for i � �� �� � � � �m� if e�xi� �� � then K�xi� � gi�

Proof� Let Error � fi � K�xi� �� gig� Thus� for i �� Error� we have
e�xi�K�xi� � p�xi��

The two sides of this equation are polynomials of degree at most k # d agreeing on at least
m� k � k# d di�erent values� It follows that these polynomials are identical� Hence� using the
third equality in ������ we have that if e�xi� �� �� then K�xi� � p�xi�	e�xi� � gi�

Let e�x� �
Pk

j�� ejx
j and p�x� �

Pk�d
j�� pjx

j � Then� ����� can be written as

A � e � B � p�
where A � �aij � and B � �bij �� where

aij � gix
j
i for i � �� �� � � � �m and j � �� �� � � � � k�

bij � xji for i � �� �� � � � �m and j � �� �� � � � � k # d�

Thus we have the following system of linear equations in variable e�� e�� � � � � ek� p�� p�� � � � � pk�

�A��B� � he� piT � �� ����

If he� pi satis�es ���� and he� pi �� �� then the corresponding e�x� �� �� For� if e�x� � �� then
p�xi� � � for i � �� �� � � � �m� Since m � �k # d
 deg�p�� we have p�x� � �� contradicting our
assumption that he� pi �� ��

In our application� the gi�s will not be �xed constants in F � but degree d polynomials in a
variable y� This naturally corresponds to jFj sets of equations� one for each y � F � Thus the
problem now looks like

M�y� � he� piT � ��
where M�y� is a m� ��k # d# �� matrix whose entries depend on the parameter y�

Let M � be a square sub	matrix of M�y�� Then� det�M �� is a polynomial in y of degree at
most d�d#�k#��� For us d and k are must smaller than jFj� Hence� if det�M �� is not identically
�� then it will not be zero for most �at least jFj � d�d# �k # ��� values of y�

Let M � be the largest �square� sub	matrix of M�y� whose determinant is not identically ��
Then� for most values of y� the m equations reduce to the dim�M �� equations corresponding to
the rows involved in M �� We are then left with

�M �� N �� � he� piT � �� �����

where �M �� N �� represents the matrix obtained from M�y� by omitting all rows not involved in
M �� Note that the entries corresponding to the matrix B do not depend on the parameter y�
So M � has dimension at least one�

We will use the observations made above to derive the key fact�

Lemma ���� Let x� � F � B � F � and

S�B� � fy � B � �he� pi M�y� � he� piT � � and e�x�� �� �g�

Then� if jS�B�j � d�d# �k # ��� then jS�B�j � jBj � �d�d # �k # ���

Proof� We �rst reduce our equations M�y�he� piT � � to the form ������ and� in the process
exclude at most d�d#�k#�� values of y � B� Since we have a solution with e�x�� �� � for more
than d�d # �k # �� values of y� there exists a value y� for y� such that det�M

��y��� �� � and a
solution he�� p�iT with e�x�� �� ��

Fix the values for the variables in he� pi corresponding to the columns not in M � according
to their values in he�� p�iT � For the free variables we are now left with the system of equations

M ��y� � v� �W ��y���

We solve this using Cramer�s rule to get a solution for the free variables v�� The solution
has the form q�y�	det�M ��y�� for each variable� where q�y� is a polynomial of degree at most
dim�M ��d� The solution coincides with he�� p�i� when y � y�� From this solution we obtain a
solution he�y�� p�y�i by clearing all denominators �i�e� multiplying by det�M ��y���� As a result�
each component is a polynomial of degree at most d�d # �k # ��� Note that this new vector
constitutes a solution to the original system for all but at most d�d # �k # �� values y � B� we
refer to this new solution also as he�y�� p�y�i� Consider the evaluation of the polynomial e�y� at
the point x�� This is a non	trivial polynomial in y of degree at most d�d # �k # �� �non	trivial
because e�y���x�� � det�M ��y��� � e��x�� �� ��� Thus� it may vanish for at most d�d # �k # ��
values of y� Hence after excluding these values� we get that the solution he�y�� p�y�i is valid for
at least jBj�d�d#�k#�� values of y� and e�y��x�� is � for at most d�d#�k#�� of these values�

Lemma ���� Let M � fmxy � x� y � Fg and A � fx�� x�� � � � � x�dg � F � Suppose M has the

following properties�

�a� For each y � F � there exists a polynomial py�x� of degree at most d such that

py�x� � mxy� for all x � A�

�b� For each x � A� there is a polynomial qx�y� of degree at most d in y such that

jfy � qx�y� �� mxygj 	 ��� � jFj �����

and

jfhx� yi � x � A and qx�y� �� mxygj 	 �AjFjjAj� �����

Then� there exists a bivariate polynomial Q�x� y� of degree at most d in each variable such that�

as polynomials in x Q�x� y�� and py��x� are the same for at least ��� ��A�jFj values y� � F �

Proof� For Q� we choose the natural interpolation of the polynomials

Q�x� y� �
d��X
i��

�i�x�qxi�y��

where
�i�x� �

Y
j�st��������d���fig

�x� xj�	
Y

j�st��������d���fig
�xi � xj��

It remains to show that Q�x� y� has the required properties� For this we will need the following
claim�

Claim ���� For at least ���jF j values of y� for i � �� �� � � � � �d� �x py�x� � qx�y��

We shall prove this claim later� For now let us assume this claim and complete the proof of the
lemma�

Let the set of at least ���jF j values of y promised by the claim above be denoted by B�� For
y � B�� py�xi� � Q�xi� y� for i � �� �� � � � � d # �� Hence� for such values of y� py�x� � Q�x� y��
But then for all y � B� and x � A� Q�x� y� � qx�y�� Since jB�j
 ���jF j � d� qx�y� and Q�x� y�
must be identical polynomials �in y� for all x � A�

For some y� if py�x� �� Q�x� y� as polynomials in x� then the two must di�er on at least d
values in A� Let

BAD � fy � py�x� �� Q�x� y�g�
Then�

jf�x� y� � x � A and py�x� �� Q�x� y�gj
 djBADj�
Since qx�y� � Q�x� y� and mxy � py�x� for all x � A and all y� we obtain using ����� that

jBADj 	 ��AjFj�
Thus Q�x� y� has the required properties�

Proof of claim� We shall make use of Lemma ���� First� using ������ we obtain that for at
least jFj	� values of y

jfi � qxi�y� �� py�xi�gj 	 ���d�
Let B denote the set of these at least jFj	� values of y� For each value of y in B� we may
formulate the problem of �tting a polynomial as in Lemma �� For us m � �d� k � ���d�
K�x� � py�x�� and gi � qxi�y�� Then the matrix M�y� �discussed in Lemma �� has entries that
are polynomials �in y� of degree at most d�

Fix i � f�� �� � � � � �dg� By ������ we conclude that py�xi� � qxi�y� for at least ���jF j values
of y � B� For such values of y we obtain the solution hey�x�� f y�x�i� where

ey�x� �
Y

j�py�xi	 ��qxi�y	
�x� xi�

and fy�x� � ey�x�py�x�� Note that since py�xi� � qxi�y�� ey�xi� �� �� Thus� for the system of
equation� we have found solutions with ey�x� �� � for at least ���jFj � �d#�k#��d values of y�

We now conclude from Lemma ��� that for at least jBj � �d�d # �k # �� values of y � B�
there is a solution with ey�xi� �� �� For these values of y

K�xi� � py�xi� � gi � qxi�y��

Since there are only �d values xi � A� we have py�x� � qx�y� for all x � A� for at least
jBj� ��d���d�d#�k#��� values of y� Since jB
 jFj	� and d �� jFj� this establishes the claim�

Lemma ���	 Let M � fmxy � x� y � Fg be a matrix with the following properties�

�a� For all y � F there exists a polynomial py�x� of degree at most d in x such that

�x � F py�x� � mxy� �����

�b� For all x � F � there exists a polynomial qx�y� of degree at most d in y such that

Pr
x�y�F �qx�y� � mxy�
 �� �B� �����

where �B 	 �����
Then there exists a bivariate polynomial Q�x� y� of degree at most d in each variable such that

for at least ��� ��B�jFj values of y� Q�x� y� � py�x� for all x�

Proof� We shall use Lemma ��� Take the �d values of x for which Pry�qx�y� � mxy� is the
highest� Call the set of these values of x� the set A� Then

Pr
x�A�y�F �qx�y� � mxy�
 �� �B �

and� because �d � jFj	��

�x � A Pr
y�F �qx�y� � mxy�
 �� ��B
 ����

We now apply Lemma �� to the sub	matrix fmxy � x � A� y � Fg and obtain the polynomial
Q�x� y� satisfying the conditions of that lemma� In particular� for at least ��� ��B�jFj values of
y� Q�x� y� and py�x� agree on all �d values x � A� But these are polynomials of degree at most
d� hence� they must agree for all x � F �

We are now ready to prove the main lemma�

Lemma ���� Let M � fmxy � x� y � Fg be a matrix such that

�a� For all y � F � there exist a polynomials py�x� of degree at most d such that

Pr
x�y�F �py�x� � mxy�
 �� �C � �����

�b� For all x � F � there exist a polynomials qx�y� of degree at most d such that

Pr
x�y�F �qx�y� �mxy�
 �� �C � ������

Here �C 	 ������ Then there exists a bivariate polynomial Q�x� y� of degree at most d in each

variables whose restriction to at least �����C �jFj values of y �respectively x� agrees exactly with
py�x� �respectively qx�y���

Proof� Consider the matrix N � fnxy � x� y � Fg where nxy � py�x�� From ����� and ������
we get that

Pr
x�y�F �qx�y� � nxy�
 �� ��C

�Note that ��C 	 ������ Applying Lemma ��� to the matrix N � we get a polynomial Q�x� y�
that agrees everywhere with all but at most ��� ��C�jFj of the polynomials p�x��

Similarly� we can obtain Q��x� y� that agrees with qx�y� everywhere for all but at most
��� ��C�jFj values of x� But then

Pr
x�y�F �Q�x� y� �� Q��x� y�� 	 Pr�Q�x� y� �� py�x�� # Pr�Q

��x� y� �� qx�y��

Pr�py �� mxy� # Pr�qx�y� �� mxy�

	 ��C # ��C # �C # �C � ���C �

Since �C 	 ������� Q and Q�� polynomials of total degree at most �d� agree on at least ����jF j�
values� Since d �� jFj� ����jF j� � �djF j� and the two polynomials must agree everywhere�

Remarks

The solution to the decoding problem described in the beginning of the lecture is due to
Berlekamp and Welsh �BW� �see also Gemmell and Sudan �GM����� The application of this
method to prove the technical lemma� Lemma ���� is taken from �AS����

Lecture ��

PCP and Approximation

Lecturer� Sanjeev Saluja Date�
� May	
���

In our study of the class NP so far� we have concentrated on the existence question� given
a 	CNF expression� determine if it has a satisfying assignment� given a graph determine if it
has a Hamilton cycle� given a graph G and a positive integer k� determine if G has a clique of
size k� We now turn our attention to optimization questions� Here we are interested in �nding
the optimal value of the solution to an NP	problem� For example� given a 	CNF expression ��
determine the maximum number of clauses of that can be simultaneously satis�ed �MAXSAT��
or� given a graph determine the size of the largest clique in it �MAXCLIQUE��

Recall that we had characterized NP as the class of languages L that have a polynomial
time computable predicate PL�x� y� such that for all x � f�� �g��

x � L �� �Py PL�x� y��

We had referred to the y such that PL�x� y� � true as a witness of membership� We now refer to
it a solution and call the set of y�s such that PL�x� y� � true as the solution space corresponding
to input x� and denote this set by S�x�� With each solution y we associate a value value�x� y��
In an optimization problem we wish to determine the maximum �or minimum� value that a
solution may achieve�

De�nition ���� A maximization problem $ is a pair �S�x�� value�x� y��� where S�x� is a subset
of f�� �gp�jxj	 for some polynomial p such that it can be determined in polynomial time if y � S�x��
and value � f�� �g� � f�� �g� � N is polynomial time computable function� For an input x� the
maximum value is given by

OPT��x� � maxfvalue�x� y� � y � S�x�g�

We de�ne an NP minimization problem similarly �by replacing the max in the last line by min��
For many optimization problems the existence and optimization questions are equivalent under
polynomial time reductions� However� if we admit approximate solutions to the optimization
problems� then this equivalence need not exist�

De�nition ���� For a maximization problem $� an ��approximate algorithm takes an input x
and produces an estimate A�x� such that� for all inputs x�

A�x�

� # �
	 OPT��x� 	 �� # ��A�x��

Hardness of MAX�SAT� Fix a language L � NP � Consider a prover�s task in the protocol
for L � PCP�log n� ��� For each possibility of the O�log n� coin tosses� the veri�er reads a
constant of bits from the proof and accepts or rejects� Assume that the veri�er V uses r�n�

���

coin tosses and uses a proof of length p�n�� We are then lead to the following formulation� For
x � f�� �gn� let

OPT�x� � max
Y �f���gp�n�

jfR � f�� �gr�n	 � V �x�R� Y � acceptsgj�

Thus if x � L then OPT�x� � �r�n	 and if x �� L� then OPT�x� 	 �r�n		�� So� if there exists a
polynomial time approximation algorithm that approximates OPT�x� within a factor less that
�� then we could determine membership in the language L in polynomial time�

For an input x� if the random sequence R is �xed� then V �x�R� Y � depends only on a constant
number �say at most t� bits in Y � The condition that these bits must satisfy for V to accept can
be expressed as a 	CNF expression using some additional variables if necessary �how��� Let the
expression be 0R�Y� zR�� where zR consists of a constant number of additional variables� Note
that the number of clauses in 0R is bounded by a constant k�t� independent of R� Consider the
	CNF expression

��Y� z� �
�

R�f���gr�n�
0R�Y� zR��

Our construction implies that if x � L� then ��Y� z� is satis�able� and if x �� L� then at most
�� 	��k�t�� clauses of � are satis�able by any assignment�

Let 	��k�t�� � �� and assume that there exists a polynomial time �	approximate algo	
rithm for approximating the maximum number of clauses that can be simultaneously satis�ed
in ��Y� z�� where ��� ���� # ��� � �� Then� we can decide decide membership for the language
L using this algorithm� Our discussion gives us the following theorem�

Theorem ���� Let L � NP� There exists a constant � � �� and a polynomial time computable

transformation from inputs to
�CNF expressions� x �� �x�y�� such that

� if x � L then �x is satis�able

� if x �� L� then at most a fraction �� � �L� of all the clauses of �x are simultaneously

satis�able�

Corollary ���� If P �� NP� then there exists an � � � such that MAX
SAT has no polynomial

time ��approximate algorithm�

Such hardness results are not isolated cases� It can be shown that similar limitations exists for
an entire class of approximation problems� know as MAXSNP� indeed the problem MAXSAT is
known to be MAXSNP	complete under certain approximation preserving reductions� However�
in this course� we will content ourselves with the speci�c result proved above�

Hardness of MAXCLIQUE� Our next application to approximation algorithms concerns
the MAXCLIQUE function� Consider a protocol for L � PCP�log n� ��� This time� we will
represent the prover�s task using a graph� Fix an input x �jxj � n�� and assume that the
protocol uses r�n� random bits and reads t�n� bits of the proof� The graph G�x� is de�ned as
follows�

Consider pairs hr� qi � f�� �gr�n	�f�� �gt�n	 � Here we think of r as the random sequence used
by the veri�er and q as the sequence of values obtained for his probes� For example suppose the
�rst probe made by the veri�er for the random sequence r is to location l�� Then� we assume the
value stored there is q�� similarly for the second probe �to location l� say� we assume that the
value stored is q� � � � � In the end� the veri�er either accepts or rejects� If the veri�er rejects then

hr� qi is not a vertex of G�x�� We say that the pair hr� qi is consistent if whenever two probes are
made to the same location� the values assumed for them are also identical �i�e� li � lj � qi � qj��

V �G�x�� � fhr� qi � hr� qi is consistent and the corresponding computation acceptsg�

We say that two vertices hr�� q�i and hr�� q�i are compatible if whenever they probe a common
location the value they assume are the same� i�e�� if li�hr�� q�i� � lj�hr�� q�i� then q�i � q�j �

E�G�x�� � ffhr�� q�i� hr�� q�ig � r� �� r�� and hr�� q�i and hr�� q�i are compatibleg�

Now assume that the protocol we have is such that for x � L there exists a proof that the veri�er
accepts with probability �� and for x �� L� the veri�er accepts no proof with probability more
than ��n�� We then have the following proposition�

Proposition ���	 �a� The number of vertices in G�x� is at most �r�n	�t�n	�

�b� If x � L� then G�x� has a clique of size �r�n	�

�c� If x �� L� the G�x� has no clique larger than ��n��r�n	�

For the protocol we have devised� r�n� � O�log n�� t�n� � O��� and ��n� � �	�� We wish
to reduce the error probability� For this we run the protocol about logn times independently�
the naive method of executing the protocol log n times is too expensive � it would require about
�log n�� random bits in all� However� there exist methods for e�cient simulation that give us
the same e�ect keeping the over all number of random bits used at O�log n� �details omitted��

Theorem ���� For every language L � NP� there exists a PCP�r�n�� t�n�� protocol with r�n� �
O�log n�� t�n� � O�log n� and ��n� � O��	n��

Using this theorem and Proposition ����� we conclude that for each x � L� the graph G�x� has
a clique of size �r�n	� and for x �� L the largest clique in G�x� is at most �r�n		n� Moreover� the
size of G�x� is at most p�n� for some polynomial p�

Proposition ��� For L � NP there exists an � � � such that for all x � f�� �g�� there exists
a graph G�x� �let jV �G�x�j � m�� constructible in polynomial time� such that� if x � L then

G�x� has a clique of size p�m� and if x �� L then the size of the largest clique in G is at most

p�m�	m��

Corollary ���� If P �� NP� then there exists an � � � such that no approximation algorithm
can approximate MAXCLIQUE within a factor of n��

Remarks

The connection between PCP and approximability of the clique function was discovered by Feige�
Goldwassser� Lov%asz� Safra and Szegedy �FGL����� This connection formed the chief motivation
for all later work� Arora and Safra �AS��� showed that NP � PCP�log n�poly logn�� and
concluded using the reduction in �FGL���� that the clique function cannot be approximated
to within a constant factor unless P � NP � Moreover� using the random walk technique
of Impagliazzo and Zuckerman �IZ���� they showed how the error probability of the protocol
can be reduced keeping the number of random bits and probes at O�logn�� The strong non	
approximability result of Corollary ���� is due to �ALM����� The non	approximability result
for MAXSAT� Corollary ����� is also due to �ALM�����

References

�AB��� N� Alon and R� B� Boppana� The monotone circuit complexity of bolean functions�
Combinatorica� ���������� �����

�Adl��� L� Adleman� Two theorems on random polynomail time� In Proceedings of the

��th IEEE Symp� on the Foundations of Computer Science �FOCS�� pages �����
�����

�ALM���� S� Arora� C� Lund� R� Motwani� M� Sudan� and M� Szegedy� Proof veri�cation and
hardness of approximation problems� In Proceedings of the

rd IEEE Symposium

on the Foundations of Computer Science �FOCS�� pages ����� �����

�AS��� S� Arora and S� Safra� Probabilistic checking of proofs� a new characterizations of
NP � In Proceedings of the

rd IEEE Symposium on the Foundations of Computer

Science �FOCS�� pages ���� �����

�Bab��� L%aszl%o Babai� Trading group theory for randomness� In Proceeding of the ��th
ACM Symposium on the Theory of Coumputing �STOC�� pages �������� �����

�BCD��� Richard Beigel� Chih	Ping Chen� Jack Donham� Will Hurwood� Andrzej Krauze�
Krikis Martinch� Daniel Milstein� Sophia Paleologou� Pharr Matt� David
Rochberg� and Kentaro Toyama� Class notes on interactive proof systems� Tech	
nical Report YALEU
DCS
TR	���� Yale University� Department of Computer
Science� January ����

�BDG��a� Jos%e Luis Balc%azar� Josep D%&az� and Joaquim Gabbarr%o� Structural Complexity I�
Springer	Verlag� �����

�BDG��b� Jos%e Luis Balc%azar� Josep D%&az� and Joaquim Gabbarr%o� Structural Complexity II�
Springer	Verlag� �����

�BFL��� L� Babai� L� Fortnow� and C� Lund� Non	deterministic exponential time has two	
prover interactive prtocols� In Proceedings of the
�st IEEE Symposium on the

Foundations of Computer Science �FOCS�� pages ������ �����

�BFL��� L� Babai� L� Fortnow� and C� Lund� Non	deterministic exponential time has two	
prover interactive prtocols� Computational Complexity� ������ �����

�BFLS��� L� Babai� L� Fortnow� L� Levin� and M� Szegedy� Checking computations in poly	
logarithmic time� In Proceedings of the �
rd ACM Symposium on the Theory of

Coumputing �STOC�� pages ����� �����

�BHZ��� R� Boppana� J� Hastad� and S� Zachos� Does co	NP have short interactive proofs�
Information Processing Letters� ���������� �����

�BJ��� C� G� Bennett and Gill J� Relative to a random oracle A� PA �� NPA �� co	NPA

with probability �� SIAM Journal of Computing� ��������� �����

���

�BLR��� M� Blum� M� Luby� and R� Rubinfeld� Self	testing
correcting with applications to
numberical problems� In Proceedings of the ��nd ACM Symposium on Theory of

Computing �STOC�� pages ���� �����

�BM��� L%aszl%o Babai and Shlomo Moran� Arthur	merlin games� a randomized proof sys	
tem� and a hierarchy of complexity classes� Journal of Computer and System

Sciences� ���������� �����

�BOGKW��� M� Ben	Or� S� Goldwasser� J� Kilian� and A� Wigderson� Multi	prover interactive
proofs� How to remove intractability assumptions� In Proceedings of the �	th ACM
Symposium on the Theory of Coumputing �STOC�� pages ������ �����

�Boo��� Ronald V� Book� Restricted relativizations of complexity classes� In Juris Harma	
nis� editor� Computational Complexity Theory� volume � of AMS Short Course

Lecture Notes �Proceedings of Symposia in Applied Mathematics�� chapter � pages
������ American Mathematical Society� �����

�BS��� R� B� Boppana and M� Sipser� The complexity of �nite functions� In Handbook of
Theoretical Computer Science� Algorithms and Complexity� volume A� chapter ���
pages �������� MIT Press� �����

�BW� E� Berlekamp and L� Welsh� Error correction of algebraic block codes� US Patent
Number ��������

�CKS��� A� K� Chandra� D� C� Kozen� and L� J� Stockmeyer� Alternation� Journal of the
ACM� ��������� �����

�CLR��� Thomas H� Cormen� Charles E� Leiserson� and Ronald L� Rivest� Introduction to

Algorithms� The MIT Press� Cambridge� Massachusetts� �����

�CW��� J� L� Carter and M� N� Wegman� Universal classes of hash functions� Journal of
Computer and System Sciences� ������������� �����

�FGL���� U� Feige� S� Goldwasser� L� Lov%asz� S� Safra� and M� Szegedy� Approximating
clique is almost NP	complete� In Proceedings of the
�nd IEEE Symposium on

the Foundations of Computer Science �FOCS�� pages ����� �����

�FL��� U� Feige and L� Lov%asz� Two	prover one round proof systems� Their power and
their problems� In Proceedings of the ��th ACM Symposium on the Theory of

Computing� pages ������ �����

�Fre��� R� Freivalds� Fast probabilistic algorithms� In Proceedings of Mathematical Foun�

dations of Coumputer Science� volume �� of Lecture Notes in Computer Science�
pages ������ Springer	Verlag� �����

�FRS��� L� Fortnow� J� Rompel� and M� Sipser� On the power of multi	prover interactive
protocols� In Proceedings of the third IEEE conference on Structure in Complexity

Theory �Structures�� pages �������� �����

�FS��� L� Fortnow and M� Sipser� Are there interactive protocols for co	NP langauges�
Information Processing Letters� ����������� �����

�GLR���� P� Gemmell� R� Lipton� R� Rubinfeld� M� Sudan� and A� Wigderson� Self	
testing
correcting for polynomials and for approximate functions� In Proceedings

of the ��nd ACM Symposium on Theory of Computing �STOC�� pages �����
�����

�GM��� S� Goldwasser and Sipser M� Private coins versus public coins in interactive proof
systems� In Silvio Micali� editor� Randomness and Computation� volume � of
Advances in Computing Research� chapter �� pages ����� JAI Press� �����

�GM��� P� Gemmell and Sudan M� Highly reslient correctors for polynomails� Information
Processing Letters� ���������� �����

�GMR��� Sha� Goldwasser� Silvio Micali� and Charles Racko�� The knowledge complexity
of interactive proof systems� SIAM Journal on Computing� ����������� �����

�GMS��� O� Goldreich� Y� Mansour� and M� Sipser� Interactive proof systems� Provers that
never fail and random selection� In Proceedings of the ��th IEEE Symp� on the

Foundations of Computer Science �FOCS�� pages �������� �����

�GMW��� Sha� Goldwasser� Silvio Micali� and Avi Wigderson� Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design� In Proceedings
of the ��th IEEE Symposium on the Foundations of Computer Science �FOCS��
pages �������� �����

�Gol��� Sha� Goldwasser� Interactive proof systems� In Juris Harmanis� editor� Compu�
tational Complexity Theory� volume � of AMS Short Course Lecture Notes �Pro�

ceedings of Symposia in Applied Mathematics� chapter �� pages �������� American
Mathematical Society� �����

�HU��� John E� Hopcroft and Je�rey D� Ullman� Introduction to Automata Theory� Lan�

guages and Computation� Addison	Wesley� ����� Reprinted by Narosa Publishing
House� �����

�IZ��� R� Implagliazzo and D� Zuckerman� How to recycle random bits� In Proceedings

of the
	th IEEE Symposium on the Foundations of Computer Science� pages
������� �����

�Lau�� C� Lauteman� BPP and the polynomial hierarchy� Information Processing Letters�
�������������� ����

�LFKN��� C� Lund� L� Fortnow� H� Karlo�� and N� Nisan� Algebraic methods for intereactive
proof systems� In Proceedings of the IEEE Symp� on the Foundations of Computer

Science �FOCS�� pages ����� �����

�LFKN��� C� Lund� L� Fortnow� H� Karlo�� and N� Nisan� Algebraic methods for intereactive
proof systems� Journal of the ACM� ������������� October �����

�LL��� A� K� Lenstra and H�W� Lenstra Jr� Algorithms in number theory� In Jan
van Leeuwen� editor� Handbook of Theoretical Computer Science� Algorithms and

Complexity� volume A� chapter ��� pages ������� MIT Press� �����

�LP��� Harry R� Lewis and Christos H� Papadimitriou� Elements of the Theory of Com�

putation� Prentice	Hall� Inc�� Englewood Cli�s� New Jersey ����� �����

�Lun��� Carsten Lund� The power of interaction� Technical Report ��	��� Department of
Coumputer Science� University of Chicago� January ����� Ph�D� Thesis�

�Pap�� C� Papadimitriou� Games against nature� In Proceedings of the ��th IEEE Symp�

on the Foundations of Computer Science �FOCS�� pages �������� ����

�Pra��� V� Pratt� Every prime has a succinct certi�cate� SIAM Journal of Computing�
���������� �����

�Raz��a� A� A� Razborov� Lower bounds on the monotone complexity of some boolean
functions� Soviet Math� Dokl�� �������� �����

�Raz��b� A� A� Razborov� Lower bounds on the monotone network complexity of the logical
permanent� Mathematical Notes� pages ������� �����

�RS��� R� Rubinfeld and M� Sudan� Testing polynomial functions e�ciently and over
rational domains� In Proceedings of the
rd ACM�SIAM Symposium on Discrete

Algorithms� pages ���� �����

�Rub��� R� Rubinfeld� A Mathematical Theory of Self�Checking� Self�Testing and Self�

Correcting Programs� PhD thesis� Computer Science Department� U� C� Berkeley�
�����

�Sha��� A� Shami� IP � PSPACE� In Proceedings of the
�st IEEE Symposium on the

Foundations of Computer Science �FOCS�� pages ������ �����

�Sha��� A� Shamir� IP � PSPACE� Journal of the ACM� ������������� October �����

�She��� A� Shen� IP � PSPACE� Simpli�ed proof� Journal of the ACM� �������������
October �����

�Sip�� M� Sipser� A complexity theoretic approach to randomness� In Proceedings of

the ��th ACM Symposium on the Theory of Coumputing �STOC�� pages ����
����

�Sip��� Michael Sipser� The history and status of the P versus NP question� In Proceed�

ings of the ��th ACM Symposium on the Theory of Computating� pages �������
�����

�SM�� L� J� Stockmeyer and A� R� Meyer� Word problems requiring exponential time� In
Proceedings of the �th ACM Symposium on the Theory of Coumputing �STOC��
pages ���� ����

�Sud��� Madhu Sudan� E�cient Checking of Polynomials and Proofs and the Hard�

ness of Approximation Problems� PhD thesis� Computer Science Department�
U� C� Berkeley� �����

�Tar��� %E Tardos� The gap between monotone and nonmonotone circuit complexity is
exponential� Combinatorica� ������������� �����

�Tod��� S� Toda� On the computational power of PP and �P� In Proceedings of the

	th IEEE Symposium on the Foundations of Computer Science �FOCS�� pages
�������� �����

�Val��� L� G� Valiant� The complexity of computing the permanent� Theoretical Computer
Science� ���������� �����

�VV��� L� G� Valiant and V� V� Vazirani� NP is as easy as detecting unique solutions�
Theoretical Computer Science� �������� �����

