
Combinatorial Complexity Theory

August 1, 1996

i

Preface

These lecture notes were written when teaching the course Combinatorial Com-
plexity Theory at Aarhus University in the fall 1993 and the spring 1995.

Acknowledgement. The notes are heavily based on earlier material written (in
Danish) by Sven Skyum and Peter Bro Miltersen.

Request. I will appreciate any reader of these notes to report errors and other
comments that you may have to gsfrandsen@daimi.aau.dk.

Warning. A. The exercises vary a lot in difficulty. There are simple check exer-
cises next to problems, whose original solution required a whole research paper
to describe.

Aarhus, June 1995.

Gudmund S. Frandsen

Minor corrections August 1, 1996. G.S.F.

ii CONTENTS

Contents

1 Boolean Functions 1

1.1 Disjunctive and Conjunctive Normal Form 1

1.2 Bases and Expressions . 3

1.3 Monotone and symmetric functions 4

1.4 Representation of problems . 5

2 Circuit Models and Complexity Measures 8

2.1 Circuits and Straight Line Programs 8

2.2 Size and Depth . 8

2.3 Upper Bounds . 10

2.4 Depth and Formula Size . 13

2.5 Depth and circuit size . 14

2.6 The Complexity of Function Families 18

2.7 Projection . 19

2.8 Bases with unlimited fan-in . 21

2.9 Branching Programs . 22

3 Constructions I 26

3.1 Addition of two numbers . 26

3.1.1 Method 1 . 26

3.1.2 Method 2 . 27

3.1.3 Method 3 (Carry-look-ahead) 28

3.2 Addition of many numbers . 31

3.3 Symmetric functions . 32

CONTENTS iii

3.4 Comparator Networks . 33

3.4.1 Merging Networks . 34

3.4.2 Splitting Networks . 37

3.4.3 Thk
n for fixed k . 38

3.5 Threshold Functions . 40

4 Machine Models and Boolean Circuits 49

4.1 Turing Machines . 49

4.2 Uniformity and nonuniformity . 50

4.3 Time and Size . 51

4.4 Space and Depth . 54

4.5 Parallel Time and Depth . 56

4.6 Probabilistic Machines and non-uniformity 56

4.7 Nondeterministic Circuits . 61

5 Lower Bounds I 65

5.1 Lower bounds for almost all functions 65

5.2 Lower Bounds for Formula Size 68

5.2.1 Krapchenko’s bound for the basis {+, ·,− }. 69

5.2.2 Nechiporuk’s bound for the full binary basis B2. 71

5.3 Lower bounds for circuit size . 73

5.3.1 The substitution technique 74

5.4 Lower bounds for unbounded fan-in circuits 75

6 Constructions II 88

6.1 Arithmetic circuits . 88

iv CONTENTS

6.2 The power of subtraction . 88

6.3 Elimination of division . 90

6.4 Parallel computation of low degree functions 92

6.5 Degree bounded Boolean circuits 97

7 Lower Bounds II 105

7.1 Communication Complexity . 105

7.2 Lower bound on probabilistic communication complexity 108

7.3 Lower bound on monotone depth 112

7.4 Lower bound on Monotone Size 115

7.4.1 The k-clique problem . 116

8 Overview 130

8.1 Class Overview . 130

8.2 General Literature . 133

1

x NEG

0 1
1 0

x y AND

0 0 0
0 1 0
1 0 0
1 1 1

x y OR

0 0 0
0 1 1
1 0 1
1 1 1

x y IMP

0 0 1
0 1 1
1 0 0
1 1 1

Figure 1: Tables for selected functions.

1 Boolean Functions

Definition 1.1 A Boolean function is a function f : {0, 1}n → {0, 1}m.

The set of Boolean functions from {0, 1}n into {0, 1}m is denoted Bn,m.

We may regard f ∈ Bn,m as a vector (f1, f2, · · · , fm) of m functions fi from Bn,1.
For simplicity we will write Bn for Bn,1 and B for

⋃

n≥0 Bn. A simple way to
describe f ∈ Bn consists in tabulating f (see figure 1).

If 0 and 1 denotes false and true respectively, then the functions in figure 1 are the
well known Boolean functions negation, and, or and implication. For functions
with two variables we will use infix notation, when convenient.

Notation 1.1 We write x for NEG(x), x · y (or xy) for AND(x, y), x + y for
OR(x, y) and x⇒ y for IMP(x, y).

There are 2m2n
distinct functions in Bn,m, since each of the 2n table rows can

take any of 2m distinct values.

In section 5 we will show the (perhaps surprising) result that for most functions
a table is a compact description without much redundancy. However, tables are
impractical, and a lot of functions arising in practice have considerably more
compact representations. The size of representations arising from or related to
methods of computation is a major part of this course. We continue by defining
two special representations.

1.1 Disjunctive and Conjunctive Normal Form

These are restricted formulas over {+, ·,− }.

2 1 BOOLEAN FUNCTIONS

Example 1.1 IMP(x, y) = x y + x y + x y = x + y

Example 1.1 demonstrates that a single function can be described by several
distinct formulas (in principle infinitely many). As a consequence, it may pose
a problem to decide if two formulas describe the same function. We introduce
canonical forms to circumvent this type of problem.

Let xy be a description for x · y + x · y. With this notation x1 = x and x0 = x.

We define the relation ≤ on Bn by:

f ≤ g if and only if ∀x ∈ {0, 1}n : f(x) ≤ g(x)

Let f ∈ Bn and (c1, c2, · · · , cn) ∈ {0, 1}n. We say that xc1
1 xc2

2 · · ·xcn
n is a minterm

for f , if xc1
1 xc2

2 · · · xcn
n ≤ f(x).

It holds (exercise 1.2) that

f(x) =
∑

c∈{0,1}n,f(c)=1

xc1
1 xc2

2 · · ·xcn
n . (1)

This is called disjunctive normal form (DNF).

Similarly, f may be written as a product of sums denoted conjunctive normal
form (CNF). It holds (exercise 1.2) that

f(x) =
∏

c∈{0,1}n,f(c)=0

(xc1
1 + xc2

2 + · · ·+ xcn
n) (2)

The product is taken over precisely those sums (xc1
1 + xc2

2 + · · · + xcn
n) for which

f(x) ≤ (xc1
1 + xc2

2 + · · · + xcn
n). The function IMP from example 1.1 is only 0 for

(1, 0) (see figure 1). So the CNF for IMP is x1 + y0 = x0 + y1 = x + y.

The above normal forms are unique, but they share one problem with tabulation.
They may be unreasonably large. For this reason, we will relax the definition
of normal forms: In the following, DNF means a “sum of products” and CNF
means a “product of sums”. The price of the relaxation is a loss of uniqueness.

1.2 Bases and Expressions 3

x y 0 · x y ⊕ + ≡ y ⇐ x ⇒ 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 2: B2

1.2 Bases and Expressions

In the last section, we have used that all Boolean functions (B) can be expressed
in terms of the simple operators (functions) +, · and −. The existence of the
normal forms CNF and DNF provides an implicit proof of this fact.

As mentioned earlier, there are 22n
functions in Bn. B0 is the constant functions

0 and 1. B1 is the functions, 0, 1, x and x. B2 consists of the 16 functions listed
in figure 2.

Definition 1.2 A basis B is a subset of functions from B. The fan-in of a
finite basis B is the highest arity of any function in B. The span of a basis B,
span(B), are those functions that can be defined by expressions over B. A basis
B is complete for a class of functions C, if C = span(B). If B is complete for B,
we simple say that B is complete.

Definition 1.3 A B-expression over {x1, · · · , xn} is defined inductively by:

• Constants: 0, 1 are B-expressions.

• Variables: x1, . . . , xn are B-expressions.

• Composite expressions: If e1, e2, · · · , ek are B-expressions and f ∈ B ∩ Bk,
then f(e1, e2, · · · , ek) is a B-expression.

We have already observed that {+, ·,− } is a complete basis. For the rest of the
course, this will be our default basis. {⊕, ·} is also a complete basis (exercise
1.4). {+, ·} is not a complete basis, since the function x is not a {+, ·}-expression
(why not?).

4 1 BOOLEAN FUNCTIONS

1.3 Monotone and symmetric functions

Definition 1.4 A function f ∈ Bn is monotone, if x ≤ y (component-wise)
implies that f(x) ≤ f(y). The set of monotone functions (in n variables) is
denoted MON (MONn).

It holds that f is monotone, if and only if it is possible to define f by a {+, ·}-
expression (exercise 1.6). {+, ·} will be our default basis, when dealing with
monotone functions

Definition 1.5 A function f ∈ Bn is symmetric, if for all permutations π ∈ Sn

and x ∈ {0, 1}n it holds that f(xπ(1), xπ(2) · · · , xπ(n)) = f(x). The set of symmetric
functions is denoted SYM (SYMn).

The value of f ∈ SYMn is only dependent on the number of 1’s in the argument
of f (and independent of the actual position of the 1’s). This fact implies a one
to one relation between SYMn and the set of subsets of {0, 1, · · · , n}. Therefore
the following definition makes sense:

Definition 1.6 For M ⊆ {0, 1, · · · , n}, let EqM
n denote the symmetric function

given by:

EqM
n (x) =

{

1 if |{i|xi = 1}| ∈M
0 otherwise

If f ∈ MONn ∩ SYMn, then f is given by an M ⊆ {0, 1, · · · , n} of the form
{k, k + 1, · · · , n}. We call f a threshold function:

Definition 1.7 The threshold function Thk
n is given by:

Thk
n(x) =

{

1 if |{i|xi = 1}| ≥ k
0 otherwise

Example 1.2 Th2
3(x, y, z) = xy + xz + yz

1.4 Representation of problems 5

1.4 Representation of problems

So far we have mentioned ways to describe Boolean functions, and introduced a
few properties Boolean functions may possess. We will now sketch how problems
arising in various areas can be represented as Boolean functions.

Problems at the bit level such as adders will be studied in section 3.

We take graph problems as an example.

Let G = (V, E) be a directed graph, where the nodes V are numbered 1, 2, · · · , n.
G may be represented by an incidence matrix {cij} where cij = 1, if and only
if (i, j) ∈ E. This means that a directed graph can be described by n2 Boolean
values. The graph represented by {cij} (or c) is denoted G[c].

Any decision problem on graphs, may now be defined by Boolean functions.
Consider a concrete example. Does there exist a path in G (with n nodes) from
node i to node j? This problem is defined by the function f , where

f(x) =

{

1 if graph G[x] has a path from node i to node j
0 otherwise

Since graphs come in all sizes, a graph problem corresponds to a family of func-
tions:

Definition 1.8 A family F = {Fi} of Boolean functions is a sequence of func-
tions indexed by some subset of the natural numbers.

Example 1.3 The path problem for directed graphs may be described by the fol-
lowing family:

DPATH = {DPATH1, DPATH4, · · · , DPATHn2 , · · ·}

where

DPATHn2(x) =

{

1 if graph G[x] has a path from node 1 to node n
0 otherwise

Note that DPATHn2 is monotone. (If there is a path from u to v in G, then that
path will remain, when more edges are added to the graph).

6 1 BOOLEAN FUNCTIONS

If all functions in a family belong to a certain class, then we will also say that
the family belongs to this class. In the case of the path problem, we write
DPATH ∈ MON, since DPATHn2 ∈ MONn2 for all n.

All formal problems that possess a representation that makes them solvable on
a computer, can also be represented as a family of Boolean functions. Assume
P is a program, that outputs yes or no on any input. By viewing the input as a
binary string, we have a canonical method for associating a family of functions
{f (P)

i } with P :

f (P)
i (x) =

{

1 if P outputs yes on input x
0 otherwise

The precise binary encoding of the input is implicitly defined by P , and it is not
our concern at the moment. We will discuss standard representations for various
problem classes later as the need arises.

Exercises

Exercise 1.1 Show that the following equalities are valid:

1. x + y = y + x and xy = yx

2. (x + y) + z = x + (y + z) and (xy)z = x(yz)

3. x(y + z) = xy + xz and x + yz = (x + y)(x + z)

4. x · x = 0, x + x = 1, x · x = x and x + x = x

5. x · 1 = x, x · 0 = 0, x + 1 = 1 and x + 0 = x

6. (x + y) = x y and (xy) = x + y (DeMorgan’s law)

7. x(x + y) = x and x + xy = x

8. (x) = x

A Boolean algebra is a structure {M, 0, 1, +, ·,− } that satisfies 1-8 above.

Exercise 1.2 Show the correctness of equations (1) and (2).

1.4 Representation of problems 7

Exercise 1.3 Let sel ∈ B3 be defined by:

sel(x, y, z) =

{

y if x = 1
z otherwise

Find DNF- and CNF-expressions for sel(x, y, u + v).

Exercise 1.4 Show that {⊕, ·} and {sel} are complete bases.

Exercise 1.5 Show that for f ∈ Bn it holds that

f(x1, x2, · · · , xn) = x1f(1, x2, · · · , xn) + x1f(0, x2, · · · , xn)

and if in addition f ∈ MONn then

f(x1, x2, · · · , xn) = x1f(1, x2, · · · , xn) + f(0, x2, · · · , xn)

Exercise 1.6 Show that f ∈ Bn is monotone, if and only if f can be written as
a {+, ·}-expression, i.e. {+, ·} is a complete basis for the monotone functions.

Exercise 1.7 Show that {Th2
3} is a complete basis for the monotone functions.

Exercise 1.8 Find a DNF-expression for Eq{1,2}
5 (x).

Exercise 1.9 A Boolean function f ∈ Bn is affine if and only if

f(x1, x2, . . . , xn) = xi1 ⊕ xi2 ⊕ . . .⊕ xik ⊕ c

for some c ∈ {0, 1}.

Prove that a basis B ∈ B is complete if and only if (i) B contains a non-monotone
function and (ii) B contains a non-affine function. Hint: Prove the following
subresults:

1. The function NEG is a B-expression if B contains a non-monotone func-
tion.

2. Any non-affine function f ∈ B2 has the form f(x, y) = (xayb)c for some
constants a, b, c ∈ {0, 1}

3. If B contains a non-affine function then there exists a non-affine function
on two variables that is a B-expression.

8 2 CIRCUIT MODELS AND COMPLEXITY MEASURES

2 Circuit Models and Complexity Measures

We have already used expressions for describing Boolean functions. In this sec-
tion, we will concentrate on computing Boolean functions.

2.1 Circuits and Straight Line Programs

Our first model is a straight line program, which describes a sequential method
for computing an expression.

Definition 2.1 Let B be a basis. A straight line program over B with input (or
indeterminates) X = {x1, x2 · · · xn}, is a sequence of s assignments, where the
i’th assignment has the form

vi← ✷(y1, . . . , yk)

where yi ∈ X ∪ {0, 1} ∪ {v1, v2, · · · vi−1} and ✷ ∈ B.

If s > 0 then the program computes the value vs, and if s = 0 a special out-
put statement specifies which value among {0, 1, x1, x2, · · ·xn} is computed by the
program.

We may draw a straight line program as a circuit (see figure 3). The v’s in the
straight line program correspond to the computation nodes in the circuit.

For a circuit N we will also let N denote the function computed by N .

2.2 Size and Depth

Definition 2.2 Let N be a circuit (straight line program) with s computation
nodes over the basis B. The size, S(N), of N is s. The depth, D(N), of N is
defined in terms of the depth of circuit nodes. The latter is defined inductively as
follows:

1. D(0) = D(1) = 0

2. D(xi) = 0 for i = 1, 2, · · · , n

2.2 Size and Depth 9

v1 ← xy
v2 ← xz
v3 ← yz
v4 ← v1 + v2

v5 ← v4 + v3

h h h

�
�

�
�

�
�

�✒

❅
❅

❅
❅

❅
❅

❅■

❅
❅

❅
❅

❅
❅

❅■ ✻

�
�

�
�

�
�

�✒

✁
✁
✁
✁
✁✁✕

❆
❆

❆
❆

❆❆❑

❏
❏

❏
❏

❏
❏

❏
❏

❏❏❪

�
�

�✒

✻

x zy

Figure 3: Straight line program and circuit for Th2
3(x, y, z)

3. If vi ← ✷(y1, y2, . . . , yk), then

D(vi) = max {D(yk)}+ 1.

D(N) is defined to be D(vs).

The fan-out of a circuit is the maximum number of times a single sub-result
variable is used in the right-hand side of an assignment.

A circuit with fan-out 1 is called a formula. For a formula N we let L(N) denote
the size. L means formula length.

The circuit N in figure 3 is a formula, where S(N) = 5 and D(N) = 3. Intuitively,
the measures size and depth correspond to sequential time (or parallel work) and
parallel time at the bit level, respectively. This intuition will be formalised in
section 4

Definition 2.3 For a basis B and a function f ∈ B we define MB(f), where M
is S, D or L to be

MB(f) = min {M(N)|N is a circuit over B that computes f}

10 2 CIRCUIT MODELS AND COMPLEXITY MEASURES

For the default basis {·, +,− } we omit a basis specification. The monotone basis
{·, +} is specified by an “m”.

Usually, we are only interested in results about the default basis (or some other
complete basis) and the monotone basis. However, many of the results we prove
can also be shown for arbitrary non-complete bases, but the proofs get rather
technical, and some of them are only published in Russian!

2.3 Upper Bounds

Proposition 2.1 a) For all f ∈ B(f ∈ MON) it holds that

a1) S(f) ≤ L(f) ≤ n2n (Sm(f) ≤ Lm(f) ≤ n2n)
a2) D(f) ≤ S(f) (Dm(f) ≤ Sm(f))
a3) D(f) ≤ n + ⌈log n⌉+ 1 (Dm(f) ≤ n + ⌈log n⌉)

b) For all f ∈ MON it holds that

M(f) ≤Mm(f) for M ∈ {S,D,L}

One may verify the upper bounds in proposition 2.1 by considering DNF (the
DNF-formula for either f or f will have size bounded by n2n).

Formulas are circuits with fan-out at most 1. We have defined a special complex-
ity measure L, based on formula. It is a natural question, whether one obtains
significantly different complexity measures by bounding the fan-out to other con-
stants such as 2 or 3. As we shall see that is not the case.

Theorem 2.2 For all circuits N (over the default basis or the monotone basis)
with unbounded fan-out, there exists an equivalent circuit N ′ with fan-out 2 such
that S(N ′) = O(S(N)).

Proof. Figure 4 shows how fan-out can be reduced in a special case. The construc-
tion generalises in the obvious way. For a node with fan-out k the transformation
creates (k − 2) extra AND-nodes.

If N has s nodes with fan-out k1, k2, · · · ks then
∑s

i=1 ki is a bound on the number
of extra nodes. But since each node has fan-in at most two, we also have that
∑s

i=1 ki ≤ 2s, which implies the theorem. ✷

2.3 Upper Bounds 11

✁
✁✁✕

❆
❆❆❑

AND

✁
✁✁✕

❆
❆❆❑

AND

✁
✁✁✕

❆
❆❆❑

AND

✁
✁✁✕

❆
❆❆❑

AND

✁
✁✁✕

❆
❆❆❑

AND

✁
✁✁✕

❆
❆❆❑

AND

✻

1

✻

1

✻

1

✻

1

✻

1

✻

1✄
✄
✄
✄
✄✗

✓
✓

✓
✓

✓✼

✚
✚

✚
✚

✚
✚✚✻

✟✟✟✟✟✟✟✟✟✻

❈
❈
❈
❈
❈❖

❙
❙

❙
❙

❙♦

❩
❩

❩
❩

❩
❩❩✻

❍❍❍❍❍❍❍❍❍✻

✑
✑

✑✑✸

◗
◗

◗◗❦

v

v

v1 v2 v3 v4 v5 v6 v7 v8

v1 v2 v3 v4 v5 v6 v7 v8

Figure 4: Fan-out 8 reduced to fan-out 2

There is more to be said about the complexity measures and their mutual rela-
tionship than what follows from the inequalities in proposition 2.1. We begin by
improving the universal upper bound on size. Let Sn = max{S(f)|f ∈ Bn} and
Ln = max{L(f)|f ∈ Bn}.

Theorem 2.3 Ln = O(2n).

Proof. We know that

f(x1, . . . , xn) = xnf(x1, . . . , xn−1, 1) + xnf(x1, . . . , xn−1, 0) (3)

This suggests a formula construction for f , where the two occurrences of f on
the right-hand side are expanded recursively, by letting xn−1 assume the roll of
xn.

This results in a recurrence

Ln ≤ 2 ∗ Ln−1 + 4

L1 ≤ 1

that gives a bound

Ln ≤ 5 · 2n−1 − 4 = O(2n)

which is an improvement compared to the DNF based bound. ✷

The construction can be improved by allowing multiple fan-out.

12 2 CIRCUIT MODELS AND COMPLEXITY MEASURES

Theorem 2.4 (Lupanov, 1958) Sn = O(
2n

n
).

Proof. Note that when the formula in the proof of the previous theorem has been
expanded recursively i steps using equation (3), then we have 2i sub-functions of
f on the right-hand side, each containing n − i variables. So for each recursion
step we get more functions and fewer variables. There are only 22n−i

distinct
functions of (n− i) variables, and with i increasing towards n, we eventually get
2i > 22n−i

. For such i there are least 2 of the sub-functions that are functionally
identical.

At this point we switch to look at circuits rather than formulas. This allows us
to compute a function with multiple occurrences only once and reuse the result
as appropriate (the dynamic programming technique). To simplify the analysis,
we implement this approach as follows:

1. For j := 1 to n− i we compute all functions in Bj on the given input (!)

2. For j := n down-to n− i+1 we expand the formula as described above, but
then, instead of expanding any further, we use the relevant precomputed
function values.

Equation (3) tells us that when we have computed all functions in Bj−1 then we
may compute all the functions in Bj with only O(|Bj |) additional gates. Hence,
for the implementation of the lower part of the circuit (item 1.), we need in total

O(
n−i
∑

j=1

|Bj |) = O(|Bn−i|) = O(22n−i

)

gates. For the upper part of the circuit (item 2.), we need O(2i) gates. In total,
for any choice of i, it holds that

Sn = O(22n−i

+ 2i)

By choosing i = ⌈n− log n + 1⌉ we get Sn = O(2n

n
). ✷

We shall later see (section 5) that the above construction is optimal (up to a multi-
plicative constant), i.e. there exists a family of functions {fn} with S(fn) = Θ(2n

n
).

The bound on Ln can be improved to O(2n

log n
), but we omit the construction.

2.4 Depth and Formula Size 13

2.4 Depth and Formula Size

In this section we initiate the study of relations between complexity measures.
The first result shows a tight connection between depth and formula size.

Theorem 2.5 (Spira, 1971) For all f ∈ B it holds that D(f) = O(log L(f)).
If f ∈ MON it holds in addition that Dm(f) = O(log Lm(f)).

Proof. We will show that we to a given monotone formula N , can construct an
equivalent monotone circuit N ′ of depth O(log L(N)). By using DeMorgan’s law
this result translates to non-monotone measures.

If L(N) > 2, then we can for any natural number α ≤ L(N) find a sub-formula
F of N with the property that α ≤ L(F) < 2α (The reader is urged to work out
the details of this argument). In particular, we choose a sub-formula F such that

⌊1
3
L(N)⌋ ≤ L(F) < 2⌊1

3
L(N)⌋

Let N0 (N1) be the circuit that results from N by replacing the sub-formula F
with a 0 (1), i.e.

N(x) =

{

N1(x) if F (x) = 1
N0(x) otherwise

In addition, it holds that N0(x) ≤ N1(x), since N is monotone.

Define a new Boolean function monotone selection by MONSEL(x, y, z) = xy+z.
It holds that

N(x) = MONSEL(F (x), N1(x), N0(x))

(see figure 5) When used recursively, the method gives a recurrence for the depth
as a function of the size L

D(L) ≤
{

L if L ≤ 2
D(⌈2

3
L⌉) + 2 if L > 2

since L(Ni) ≤ L(N) − L(F) ≤ ⌈2
3
L(N)⌉ for i = 0, 1. The recurrence gives

D(L) = O(log L). ✷

14 2 CIRCUIT MODELS AND COMPLEXITY MEASURES

✡
✡

✡
✡

✡
✡

✡
✡

✡ ✡
✡
✡

✡✡❏
❏
❏

❏❏ ❏
❏

❏
❏

❏
❏

❏
❏

❏ ✡
✡

✡
✡

✡
✡

✡
✡

✡ ✡
✡

✡
✡✡❏

❏
❏

❏❏ ❏
❏

❏
❏

❏
❏

❏
❏

❏

✟✟✟✟✟✟✟✟✟✟✟✟
✡

✡
✡

✡✡ ❏
❏

❏
❏❏

❍❍❍❍❍❍❍❍❍❍❍❍

F N0

1 0

MONSEL

N1

Figure 5: Reduction of formula depth.

Note that the size of the constructed formula is O(L(N)log3/2 3) ≈ O(L(N)2.7).
Using another method (we omit to do so) it is possible, simultaneously, to obtain
circuit depth O(log L(N)) and circuit size linear in L(N).

By expanding a circuit into a formula, we can get a reverse relationship: L(f) =

O(2D(f)). To summarise, we have proven L(f) = 2Θ(D(f)), which means that
depth and formula size are equivalent complexity measures up to a constant
factor for depth and a constant exponent for formula size.

2.5 Depth and circuit size

Since formulas are a special type of circuit, one might naturally ask whether the
result of the last section generalise to circuits with unbounded fan-out. We shall
see a sort of generalised construction in the proof of the following theorem.

Theorem 2.6 (Paterson and Valiant, 1976) For all f ∈ B it holds that

D(f) = O(
S(f)

log S(f)
).

Proof. Let N be a circuit computing the function f . Similar to the construction of
low depth formulas, we try to divide the circuit in two approximately equally large
parts. In the case of formulas, a division was possible such that only a single value
needed to pass from the lower part of the circuit to the upper part of the circuit
during evaluation. Such a division may not be possible for circuits in general.

2.5 Depth and circuit size 15

✲✲
❇
❇
❇
❇❇✂

✂
✂
✂✂

✂
✂

✂
✂✂ ❇

❇
❇
❇❇

❇
❇
❇
❇❇✂

✂
✂
✂✂

✂
✂

✂
✂✂ ❇

❇
❇

❇❇

❏
❏

❏
❏❏✡

✡
✡

✡✡

✂
✂

✂
✂✂ ❇

❇
❇

❇❇ ✂
✂

✂
✂✂ ❇

❇
❇

❇❇ ✂
✂

✂
✂✂ ❇

❇
❇

❇❇ ✂
✂

✂
✂✂ ❇

❇
❇

❇❇
❇
❇
❇
❇❇✂

✂
✂
✂✂

access

11011000

Figure 6: Reduction of circuit depth

However, let us assume that we have somehow got a division where values from k
nodes only in the lower part of the circuit are used in the upper part of the circuit
(we describe later, how to obtain a small k, simultaneously with making the parts
almost equally large). This means that there are in principle 2k distinct outcomes
possible when evaluating the lower part. We shall make a construction, which in
the first step evaluates the upper part for all these 2k possible values in parallel,
simultaneously to finding the actual value of the lower part. In the second step
the value of the lower part is used to select the appropriate result for the entire
circuit (see figure 6). For this purpose, we need a generalised select-function,
namely access defined by access(x0, x1, . . . , x2k−1, yk−1, yk−2, . . . , y0) = x[y], where
[y] denotes the number represented in binary by y. The function access may be
computed by a {+, ·,− }-circuit of depth k + ⌈log k⌉ + 2 (Exercise 2.2).

In the cases, where k cannot be chosen sufficiently small for the construction
using access to reduce depth, it turns out that an appropriate division leads to
small depth by simply first computing the lower part and then afterwards the
upper part.

In either case, the entire method is used recursively on both the lower and upper
parts. The resulting circuit may be enormous in size, but our concern is depth
only.

We will now describe how to find an appropriate division of the circuit. For
technical simplicity, we will assume that the fan-out of any gate is at most 2
(using theorem 2.2), and of course, the fan-in is also at most 2. We need the
concept of an internal wire. An internal wire is simply a wire between two gates
in a given circuit. Let c be the number of internal wires in N . We will look at a
division of N in two parts A and B such that A can be computed before B. Let
a and b be the number of internal wires in A and B, respectively, and let k be
the number of wires between A and B.

16 2 CIRCUIT MODELS AND COMPLEXITY MEASURES

Let us now consider what happens, if we change the A-B division slightly by
moving an arbitrary gate from A to B. The value of a is reduced by at most
2 and the value of b is increased by at most 2, so the value of a − b is reduced
by at most 4. If we start with all gates in A and none in B, and we move all
gates from A to B one by one, then the value of a − b will change from c down
to −c, decreasing no more than 4 in any single step. Therefore, there must be
some intermediate step at which

|a− b| ≤ 2.

Let the corresponding A and B be the division we use in the recursive construc-
tion. Let us first argue intuitively for this choice. If we put e = max(a, b) and
use that a + b + k = c, then we get

c ≤ 2e + k ≤ c + 2.

This means that if k is large, then both A and B have few internal wires im-
plying that they can both be computed by low depth circuits and their direct
combination will also have fairly low depth. If k is small, we can use the access-
construction.

For making a formal analysis, we introduce a function

d(c) =

max{D(f)|f may be computed by a circuit with c internal wires}

The construction using the access-circuit leads to an inequality:

d(c) ≤ max
c≤2e+k≤c+2

(d(e) + k + ⌈log k⌉ + 2) ≤
max

c≤2e+k≤c+2
(d(e) + 2k + 2) ≤

max
1≤e≤ c+2

2

(d(e) + 2(c − 2e) + 6)

Since we may compute f by first computing A and then B, we get a second
inequality

d(c) ≤ max
1≤e≤ c+2

2

2d(e)

2.5 Depth and circuit size 17

When combining the two inequalities, the following recurrence for d results:

d(c) ≤ max
1≤e≤ c+2

2

min{2d(e), d(e) + 2(c− 2e) + 6} (4)

Containing both min and max, (4) looks potentially difficult to solve. However,
it is possible.

We will use that f1 : e 7→ 2d(e) and f2 : e 7→ d(e)+2(c−2e)+6 are increasing and
decreasing functions, respectively (exercise 2.3). For increasing f1 and decreasing
f2 over an interval I , it holds that

max
x∈I

min{f1(x), f2(x)} ≤ max{f1(y), f2(y)} for all y ∈ I .

In our case, this implies

d(c) ≤ max{2d(e0), d(e0) + 2(c− 2e0) + 6} for all e0 ∈ [1, c+2
2

] (5)

At this point, we dare make a qualified guess at a solution:

d(t2t+3 + 3) ≤ 2t+5 for t ≥ 0 (6)

We will show (6) by induction in t. The basis t = 0 is obvious. For the induction
step we use (5) with c = (t + 1)2t+4 + 3 and e0 = t2t+3 + 3

d((t + 1)2t+4 + 3) ≤

max{2d(t2t+3 + 3),

d(t2t+3 + 3) + 2((t + 1)2t+4 + 3− 2(t2t+3 + 3)) + 6} ≤

max{2t+6, 2t+6} = 2t+6

(6) implies that d(c) = O(c/ log c). Since there are at most two internal wires for
every gate in a circuit, we have proven the theorem. ✷

The above theorem is the best known result of its type. Since by proposition 2.1
all functions have depth O(n), the theorem is only interesting for a small size

18 2 CIRCUIT MODELS AND COMPLEXITY MEASURES

range. It is unknown, whether the result is optimal. It is consistent with our
present knowledge if in fact D(f) = O(log S(f)) for all f . Such an improvement
would imply that all computations parallelise well. It is also unknown, whether
the size blow-up in the present construction can be avoided.

Surprisingly, it is known that for almost all functions f that D(f) = O(log S(f))
(without a size blow-up) implying that almost all functions parallelise well. Unfor-
tunately, “almost all” is not known to include any of the relatively few functions
that arise from natural problems. This may appear paradoxical and we discuss
the situation further in section 5.

2.6 The Complexity of Function Families

The introduction of complexity measures puts significance to function families
compared to single functions. Some fixed function f of 7 variables has complexity,
say S(f) = 42, which is not very interesting. However, for a family of functions
{fn} it may hold that S(fn) ≤ 3n2 + n, which is much more enlightening and
allows comparison with other families to improve understanding of the first family.
In addition, we have the possibility of using asymptotic notation when making
statements about {fn}, e. g. S(fn) = O(n2) or S(fn) = 3n2 + o(n2), if we want
greater precision.

We can also form classes of function families by putting restrictions on their
complexity in various complexity measures. Some basic classes are:

• pC, the class of function families that are computed by polynomial size
circuit families. Formally, pC = {{fn}|S(fn) = nO(1)}.

• pF, the class of function families that are computed by polynomial size
formula families. Formally, pF = {{fn}|L(fn) = nO(1)}.

• NCi, the class of function families that are computed by polynomial size
circuit families of depth O(logi n).

From section 2.4 it follows that

Theorem 2.7 pF = NC1 ⊆ pC

We will define more complexity classes as the need arises.

2.7 Projection 19

2.7 Projection

The concept of complexity classes plays an important role in identifying hard
functions. The reader is assumed to be familiar with the theory of NP-comple-
teness (say from dAlg). Recall that every problem in NP reduces to any given
NP-complete problem by a simple reduction such that an efficient solution for the
NP-complete problem implies an efficient solution for all problems in NP. Since
it is widely believed that not all problems in NP are easy, we are lead to believe
that any single NP-complete problem is hard.

Similarly, we do not know whether pC is contained in pF, i.e. whether all func-
tions in pC have good solutions of small depth, but experts in parallel algorithms
would be surprised if that is the case. The full analogy to the NP-completeness
theory could be carried through, if we had a suitable kind of reduction, by which
we could show certain problems to be complete for pC and hence unlikely to
have good parallel solutions (and we have understood why that is so). We need
a reduction that preserves membership of pF.

Definition 2.4 Let f ∈ Bn , g ∈ Bm be two Boolean functions. We say that f
is a projection of g, if

f(x1, x2, . . . xn) = g(σ(y1), σ(y2), . . . , σ(ym)),

where

σ : {y1, y2, . . . , ym} → {0, 1, x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n}.

Example 2.1 + and · are projections of Th2
3, since x + y = Th2

3(1, x, y) and
x · y = Th2

3(0, x, y).

The function f(x, y, z) = x(ȳ + z) is a projection of Th3
4 since f(x, y, z) =

Th3
4(x, x, ȳ, z).

Intuitively, the existence of a projection of g onto f expresses that a chip for g
can be used for computing f in a simple way (see figure 7).

Definition 2.5 Let {fn}, {gn} be families of functions. We say that {fn} is a
projection of {gn}, if for all n there exists an m such that fn is a projection of
gm. The family {gn} is said to be universal for a class of families C, if for all
{fn} ∈ C it holds that {fn} is a projection of {gn}.

20 2 CIRCUIT MODELS AND COMPLEXITY MEASURES

✻ ✻ ✻ ✻

✻ ✻ ✻

✻

Projektion

x(y + z)

Chip for Th
3

4

x x y z

x y z

Figure 7: Chip construction by projection

Intuitively, chips for members of universal families are general purpose chips that
are capable of computing many different functions. Consider the example

DNFn2(x) =
n
∑

i=1

n
∏

j=1

xij

Since every function has a DNF-expression, we see that DNF is universal for B.
However, for most functions occurring in practice, it would be rather inefficient to
use a DNF-chip for their computation. To deal with this problem, we introduce
restricted versions of projection and universality.

Definition 2.6 Let {fn}, {gn} be families of functions. We say that {fn} is a
p-projection of {gn} ({fn} ≤p {gn}), if there exists a polynomial q, such that for
all n there is an m ≤ q(n) such that fn is a projection of gm. The family {gn}
is said to be p-universal for a class of families C, if for all {fn} ∈ C it holds
that {fn} ≤p {gn}. If, in addition, it holds that {gn} ∈ C, we say that {gn} is
p-complete for C.

p-projection turns out to be the proper type of reduction, since the class pF is
closed under p-projections (the composition of two polynomials is a polynomial).

2.8 Bases with unlimited fan-in 21

Hence, when a problem is p-complete for pC, it can not be in pF unless pF = pC.
We will see examples of such problems later. The concept of projection was
introduced by Skyum and Valiant (1985).

2.8 Bases with unlimited fan-in

Our favourite basis {+, ·,− } and all other bases we have seen so far are finite.
However, an infinite basis is conceivable and for some purposes more appropriate
than a finite one.

Definition 2.7 Let +n be the function in Bn that takes the OR of n variables,
i.e. +n(x1, . . . , xn) = x1+x2+. . .+xn. Similarly, let ·n be the AND of n variables
and define the basis U = {−, +2, ·2, +3, ·3, . . .}.

A circuit over U is a circuit of unbounded fan-in. We shall later make a corre-
spondence between such circuits and the CRCW-model of parallel computations
(see section 4).

There are functions (such as OR of n variables) that have size O(n) in the basis
{+, ·,− }, but have size O(1) in U . However, there is a bound to the possible
discrepancy between the two size measures.

Theorem 2.8 For all f ∈ Bn it holds that S(f) ≤ n(SU(f))2

Proof. Exercise 2.6. ✷

For depth the situation is different.

Theorem 2.9 For all f , DU (f) ≤ 3.

Proof. The DNF-expression for f can be implemented as a fan-in 2n OR of fan-in
n AND’s. ✷

Since the size over U is significantly less than the size over the standard basis, and
the depth measure is trivialised, one might think that the concept of unbounded
fan-in is ill-conceived. However, when one limits depth and size simultaneously,
an interesting complexity measure results. Allowing less than exponential size,
it is not clear how to compute all functions in constant depth. In fact, the best
result known is

22 2 CIRCUIT MODELS AND COMPLEXITY MEASURES

Theorem 2.10 Let f ∈ Bn be a function that is computed by an ordinary circuit
of size s and depth d. For every ǫ, f is computed by a U-circuit of size O(snǫ)
and depth O(⌈d/ log log n⌉).

Proof. Partition C into d layers C1, C2, . . . Cd such that no gate in layer j takes
input from a gate in layer k if k ≥ j. Group the layers into blocks with b =
1
2
log log n consecutive layers in each block. A gate in some block may be regarded

as computing a function of at most 2b gates in previous layers or inputs. Such a
function has a DNF-expression, which is computed by a U-circuit of depth 2 and
size 22b

+ 1, the latter value being o(nǫ) for every ǫ. We may replace the original
gate with this unbounded fan-in circuit. This is done for all gates in the original
circuit. The resulting depth is twice the number of layers. ✷

In general, this construction is optimal. However, the proof is non-trivial and we
defer it till section 5

We will in the later sections use a few complexity classes defined in terms of
U-circuits.

Definition 2.8 Let ACi be the class of function families that are computed by a
family of U-circuits of polynomial size and depth O(logi n).

Let T be the basis {−}∪{Thn+1
2n }n≥1. Let TCi be the class of function families that

are computed by a family of T -circuits of polynomial size and depth O(logi n).

TC0 may be regarded as the class of functions that can be computed by artificial
neural networks (of the type currently used). We will later see (exercise 2.7 and
section 3), that NCi ⊆ ACi ⊆ TCi ⊆ NCi+1.

2.9 Branching Programs

To make a precise combinatorial characterisation of the machine resource space
(in section 4), we will need a new model.

Definition 2.9 Let n be a natural number. A (nondeterministic) branching pro-
gram is a directed graph where edges are labelled either “true”, “xi = 0” or
“xi = 1”, for some 1 ≤ i ≤ n, and the graph has two nodes labelled s and t,
respectively.

2.9 Branching Programs 23

The program computes the function fn ∈ Bn defined by

fn(x) =

1 if there is a path from s to t labelled
with true assertions about x, exclusively,

0 otherwise

A branching program is deterministic, if (i) every node has at most two outgoing
edges, and if (ii) there is two outgoing edges from a node v, they must be labelled
xi = 0 and xi = 1 (for some i), respectively.

Note that for a deterministic branching program it is possible to decide the ex-
istence of a path without backtracking. A deterministic branching program may
be regarded as a generalisation of decision trees, since a decision tree can be con-
certed into a deterministic branching program by adding edges labelled “true”
from all leaves labelled “true” to a new node designated t.

We can define a new complexity measure based on branching programs. It turns
out to be related to a measure defined in terms of projections.

Definition 2.10 We define the complexity measure B(f) to denote the size (num-
ber of nodes) of the smallest branching program computing f ∈ B.

Given a universal family {gm}, let the projection complexity Cg(f) of f with
respect to {gm} be the minimum m such that f is a projection of gm.

Theorem 2.11 (B(f))2 = CPATH(f)

Proof. One may claim that the theorem holds per definition: If f is a projection
of DPATHn2 , then we can from the projection directly construct a branching
program with n nodes for f , and conversely. ✷

Corollary 2.12 A family {fn} of Boolean functions has polynomial size branch-
ing programs if and only if {fn} is a p-projection of DPATH.

If a family {fn} of Boolean functions has polynomial size branching programs
then {fn} ∈ AC1.

Proof. The first part is immediate from the previous theorem. For the second
part, we provide an argument: By exercise 2.8, DPATH ∈ AC1, and by exercise
2.9, AC1 is closed under p-projections. We conclude that functions with poly-
nomial size branching programs are in AC1 (and therefore have small depth).
✷

24 2 CIRCUIT MODELS AND COMPLEXITY MEASURES

Exercises

Exercise 2.1 Find S(Eq{1,2}
5),D(Eq{1,2}

5) and L(Eq{1,2}
5).

Exercise 2.2 Show that the access-function can be computed within the asserted
depth.

Exercise 2.3 Show that the functions 2d(e) and d(e) + (c− 2e) + 6 in the proof
of theorem 2.6 are monotone as asserted. (Hint: show that d(e) ≤ d(e + 1) ≤
d(e) + 1).

Exercise 2.4 Formulate and prove monotone variants of theorems 2.4 and 2.6.

Exercise 2.5 Let f ∈ Bn. The dual function to f , f∗, is defined by

f∗(x1, x2, . . . , xn) = f(x̄1, x̄2, . . . , x̄n)

f is called self dual, if f∗ = f .

1. Find the dual function to Th2
3(x, y, z).

2. Find f∗∗, (fg)∗ and (f + g)∗.

3. Show that f → f∗ is a bijection on the sets B, MON and SYM.

4. Let S = {−,Th2
3}. Show that the set of functions definable by S-expressions

without the use of the constants 0, 1 coincides with the set of self dual func-
tions.

5. Let S̃S(f) (D̃S(f)) denote minimum size (depth) of an S-circuit (that does
not use the constants 0, 1) for f . Show that for self dual f it holds that
S̃S(f) = O(S(f)) and D̃S(f) = O(D(f)).

Exercise 2.6 Prove theorem 2.8.

Exercise 2.7 Show that ACi ⊆ TCi.

Exercise 2.8 Show that DPATH ∈ AC1.

2.9 Branching Programs 25

Exercise 2.9 Show that ACi is closed under p-projection.

Exercise 2.10 Let brackets be the family of functions, defined by brackets2n(x) =
1, if and only if x is a correctly balanced string of parentheses, when 0 represents
a left parenthesis and 1 represents a right parenthesis.

Show that brackets ∈ TC0.

Exercise 2.11 For every constant k > 0, let AC0
k be the class of function families

that can be computed by a U-circuit of depth ≤ k. It holds that AC0
k 6= AC0

k+1

(this may be assumed without proof).

Show that AC0 can not have a p-complete family.

Exercise 2.12 Show that pF has a p-complete family.

Literature

1. Lupanov, O. B. (1958) A Method of Circuit Synthesis. Izv. V. U. Z. Ra-
diofiz. 1, 120–140.

2. Paterson M. S. and Valiant, L. G. (1976) Circuit Size is Nonlinear in Depth.
Theoretical Computer Science 2, 397–400.

3. Skyum S. and Valiant, L. G. (1985) A Complexity Theory Based on Boolean
Algebra. Journal of the ACM 32, 484–502.

4. Spira, P. M. (1971) On Time-Hardware Complexity Trade-offs for Boolean
Functions. In Proceedings 4th Hawaii International Symposium on System
Sciences, 525–527.

26 3 CONSTRUCTIONS I

3 Constructions I

In the first part of this section, we describe the construction of efficient circuits
for addition of binary numbers. Such circuits are fundamental – one can hardly
imagine a computer without some hardwired addition function. We will need the
circuits in section 4, when simulating Turing machines and in the present section
they are used for efficient computation of general symmetric functions.

In the second part we look at efficient computation of functions that are both
monotone and symmetric. They can be computed efficiently as any other symmet-
ric function using the standard {+, ·,− }-basis. It is more difficult to find efficient
circuits when we restrict ourselves to use a monotone basis (binary addition is no
longer applicable). We construct monotone solutions based on sorting networks,
and we prove the existence of small monotone formula by a (non-constructive)
probabilistic method. With this knowledge one might conjecture that if a mono-
tone problem has an efficient general solution (using negation) then it also has
an efficient monotone solution, but such a conjecture is known to be false. We
are later going to prove super-polynomial lower bounds for monotone solutions
to some monotone problems (see section 7).

3.1 Addition of two numbers

Let n ∈ {1, 2, ..}, x = (xn−1, . . . , x1, x0) and y = (yn−1, . . . , y1, y0). We define
[x] =

∑n−1
i=0 xi2

i, i.e. [x] is the natural number with binary representation x.
Conversely, if t < 2n is a natural number then bn(t) is the n-bit binary represen-
tation of t. The addition function addn ∈ B2n,n+1 is given by

[addn(x, y)] = [x] + [y], x, y ∈ {0, 1}n.

In this section we will determine the complexity of the addition function by
constructing a series of addition circuits.

3.1.1 Method 1

The most obvious construction is perhaps a simulation of the “school” method
for adding numbers. Let z = addn(x, y). We may compute z by the following
algorithm.

z ← addn(x, y) :

3.1 Addition of two numbers 27

c0 ← 0
for i := 0 to n− 1 do

zi ← xi ⊕ yi ⊕ ci

ci+1 ← Th2
3(xi, yi, ci)

od

zn ← cn

Figure 8 illustrates an execution of the algorithm. In the algorithm, ci denotes

i 5 4 3 2 1 0

ci 1 0 0 1 1 0
xi − 1 0 0 1 1
yi − 1 1 0 0 1

zi 1 0 1 1 0 0

Figure 8: The “school” method for addition

the carry at the i’th position. The program may be unfolded into a straight line
program of size O(n) and depth O(n) over an arbitrarily chosen complete basis.
The size is obviously optimal:

Proposition 3.1 S(addn) = Θ(n)

3.1.2 Method 2

In section 2 it was shown that any function of n variables has depth at most
n + ⌈log n⌉, and therefore the depth of the construction in method 1 gives us no
interesting information. We want to improve this depth.

Since ci+1 depends on ci it seems necessary to compute ci before computing ci+1,
which inevitably results in depth Ω(n). However, we may use the fact that a
carry can take only two distinct values. Let addcn ∈ B2n+1,n+1 be given by

[addcn(x, y, c)] = [x] + [y] + [c], x, y ∈ {0, 1}n, c ∈ {0, 1}.

An addcn circuit may be projected into an addn circuit by giving c the value 0.
We are going to construct a shallow circuit for addcn using divide and conquer.

We want to compute z = addcn(x, y, c). Let xright = (x⌊n/2⌋−1, . . . , x0), xleft =
(xn−1, . . . , x⌊n/2⌋) and let yright be yleft defined similarly.

28 3 CONSTRUCTIONS I

Define zright = addcn(xright, yright, c), zleft,0 = addcn(xleft, yleft, 0) and
zleft,1 = addcn(xleft, yleft, 1). It holds that

zi =

{

zright

i for 0 ≤ i < ⌊n/2⌋
sel(zright

⌊n/2⌋, zleft,1
i−⌊n/2⌋, zleft,0

i−⌊n/2⌋) for ⌊n/2⌋ ≤ i ≤ n

This suggests a recursive construction of a circuit for addcn (note the similarity
to the proof of theorem 2.5). Let sn and dn denote the size and depth respectively
of this circuit. We find that

sn = 2s⌊n/2⌋ + s⌈n/2⌉ + O(n),
dn = max(d⌊n/2⌋, d⌈n/2⌉) + O(1).

These recurrences have the solutions sn = O(nlog2 3) and dn = O(log n). Since,
obviously, D(addn) = Ω(log n) we also have that

Proposition 3.2 D(addn) = Θ(log n)

By the use of dynamic programming, the construction may be improved to give
a circuit of size O(n log n) and depth O(log n) (Exercise 3.1).

3.1.3 Method 3 (Carry-look-ahead)

We have determined S(addn) and D(addn), but so far we have not managed
to construct a single family of circuits that are optimal with respect to both
measures. If such a family did not exist, we would say that addn had a size-depth
trade-off. However, such a family does exist as we shall see.

The bottleneck is the computation of the carry bits. Once we know all the ci’s we
may compute z by a circuit of size O(n) and depth O(1). In order to understand
how a carry ci+1 from position i is determined, it is helpful to distinguish three
types of positions.

• Both xi and yi are 0. In this case ci+1 = 0, independent of the value of ci.
We call i a C-position (carry clear).

• Precisely one of xi and yi is 1. In this case ci+1 = ci, and we call i a
P-position (carry propagate).

3.1 Addition of two numbers 29

i 5 4 3 2 1 0

ci 1 0 0 1 1 0
xi − 1 0 0 1 1
yi − 1 1 0 0 1

vi − S P C P S
zi 1 0 1 1 0 0

Figure 9: Values of vi

◦ C P S

C C C C
P C P S
S S S S

Figure 10: (M, ◦)

• Both xi and yi are 1. In this case ci+1 = 1, independent of the value of ci.
We call i an S-position (carry set).

Let M denote the set of symbols {C, P, S}. To any pair of inputs x, y we attach
a vector v ∈Mn such that vi denotes the type of position i (see figure 9).

v alone determines all the carry bits and the following theorem is the basis for
the carry-look-ahead method.

Theorem 3.3 Let the composition ◦ : M2 → M be given by the table in figure
10. (M, ◦) is a semi group (i.e. ◦ is associative). Let v be defined as above and
let

mi = (vi−1 ◦ vi−2 ◦ vi−3 ◦ · · · ◦ v0) ◦ C

It holds that

ci =

{

0 if mi = C
1 if mi = S

Proof. Exercise 3.2. ✷

This means that we have reduced addition to a prefix computation in a finite
semigroup M : Given v1, . . . , vn ∈M , compute a = prefixn(v), where ai =

∏i
j=1 vj,

30 3 CONSTRUCTIONS I

i = 1, . . . , n. In the statement of theorem 3.3 we use suffixes, but it is more usual
to talk about a prefix problem (which is clearly computationally equivalent).
Note that the prefix problem is not a Boolean problem, and a solution consists in
a circuit (using ◦-gates) that works for all semigroups M . However, for a concrete
semigroup the elements can be represented by bit vectors, and the ◦-gates can
be represented by small constant size Boolean circuits, giving rise to a Boolean
solution.

By using the abstract semigroup formulation of the prefix problem, we get a
solution that can be used for other problems besides addition (see exercises).

In the sequel it is assumed that n is a power of 2. prefixn(v) is computed by a
recursive algorithm:

a← prefix(v) :
z ← prefixn/2(v1 ◦ v2, v3 ◦ v4, . . . , vn−1 ◦ vn)
a1 ← v1

for i := 1 to n/2− 1 do

a2i← zi

a2i+1 ← zi ◦ v2i+1

od

an ← zn/2

The algorithm may be unfolded into a circuit of size sn and depth dn, where

sn = sn/2 + n− 1
dn = dn/2 + 2
s2 = 1
d2 = 1

The recurrences imply that sn = 2n− log2 n − 2 and dn = 2 log2(n) − 1, and we
get:

Theorem 3.4 For n a power of 2, prefixn is computed by a circuit of size sn < 2n
and depth dn < 2 log2 n.

Corollary 3.5 addn is computed by a circuit of size O(n) and depth O(log n).

Proof. The result follows from theorem 3.4 and the construction of exercise 3.3.
✷

3.2 Addition of many numbers 31

3.2 Addition of many numbers

Let x1, . . . xr be r bit vectors of length n. Define addmr,n ∈ Brn,n+⌈log r⌉ by

[addmr,n(x
1, . . . , xr)] =

r
∑

i=1

[xi]

Corollary 3.5 and a divide and conquer approach results in a circuit of size O(rn)
and depth O(log r log n), when n ≥ log r. The size is optimal, but the depth may
be improved by the carry-save construction.

Lemma 3.6 There exists a circuit of size O(n) and depth O(1) that when input
x, y, z ∈ {0, 1}n outputs u, v ∈ {0, 1}n+1 such that

[u] + [v] = [x] + [y] + [z]

Proof. The basic idea is the following: When adding 3 bits the result is 0, 1, 2 or
3 which can be represented by 2 bits only. Formally:

ui = xi ⊕ yi ⊕ zi, 0 ≤ i ≤ n− 1
un = 0
v0 = 0
vi+1 = Th2

3(xi, yi, zi), 0 ≤ i ≤ n − 1

✷

The circuit of the lemma reduces a addmr,n-problem to a addm⌈2r/3⌉,n+1-problem.
By iterating this construction, we get a problem of type addm2,n′ that may be
solved using corollary 3.5. Let the size and depth of the final solution be sr,n and
dr,n. We get the recurrences

sr,n = s⌈2r/3⌉,n+1 + O(rn)
s2,n = O(n)
dr,n = d⌈2r/3⌉,n+1 + O(1)
d2,n = O(log n)

that leads to

Theorem 3.7 The addmr,n-function may be computed by a circuit of size O(rn)
and depth O(log r + log n).

32 3 CONSTRUCTIONS I

3.3 Symmetric functions

Let f = EqM
n be a symmetric function. We intend to find an upper bound for

the complexity of f . As noted in section 1 the value of a symmetric function is
determined by the number of 1-bits in the input, i.e. the value is determined by
the function countn ∈ Bn,⌊logn⌋+1 defined by

[countn(x)] = |{i|xi = 1}|.

countn is the addition of n 1-bit numbers, and according to theorem 3.7, it is
computed by a circuit of size O(n) and depth O(log n).

Given the binary representation of a number t ≤ n we still have to construct a
circuit that decides whether t ∈M . Since M can be any subset of {0, 1, 2, . . . , n},
we need a general construction for any function f ∈ Bm, where m = ⌈log2 n⌉+1.
By theorem 2.4, any function in Bm can be computed by a circuit of size O(2m/m)
and depth O(m).

Theorem 3.8 All functions in SYMn are computed by circuits of size O(n) and
depth O(log n).

Corollary 3.9 Every function in SYMn has a formula of size O(nO(1)).

Binary sorting, SORTn ∈ Bn,n, is a particularly interesting symmetric problem
given by

SORTn(x) = (Thn
n(x),Thn−1

n (x), · · · ,Th1
n(x))

Though theorem 3.8 does not apply (SORTn has n outputs) it is the case that
SORTn is computed by a circuit of size O(n) and depth O(log n) (see exercise
3.19), which is optimal.

Since both threshold functions and binary sorting are monotone, we could also
ask for their complexities over the monotone basis {+, ·}. For this purpose, we
introduce comparator networks, which have traditionally been used for describing
solutions to the sorting problem.

3.4 Comparator Networks 33

✻

✻

✻

✻

✻

(a)
input output

x1

x2

x3

x4 (1 : 2)
(3 : 4)
(1 : 3)
(2 : 4)
(2 : 3)

(b)

✻

✻

✻

✻

input output

4

2

1

✻3

(c)

2

4

1

3

1

2

3

4

1

2

3

4

Figure 11: Comparator network computing SORT4

3.4 Comparator Networks

By a comparator network we mean a circuit whose gates are comparators COMP ∈
B2,2, where

COMP(x, y) = (xy, x + y) = (min(x, y), max(x, y)).

The fan-out of each output from a comparator must be one, and we may draw
a comparator network as illustrated in figure 11(a) that shows a network with 4
horizontal wires corresponding to 4 inputs (and 4 outputs). A gate is represented
by a vertical arrow between two wires. The input comes on the wires to the
left of the gate and the output is emitted on the wires to the right with the
minimum value at the point of the arrow and the maximum value at the root of
the arrow. Figure 11(b) shows the equivalent straight line program, where the
notation (i : j) represents an arrow from wire j to wire i.

Definition 3.1 A sorting network with n inputs is a comparator-network that
computes SORTn.

It holds that:

Proposition 3.10 (0-1 principle) A sorting network can be used to sort ele-
ments from an arbitrary ordered set (S, <), when the COMP-gate is replaced by
a gate, that computes (min(s1, s2), max(s1, s2)) for inputs s1, s2 ∈ S.

Proof. Exercise 3.22. ✷

34 3 CONSTRUCTIONS I

The 0-1-principle essentially states that a (straight line) program for sorting over
some ordered set by comparison, is correct if and only if it sorts all (0, 1) sequences
(of the proper length) correctly. Figure 11(c) illustrates sorting of the vector
(4, 2, 1, 3).

We introduce the usual complexity measures:

Definition 3.2 For a function fm
n : Bn → Bm, SC(fm

n) and DC (fm
n) denotes

the smallest size and depth respectively of any comparator network that computes
fm

n .

Observe that Sm(f) ≤ 2 · SC(f) and Dm(f) ≤ DC(f).

The usual efficient sorting algorithms have time complexity O(n log n), and we
could reasonably expect the same bound to hold for sorting networks. In fact it
does, but the result is highly nontrivial. None of the classical sorting algorithms
with time complexity O(n log n) leads to straight line programs. As an example,
consider insertion sort (using binary search). It leads to a program that branches
dependent on the result of earlier comparisons.

The existence of a sorting network of size O(n log n) and depth O(log n) was
proven by Ajtai, Komlôs and Szemeredi (1983). The constants hidden in the
O(·)-notation are astronomic, so the result is of theoretical interest only. Paterson
(1990) later reduced the constants to be “just” enormous.

We will here present a relatively simple network of size O(n log2 n) and depth
O(log2 n).

3.4.1 Merging Networks

The basic idea underlying merge sort is very simple. When given n elements (for
technical simplicity, we will assume that n is a power of 2), we divide the inputs
in two groups, which are sorted recursively (in parallel), and the final result is
computed by a merging network:

Definition 3.3 A merging network is a comparator network that computes SORTn

when the inputs (x, y) are both sorted and |x| = |y| = n
2
.

Lemma 3.11 (Batcher) There exists a merging network of size n
2

log n
2
+1 and

depth log n.

3.4 Comparator Networks 35

Proof. For the description of the network we use the notation:

vodd = (v1, v3, v5, . . . , v2k−1) and veven = (v2, v4, v6, . . . , v2k),

for v = (v1, v2, v3, . . . , v2k).

The network is based on the following algorithm:

merge(x, y)
{ INVARIANT: x, y are both sorted and |x|, |y| = n

2
}

if n = 2 then return COMP(x1, y1);
else

do in parallel

zodd := merge(xodd, yodd
);

zeven := merge(xeven, y
even

);
od;
for i := 1 to n

2
− 1 do in parallel

(w2i, w2i+1) := COMP(z2i, z2i+1);
od;
w1 := z1; wn := zn;
{INVARIANT: w = SORTn(x, y)};
return w;

fi;
end

We need to prove that the algorithm performs a merge correctly. We may assume
that x = 02i+δ1

n
2
−2i−δ and y = 02j+ǫ1

n
2
−2j−ǫ, where i, j ∈ {0, 1, . . . , n

2
} and δ, ǫ ∈

{0, 1}. Let γ = δ + ǫ ∈ {0, 1, 2}.

The result of the recursive calls to merge is z = 02(i+j)+γ1n−2(i+j)−γ if γ ∈ {0, 1},
and the result is z = 02(i+j)+1101n−2(i+j)−3 if γ = 2.

The sorted vector w is therefore computed from z by possibly swapping the values
at positions z2(i+j+1) and z2(i+j+1)+1.

All branching and loops in the algorithm depend on n only, so the algorithm may
be unfolded into a straight line program (merging network) for any given n.

The size of the network satisfies S(n) = 2S(n
2
) + n

2
− 1 and S(2) = 1, giving

S(n) = n
2

log n
2

+ 1. The depth satisfies D(n) = D(n
2
) + 1 and D(2) = 1, giving

D(n) = log n. ✷

Batcher’s construction is usually named odd-even-merge and it leads to

36 3 CONSTRUCTIONS I

Theorem 3.12 It is possible to construct a sorting network of size n
4

log2 n −
n
4

log n + n− 1 and depth 1
2
log2 n + 1

2
log n.

Proof. Merge sort based on odd-even-merge leads to recurrences for the size of
a sorting network: S(n) ≤ 2S(n

2
) + n

2
log n

2
+ 1 and S(2) = 1. Similarly for

depth: D(n) ≤ D(n
2
) + log n and D(2) = 1. The theorem follows from solving

the recurrences. ✷

Note that the sorting network in figure 11 is constructed using odd-even-merge.

It is possible to merge n elements using only n−1 comparisons, when branching is
allowed, but for straight line programs odd-even-merge is essentially optimal. Let
M(n) denote the minimum size of a merging network with n inputs. Miltersen,
Paterson and Tarui (1992) have shown that M(n) ≥ n

2
log n

2
−O(n). We present

a slightly weaker result with a simpler proof:

Theorem 3.13 (Floyd) M(n) ≥ n
4
log 2n.

Proof. Let C be an optimal merging network. Using the result of exercise 3.23,
we may assume that C takes the two sorted input vectors x and y in the following
fixed permutation: z = (x1, y1, x2, y2, x3, y3, . . . , xn

2
, yn

2
), i.e. zodd = x and zeven =

y.

We divide the comparators in C in three groups:

C1 = {(i : j) | 1 ≤ i, j ≤ n

2
}

C2 = {(i : j) | n

2
< i, j ≤ n}

C3 = {(i : j) | i ≤ n

2
< j or j ≤ n

2
< i}

Consider all possible inputs x, y ∈ {0, 1}n
4 1

n
4 . On such inputs no comparator in

C2 or C3 makes any swapping, so all the work is done by comparators in C1, which
therefore must form a complete merging network on n

2
input, i.e. |C1| ≥ M(n

2
).

By a symmetric argument we have that |C2| ≥M(n
2
).

A correct merge of x = 0
n
2 and y = 1

n
2 requires that |C3| ≥ n

4
.

In total, we have shown the recurrence M(n) ≥ 2M(n
2
)+ n

4
and M(2) = 1, which

implies the theorem. ✷

3.4 Comparator Networks 37

✻

✻

✻

✻

✻

✻

✻

✻
(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

✻
(1,0)

output

(1,0)

(1,0)

(1,0)

(2,1)

(2,1)

(2,1)

(1,0)

(1,0)

(1,0)

(3,2)

(3,2)

(3,2)

(1,0)

(1,0)

(1,0)

(4,3)

(4,3)

(4,3)

input

Figure 12: (l, m)-values for splitting network (n = 6)

3.4.2 Splitting Networks

One may sort by repeated merging, but it is also possible to sort by repeated
splitting. One starts by dividing the input into two groups containing the n

2

smaller elements and the n
2

larger elements, respectively. The two groups are
sorted recursively (in parallel).

Definition 3.4 A splitting network is a comparator network that when input
z ∈ {0, 1}n computes a permutation (x, y) of z, such that |x| = |y| = n

2
and xi ≤ yj

for all i, j. (The output from a splitting network is not uniquely determined).

By computing the median, we can construct a non straight line program of size
O(n) that splits the input, but for straight line programs, Jimbo and Maruoka (ca.
1993) have the so far best construction of size < 1.9n log n and depth O(log n).
This is optimal within a constant factor, since:

Theorem 3.14 A splitting network with n inputs has size at least

n

2
⌈log(

n

2
+ 1)⌉.

Proof. Given a splitting network, we may label each wire by a pair of numbers
(l, m), as follows (figure 12 shows an example where n = 6):

The l-value of a wire is the minimum possible number of 0’s in an input vector
that can make the wire transport the value 0.

For input wires the l-values are all 1, and for a correct splitting network the lower
n
2

output wires have l ≥ n
2

+ 1.

38 3 CONSTRUCTIONS I

If the l-values of the wires into a given gate (i : j) are li and lj, respectively, and
the l-values out of the gate are l′i and l′j, respectively, then

l′i = min(li, lj)

and

l′j ≤ li + lj.

The last inequality is proven in exercise 3.24.

The m-value for a wire is defined inductively: The input value of an input wire
is 0. If the m-values before a gate (i : j) are mi and mj, respectively, then
the m-values after the gate are m′

i = min(mi, mj) and m′
j = max(mi, mj) + 1,

respectively.

Note that the sum of the m-values on the output wires is equal to the number of
gates in the network.

By induction one may prove the following connection between l-values and m-
values on any single wire:

l ≤ 2m.

For a correct splitting network, we have: At least n
2

of all l-values on output wires
must be ≥ n

2
+1, and therefore at least n

2
of the m-values on output wires must be

≥ ⌈log(n
2

+ 1)⌉, which implies that the network has size at least n
2
⌈log(n

2
+ 1)⌉.

✷

3.4.3 Thk
n for fixed k

A comparator network for SORTn includes a comparator network for Thk
n for all

k. A better construction is possible for fixed k:

Theorem 3.15 Assume that n and k are powers of two. For fixed k it holds that
SC(Thk

n) ≤ n(log k + 1) + o(n)

Proof. The first published proof is due to Yao (1980). Compared to this proof, we
are going to use a less efficient construction and be rather careless in our analysis,
but that has only implications for the size of the o(n)-term.

3.4 Comparator Networks 39

We will solve a more general problem by constructing a comparator network that
computes SORTk

n(x) = (Thk
n(x),Thk−1

n (x), · · · ,Th1
n(x)).

The construction is described by a recursive algorithm:

function SORTk
n(x)

if k = 1 then return the largest element in x.
if k = n then return SORTn(x).
if 2 ≤ k ≤ n

2
then

for i ∈ {1, 2, . . . , n
2
} do (yi, yi+n/2) := COMP(xi, xi+n/2)

return MERGEk
k/2,k(SORT

k/2
n/2(y1, y2, · · · , yn/2),

SORTk
n/2(yn/2+1, yn/2+2, · · · , yn)).

end

For k = 1, we have that SC(SORT1
n) = n− 1, since the result depends on all the

inputs.

For k = n, we use a sorting network, and by theorem 3.12 we have SC(SORTn
n) ≤

n log2 n.

For 1 < k < n, we start by making n
2

comparisons. As a result at least k
2

of
the k largest elements are placed in (yk/2+1, yk/2+2, . . . , yk). Hence, it suffices to
merge the result of the two recursive calls that are specified in the algorithm.
MERGEk

n,m finds the k largest elements in two sorted input lists of length n and

m. It holds that SC(MERGEk
k/2,k) ≤ k log k (see exercise 3.27).

In total we get a recurrence for s(n, k) = SC(SORTk
n)

s(n, 1) = n− 1

s(n, n) ≤ n log2 n

s(n, k) ≤ n

2
+ s(

n

2
,
k

2
) + s(

n

2
, k) + k log k for 2 ≤ k ≤ n

2

We solve it by guessing a solution

s(n, k) ≤ n(log k + 1) + k log2 k

(

log n
log k

)

40 3 CONSTRUCTIONS I

and verify the correctness of this guess by induction: The induction basis, i.e.
the values s(n, 1) and s(n, n) are obviously correct. For the induction step we
need a calculation:

s(n, k) ≤

n

2
+ s(

n

2
,
k

2
) + s(

n

2
, k) + k log k ≤

n

2
+

n

2
(log k) +

k

2
(log k − 1)2

(

log n− 1
log k − 1

)

+

n

2
(log k + 1) + k log2 k

(

log n− 1
log k

)

+ k log k ≤

n(log k + 1) + k log2 k

(

log n
log k

)

Since (logn
logk) is vanishingly small compared to n (for fixed k !) we have proven the

theorem. ✷

The lower bound technique for splitting networks can also be used to show the
optimality of the construction in theorem 3.15 (up to a lower order term):

Theorem 3.16 SC(Thk
n) ≥ (n− k)⌈log k + 1⌉.

Proof. Exercise 3.28 ✷

3.5 Threshold Functions

From sorting networks of depth O(log n) it is possible to construct polynomial
size formulae (over the monotone basis {+, ·}) for threshold functions, but the
huge constants hidden under the “O” leads to an equally huge exponent.

Valiant (1984) has proven the existence of much smaller formulae by a proba-
bilistic argument. In this section, we present a simplified (and slighter weaker)
version of his result.

3.5 Threshold Functions 41

.
.

❤❤❤❤❤❤❤❤❤❤❤❤❤❤

✭✭✭✭✭✭✭✭✭✭✭✭✭✭

✑
✑

✑✑

◗
◗

◗◗

✑
✑

✑✑

◗
◗

◗◗

✑
✑

✑✑

◗
◗

◗◗

❆❆✁✁❆❆✁✁❆❆✁✁❆❆✁✁❆❆✁✁❆❆✁✁❆❆✁✁❆❆✁✁ ✁✁ ❆❆

Figure 13: A Th2
3 formula in A3

We know that {Th2
3} is a complete basis for MON. We are going to show that the

majority function MAJ = {Thm+1
2m+1} has a small formula over this basis, which

implies the existence of small {+, ·}-formulae for MAJn and Thk
n for all n, k.

Let n = 2m + 1 be fixed in the following.

Let Ad be the set of all totally balanced formulae of depth d over Th2
3 with

input from {x1, x2, · · · , xn}. Assume that F is a random formula in Ad and let
c ∈ {0, 1}n be fixed. Let

fd = Pr(F (c) 6= MAJ(c)).

We have a recurrence for fd (F1, F2 and F3 are random formulae in Ad):

fd+1 = Pr(Th2
3(F1(c), F2(c), F3(c)) 6= MAJ(c)) =

f3
d + 3f2

d (1− fd) = 3f2
d − 2f3

d

and

f0 = Pr(ci 6= MAJ(c)) ≤ m

2m + 1
=

1

2
− 1

2n

The graph of 3x2 − 2x3 is drawn in figure 14. It shows that fd → 0 for d →∞,
i.e. for sufficiently large d we have that F = MAJn with high probability and
therefore Ad contains a formula that computes MAJn.

Being more precise, for fd < 2−n we have that

Pr(F = MAJn) ≥ 1−
∑

c

Pr(F (c) 6= MAJn(c)) > 1− 2n2−n = 0

In the sequel we are going to analyse how large d must be to ensure that fd < 2−n.

Note that 3x2 − 2x3 has fixed points at 0, 1
2

and 1.

If fd = 1
2
− ǫ then fd+1 = 3(1

2
− ǫ)2 − 2(1

2
− ǫ)3 = 1

2
− 3

2
ǫ + O(ǫ2). This implies

that for all 0 < γ < 3
2

there exists an ǫ0 > 0 such that

fd ≤ 1
2
− ǫ⇒ fd+1 < 1

2
− γǫ

42 3 CONSTRUCTIONS I

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 14: The function 3x2 − 2x3

for 0 < ǫ < ǫ0. This means that fd < 1
2
− γd 1

2n
provided γd 1

2n
< ǫ0 or d <

logγ ǫ0 + logγ 2n, which implies that fd0(n) < 1
2
− ǫ0 after d0(n) = logγ n + O(1)

steps. Given an arbitrary constant 0 < α < 1
2
− ǫ0, we find that fd0(n)+d1 < α

after an additional d1 = O(1) steps, since 1
2
− ǫ0 is a constant (independent of n).

α will be fixed later.

After an additional j steps, we have that fd0(n)+d1+j < 32j
α2j

, since fd+1 < 3f2
d .

We want to obtain fd0(n)+d1+j < 2−n. This holds if (3α)2j
< 2−n or if 2j log2(3α) <

−n, which requires that log2(3α) < 0 or 3α < 1. Therefore, let α = 1
6
. For such

choice of α we find that fd0(n)+d1+j < 2−n, when j > log2 n.

Combined we see that logγ n+log2 n+O(1) = O(log n) iterations suffice to reduce

f to 2−n. This implies that there exists a Th2
3-formula of depth O(log n) and size

O(nO(1)) that computes MAJn.

When substituting γ = 3
2
, we find that the depth is bounded by 2.71 log2 n and

the size is bounded by O(32.71 log2 n) = O(n4.49).

One may transform this result to the basis {+, ·} and prove the existence of a
{+, ·}-formula of size O(n8.13) for MAJn.

3.5 Threshold Functions 43

Valiant (1984) builds a proof on the basis (x + y)(z + v) ∈ B4 rather than Th2
3.

The analysis is similar to ours, but more complicated. In return, the result
is stronger. Valiant proves the existence of a {+, ·}-formula of size O(n5.3) for
MAJn. Boppana (1989) has shown that this result is the best possible for such
proof technique.

Exercises

Exercise 3.1 Improve the construction of the addcn-circuit using dynamic pro-
gramming to get a circuit of size O(n log n) and depth O(log n).

Exercise 3.2 Prove theorem 3.3 using the observations stated prior to the theo-
rem.

Exercise 3.3 Describe a Boolean representation of the semigroup from theorem
3.3 and show how a solution of the prefix computation problem leads to a solution
of the Boolean addn-problem.

Exercise 3.4 Prove the correctness of the prefix computation algorithm.

Exercise 3.5 Draw the prefix computation circuit for n = 16.

Exercise 3.6 Due to the general applicability of the prefix circuit, we are in-
terested in reducing the size of the constant factors occurring in the complexity
bound. A possible trade-off between the size constant and the depth constant would
also be interesting. Can you reduce the depth constant (while increasing the size
constant)?

Exercise 3.7 Show that the function lessn ∈ B2n defined by

lessn(x, y) =

{

1 if [x] ≤ [y]
0 if [x] > [y]

, x, y ∈ {0, 1}n

is computed by a circuit of size O(n) and depth O(log n).

44 3 CONSTRUCTIONS I

Exercise 3.8 Show that the function monusn ∈ B2n,n defined by

[monusn(x, y)] =

{

[x]− [y] if [x] ≥ [y]
0 if [x] < [y]

, x, y ∈ {0, 1}n

is computed by a circuit of size O(n) and depth O(log n).

Exercise 3.9 Show that addition is in AC0. How much can you reduce the size?

Exercise 3.10 The prefix circuit requires that the operation is associative. A
different construction avoids this condition. Let ✷ be some (not necessarily as-
sociative) binary operator on a finite set M , and assume that the elements of M
have some fixed Boolean representation.

1. Show the existence of a Boolean circuit of size O(n) and depth O(log n) that
when input x1, x2, . . . xn ∈ M computes x1, x1✷x2, (x1✷x2)✷x3, Hint:
The relevant semigroup is M = {τ : M → M} with composition of func-
tions as the semigroup operation.

2. Let L be a regular language over a finite alphabet Σ (so the strings over
Σ have a natural Boolean representation). Show the existence of a family
of circuits of size O(n) and depth O(log n) that decides membership of L.
(This implies that all regular languages are in NC1.)

Exercise 3.11 Let f ∈ Bn be the function

f(x1, x2, . . . , xn) = x1(x2 + (x3(x4 + (x5(. . . xn . . .)))))

Show that f is computed by a circuit of size O(n) and depth O(log n).

Exercise 3.12 Show that the function {brackets2n} (see exercise 2.10) is com-
puted by a circuit of depth O(log n) and size O(n log n).

Exercise 3.13 Show using a simple divide and conquer approach that addmr,n is
computed by a circuit of size O(rn) and depth O(log r log n) when n ≥ log r.

The multiplication function multn ∈ B2n,2n is defined by

[multn(x, y)] = [x][y], x, y ∈ {0, 1}n.

3.5 Threshold Functions 45

Exercise 3.14 The “school” method for multiplication of two numbers x and y
uses the identity

xy =
n−1
∑

i=0

xiy2i (assuming that x =
∑n−1

i=0 xi2i).

Show using addmr,n that multn is computed by a circuit of size O(n2) and depth
O(log n).

Exercise 3.15 Show using a divide and conquer approach that multn is computed
by a circuit of size O(nlog2 3) and depth O(log2 n). Hint: Given the numbers a, b, c
and d one may compute bd, ac and ad + bc using only 3 multiplications.

The techniques of exercises 3.14 and 3.15 are asymptotically inferior to a tech-
nique using fast Fourier Transform:

Theorem 3.17 multn is computed by a circuit of size O(n · log n · log log n) and
depth O(log n).

Proof. Omitted ✷

It is currently unresolved whether multn is computed by a circuit of size O(n).

Exercise 3.16 The positional notation for t, (0 ≤ t ≤ n), pn(t) is the binary
string (xn, . . . , x0), where

xi =

{

0 if i 6= t
1 if i = t

Let bpm ∈ Bm,2m where bpm(x) = p2m([x]) be the function that converts a number
from binary to positional notation. Show that bpn is computed by a circuit of size
O(2n) and depth O(log n)

Exercise 3.17 Let t be a natural number 0 ≤ t ≤ n. The unary notation for t,
un(t), is the binary string (yn, . . . , y1), where

yi =

{

0 if t < i
1 if t ≥ i

Let pun ∈ Bn,n−1 be the function that converts a number from positional to unary
notation. Show that pun is computed by a circuit of size O(n) and depth O(log n).

46 3 CONSTRUCTIONS I

Exercise 3.18 Let pb2m ∈ B2m,m be the function that converts a number from
positional notation to binary notation. Show that pb2m is computed by a circuit
of size O(2m) and depth O(m).

Exercise 3.19 Show that SORTn is computed by a circuit of size O(n) and depth
O(log n).

Why is this result not inconsistent with the lower bound Ω(n log n) on the sequen-
tial time for sorting (proven in the course dAlg)?

Exercise 3.20 Show by a single argument that the circuits from theorem 3.4,
corollary 3.5, theorem 3.7, exercise 3.16, exercise 3.17, exercise 3.18 and exercise
3.19 all are size and depth optimal (up to a constant factor).

Exercise 3.21 Show that the existence of a (comparator based) sorting network
of size s and depth d implies the existence of a ({+, ·}-based) circuit for binary
sorting of size 2s and depth d.

Exercise 3.22 Show proposition 3.10

Exercise 3.23 Show that if there exists a merging network C that sorts the input
x, y provided that each of x and y are sorted in advance, then there also exists a
network C ′ that sorts the input vector
(x1, y1, x2, y2, x3, y3, . . . , xn

2
, yn

2
) provided that each of x and y are sorted in ad-

vance, and C ′ has the same size and depth as C.

Exercise 3.24 Show that l′j ≤ li + lj as asserted in the proof of theorem 3.14.

Exercise 3.25 Show that the existence of a sorting network C implies the exis-
tence of a sorting network C ′ where all gates (i : j) satisfy that i < j, and C ′ has
the same size and depth as C.

Exercise 3.26 Show that a splitting network can be made from only n
2

gates, if
the input is known to be in the form (x, y), where x and y are both sorted.

Exercise 3.27 A sequence x1, x2, . . . , xn is bitonic if there exists j such that
x1 ≥ x2 ≥ x3 ≥ · · · ≥ xj and xj ≤ xj+1 ≤ · · · ≤ xn.

3.5 Threshold Functions 47

1. Construct a comparator network of size n
2

log n and depth log n that com-
putes SORTn assuming that the input x is a bitonic sequence. (Hint: xodd

and xeven are also bitonic).

2. Show the bound SC(MERGEk
k/2,k) ≤ k log k that was used in the proof of

theorem 3.15.

Exercise 3.28 Prove theorem 3.16.

Exercise 3.29 For fixed k, find a bound for Sm(Thk
n).

Exercise 3.30 Let negn be the n-fold negation function defined by

negn(x1, . . . , xn) = (x̄1, . . . , x̄n)

The object of this exercise is to show that negn can be implemented over the basis
{+, · ,̄ } using only ⌊log n⌋ + 1 negation gates.

1. Appreciate for a moment how surprising this result really is.

2. Construct the circuit from the following components:

(a) Binary sorting without the use of negation (exercise 3.21).

(b) Unary to binary conversion of the sorted bits, while computing the
inverse binary representation as well.

(c) Binary to positional conversion of the result.

(d) Binary sorting of the n vectors

(x2, x3, . . . , xn), (x1, x3, x4, . . . , xn), . . . , (x1, x2, . . . , xn−1).

(e) Combination of the results from pt. 2c and pt. 2d.

3. Find the size and depth of the circuit (in terms of n).

4. Draw the circuit for n = 3.

5. Show that the result implies that every function on n variables can be com-
puted using only ⌊log n⌋+ 1 negation gates.

48 3 CONSTRUCTIONS I

Exercise 3.31 The halting problem K takes for input the name of a Turing
machine T with an input x and reports whether T stops on x. It is well known
that K is not solvable by a Turing machine. Fortunately, in a small village near
Copenhagen, there lives an old man that can solve instances of K using divine
inspiration. You have three instances of the Halting problem for which you want
an answer. You can only afford to pay the old man for two answers. What can
you do ?

Literature

1. Ajtaj, M., Komlós, J. and Szemerédi, E. (1983) An O(n log n) Sorting Net-
work. Combinatorica 3, 1–19.

2. Boppana, R. (1989) Amplification of Probabilistic Boolean Formulas. In
Advances in Computing Research 5: Randomness and Computation, Micali,
S., ed., JAI Press, 27–45.

3. Jimbo, S. and Maruoka, A. (ca. 1993), A Method of Constructing Selection
Networks with O(log n) Depth. Unpublished Manuscript.

4. Miltersen P. B., Paterson M. and Tarui, J (1992), The Asymptotic Com-
plexity of Merging Networks. Proc. 33rd Ann. IEEE Symp. Foundations
of Computer Science, 236–246.

5. Paterson, M. (1990) Improved Sorting Networks with O(log N) Depth. Al-
gorithmica 5.

6. Valiant, L. G. (1984) Short Monotone Formulae for the Majority Function.
Journal of Algorithms 5, 363–366.

7. Yao, A. C. (1980) Bounds on Selection Networks. SIAM Journal on Com-
puting 9, 566–582.

49

4 Machine Models and Boolean Circuits

In the first chapters, we presented a model of computation based on Boolean
circuits. From other courses you should be familiar with abstract machines such
as the Turing Machine (TM) and the Random Access Machine (RAM). One
might expect a close relationship between complexity measures defined in terms
of machines and circuits, respectively, since the hardware of existing machines
are based on Boolean circuits and it is possible to simulate a Boolean circuit with
software. Indeed, we shall see that sequential time correspond to circuit size, and
parallel time correspond to circuit depth. More surprisingly, space is related to
depth as well.

To establish the above correspondences, we introduce a nonuniform machine
model. First of all we remind the reader of Turing Machine complexity mea-
sures.

4.1 Turing Machines

The Turing Machine consists of a finite control unit and an infinite tape with a
tape head (for technical simplicity we use a machine with one tape only).

The control unit can be in any state taken from a finite set Q.

The non blank portion of the tape is finite and is described as a string over the
alphabet Γ = {0, 1, #}. The Turing Machine can read and write to the tape cell
currently below the tape head.

A configuration is a tuple (q, t, h), where q is a state, t is the contents of the tape,
and h is the position of the tape head. The dynamics of the Turing machine is
described by a partial transition function δ : Q × Γ → Q × ({L, R} ∪ Γ). If in
the current configuration the Turing Machine is in state q and the character α
is below the tape head, then δ(q, α) decides the next possible configuration of
the machine. The first component specifies the state of the finite control. The
second component either specifies movement of the tape head a single cell to the
left (L) or right (R) or specifies a new symbol (γ ∈ Γ) to be written under the
tape head, which remains on the spot.

The are three special states, the initial state, the accept state and the reject state.
δ is undefined in the accept or reject states.

Let L ⊆ {0, 1}n be a language. We say that M recognises L, if the machine
reaches an accept state when started in on an input x ∈ L and halts in the reject

50 4 MACHINE MODELS AND BOOLEAN CIRCUITS

state, when started on an input y 6∈ L. The machine is started on an input
x ∈ {0, 1}n by letting the tape initially contain #x1x2 . . . xn### . . ., with the
tape head positioned over the blank symbol immediately to the left of x1. The
control unit is placed in the initial state.

A nondeterministic Turing Machine is defined similarly to a deterministic one,
apart from allowing δ to be a relation. The machine accepts an input x, if there
exists a possible computation that accepts x.

Measuring the time usage of a Turing Machine is fairly straight forward. Mea-
suring the space usage is more subtle. It seems natural to count the number of
tape cells that the Turing Machines touches, but since it has to read all of the
input, it would necessarily use linear space with this measure.

Instead we let the Turing Machine have two tapes.

• A read-only tape, where the input is placed. The machine is not allowed
to write on this tape and the tape head can not leave the part of the tape,
where input is written.

• A work-tape for general use.

The two heads move independently, as specified by the control unit. The space
usage on such an off-line Turing Machine is measured by the number of cells on
the work tape that are scanned by the work tape head during a computation.

Definition 4.1 P (NP) is the class of languages that can be recognised by a
(nondeterministic) Turing Machine using polynomial time.

L (NL) is the class of languages that can be recognised by a (nondeterministic)
Turing Machine using logarithmic space.

4.2 Uniformity and nonuniformity

Usual machine models are uniform in that a single finite program must work for
all input sizes. As a consequence some problems have no programs. They are
undecidable. In contrast every problem (language L ∈ {0, 1}∗) can be solved
(decided) by a nonuniform family of Boolean circuits.

It is even possible to construct an undecidable problem with a trivial nonuniform
solution: Let H be an arbitrary undecidable language, and let s0, s1, s2, . . . be

4.3 Time and Size 51

an effective enumeration of {0, 1}∗. Let H∗ be defined by x ∈ H∗ if and only if
s|x| ∈ H. Since H reduces to H∗ (by an effective though not polynomial time
reduction), H∗ is undecidable. For every n, H∗ is constant on {0, 1}n such that
S(H∗

n) and D(H∗
n) are both O(1).

The example shows us that if we want to establish a tight relationship between
circuit based and machine based complexity measures, we must either make a
uniform version of the circuits or a nonuniform version of the machines. Both
approaches have been taken in the literature. We choose a variant of the latter.

Definition 4.2 A nonuniform Turing Machine is a family of Turing Machines
{Tn}, one for each input size such that the number of states in Tn is nO(1).

P/poly (NP/poly) is the class of languages that can be recognised by a nonuniform
(and nondeterministic) Turing Machine using polynomial time.

L/poly (NL/poly) is the class of languages that can be recognised by a nonuniform
(and nondeterministic) Turing Machine using logarithmic space.

In general all complexity classes comes in both a uniform version and a nonuni-
form version. However, for technical simplicity, we phrase the relations between
machine complexity measures and circuit complexity measures in the coming
sections in terms of polynomial time and logarithmic space only.

There is quite some disagreement between complexity theorists whether the uni-
form models or the nonuniform models are the more fundamental. Protagonists
of nonuniformity argue that the simplicity of the circuit model will make it easier
to develop new techniques for proving nontrivial lower bounds. As we shall see in
later sections, their has indeed appeared new techniques for proving lower bounds
in nonuniform models in recent year. One should keep in mind, though, that di-
agonalisation, a successful technique for separating complexity classes, works only
for uniform models.

4.3 Time and Size

In this section we shall establish that a machine of polynomial time complexity
corresponds to a polynomial size circuit family, speaking nonuniformly.

We use the Turing Machine. Corresponding results for the Random Access Ma-
chine is contained in exercises 4.6 and 4.7.

52 4 MACHINE MODELS AND BOOLEAN CIRCUITS

We identify a language L with the family of characteristic functions {Ln ∈ Bn},
where Ln(x) = 1 if and only if x ∈ L. We can ask for the size and depth of L.

Theorem 4.1 Let T be a deterministic Turing Machine that recognises a lan-
guage L. If T stops within t(n) steps on any input of size n then S(Ln) =
O(t(n)2).

The theorem was first shown by Savage (1972) and later improved by Pippenger
and Fischer (1979) to S(Ln) = O(t(n) log t(n)).

Proof. We start by giving a suitable Boolean encoding of a T -configuration. The
state of the control unit is represented by a sufficiently large bit vector q. Since
T halts within t(n) steps, it can touch no more than t(n) cells to the right of
the initial head position. Hence, it suffices to represent the t(n) + 1 first tape
cells. Let the contents of these be a string τ , and represent τ by the bit vector
t = γ(τ), where γ is defined by γ(0) = (0, 0), γ(1) = (1, 1), γ(#) = (0, 1) and γ
is extended to strings in the natural manner (by homomorphism). The position
of the head is represented by a vector a holding the binary representation of a
number between 1 and t(n) + 1. Combined the three vectors represent a unique
configuration. Let < k > denote the representation of configuration k. We intend
to implement a Boolean function

next(q, t, a) = (q′, t′, a′)

such that next(< k >) =< l >, if the configuration following k is l. If k is a
halted configuration then next(< k >) =< k >. For the implementation of next
we need a few auxiliary functions. Let accessn ∈ Bn+⌈log n⌉,1 as in the proof of
theorem 2.6. In exercise 4.3, it is shown that accessn can be computed by a circuit
of size O(n) and depth O(log n). Let modifyn ∈ Bn+⌈log n⌉+1,n be defined by

modifyn(y, a, b) = z

where

|a| = ⌈log n⌉, b ∈ {0, 1},

y = y1y2 · · · yn,

z = z1z2 · · · zn

4.3 Time and Size 53

and

zi =

{

yi if i 6= [a]
b if i = [a]

modify describes writing at a specified address in a store of 1-bit words similar
to the way access describes reading. In exercise 4.3 it is shown that modifyn can
be implemented by a circuit of size O(n) and depth O(log log n).

We sketch a circuit for next:

1. Read the current symbol below the tape head by using 2 copies of the circuit
for access (since each symbol on the tape is represented by two bits).

2. Based on what is read and the current state, compute the following values:

• The new symbol below the tape head.

• The new state.

• The value d ∈ {−1, 0, 1} that must be added to the address of the
tape head.

3. 2 copies of the circuit for modify compute the new tape value, while an
add-circuit adds δ to the head address. (See section 3 for the construction
of an add-circuit).

Point 1 is implemented by a circuit of size O(t(n)), point 2 by a circuit of size
O(1), and point 3 by a circuit of size O(t(n)). next may also be computed by a
circuit of size O(t(n)). In total, we have built the following circuit for Ln:

z ← Ln(x) :

v0 ← “Representation of the initial configuration with input x”
for i := 1 to t(n) do

vi← next(vi−1)
od

z ← “The truth value of: Is vi an accepting configuration”

Since the first step may be implemented by a circuit of size O(t(n)) and the
last step by a circuit of size O(1), we find, that Ln can be computed by a circuit
of size O(t(n)2). ✷

Corollary 4.2 P ⊆ pC

54 4 MACHINE MODELS AND BOOLEAN CIRCUITS

By using nonuniform Turing Machines, we can get a reverse inclusion

Theorem 4.3 P/poly = pC

Proof. ⊆ is proven similarly to the proof for uniform machines. ⊇ is shown by
letting Turing Machine Tn have a built-in program that simulates the n’th circuit
in a polynomial size family of circuits for {fn}. Such a built-in program (repre-
sented in a finite control of polynomial size) can be constructed using techniques
from dAlg. See exercise 4.5 for details. ✷

4.4 Space and Depth

This section establishes a close (and perhaps surprising) connection between the
space usage necessary to compute a function and the depth complexity of the
same function. For the proof we use branching programs.

Theorem 4.4 Let T be a (possibly nondeterministic) Turing Machine that recog-
nises a language L. If T uses at most s(n) cells on the work tape for any input of
size n, where s(n) ≥ log(n), then Ln is computed by a branching program of size
2O(s(n)). If the Turing Machine is deterministic, so is the branching program.

Proof. Let n be fixed. A semi-configuration is a 3-tuple containing the contents of
the s(n) cells used on the work tape, the state of the control unit, and the positions
of the two heads. For a fixed input x, the semi-configuration determines a com-
plete configuration. A semi-configuration is described by O(s(n)) + O(log n) =
O(s(n)) bits. Hence, there are at most 2O(s(n)) distinct semi-configurations.

Let V be the set of semi-configurations and let v ∈ V . When the machine
is in semi-configuration v, the input head is in a position iv determined by v.
Combined v and the symbol in input cell iv determines which semi-configurations
can follow from a single transition step of the machine.

We define a directed graph with nodes V , where edges are marked by subsets of
{0, 1, #}: The symbol α is included in the mark on edge (v, w) if and only if the
machine can make the transition from v to w, when the input head reads symbol
α.

From this graph and knowledge of the initial semi-configuration s and knowledge
of the set of accepting semi-configurations F , we have sufficient information to
simulate the Turing Machine on all inputs of size n.

4.4 Space and Depth 55

Actually, we do not need the symbol # when marking the edges. On the input
tape, symbol # occurs in positions 1 and n + 1, but nowhere else. Hence, we
know in advance, for which semi-configurations the input head reads a # and for
which it does not. We may therefore assume that all markings are reduced to be
subsets of {0, 1}.

We can transform the graph to a branching program. If an edge out of v is
marked {0}, we will write the mark as “xiv = 0?”. Similarly, if an edge out of v
is marked {1}, we will write the mark as “xiv = 1?”. If an edge is marked {0, 1},
we will write the mark as “true”, but if an edge is marked ∅, we will remove the
edge from the graph. By possibly adding a single node with incoming edges from
accepting semi-configurations, we can assume that F consists of a single node t.

The constructed branching program computes Ln. ✷

To get the reverse inclusion, we need to work with nonuniform Turing Machines:

Theorem 4.5 L ∈ NL/poly if and only if L has polynomial size branching pro-
grammes.

Proof. The proof of ⇒ is similar to the proof of 4.4. Concerning ⇐: We may
implement a branching program by a nondeterministic program that uses a sin-
gle variable to hold the current position of the input head. This variable needs
O(log n) bits (space). The finite control unit holds the current node of the branch-
ing program, and guesses nondeterministically which edge of the branching pro-
gram to follow in the next step. The legality of this step is checked by moving
the input head to the appropriate position, and reading the symbol under the
head. ✷

This theorem characterises space complexity in terms of branching program com-
plexity. Using a result of section 2.9 we can make a direct connection between
space and depth.

Theorem 4.6 NC1 ⊆ L/poly ⊆ NL/poly ⊆ AC1

Proof. NC1 ⊆ L/poly: Let L ∈ NC1 be a family of circuits {Cn}. The circuit Cn

gives rise to an equivalent polynomial size, logarithmic depth formula in reverse
Polish notation. The program of Turing Machine Tn evaluates this formula by
means of the usual stack algorithm. On the work tape the machine maintains
the current stack and the current position of the input head.

NL/poly ⊆ AC1: By the previous theorem and corollary 2.12 ✷

56 4 MACHINE MODELS AND BOOLEAN CIRCUITS

Combined with the result of the next section theorem 4.6 can be seen as a con-
firming example of the “Parallel Computation Thesis” that asserts the equivalence
of sequential space and parallel time (up to polynomial blowup/shrinking).

4.5 Parallel Time and Depth

As a model for parallel computation, we use the PRAM known from the dAlg
course. As in the case of Turing Machines, we will need a nonuniform version to
state our result:

Theorem 4.7 A language L can be recognised on a nonuniform priority CRCW
PRAM using polynomially many processors in time O(logi n) if and only if L ∈
AC i.

Proof. See exercise 4.8. ✷

4.6 Probabilistic Machines and non-uniformity

There are problems that we can solve efficiently using a randomised algorithm,
and yet no efficient deterministic solution is known.

In this section, we characterise problems having an efficient probabilistic solution,
and we show that such problems are computed by a (nonuniform) family of small
circuits. One interpretation of this result is that randomisation is a discount
version of nonuniformity.

Definition 4.3 A polynomial time probabilistic Turing Machine (PTM) M that
accepts a language L with error probability ǫ is a nondeterministic TM, where

1. M has precisely two possible transitions from every non-halting configura-
tion.

2. There exists a polynomial p such that every computation on input x has the
same length p(|x|) (and ends in a halted accept or reject configuration).

3. If x ∈ L then at most a fraction ǫ of all the 2p(|x|) distinct computations on
input x leads to a reject. Symmetrically, if x 6∈ L then at most a fraction ǫ
of the distinct computations on input x leads to an accept.

4.6 Probabilistic Machines and non-uniformity 57

Let BPP (Bounded away from 1
2

Probabilistic Polynomial time) denote the class
of languages that are accepted by a PTM with error probability ǫ < 1

2
.

BPP is our formalisation of the fuzzy concept “problems that have an efficient
randomised solution.

The error probability can be made exponentially small efficiently, also in cases
where the given probabilistic algorithm has an error probability close to 1

2
.

Lemma 4.8 If L ∈ BPP is accepted by a PTM M with error probability ǫ < 1
2

in time p(n), then for every k there exists a PTM M ′ that accepts L with error
probability δ = 2−k in time O(k · p(n)).

Proof. A machine M ′ is constructed to simulate M repeatedly, m times, for some
odd number m. Among the m results, accept/reject, M ′ selects the most frequent
one. We can bound the error probability for M ′:

Pr(M ′ fails) ≤

∑

j>m
2

(

m
j

)

ǫj(1− ǫ)m−j ≤

2mǫ
m
2 (1− ǫ)

m
2 ≤

(4ǫ(1− ǫ))
m
2

Finally, (4ǫ(1− ǫ))
m
2 < 2−k provided

m >
2k

log(1
4ǫ(1−ǫ)

)
= O(k)

✷

Randomisation is no stronger than nonuniformity:

Theorem 4.9 (Adleman, 1978) BPP ⊆ P/poly.

58 4 MACHINE MODELS AND BOOLEAN CIRCUITS

Proof. Let L ∈ BPP. According to lemma 4.8, for every k, we can find a PTM M
that accepts Lk = L∩ {0, 1}k in time O(k · p(k)) with error probability < 2−k−1.

There are 2k distinct inputs, x1, x2, . . . , x2k ∈ {0, 1}k, of length k. For each
such input of length k, there are 2O(k·p(k)) distinct computations in M . These
computations may be represented uniquely (and efficiently) with the 2O(k·p(k))

distinct bit strings, y1, y2, . . . , y2O(k·p(k)), of length O(k · p(k)).

We can imagine (don’t construct it!) a 0, 1-matrix with a row for each xi and a
column for each yj, where the i, jth entry contains a 1 if and only if the compu-
tation represented by yj leads to the correct answer for input xi.

Since the error probability of M is at most 2−k−1, the fraction of 0’s in any matrix
row is upper bounded by the same value 2−k−1. Hence, by a counting argument,
there exists at least one matrix column (say the cth corresponding to bit string
yc), where the fraction of 0’s is also upper bounded by 2−k−1. However, there are
precisely 2k entries in every column including the cth which implies that the cth
column contains 1’s only. Hence the bit string yc represents a computation that
leads to the correct answer for all the 2k distinct inputs.

We construct a Turing Machine Tk that have the string yc built into its finite
control, and on any input (of length k) it simulates the single computation of M
represented by yc.

This can be done for all input sizes k and results in a nonuniform Turing Machine
{Tk} that accepts L in polynomial time. ✷

Primality testing is the prototypical example of a problem with a good ran-
domised solution, and no (known) efficient deterministic solution:

Definition 4.4 Let compositen ∈ Bn be defined by

compositen(x) =

{

1 if [x] is a composite number
0 if [x] is a prime number

Theorem 4.10 (Rabin,1980) {compositen} ∈ BPP

Proof. The algorithm is based on an algebraic result, which we state without
proof.

Let m ≥ 3 be an odd number. Let k, r be defined by m = 2k · r + 1 and r is
odd. Let W (x) be the predicate “xr ≡ 1 mod m or x2ir ≡ −1 mod m for some
i ∈ {0, 1, 2, . . . , k − 1}”.

4.6 Probabilistic Machines and non-uniformity 59

For composite m it holds that

Pr
x∈{1,2,3,...,m−1}

(W (x)) ≤ 1

4

and for prime m it holds

Pr
x∈{1,2,3,...,m−1}

(¬W (x)) = 0

✷

Rabin’s test is used a lot in practice. Lemma 4.8 means that a few independent
tests can reduce the error probability substantially.

The proofs of lemma 4.8 and theorem 4.9 means that for a fixed input length n,
there exists O(n) x-values such that the knowledge of W (x) on these O(n) values
determines the primality of x. The computer algebra system Maple used in an
early version a deterministic “primality test”, based on computing W (x) for the
5 specific values x = 2, 3, 5, 7, 11. Actually, this suffices to decide the primality
of m correctly, for all m less than approximately 1010, but it does not give the
correct answer for all m.

By putting space restrictions on randomised algorithms one obtains a variant of
theorem 4.9:

Theorem 4.11 If L ∈ BPP is accepted by a PTM with error probability ǫ < 1
2

in space O(log n), then L ∈ L/poly

Proof. See exercise 4.9. ✷

We will show a space efficient randomised solution to a problem, for which all
known deterministic solutions use super logarithmic space.

Definition 4.5 Let UPATH(n
2) ∈ B(n

2) be defined by

UPATH(n
2)(x) =

1 if the undirected graph with
incidence matrix represented by x
has a path from node 1 to node n.

0 otherwise

60 4 MACHINE MODELS AND BOOLEAN CIRCUITS

Theorem 4.12 (Aleliunas, Karp, Lipton, Lovász, Rackoff, 1979) UPATH
is accepted by a PTM with error probability ǫ < 1

2
in space O(log n).

Proof. The algorithm is based on the following idea: If a random walk starting
from node 1 along the edges of the graph continues for sufficiently many steps
(say s steps), it will with high probability pass through node n, provided nodes
1 and n are in the same connected component.

To implement such a random walk, we would need log s space to count the number
of edges traversed so far and log n space to remember (the number of) the current
node.

To compute the relevant probabilities, we use a Markov chain {X0, X1, . . .}, where
Xi ∈ {1, 2, . . . , n} denotes the number of the node being visited at time i. For
technical simplicity, we will assume that the random walk starts at a random
node (We return later to the case X0 = 1):

Pr(X0 = u) =
1

n
for all u

The transition probabilities are:

Pr(Xi+1 = u | Xi = v) =

1
n

if (u, v) is an edge in the graph.

1− deg(v)
n

if u = v.
0 otherwise

By induction, it follows that Pr(Xi = u) = 1
n

for all u and i:

Pr(Xi+1 = u) =
∑

v

Pr(Xi+1 = u | Xi = v) · Pr(Xi = v) =
1

n

Hence, for every edge (u, v) in the graph:

Pr(Xi+1 = v, Xi = u) = Pr(Xi+1 = v | Xi = u) · Pr(Xi = u) =
1

n2

i.e. the probability that the random walk uses a given edge at a given time in a
given direction is 1

n2 . Hence, the expected time between two crossings of a given
edge in a given direction is n2. Hence, if we presently stand at one end of the

4.7 Nondeterministic Circuits 61

edge, the expected time until we stand at the other end of the edge is at most
n2:

E(min
j

Xi+j = u | Xi = v, “there is an edge (u, v)”) ≤ n2

Since a shortest path from node 1 to node n has length < n, we get:

E(min
i

Xi = n | X0 = 1, “there is a path from 1 to n”) ≤ n3

If a random walk starts at node 1 and continues for 4n3 steps with transition
probabilities as above then the following holds:

If there is a path from node 1 to node n, then

Pr(The random walk does not pass node n) ≤ 1

4

If there is not a path from node 1 to node n, then

Pr(The random walk does pass node n) = 0

✷

Corollary 4.13 UPATH ∈ L/poly

4.7 Nondeterministic Circuits

When relating space to depth, we got a quadratic slack that hides the difference
between deterministic and nondeterministic space measures.

For time we suspect that there is much more than quadratic difference between
deterministic and nondeterministic measures. We have so far only related deter-
ministic time to circuit size. By introducing nondeterminism explicitly into the
circuit model, we can formulate a correspondence to nondeterministic time:

Definition 4.6 A nondeterministic circuit N that computes a function f ∈ Bn

is a circuit with inputs x1, . . . , xn, y1, . . . , ym (for some m) such that

∀x ∈ {0, 1}n.[f(x) = 1⇔ ∃y ∈ {0, 1}m.N(x, y) = 1]

62 4 MACHINE MODELS AND BOOLEAN CIRCUITS

y1, . . . , ym are called nondeterministic variables.

pD denotes the class of function families {fn} that are computed by nondeter-
ministic circuit families of size nO(1).

Theorem 4.14 NP/poly = pD

Proof. Exercise 4.10 ✷

Exercises

Exercise 4.1 Show that the following problems are in NL: UPATH, UCON,
CYC, 2C, where

• UPATH decides whether there is a path from node 1 to n in an undirected
graph, when the incidence matrix is given as input.

• UCON decides whether an undirected graph is connected, when the incidence
matrix is given as input.

• CYC decides whether a directed graph has a cycle, when the incidence ma-
trix is given as input.

• 2C decides whether an undirected graph can be 2-node-coloured, when the
incidence matrix is given as input.

Exercise 4.2 Show that a deterministic Turing Machine using space s(n) can
be simulated by a nondeterministic Turing Machine using space O(s(n)2). Hint:
Use divide and conquer.

Exercise 4.3 Show that modifyn is computed by a circuit of size O(n) and depth
O(log log n), and show that accessn is computed by a circuit of size O(n) and
depth O(log n).

Exercise 4.4 Suggest another representation of Turing Machine configurations
that allows the next-function to be computed by circuits of size O(n) and depth
O(1) (compared to depth O(log n)). Hint: Use locality.

Exercise 4.5 Fill in the missing details in the proof of theorem 4.3

4.7 Nondeterministic Circuits 63

Exercise 4.6 A RAM (random access machine) consists of

• A memory with s cells, each holding log s bits. s depends polynomially on
the size of the input to the RAM.

• Two registers, named the address register and the data register, each holding
log s bits.

• A finite program that consists of a sequence of instructions at the machine
language level. Instructions are elementary arithmetic, indirect addressing
in the memory though the address register, conditional jumps, etc. The
program is placed in ROM (read only memory).

1. Describe how the RAM-model can be formalised so it makes sense to state
and prove properties of it.

2. Argue that the time spent by an optimal RAM to solve a problem corresponds
to the time taken by an optimal algorithm (in the more fuzzy notion of time
measure introduced at first part courses).

3. Show that if a language L is recognised by a RAM in time O(t), then
S(Ln) = O(ts log t).

4. Show that if a language L is recognised by a RAM in time O(t), then
S(Ln) = O(t2 log2 t). Hint: When s > t, we can reduce memory usage
by accepting a logarithmic slow down.

Exercise 4.7 A RAM is oblivious, if

• The line number (location in the program) of the instruction being executed
at a given time depends only on the size of the input.

• If the RAM at a given time reads or writes to a cell a in the memory, then
the address of a depends on the size of the input (and the given time) only.

1. Give natural examples of oblivious RAM’s.

2. Show that if a language L is recognised by an oblivious RAM in time O(t),
then S(Ln) = O(t log t).

64 4 MACHINE MODELS AND BOOLEAN CIRCUITS

Exercise 4.8 A priority CRCW-PRAM is a RAM with polynomially many num-
bered processors that execute private programs synchronously. Several processors
may read the same cell from memory simultaneously. If several processors write
to the same cell simultaneously, the resulting contents of the cell will be the value
written by the processor with the lowest number. It is not allowed for two proces-
sors to simultaneously read and write in the same cell.

• Show that if a CRCW-PRAM can recognise a language in constant time,
then the language is in AC0.

• Show that if a language is in AC0, then it is recognised by a nonuniform
CRCW-PRAM in constant time.

• Prove theorem 4.7.

Exercise 4.9 Show theorem 4.11.

Exercise 4.10 Show theorem 4.14

Literature

1. Karp, R. M. and Lipton, R. J. (1982), Turing Machines that Take Advice.
L’Enseignement Mathematique 28, 191–209.

2. Goldschlager, L. M. (1982), A Universal Interconnection Pattern for Parallel
Computers. J. Assoc. Comput. Mach. 30, 1073–1086.

3. Pippenger, N. and Fischer, M. J. (1979), Relations Among Complexity
Measures. J. Assoc. Comput. Mach. 26, 361–381.

4. Savage, J. E. (1972), Computational Work and Time on Finite Machines.
J. Assoc. Comput. Mach. 19, 660–674.

5. Adleman, L. (1978), Two Theorems on Random Polynomial Time. Proc.
19th Ann. IEEE FOCS, 75–83.

6. Aleliunas, R., Karp, R. M., Lipton, R. J., Lovász, L and Rackoff, C. (1979),
Random Walks, Universal Traversal Sequences and the Complexity of Maze
Problems. Proc. 20th Ann. IEEE FOCS, 218–223.

7. Rabin, M. O. (1980), Probabilistic Algorithm for Testing Primality. J.
Number Theory 12, 128–138.

65

5 Lower Bounds I

We start by showing exponential lower bounds on the complexity of almost all
Boolean functions using a simple counting argument phrased in terms of Kol-
mogorov complexity.

For specific functions in NP no such bounds are known. The best techniques
give only linear and logarithmic lower bounds on size and depth respectively. We
present Nechiporuk’s technique and the substitution technique for the full binary
basis B2 and Krapchenko’s technique for the basis {−, ·, +}.

Since all efforts to prove super logarithmic lower bounds on depth for specific
functions have failed, attention has been given to separate problems within NC1.
We know that AC0 ⊆ NC1, and a by now classic result states that in fact AC0 6=
NC1. Several proofs are known, and we present an algebraic one.

Much stronger lower bounds for monotone circuits are presented in section 7.

5.1 Lower bounds for almost all functions

In section 1, we stressed the fact that a description method may often be regarded
as a computation method and conversely. For instance a formula can be regarded
both as the definition of a function and as describing a method for computing the
function. We are going to use this phenomenon for giving lower bounds on the
complexity of almost all Boolean functions. The method dates back to Riordan
and Shannon (1942) and Shannon (1949). Initially, we formalise our notion of a
description method.

Definition 5.1 A description method for the Boolean functions B is a mapping
r : {0, 1}∗ → B ∪ {⊥}.

An assertion such as r(0001010001) = OR, means that the binary string 0001010001
encodes the function OR ∈ B2 with respect to the description method r. If
r(y) =⊥ then y is not a legal encoding of any function.

Example 5.1 Tabulation t is a description method defined by

t(y0y1 . . . ys−1) = ⊥, if s is not a power 2.

t(y0y1 . . . y2n−1) ∈ Bn,

t(y0y1 . . . y2n−1)(x) = y[x],

66 5 LOWER BOUNDS I

and e.g. t(0111) = OR.

Definition 5.2 The Kolmogorov complexity measure Kr with respect to a de-
scription method r is defined by

Kr(f) = min{|y||r(y) = f}

The Kolmogorov complexity of a function f with respect to a description method
r is the length of the shortest description of the function. For tabulation t we
have that Kt(f) = 2n for all functions f ∈ Bn.

A simple theorem holds the key to all results in this subsection:

Theorem 5.1 For every description method r there are at least 22n −
√

22n out
of the 22n

functions f in Bn that have Kolmogorov complexity

Kr(f) ≥ 2n−1

Proof. There are 22n−1 − 1 <
√

22n strings of length strictly less than 2n−1, and
hence only this number of functions can have less complexity. ✷

From this point on, we will refer to 22n −
√

22n out of 22n
as “almost all”, which

it certainly is.

We may now prove lower bounds for almost all functions with respect to our usual
complexity measures by regarding them as Kolmogorov complexity measures. If
we want to perceive circuit size as a description method then we must provide
a binary encoding of circuits. For this purpose we will assume the existence of
some encoding for the alphabet A = {#, 0, 1, v, x, +, ·,− ,←} (this can be done
with 4 bits per letter). There is a natural encoding of circuits over A, and e.g.
the circuit of figure 3 should be encoded as

“11#v1← x1 ·x10#v10← x1 ·x11#v11← x10 ·x11#v100 ← v1+v10#v101←
v100 + v11”.

The number three at the beginning of the string specifies the arity of the function.
This allows us to distinguish the described function from the function in B4 that
ignores its fourth argument, but is computed by the same circuit.

One may observe that the encoding of line i has length O(log i + log n) so the
encoding of an entire circuit N has length O(S(N)(log S(N) + log n)).

5.1 Lower bounds for almost all functions 67

If we think of the circuit encoding as a description method s then for any function
f we have:

Ks(f) = O(S(f)(log S(f) + log n))

and by theorem 5.1:

Corollary 5.2 Almost all functions f in Bn has complexity

S(f) = Ω(
2n

n
)

In section 2 it was shown that all functions f in Bn have complexity S(f) =
O(2n/n), so the two results combined determine the size complexity of almost all
functions up to a multiplicative constant.

We can argue analogously for formula size. Postfix (reverse Polish) notation
is a very compact description method for formulae. Using the alphabet B =
{#, x, 0, 1, ·, +,− }, the formula in figure 3 may be encoded as

“11#x1x10 · x1x11 ·+x10x11 ·+”

Such postfix notation for a formula N will have length O(L(N) log n) in a binary
encoding of B, and theorem 5.1 leads to

Corollary 5.3 Almost all functions f in Bn have complexity

L(f) = Ω(
2n

log n
)

In section 2, we mentioned the existence of a corresponding upper bound (without
proof), so the result is optimal, and we have

Corollary 5.4 Almost all functions f have depth

D(f) = n− log log n−O(1)

We may conclude that for almost all functions it holds that

D(f) = Θ(log S(f)).

68 5 LOWER BOUNDS I

As mentioned in section 2 it is unknown whether this statement is in fact true
for all functions, and there is a widespread belief that this is not the case. The
good parallelisation of almost all functions stems from the fact that the general
method of computation from theorem 2.4 is parallel (and size optimal for almost
all functions).

Though we have determined the complexity of almost all functions, it is a frus-
trating fact that we are unable to give non-linear lower bounds on size, non-
logarithmic lower bounds on depth or non-polynomial lower bounds on formula
size for any function family {fn} ∈ NP.

Our last application of theorem 5.1 will be to projection complexity (definition
2.10). In section 2.7, we saw that the universality of the DNF-family is useless
from a practical point of view, since most functions are projections of only very
large instances of DNF. This situation does not change when replacing DNF by
some stronger family, say a pD-complete family. We shall see that most functions
still have high projection complexity.

Given a universal family {gi} we encode a projection of gm to f ∈ Bn given by
σ : {y1, y2, y3, . . . , ym} → {x1, . . . , xn, x1, . . . , xn, 0, 1} as

• A binary encoding of n, followed by a separator #.

• For every j, a binary encoding of σ(yj) with separators between the σ(yj)-
encodings.

There is no reason to explicitly encode m, since the value of m may be found from
the code by counting. The length of a binary version of the code is O(m log n).

Corollary 5.5 Given a universal family {gi}, for almost all functions f ∈ Bn it
holds that

Cg(f) = Ω(
2n

log n
)

5.2 Lower Bounds for Formula Size

We are going to present two techniques for proving quadratic or almost quadratic
lower bounds on the formula size of many concrete problems.

5.2 Lower Bounds for Formula Size 69

5.2.1 Krapchenko’s bound for the basis {+, ·,− }.

Definition 5.3 Let A and B be subsets of {0, 1}n. We define the set

A⊗B = {(x, y) ∈ A×B| x and y differ in precisely one bit}

Let f ∈ Bn and A ⊆ f−1(0), B ⊆ f−1(1). If A ⊗ B is large then f will often
change value, when a single bit is flipped. Intuitively, it is difficult to obtain
many such changes with {+, ·,̄ }-formulae. More precisely

Theorem 5.6 (Krapchenko, 1972) Let F be a {+, ·,̄ }-formula for a function
f ∈ Bn, and let A ⊆ f−1(0), B ⊆ f−1(1) with A 6= ∅ and B 6= ∅. It holds that

L(F) ≥ |A⊗ B |2
|A||B | − 1 .

Proof. The theorem is proved by induction in the formula size L(F).

L(F) = 0 : In this case F is a variable xi. Therefore xi = 0 for all x ∈ A and
xi = 1 for all x ∈ B, which implies that there is at most a single y ∈ B with
(x, y) ∈ A ⊗ B for each x ∈ A. We deduce that |A ⊗ B| ≤ |A|, and similarly
|A⊗B| ≤ |B|. This proves the theorem.

L(F) > 0 : There are three cases:

• F = F1 · F2. Let A1 = {x ∈ A|F1(x) = 0} and A2 = {x ∈ A|F1(x) = 1}.
Note that F2(x) = 0 for x ∈ A2. If A1 6= ∅ then the triple F1, A1, B satisfies
the assumption of the theorem and by induction

L(F1) ≥ |A1 ⊗ B |2
|A1 ||B |

− 1 ,

and similarly if A2 6= ∅ then the triple F2, A2, B satisfies the assumption of
the theorem and by induction

L(F2) ≥ |A2 ⊗ B |2
|A2 ||B |

− 1 .

Using these inequalities, we calculate:

L(F)− (
|A⊗ B |2
|A| · |B | − 1)

70 5 LOWER BOUNDS I

= L(F1) + L(F2) + 1 − (
|A⊗ B |2
|A| · |B | − 1)

≥ (
|A1 ⊗B|2
|A1||B|

− 1) + (
|A2 ⊗B|2
|A2||B|

− 1) + 1− (
|A⊗B|2
|A| · |B| − 1)

=
(|A1 ⊗B||A2| − |A2 ⊗B||A1|)2

|A1||A2|(|A1|+ |A2|)|B|

≥ 0

If A1 = ∅ then A = A2 and we have

L(F) > L(F2) ≥ |A2 ⊗ B |2
|A2 ||B |

− 1 =

|A⊗B|2
|A||B| − 1.

If A2 = ∅ then the argument is similar.

• F = F1 + F2. This case is handled in a similar manner (not A, but B is
divided).

• F = F̄1. We use the induction hypothesis on F1 with A and B interchanged.

✷

Since |A ⊗ B| ≤ nmin{|A|, |B|}, the theorem can never lead to a better lower
bound than n2 − 1 for any function. Andrejev (1987) has proven a lower bound
of n2.5+ǫ on the formula size for a specific function over the basis {+, ·,̄ } using a
different technique. The parity function can make optimal use of Krapchenko’s
theorem:

parityn(x1, . . . , xn) =

{

0 if |{i|xi = 1}| is even
1 if |{i|xi = 1}| is odd

Note that parityn(x) 6= parityn(y) if x and y differ in precisely one bit. If we
let A = parity−1

n (0) and B = parity−1
n (1) then |A ⊗ B| = n|A| = n|B| and the

theorem tells us that

L(parity
n
) ≥ n2 − 1

There is a matching upper bound (see exercise 5.2). Note that parityn has a
formula of size n−1 over the basis {⊕, ·}, i.e. the formula size is basis dependent.

5.2 Lower Bounds for Formula Size 71

5.2.2 Nechiporuk’s bound for the full binary basis B2.

By a different technique, we may prove almost quadratic lower bounds for formula
size over the full binary basis B2.

Definition 5.4 Let f ∈ Bn be a function on X = {x1, . . . , xn}. Let Y ⊆
{x1, . . . , xn} satisfy Y 6= ∅. g ∈ B|Y | is said to be a sub-function of f on Y ,
if g can be defined by substituting constants for the variables in X −Y , and leav-
ing the variables in Y . We let UY (f) denote the set of non-constant sub-functions
on Y , and their negations.

Consider the example of parityn that has only few distinct sub-functions:

UY (parityn) = {parity|Y |, parity|Y |}.

Intuitively, it is impossible to express all information about a function in a small
formula, if it has many sub-functions.

Theorem 5.7 (Nechiporuk, 1966) Let f ∈ Bn be a function on x1, . . . , xn.
Let Y1, . . . , Yk be disjoint subsets of {x1, . . . , xn}. Then

LB2
(f) ≥

k
∑

i=1

log5 (2 |UYi
(f)|+ 1)− 1

Proof. For every formula F on x1, . . . , xn, and Y ⊆ {x1, . . . , xn}, we let |F |Y
denote the total number of occurrences in F of variables from Y . We are going
to show by induction over L(F) that

2|UY (F)|+ 1 ≤ 5|F |Y

For L(F) = 0 we have two cases

• F is a constant or a variable xi 6∈ Y . In this case |UY (F)| = 0 and |F |Y = 0.

• F is a variable xi ∈ Y . In this case |UY (F)| = 2 and |F |Y = 1.

If F = F1 ∗ F2 for ∗ ∈ B2 then a non-constant sub-function G of F can take one
of the following forms (G being defined on Y):

72 5 LOWER BOUNDS I

• G = G1 ∗ G2, where G1 and G2 are non-constant sub-functions of F1 and
F2 on Y . Including negated functions we get a contribution of at most
2|UY (F1)||UY (F2)| to |UY (F)|.

• G = G1 ∗ G2, where G1 is a non-constant sub-function of F1 and G2 is a
constant sub-function of F2. If G is non-constant then G = G1 or G = G1,
and in any case G, Ḡ ∈ UY (F1), so the contribution to |UY (F)| is at most
|UY (F1)|.

• G = G1 ∗ G2, where G1 is a constant sub-function of F1 and G2 is a non-
constant sub-function of F2. In this case, the contribution to |UY (F)| is
similarly at most |UY (F2)|.

In total we have

|UY (F)| ≤ 2|UY (F1)||UY (F2)|+ |UY (F1)|+ |UY (F2)|

Using the induction hypothesis, we get

2|UY (F)|+ 1 ≤ 4|UY (F1)||UY (F2)|+ 2|UY (F1)|+ 2|UY (F2)|+ 1 =

(2|UY (F1)|+ 1)(2|UY (F2)|+ 1) ≤ 5|F1|Y 5|F2|Y = 5|F1|Y +|F2|Y = 5|F |Y

Note that if Y1, Y2, . . . , Yk are disjoint subsets of X, then L(F) ≥ ∑k

i=1
|F |Yi

− 1 .
This implies the theorem. ✷

For an application of Nechiporuk’s technique, we consider the example of indirect
store access. Let p = 22l

for some l, let k = log p− log log p and let n = 2p + k.
For ISA ∈ Bn the n input are divided in 3 groups.

• x = (x0, x1, . . . , xp−1) is the actual store.

• y = (y1, y2, . . . , yp) contains addresses into the store. Each address requires
log p bits, which leaves room for a total of p/ log p addresses.

• a = (a0, a1, . . . , ak−1) specifies which of the addresses in y that should be
used. This is well-defined since [a] takes values in the interval from 0 to
p/ log p− 1].

5.3 Lower bounds for circuit size 73

Formally, we define

ISA(x, y, a) = x[d],

where

d = (y[a] logp+1, y[a] log p+2, . . . , y([a]+1) log p).

For the application of theorem 5.7 we choose

Yi = {yi logp+1, yi log p+2, . . . , y(i+1) log p} for 0 ≤ i ≤ p/ log p− 1.

The reader should convince herself that UYi(ISA) = Blog p and therefore

LB2
(ISA) ≥

p/ logp
∑

i=1

log5(2|UYi(ISA)|+ 1) − 1 ≥

p

log p
log5(2 · 22log p

+ 1) − 1 ≥

(log5 2)
p2

log p
− 1 = Ω(

n2

log n
)

This is in fact the best bound one can prove for any function using theorem 5.7
(see exercise 5.5).

The theorems of Nechiporuk and Krapchenko give as corollaries lower bounds
of at most 2 log n on the depth of the function in question. No techniques are
known for proving super logarithmic depth bounds for specific functions. This
is somewhat unsatisfactory in the light of corollary 5.4, which states that almost
all functions have depth Ω(n).

5.3 Lower bounds for circuit size

For circuit size the situation is similar. From corollary 5.2 we know that almost
all functions requires size Ω(2n/n), but (over the full binary basis B2) the best
known lower bound for any function in NP is 3n− o(n) proven by Blum (1984).
We present a slightly weaker result.

74 5 LOWER BOUNDS I

5.3.1 The substitution technique

Theorem 5.8 SB2
(Th2

n) ≥ 2n − 3

Proof. The theorem is proven by induction in n. For n = 2 the theorem is
trivially true. For n ≥ 3, we are going to show that

SB2
(Th2

n−1) ≤ SB2
(Th2

n) − 2,

which implies the induction step. Let N be a size optimal straight-line program
for Th2

n. We are going to construct a program N ′ for Th2
n−1, such that N ′ is two

lines shorter. Let

v1 ← xi ∗ xj

be the first line of N . Since N is optimal, we have i 6= j. We will argue that
at least one of xi and xj occurs in some other line of the program. Assume,
contrarily, that the two variables occur in the first line only. In that case all
available information about xi and xj are concentrated in the variable v1, and
since v1 can hold only two distinct values, there must be two of the following
assignments to xi and xj that results in identical v1 values.

• xi = 0, xj = 0.

• xi = 0, xj = 1.

• xi = 1, xj = 1.

However, for any two of the three cases it is possible to assign values to the
remaining inputs such that the output from the function differs depending on the
case. This is a contradiction, and we deduce that at least one of xi and xj occurs
in another right hand side. Assume xi occurs at least twice. We construct N ′

from N by a transformation:

• Replace all occurrences of xi with 0.

• Some assignments contain constants now. These assignments are eliminated
by either modifying the operation that uses the result (we are allowed to
use all of B2), or by modifying the operation that created the non-constant
argument.

This transformation eliminates at least two lines. ✷

5.4 Lower bounds for unbounded fan-in circuits 75

Boolean function Equivalent polynomial
over GF(3) over Q

0 0 0
1 1 1
x 1− x 1− x

x · y xy xy
x + y x + y − xy x + y − xy
x⊕ y x + y + xy x + y − 2xy

Figure 15:

5.4 Lower bounds for unbounded fan-in circuits

It is unknown whether all functions in NP parallelise well, but we shall prove in
this section that not all functions in NP parallelise extremely well. parityn ∈ NC1

since it can be computed in depth O(log n), but parityn 6∈ AC0, i.e. parity requires
super polynomial circuit size over the basis U = {−, +2, ·2, +3, ·3, . . .}, when the
depth is bounded by a constant. This result was first proven by Furst, Saxe and
Sipser (1984). We present a proof due to Beigel, Reingold and Spielman (1991).

The essence of the proof is a concept of approximator satisfying that every func-
tion in AC0 has a good approximator but parity has no good approximator.

Approximators are polynomials. We will mostly use polynomials over the field of
rational numbers, but occasionally we need polynomials over GF(3), the field with
3 elements. We represent GF(3) by the set {−1, 0, 1} with modulo 3 arithmetic.

Notation 5.1 0, 1 denote both arithmetic constants and Boolean constants. We
do not distinguish the two cases.

Definition 5.5 A polynomial p with variables x1, x2, . . . , xn is equivalent to a
Boolean function f ∈ Bn if p(x) = f(x) for all x ∈ {0, 1}n.

Figure 15 shows a selection of Boolean functions with equivalent polynomials. In
general we have

Lemma 5.9 Every function in Bn has an equivalent polynomial of degree at most
n.

76 5 LOWER BOUNDS I

Proof. Exercise 5.6. ✷

We are interested in polynomials of degree less than those we can find using
lemma 5.9. In return, we are willing to relax the notion of equivalence.

Definition 5.6 A (d, ǫ)-L-approximator (or simply a (d, ǫ)-approximator) for
a Boolean function f ∈ Bn is a polynomial g over the field L with variables
x1, x2, . . . , xn such that

1. degree(g) ≤ d.

2. g(x) = f(x) for all x ∈ {0, 1}n except for a fraction ≤ ǫ.

When a Boolean function is given by composition such as

f(x) = g(h1(x), . . . , hn(x)),

it may happen that good approximators for g, h1, . . . , hn result in a bad approx-
imator for f when composed (see exercise 5.8). To deal with this problem we
need another notion of approximation.

Definition 5.7 A probabilistic (d, ǫ)-approximator for a function f ∈ Bn is a
polynomial g with variables x1, . . . , xn, w1, . . . , wm for some m such that

1. degree(g) ≤ d.

2. Prw∈{0,1}m(g(x, w) 6= f(x)) ≤ ǫ for all x ∈ {0, 1}n.

w1, . . . , wm are hidden variables.

Composition now preserves good approximation:

Lemma 5.10 If g ∈ Bm and h1, . . . , hm ∈ Bn all have probabilistic (d, ǫ)-approx-
imators then f ∈ Bn defined by

f(x) = g(h1(x), . . . , hn(x))

has a probabilistic (d2, (m + 1)ǫ)-approximator.

5.4 Lower bounds for unbounded fan-in circuits 77

Proof. Let pF be a probabilistic (d, ǫ)-approximator for F ∈ {g, h1, . . . , hm} by
the assumption of the lemma. We may assume that no two hidden variables
from distinct pF ’s have identical names (if necessary change names). This means
that an approximator will answer correctly/wrongly independent of the other
approximators, and we may form a probabilistic approximator pf as required
simply by substituting phi for xi in pg . The degree of pf is at most d2 and the
probability of error is bounded by (m + 1) · ǫ for input x ∈ {0, 1}n. ✷

It is possible to remove randomisation from an approximator:

Lemma 5.11 If f ∈ B has a probabilistic (d, ǫ)-approximator then there also
exists a (non-probabilistic) (d, ǫ)-approximator for f .

Proof. Exercise 5.9 ✷

At this point, we are ready to describe in more detail our strategy for finding a
lower bound on parity.

1. Show that OR(x1, . . . , xn) has a good probabilistic approximator of low
degree.

2. Show that every function in AC0 has a good probabilistic approximator of
low degree using lemma 5.10.

3. Show that parity does not have a GF(3)-approximator of low degree.

4. Combine the results using lemma 5.11.

For the construction of the probabilistic OR-approximator we need a lemma that
regards {0, 1}n as an n-dimensional vector space over GF(2), the field with 2
elements. We represent GF(2) by the set {0, 1} with arithmetic modulo 2.

Let V = {0, 1}k be the k-dimensional vector space over GF(2). For x, y ∈ V we

let x · y =
∑k

i=1 xiyi (mod 2) denote the inner product on V .

Lemma 5.12 (Valiant and Vazirani, 1986) For S ⊆ V and w1, . . . , wk ∈ V
we define the hyperplanes

Hi = {v ∈ V | v · wi = 0} for i = 1, . . . , k

78 5 LOWER BOUNDS I

and the sets

Si = S ∩H1 ∩H2 ∩ · · · ∩Hi for i = 0, . . . , k.

It holds that

Pr
w1,...,wk∈V

(|Si| = 1 for some i ∈ {0, 1, . . . , k}) ≥ 1

4

for all S 6= ∅.

Proof. We argue separately in the two cases 0 ∈ S and 0 6∈ S.

The case 0 ∈ S: Clearly |Sk| ≥ 1 since 0 ∈ Hi for all i. Let W denote the matrix
with row vectors w1, . . . , wk. |Sk| = 1 when the equation Wx = 0 has only the
trivial solution x = 0, i.e. w1, . . . , wk are linearly independent. To calculate
the probability of such event, we assume that the wi’s are selected one by one
(randomly and independently).

Pr
wi∈V

(wi 6∈ span{w1, . . . , wi−1} | w1, . . . , wi−1 are lin. indep.) =

2k − 2i−1

2k
= 1− 1

2k−i+1
.

In total for the case 0 ∈ S we have:

Pr
w1,...,wk∈V

(|Si| = 1 for some i ∈ {0, 1, . . . , k}) ≥

Pr
w1,...,wk∈V

(w1, . . . , wk are linearly independent) =

k
∏

i=1

(1− 1

2i
) ≥ 1

4
.

For the last inequality see exercise 5.10.

5.4 Lower bounds for unbounded fan-in circuits 79

The case 0 6∈ S: Let

A(r) = Pr
w1,...,wr∈V

(∃i ∈ {0, 1, . . . , r}. |Si| = 1 | rank(S) = r).

The following inequality (combined with exercise 5.10) implies the lemma.

A(r) ≥
r−1
∏

i=1

(1− 1

2i
). (7)

Note that when S 6= ∅ and 0 6∈ S then rank(S) ≥ 1. Hence it suffices to prove
(7) for r ≥ 1. We use induction

Basis of induction (r = 1): We have |S| = 1 since rank(S) = 1 and 0 6∈ S.

Induction step (assume (7) for 1 ≤ r < r′): Let rank(S) = r′ and let ei =
(0i−110k−i) be the i’th unit vector. Without loss of generality (if necessary apply a
linear transformation) we may assume that {e1, . . . , er′} ⊆ S ⊆ span{e1, . . . , er′}.

If S1 = ∅ then w1 · e1 = · · · = w1 · er′ = 1, i.e. w1 ∈ 1r′{0, 1}k−r′
. The probability

of this event is ≤ 1
2r′ .

If S1 = S then w1 · e1 = · · · = w1 · er′ = 0, i.e. w1 ∈ 0r′{0, 1}k−r′
. The probability

of this event is ≤ 1
2r′ .

If ∅ 6= S1 6= S then 1 ≤ rank(S1) ≤ rank(S)− 1. We have

A(r′) = Pr
w1,...,wr′∈V

(∃i ∈ {0, 1, . . . , r′}. |Si| = 1 | rank(S) = r′) ≥

Pr
w1∈V

(1 ≤ rank(S1) ≤ r′ − 1 | rank(S) = r′)·

min
1≤r≤r′−1

Pr
w1,...,wr∈V

(∃i ∈ {0, 1, . . . , r}. |Si| = 1 | rank(S) = r) ≥

(1− 1

2r′ −
1

2r′) ·
r′−2
∏

i=1

(1− 1

2i
) =

r′−1
∏

i=1

(1− 1

2i
).

✷

80 5 LOWER BOUNDS I

Lemma 5.13 For every ǫ > 0, there exists a probabilistic (O(log(ǫ−1) log3 n), ǫ)-
approximator for OR(x1, . . . , xn).

Proof. Let k = log n. We begin by constructing a (O(log3 n), 3
4
)-approximator P

that makes one-sided error only and has k2 hidden variables, i.e. for all x ∈ {0, 1}n
we want P to satisfy

1. If OR(x) = 0 then Prw∈{0,1}k2(P (x, w) 6= 0) = 0.

2. If OR(x) = 1 then Prw∈{0,1}k2(P (x, w) 6= 1) ≤ 3
4
.

To prepare the application of lemma 5.12 we define for an input x the set S =
{v ∈ {0, 1}k | x[v] = 1}, and therefore OR(x1, . . . , xn) ≡ (S 6= ∅). The k2 hidden
variables are structured in k vectors: w = (w1, . . . , wk), where wi = (wi1, . . . , wik).
Define ortho ∈ B2k by

ortho(x, y) =

{

1 if x · y = 0 (in the vector space V !)
0 otherwise

Let portho be some polynomial of degree ≤ 2k that is equivalent to ortho (using
lemma 5.9), and let for 0 ≤ i ≤ k, Pi be the polynomial

Pi =
∑

v∈{0,1}k

x[v] · portho(v, w1) · . . . · portho(v, wi)

If we use the definition of Si from lemma 5.12, then |Si| = Pi. According to the
same lemma

Pr
w∈V k

(there exists i such that Pi(x, w) = 1) ≥ 1

4

when OR(x) = 1. In addition we have that Pi(x, w) = 0 for all i and all w, when
OR(x) = 0.

This one-sided error is used in the construction of the approximator:

P = 1−
k
∏

i=0

(1− Pi).

5.4 Lower bounds for unbounded fan-in circuits 81

P has degree at most (k + 1)(1 + k · 2k) = O(k3) and P makes only one-sided
error:

Pr
w∈V k

(P (x, w) = 1) ≥ 1

4
when OR(x) = 1,

and P (x, w) = 0 if OR(x) = 0 (independent of w).

The error probability can be made arbitrarily small by using several (indepen-
dent) versions of P .

Given ǫ > 0, let d be minimal such that (3
4
)d ≤ ǫ, and let Q1, Q2, . . . , Qd be copies

of P . We assume (if necessary change variable names) that no pair of Qi’s have
hidden variables in common. Let

Q = 1−
d
∏

i=1

(1−Qi)

The degree of Q is O(d · log3 n) = O(log(ǫ−1) log3 n) and

Pr
w′∈V kd

(Q(x, w′) 6= OR(x)) ≤ ǫ

The approximator Q satisfies the assertion of the lemma. ✷

Lemma 5.14 If f ∈ Bn is computed by a U-circuit of size s (≥ n) and depth
d then f has a probabilistic (O((log(s · ǫ−1) log3 s)d), ǫ)-approximator for every
ǫ > 0.

Proof. Without loss of generality we may assume that the circuit for f uses
negation and OR only, and an OR-gate has at most s input. Lemma 5.13 supplies
us with a probabilistic (O(log(s·ǫ−1) log3 s), ǫ/s)-approximator for OR(y1, . . . , ys),
and the polynomial 1 − y is equivalent to y. By repeated use of (the proof of)
lemma 5.10 we get a probabilistic (O((log(s · ǫ−1) log3 s)d), ǫ)-approximator for f .
✷

Lemma 5.15 Every (d, ǫ)-GF(3)-approximator for parity(x1, . . . , xn) satisfies that
d ≥ (1

2
− ǫ) · √n − 1.

82 5 LOWER BOUNDS I

Proof. In GF(3) we have

x− 1 =

{

0 for x = 1
1 for x = −1

This equation implies that

n
∏

i=1

xi = parityn(x1 − 1, x2 − 1, . . . , xn − 1) + 1

for x1, x2, . . . , xn ∈ {−1, 1}.

We see that an approximator of low degree for parity leads to an approximator
of low degree for an arbitrary monomial of high degree. A polynomial is simply
a sum of monomials, so we can easily form an approximator of low degree for an
arbitrary polynomial. Unfortunately, the error from the single monomials will
accumulate, if we use that approach blindly. We can get around the problem by
using parity only once.

In the sequel assume that x1, x2, . . . , xn ∈ {−1, 1}. Let I ⊆ {1, 2, . . . , n} and let
mI =

∏

x∈I xi. We have

mI = mI ·
n
∏

i=1

xi = mI · (parityn(x1 − 1, x2 − 1, . . . , xn − 1) + 1).

Let p be a (d, ǫ)-GF(3)-approximator for parity and let m′
I = mI · (p(x1− 1, x2−

1, . . . , xn − 1) + 1). We have

1. For at least a fraction (1−ǫ) of all x ∈ {−1, 1}n it holds that mI(x) = m′
I(x)

for all I .

2. One of mI and m′
I has degree ≤ n

2
+ d.

Let f ∈ {−1, 1}n 7→ {−1, 0, 1} be represented by the polynomial pf . Since x2 = 1
for x ∈ {−1, 1} we may assume that all monomials in pf has the form mI for
some I . We construct p̃f from pf by replacing all monomials mI of degree larger
than n

2
by m′

I . We have

1. For at least a fraction (1 − ǫ) of all x ∈ {−1, 1}n it holds for all f that
p̃f (x) = pf (x).

5.4 Lower bounds for unbounded fan-in circuits 83

2. p̃f has degree at most n
2

+ d.

We may now deduce that

1. For every f it holds that |{g | p̃f = p̃g}| ≤ 3ǫ·2n
.

2. There are at most 3
∑

n
2 +d

i=1 (n
i) ≤ 3(1

2
+d+1√

n
)·2n

distinct p̃f . (see exercise 5.11 for
the inequality).

There are 32n
distinct f , meaning that 3(1

2
+d+1√

n
+ǫ)·2n ≥ 32n

or d ≥ (1
2
− ǫ) ·√n−1.

✷

Theorem 5.16 If parityn is computed by a U-circuit of size s and depth d, then

d = Ω(
log n

log log s
).

Proof. Assume that parityn is computed by a U-circuit of size s and depth
d. Using lemma 5.14 combined with lemma 5.11, we see that parity has an
(O((log(s · ǫ−1) log3 s)d), ǫ)-approximator. This approximator is in particular a
GF(3)-approximator (if necessary use a modulo 3 operation on the coefficients).
According to lemma 5.15 we have that

c · (log(s · ǫ−1) log3 s)d ≥ (
1

2
− ǫ)
√

n− 1

for some constant c. The theorem follows by substituting ǫ = 1
4

and taking the
logarithm on both sides. ✷

Corollary 5.17 parity 6∈ AC0

Exercises

Exercise 5.1 Let {gn} be a universal family of functions and let M be a com-
plexity measure (say S or L). As usual Cg(f) denotes the smallest i such that f
is a projection of gi. We define g to characterise M up to a constant, if

Cg(f) = Θ(M(f)).

84 5 LOWER BOUNDS I

Show that no family characterises S up to a constant. Is L characterised up to a
constant by any family ?

Exercise 5.2 Show that L(parity
n
) = O(n2) over the basis {+, ·,̄ }.

Exercise 5.3 Show that over the basis {+, ·,̄ } we have

1. L(Thk

n
) = Ω(k(n − k)).

2. L(EqM

n
) = Ω(maxk∈M⇔k−1 6∈M k(n − k)).

Exercise 5.4 Let p be a power of 2, let n = 2p log p and let distinctn ∈ Bn be
defined by

distinctn(x1, . . . , xp) =

{

1 if xi 6= xj for all i 6= j
0 otherwise

,

where |xi| = 2 log p.

Show that LB2
(distinctn) = Ω(n2/ log n). Find an upper bound for comparison.

Exercise 5.5 Show that Nechiporuk’s theorem can never give a lower bound bet-
ter than Ω(n2/ log n).

Exercise 5.6 1. Prove lemma 5.9

2. Find a polynomial of degree 3 equivalent to Th2
3.

Exercise 5.7 How well do the following polynomials approximate OR(x1, . . . , xn):

1. 1−∏n
i=1(1− xi)

2.
∑n

i=1 xi

Exercise 5.8 Why is the proof of lemma 5.10 not valid for (non-probabilistic)
approximators ?

Exercise 5.9 Prove lemma 5.11

5.4 Lower bounds for unbounded fan-in circuits 85

Exercise 5.10 1. Show that log4 x ≥ x− 1 for 1
2
≤ x ≤ 1.

2. Show that
∏∞

i=1(1− 1
2i) ≥ 1

4
.

Exercise 5.11 Prove that for n sufficiently large, we have

n
2
+d
∑

i=1

(n
i) ≤ (

1

2
+

d + 1√
n

) · 2n

for all 0 ≤ d ≤ n
2
.

Hint: By Stirling approximation we have that n! =
√

2πn · (n
e
)n · (1 + O(1

n
))

Exercise 5.12 Show that the depth Θ(logn
log log n

) is necessary and sufficient for a
polynomial size family of U-circuits to compute parity.

What does this mean for the complexity of parity on a CRCW-PRAM ?

Exercise 5.13 For a given constant d construct a family of U-circuits that com-
putes parity in depth d and has the smallest possible size.

Exercise 5.14 Show that binary sorting {SORTn} is not in AC0.

Show that binary merging {MERGE2n
n,n} is in AC0.

Exercise 5.15 Let MAJ denote the function family {Thn
2n−1 | n ≥ 2}. Show

that every function in SYMn is computed by a circuit over the basis {−} ∪MAJ
of size O(n) and depth 4.

Show that MAJ 6∈ AC0.

Exercise 5.16 Show that binary multiplication is in TC0 −AC0.

Exercise 5.17 Let MOD-3 be the family of Boolean functions defined by

MOD-3n(x1, x2, . . . , xn) =

{

1 if |{xi | xi = 1}| = 0 (mod 3)
0 otherwise

86 5 LOWER BOUNDS I

1. Find a GF(3)-polynomial p of degree at most 2 satisfying that

p(x) =

{

1 if x = 0
0 if x = 1,−1

2. Show that MOD-3n has an equivalent GF(3)-polynomial of degree at most
2.

3. Show that any polynomial size family of circuits over the basis U ∪ MOD-3
computing parity must have depth Ω(log n

log log n
)

Exercise 5.18 Let p 6= 2 be a prime number. GF(p) is the finite field with p
elements. We represent GF(p) by the set {−p−1

2
, . . . , p−1

2
} with arithmetic modulo

p.

Formulate and prove a variant of lemma 5.15, where the constant 3 is replaced
by p.

Exercise 5.19 1. Given a prime number p 6= 2, show that any polynomial
size family of circuits over the basis U ∪ MOD-p computing parity, must
have depth Ω(logn

log log n
).

Hint: use the result of exercise 5.18 and redo exercise 5.17 in a generalised
version.

2. What happens if you try to do the first part of this exercise with a number
p that is not prime, e.g. p = 15 ?

Literature

1. Andrejev, A. E. (1987) On a Method for Obtaining more than Quadratic
Effective Lower Bounds for the Complexity of π-schemes. Vestnik Moskov.
Univ. Mat. 42, 70–73 (in Russian); English translation in Moscow Univ.
Math. Bull. 42, 63-66.

2. Beigel, R., Reingold, N. and Spielman, D. (1991) The Perceptron Strikes
Back. Proc. 6th Ann. IEEE Conf. on Structure in Complexity Theory.
286–291.

3. Blum, N. (1984), A Boolean Function requiring 3n Network Size. Theor.
Comp. Sc. 28, 337–345.

4. Furst, M., Saxe, J. and Sipser, M. (1984), Parity, Circuits and the Polyno-
mial Time Hierarchy. Math. Systems Theory 17, 13–27.

5.4 Lower bounds for unbounded fan-in circuits 87

5. Krapchenko, V. M. (1972), The Complexity of the Realization of Symmet-
rical Functions by Formulae. Math. Notes Acad. Sci. USSR, 70–76.

6. Neciporuk, E. I. (1966), A Boolean Function. Sov. Math. Dokl. 7, 999-
1000.

7. Riordan, J. and Shannon, C. E. (1942), The number of Two-Terminal
Series-Parallel Networks. J. Math. Phys. 21, 83–93.

8. Shannon, C. E. (1949), The Synthesis of Two-Terminal Switching Circuits.
Bell Syst. Techn. J. 28, 59–98.

9. Valiant, L. G. and Vazirani, V. V. (1986), NP is as Easy as Detecting
Unique Solutions. Theoretical Computer Science 47, 85–93.

88 6 CONSTRUCTIONS II

6 Constructions II

We start by switching attention from Boolean circuits to arithmetic circuits, i.e.
circuits where the domain is a semiring, ring or field and the circuit computes a
polynomial or rational function using arithmetic gates.

We present the power of subtraction in the form of Strassen’s technique for effi-
cient matrix multiplication and we show that division gives no additional power.

We present a technique for constructing small size and low depth circuits for any
polynomial of low degree that is computed by small size circuits. This implies
the existence of circuits for efficient parallel computation of determinants.

The above technique works over any semiring, and in particular it can be applied
for the parallelisation of Boolean circuits. This leads to nontrivial parallelisation
results for specific problems including context free language recognition.

When regarding the Booleans as a semiring, one might expect different results
depending on whether AND or OR is identified with the semiring multiplication
(both are possible). We prove that in a certain sense it does not matter: The
classes SACi are closed under complement for i ≥ 1.

6.1 Arithmetic circuits

An arithmetic circuit is defined analogously to a Boolean circuit, but the opera-
tors are {+,−, ·, /}, and the Boolean values {0, 1} are replaced by the values of
the underlying domain, which is at least a semiring (e.g. (N, +, ·, 0, 1) or {0, 1}
with AND, OR). If the circuit uses subtraction then the domain must be at least
a ring (e.g. (Z, +,−, ·, 0, 1)), and if the circuit uses division then the domain
must be a field (e.g. (Q, +,−, ·, /, 0, 1)). Unless stated otherwise, we assume
that rings (semirings) are commutative. An arithmetic circuit over the domain Q
with input x1, x2, . . . , xn computes a polynomial in Q[x1, x2, . . . , xn] (or a rational
function in Q(x1, x2, . . . , xn), if the circuit uses /).

6.2 The power of subtraction

We begin our study of arithmetic circuits by presenting a perhaps surprising
result that uses subtraction and therefore the domain must be at least a ring. It
is a simple way of multiplying n × n matrices, which is faster than the obvious
direct method requiring n3 multiplications and (n− 1) · n2 additions.

6.2 The power of subtraction 89

Note that the multiplication of n× n matrices consists in the computation of n2

polynomials of degree 2, i.e. for n = 2:

{

c11 c12

c21 c22

}

=

{

a11 a12

a21 a22

}

·
{

b11 b12

b21 b22

}

where
c11 = a11 · b11 + a12 · b21, c12 = a11 · b12 + a12 · b22

c21 = a21 · b11 + a22 · b21, c22 = a21 · b12 + a22 · b22

Strassen (1969) discovered a computational method using only 7 multiplications
but 18 additions, namely

m1 = (a12 − a22) · (b21 + b22) m2 = (a11 + a22) · (b11 + b22)
m3 = (a11 − a21) · (b11 + b12)
m4 = (a11 + a12) · b22 m5 = a11 · (b12 − b22)
m6 = a22 · (b21 − b11) m7 = (a21 + a22) · b11

and
c11 = m1 + m2 −m4 + m6 c12 = m4 + m5

c21 = m6 + m7 c22 = m2 −m3 + m5 −m7

Since n × n matrices may be perceived as 2 × 2 matrices, where the elements
are n/2 × n/2 matrices, and k × k matrices with multiplication and addition
is a ring, the method can be used recursively (the underlying ring need not be
commutative)

{

C11 C12

C21 C22

}

=

{

A11 A12

A21 A22

}

·
{

B11 B12

B21 B22

}

This leads to

Theorem 6.1 Two n × n matrices can be multiplied by O(nlog 7) = O(n2,81)
operations

Proof. The method sketched above leads to a recurrence for the total number of
operations used:

A(n) = 7 · A(n/2) + 18 · n2/4 for n ≥ 2

with the solution A(n) = O(nlog 7). ✷

90 6 CONSTRUCTIONS II

A method for multiplying n × n matrices using only O(nα) operations, where
α < 2, 38 is known (Coppersmith and Winograd, 1990). It is of theoretical
interest only, since the involved constants are very large, but Strassen’s technic
is practical (see exercise 6.1).

6.3 Elimination of division

If some techniques require the domain to be a ring (subtraction is available),
one might imagine that even smarter constructions are possible in a field (using
the division operation). However, when computing a polynomial it is possible to
eliminate all division gates without significant increase in circuit size. This result
is also due to Strassen (1973).

We will assume that the underlying field Q is infinite.

Definition 6.1 For N being a (+,−, ·, /)-circuit, let fun(v) denote the polyno-
mial or rational function computed in the node v.

Equality (or equivalence) between rational functions p1/q1 = p2/q2 (q1, q2 6= 0)
means that p1(x) · q2(x) = q1(x) · p2(x) for all x, where q1(x)q2(x) 6= 0.

Theorem 6.2 If f : Qn → Q is a rational function computed by a {+,−, ·, /}-
circuit N then f is computed by an equivalent circuit N ′ using only a single
division (in the root node r) and S(N ′) ≤ 4S(N).

Proof. N ′ is constructed inductively. For each node v in N , N ′ has two nodes v1

and v2 such that fun(v1) and fun(v2) are polynomials and fun(v) = fun(v1)/fun(v2).
For describing the construction, we let v range over constants and variables in
addition to gates:

Construction:

v is a constant or variable. v1 ∼ v and v2 ∼ 1
v ← u + w. v1 ← u1 · w2 + u2 · w1 and v2 ← u2 · w2

v ← u−w. v1 ← u1 · w2 − u2 · w1 and v2 ← u2 · w2

v ← u ·w. v1 ← u1 · w1 and v2 ← u2 · w2

v ← u/w. v1 ← u1 · w2 and v2 ← u2 · w1

The root of N ′ is a new node r′ computing r1/r2. For each node v with label +
or − we need two extra nodes (in addition to v1 and v2) for computing v1. Since
the construction is only needed, when N contains at least one division gate, we
have proven the theorem. ✷

6.3 Elimination of division 91

Definition 6.2 A {+,−, ·}-circuit N is homogeneous, if we for all nodes v in
N have that fun(v) is a homogeneous polynomial, i.e. all terms in fun(v) have
the same degree, which we denote deg(v).

Theorem 6.3 If f is a polynomial of degree d, computed by a {+,−, ·}-circuit N
then there is a homogeneous circuit N ′ computing f0, f1, · · · , fd such that fi is a
(homogeneous) polynomial of degree i and f =

∑d
i=0 fi and S(N ′) ≤ (d+1)2S(N).

Proof. N ′ is constructed by induction. For each node v in N there will be d + 1
nodes v0, v1, · · · , vd in N ′ such that fun(vi) is a homogeneous polynomial of degree
i and fun(v) = qv +

∑d
i=0 fun(vi), where qv is a polynomial with all monomials

of degree at least d + 1. The resulting circuit will have the stated properties.
For describing the construction, we let v range over constants and variables in
addition to gates:

Construction:

v is a constant. v0 ∼ v and vi ∼ 0 for i = 1, 2, · · · , d.
v is a variable. v1 ∼ v, vi ∼ 0 for i = 0, 2, 3, · · · , d.
v ← u + w. vi ← ui + wi for i = 0, 1, · · · , d.
v ← u−w. vi ← ui − wi for i = 0, 1, · · · , d.
v ← u ·w. vi ←

∑i
j=0 uj · wi−j for i = 0, 1, · · · , d.

A multiplication node v needs extra nodes in addition to the nodes v0, v1, · · · , vd

for computing the vi’s. each vi is computed by a homogeneous circuit of size
(i+1)+i = 2i+1, i.e. for each node in N we need at most d+1+

∑d
i=0 2i = (d+1)2

nodes in N ′. ✷

Lemma 6.4 Let p =
∑dp

i=0 pi and q =
∑dq

i=0 qi be polynomials over Q, where pi, qi

are homogeneous polynomials of degree i. Assume that q0 6= 0 and p/q = f =
∑d

i=0 fi (d = dp − dq). There is a {+,−, ·}-circuit of size (d2 + 3d + 1) that
computes f from {p0, · · · , pdp} and {q0, · · · , qdq} alone.

Proof. Let q′
0 = 1/q0. This is a constant in Q. Since p = q · f we have for

i = 0, 1, · · · , d:

pi =
i
∑

j=0

qj · fi−j and fi = q′
0(pi −

i
∑

j=1

qj · fi−j)

using qi = 0 for i > dq . The lemma follows. ✷

92 6 CONSTRUCTIONS II

Theorem 6.5 If f is a polynomial of degree d computed by a {+,−, ·, /}-circuit
N then there is {+,−, ·}-circuit N ′ computing f such that S(N ′) = O(d2S(N)).

Proof. Let N1 be the circuit originating from N by the construction in the proof
of theorem 6.2. Removing the root node from N1 leaves a {+,−, ·}-circuit of size
at most 4S(N) computing p and q such that f = p/q.

Since q is not the 0-polynomial there exists an α ∈ Qn such that q(α1, α2, · · · , αn) 6=
0. Use this α to define p(α)(x) = p(x1 + α1, x2 + α2, · · · , xn + αn) and q(α)(x) =
q(x1+α1, x2+α2, · · · , xn+αn). It must hold that q(α)(0) = q(α1, α2, · · · , αn) 6= 0.

Let p(α) =
∑dp

i=0 pi and q(α) =
∑dq

i=0 qi, where pi and qi are homogeneous polynomi-
als of degree i. p(α) and q(α) is computed by N1 when the input xi is replaced by
ui ← xi +αi for i = 1, 2, · · · , n. We homogenise this circuit using the construction
from the proof of theorem 6.3. The resulting homogeneous circuit N2 satisfies

• S(N2) ≤ (d + 1)2(S(N1) + n)

• N2 computes pi and qi for i = 0, 1, · · · , d

Using lemma 6.4 we see that f (α)(x) = f(x1 +α1, x2 +α2, · · · , xn +αn) =
∑d

i=0 fi

is computed by a circuit N3 using N2 plus d2 + 3d + 1 extra nodes. Since f(x) =
f (α)(x1 − α1, x2 − α2, · · · , xn − αn), we may compute f by a {+,−, ·}-circuit N4

of size S(N3) + n when replacing an input xi of N3 by a new node wi ← xi − αi.
In total, we have that

S(N4) ≤ S(N3) + n ≤ S(N2) + n + (d + 1)2 ≤

(d + 1)2S(N1) + n + (d + 1)2 ≤ (d + 1)24S(N) + n + (d + 1)2 = O(d2S(N))

✷

6.4 Parallel computation of low degree functions

When the circuit computing a function is a formula, we have a result similar to
the Boolean case:

Theorem 6.6 If a rational function f is computed by an arithmetic formula of
size s then f is also computed by an arithmetic circuit of depth O(log s) and size
O(s).

6.4 Parallel computation of low degree functions 93

Proof. Omitted. ✷

We are going to prove a theorem that relies on a property of the computed
function (low degree polynomial) rather than the computing circuit (formula or
not):

Theorem 6.7 If p is a polynomial of degree d computed by a circuit over (+,−, ·, /)
of size s and arbitrary depth then p is also computed by a circuit over (+,−, ·) of
depth O((log s + log d) · log d) and size O((d2s)3).

Note the strength of the theorem, e.g. let detn2(x) denote the determinant of a
n × n matrix. detn2 is a polynomial of degree n that can be computed by an
arithmetic circuit over {+,−, ·, /} of size n3 (Gauss elimination). The theorem
implies that detn2 is also computed by an arithmetic circuit over {+,−, ·} of
polynomial size and depth log2 n. The result is due to Valiant and Skyum (1981),
but we present a simpler proof by Valiant, Skyum, Berkowitz and Rackoff (1983).

Theorem 6.7 is a corollary to theorems 6.3, 6.5, and the following lemma.

Lemma 6.8 If p is a polynomial of degree d computed by a homogeneous circuit
over (+, ·) of size s then there exists a circuit of depth O(log s · log d) and size
O(s3) computing p.

The proof of this lemma is extensive and we divide it into a number of lemmas.
The construction is based on a nonstandard way of evaluating an expression. We
begin by introducing some underlying concepts through an example.

Without loss of generality, we may assume that each input occurs once only.
Therefore, in the sequel we assume that N is a minimal homogeneous (+, ·)-circuit
where each input occurs only once, and if v ← v1 · v2 then deg(v1) ≥ deg(v2).

The circuit E in figure 16 will be our example in the sequel.

If (u1, u2, · · · , uk) is a path in N directed towards the root then prod((u1, u2, · · · , uk))
denotes the product of the arguments “hanging” at the ·-nodes of the path, e.g.
in E,

prod((y, v2, v5)) = fun(v1) · fun(v4) = (x + y)(x · z + z2)

and

prod((v3, v4)) = z

94 6 CONSTRUCTIONS II

✁
✁
✁✁✕

❙
❙

❙❙♦

✟✟✟✟✟✟✟✟✯

❈
❈
❈
❈
❈
❈
❈
❈
❈❈❖

✄
✄
✄✄✗

❙
❙

❙❙♦

❈
❈
❈
❈
❈
❈
❈
❈
❈❈❖

✄
✄
✄✄✗

❆
❆

❆❆❑

✓
✓

✓✓✼

x y z

+

* *

*

+v1 v3

v2 v4

v5

Figure 16: Homogeneous circuit E

Let a ·−left path (towards the root) be a path that does not enter any ·−node
from the right. In E, (v3, v4) is such a path, but (y, v2, v5) is not.

con(u, v) (short for context of u seen from v) denotes the sum of prod(s) for all
·−left paths s from u up to v. In E we have

con(x, v5) =

prod(x, v1, v2, v5) = y · fun(v4) = y(x · z + z2) = con(y, v5)

We make a formal definition of con by induction for use in later proofs:

Definition 6.3 Let u and v be two nodes (or inputs). con(u, v) is defined by

If u = v then con(u, v) = 1

If v 6= u and v is a constant or input then con(u, v) = 0

If v 6= u and v ← v1 + v2 then con(u, v) = con(u, v1) + con(u, v2)

If v 6= u and v ← v1 · v2 then con(u, v) = con(u, v1) · fun(v2)

Lemma 6.9 If con(u, v) 6= 0 then it is a homogeneous polynomial of degree
deg(v)− deg(u).

6.4 Parallel computation of low degree functions 95

Proof. Structural induction in v:

If u = v then deg(con(u, v)) = deg(1) = deg(v)− deg(u) = 0

If v ← v1 + v2 then deg(con(u, v)) = deg(con(u, v1)) = deg(con(u, v2)) = deg(v1)−
deg(u) = deg(v2)− deg(u) = deg(v)− deg(u), since deg(v) = deg(v1) = deg(v2).

If v ← v1 · v2 then deg(con(u, v)) = deg(con(u, v1))+deg(v2) = deg(v1)−deg(u)+
deg(v2) = deg(v)− deg(u). ✷

Definition 6.4 If t is a positive integer then Vt denotes the set of nodes

Vt = {v|deg(v) > t, v ← v1 · v2 and deg(v1) ≤ t}

Lemma 6.10 Let 0 < t. If deg(u) ≤ t < deg(v) then it holds that

fun(v) =
∑

w∈Vt

fun(w) · con(w, v)

and

con(u, v) =
∑

w∈Vt

con(u, w) · con(w, v)

Proof. Again we use structural induction in v. We consider only con(u, v). The
identity for fun(v) is shown in a similar manner.

Since 0 < t < deg(v), v is not a constant or an input variable.

If v ← v1 + v2 then

con(u, v) =

con(u, v1) + con(u, v2) =
∑

w∈Vt

con(u, w) · con(w, v1) +
∑

w∈Vt

con(u, w) · con(w, v2) =

∑

w∈Vt

con(u, w) · (con(w, v1) + con(w, v2)) =

∑

w∈Vt

con(u, w) · con(w, v)

96 6 CONSTRUCTIONS II

Assume that v ← v1 · v2 and v ∈ Vt. If w 6= v and w ∈ Vt then con(w, v) =
con(w, v1) · fun(v2) = 0, since deg(w) > t ≥ deg(v1) and therefore con(w, v1) = 0.
I.e.

con(u, v) =

con(u, v) · con(v, v) =
∑

w∈Vt

con(u, w) · con(w, v)

If v ← v1 · v2 and v 6∈ Vt then t < d(v1) and

con(u, v) =

con(u, v1) · fun(v2) =

∑

w∈Vt

con(u, w) · con(w, v1)

 fun(v2) =

∑

w∈Vt

con(u, w) · (con(w, v1) · fun(v2)) =

∑

w∈Vt

con(u, w) · con(w, v)

✷

Proof of lemma 6.8. Let N of size s be a minimal homogeneous circuit computing
the polynomial p of degree d. We will use the notation introduced before the
proof. Using lemma 6.10 one may construct a low depth circuit computing fun(v)
and con(u, v) for all nodes u and v in N .

We construct a circuit divided in ⌈log d⌉ layers. Each layer i is composed of
two sub-layers, namely a fun-layer computing fun(v) for the v satisfying 2i−1 <
deg(v) ≤ 2i and a con-layer computing con(u, v) for the nodes u, v satisfying
2i−1 < deg(v) − deg(u) ≤ 2i. The fun-sub-layer is below (computed before) the
con-sub-layer.

In the first layer, we compute all fun(v) and con(u, v) of degree at most 1 = 20.
Since these polynomials are homogeneous linear forms in the input variables, this
can be done in depth ⌈log n⌉+1, with the upper ⌈log n⌉ levels using + only. The
size is at most O(n · s2).

6.5 Degree bounded Boolean circuits 97

The i + 1’st fun-sub-layer computes fun(v) as follows:
Let v satisfy 2i < deg(v) ≤ 2i+1. For t = 2i we have by lemma 6.10 that

fun(v) =
∑

w∈Vt

fun(w) · con(w, v) =
∑

w∈Vt

fun(w1) · fun(w2) · con(w, v)

For w ∈ Vt it holds that deg(w2) ≤ deg(w1) ≤ 2i and deg(con(w, v)) = deg(v)−
deg(w) < 2i+1 − 2i. Therefore fun(v) is a sum of no more than s terms each of
which is a product of three factors, all computed in lower layers.
Hence fun(v) may be computed in size O(s) and depth ⌈log s + 2⌉ by a circuit
using only + in the upper ⌈log s⌉ levels.

The i + 1’st con-sub-layer is built on top of fun-sub-layer:
Let u, v satisfy 2i < deg(v)−deg(u) = deg(con(u, v)) ≤ 2i+1. For t = deg(u)+2i

we have by lemma 6.10 that

con(u, v) =
∑

w∈Vt

con(u, w) · con(w, v) =
∑

w∈Vt

con(u, w1) · fun(w2) · con(w, v)

For w ∈ Vt we have deg(con(u, w1)) = deg(w1)−deg(u) ≤ deg(u)+2i−deg(u) =
2i and deg(con(w, v)) = deg(v)− deg(w) < deg(v) − deg(u) − 2i < 2i, implying
that con(u, w1) and con(w, v) are both computed in lower layers.
We have no similar upper limit for deg(w2). If deg(w2) ≤ 2i then fun(w2) is
computed in a lower layer, and if 2i < deg(w2) ≤ 2i+1 then it is computed in the
fun-sub-layer.
Consider the remaining case of deg(w2) > 2i+1. In fact we do not need the
value of fun(w2) in this case, because con(u, w1) · con(w, v) = 0. Why does the
latter condition hold ? Assume hypothetically that con(u, w1) · con(w, v) 6= 0.
Then deg(w1) ≥ deg(u) and deg(v) ≥ deg(w) and we have deg(v) ≥ deg(w) =
deg(w1)+deg(w2) > deg(u)+2i+1 in conflict with deg(v)−deg(u) = deg(con(u, v)) ≤
2i+1.
Thus con(u, v) is computed in size O(s) and depth ⌈log s + 2⌉ by a circuit using
only +’s in the upper ⌈log s⌉ levels.

The total depth of the constructed circuit is O(log d · log s) and the total size is
O((s + n) · s2) = O(s3). ✷

6.5 Degree bounded Boolean circuits

The proof of theorem 6.7 works over any semiring, and since {0, 1} with OR and
AND is a semiring, the parallelisation result is also true for Boolean circuits,
provided all negations are applied directly to inputs.

98 6 CONSTRUCTIONS II

Assumption 6.1 In the sequel, we assume that negation gates are applied to
inputs only.

When phrasing the result, we must use the term degree with care. In the Boolean
algebra where x · x = x, polynomials of distinct degrees may be functionally
identical, so when we speak about the polynomial computed by a circuit we
really mean the (unique) formal polynomial computed by that circuit.

Definition 6.5 The degree of a node in a {+, ·,− }-circuit (or straight line pro-
gram) is defined inductively by

• deg(0) = deg(1) = 0

• For a variable x: deg(x) = deg(x) = 1

• If vi ← vj + vk then deg(vi) = max{deg(vj), deg(vk)}.

• If vi ← vj · vk then deg(vi) = deg(vj) + deg(vk).

The degree of a circuit, is the degree of the output node.

Definition 6.6 pdC is the class of Boolean function families F = {Fn}, com-
puted by circuits of polynomial size and polynomial degree.

We can make a stronger Boolean version of theorem 6.7 when using unbounded
fan-in gates

Definition 6.7 An SU-circuit is a circuit over the basis {−, ·, +2, +3, . . .}, where
negation is used on inputs only. Negations are not counted when calculating the
size and depth of an SU-circuit.

SACi is the class of Boolean function families computed by SU-circuits of poly-
nomial size and depth O(logi n)

Note that SACi ⊆ NCi+1 (exercise 6.6).

Theorem 6.11 pdC = SAC1.

6.5 Degree bounded Boolean circuits 99

Proof. pdC ⊆ SAC1 by the construction in the proof of theorem 6.7. SAC1 ⊆ pdC
by exercise 6.7. ✷

When regarding the Booleans as a semiring, we let AND take the roll of mul-
tiplication and we let OR take the roll of addition. This is supported by the
notation we are using, but what happens if we reverse the rolls of AND and OR?
– Essentially Nothing: the class pdC is invariant under interchange of + and · in
the definition of degree. We prove a more general result for which we need the
concept of co-classes.

Definition 6.8 For a class C of Boolean function families the class co-C consists
of the families F = {Fn} satisfying that F = {Fn} is in C.

The definitions of pdC and SACi do not indicate that these classes are closed un-
der complement, but Borodin, Cook, Dymond, Ruzzo and Tompa (1989) showed
that SACi = co-SACi (and therefore also pdC = co-pdC). The key to this re-
sult is the proper use of a counter, and the authors state in the original paper
that they were inspired by the proof of Immerman (1988) that nondeterministic
space is closed under complement. The proof has also some similarity to the
construction in exercise 3.30.

Theorem 6.12 If f ∈ Bn is computed by an SU-circuit of size s ≥ n and depth
d then f is computed by an SU-circuit of size O(s3d log s) and depth O(d+log s).

Proof. We are going to modify N in 4 steps, ending up with a circuit N4 that
computes the negated value of N ’s output in addition to computing all the sub-
results computed by N .

We start by constructing a layered circuit N1, where a gate in layer t takes input
from layer t− 1 only.

The circuit N2 uses the division into layers for computing a conditional negation
of every value computed in N1. If v is a

∑

-gate in layer t and we know the total
number of computed 1-values in layer t − 1 (denote this number by Pt−1) then
the negation of v is computed by the function ThPt−1 applied to those gates in
layer t − 1 that are not inputs to v. Therefore the correct computation of the
negations is conditional to knowing the number of 1’s computed in each layer.

The Pt’s are computed inductively by the circuits N3, and N4 computes the
negated output.

Let us describe the construction of the circuit N1.

100 6 CONSTRUCTIONS II

Let J = {x1, . . . , xn, x1, . . . , xn}, let G be the set of ·-gates and
∑

-gates in N and
let V = J ∪ G, i.e. |V | = 2n + s = O(s). For v ∈ G let I(v) ⊆ V denote the set
of inputs to v.

N1 has d layers of gates (|V | gates in each layer), and in addition a bottom layer
with |V | input/neg-input/constants.

For each v ∈ V and each layer t = 1, 2, . . . , d, N1 has a gate vt, and for each
v ∈ V , N1 has an input/neg-input/constant v0.

If v ← u · w then v0 = 0 and vt ← ut−1 · wt−1 for t ≥ 1.

If v ← ∑

u∈I(v) u then v0 = 0 and vt ←
∑

u∈I(v) ut−1 for t ≥ 1.

If v ∈ J then v0 = v and for t ≥ 1, vt computes the same value as vt−1, which
could be realised by letting vt ← vt−1 · vt−1.

Let Vt = {vt | v ∈ V }. N1 satisfies the following:

1. layering: A gate in Vt takes input from Vt−1 only, and |Vt| = |V |.

2. equivalence to N : If a gate v ∈ G has depth l then val(vt) = val(v) for t ≥ l.
(Use induction in l for a proof).

3. depth: D(N1) = d

4. size S(N1) = |V | · d = O(sd)

The circuit N2 will contain N1 as a sub-circuit and in addition N2 has gates
(inputs/constants) vt,m where m = 0, 1, 2, . . . , |V | for each gate (input/constant)
vt in N1. We intend vt,m to compute vt negated when m is the precise number of
1-values computed in the prior layer (Vt−1), i.e.

val(vt,m) =

{

val(vt) if m = Pt−1

arbitrary value otherwise

where

Pt−1 = |{ut−1 | ut−1 ∈ Vt−1 and val(ut−1) = 1}|.

The vt,m’s are constructed:

v0,m = v0 for all m.

6.5 Degree bounded Boolean circuits 101

If vt ← ut−1 · wt−1 then vt,m ← Thm−1(Vt−1 − {ut−1, wt−1}) for all m.

If vt ←
∑

u∈I(v) ut−1 then vt,m← Thm(Vt−1 − {ut−1 | u ∈ I(v)}) for all m.

Each Th-function is computed by an SU-circuit of size O(s log s) and depth
O(log s) (A monotone circuit over the basis {+, ·} is also an SU -circuit, and
monotone circuits are constructed from sorting networks).

The circuit N2 contains the circuit N1 and satisfies

1. conditional negation: val(vt,m) = val(vt) for m = Pt−1.

2. depth: D(N2) = O(d+log s). (All inputs to a Th-function are gates/inputs/
constants from N1).

3. size: S(N2) = O(S(N1) · |V | · s log s) = O(s3d log s).

The circuit N3 computes the Pt-values in a positional representation, i.e. N3

contains gates/constants ct,m for t = 0, 1, . . . , d and m = 0, 1, . . . , |V | such that

val(ct,m) =

{

1 if m = Pt

0 otherwise

We have that P0 = n, since precisely n of {x1, . . . , xn, x1, . . . , xn} have value 1.
We therefore let c0,n = 1 and c0,m = 0 for m 6= n.

For t ≥ 1 we may express Pt = m in the following way:

i) Pt ≥ m, i.e. at least m of the vt’s compute the value 1, and

ii) Pt ≤ m, i.e. if Pt−1 = r then at least |V |−m of the vt,r’s compute the value
1.

This implies the correctness of the following computation of ct,m (by induction in
t):

ct,m ← Thm(Vt) ·
|V |
∑

r=0

ct−1,r · Th|V |−m({vt,r | v ∈ V })

The Th-functions are computed as in N2.

The circuit N3 contains N2 and satisfies

102 6 CONSTRUCTIONS II

✁
✁
✁✕

❆
❆

❆❑

❆
❆

❆❑

❆
❆

❆❑

❆
❆

❆❑

✁
✁
✁✕

✁
✁
✁✕

❆
❆

❆❑

✡
✡
✡✣

✑
✑

✑
✑✑✸

✡
✡
✡✣

.❆
❆

❆❑

✡
✡
✡✣

❏
❏

❏❪

�
��✒

.❅
❅❅■

❆
❆

❆❑

◗
◗

◗
◗◗❦

✁
✁
✁✕

✁
✁
✁✕

✁
✁
✁✁✕

✁
✁
✁✁✕

❆
❆

❆❆❑

✁
✁
✁✁✕

❆
❆

❆❆❑

❆
❆

❆❆❑

❍❍❍❍❍❍❍❍❍❨

✄
✄
✄✄✗

✻✏✏✏✶
*

*

x y z u

(b)

* **

+ * +

*

+

x y

(a)

* *+

/

–

Figure 17:

1. correct counting: ct,m = 1 if and only if the vt’s have m 1-values.

2. depth: D(N3) = O(D(N2)+d+log s) = O(d+log s) (All inputs to the new
Th-functions are gates/inputs/constants from N2).

3. size: S(N3) = O(S(N2) + d|V |2s log s) = O(s3d log s)

N4 contains a special output gate v′. If v is the output gate in N then v′ ←
∑|V |

m=0 cd−1,m · vd,m satisfies that val(v′) = val(v). ✷

Corollary 6.13 SACi = co-SACi for i ≥ 1.

Exercises

Exercise 6.1 1) Decide for which m, 2m × 2m matrix multiplication based on
Strassen’s technique uses fewer operations than the standard technique.

2) What method should be used in practice, if + and · are equally fast ?

Exercise 6.2 Assume that we base matrix multiplication on a method for mul-
tiplication of 3× 3 matrices. How many multiplications is allowed if we want to
beat Strassen based matrix multiplication (asymptotically)?

6.5 Degree bounded Boolean circuits 103

Exercise 6.3 Use the method of theorem 6.5 to find the polynomial (of degree 1)
computed by the circuit in figure 17 (a)

Exercise 6.4 Compute con(u, v) for all nodes in the circuit of figure 17 (b),
where deg(v) = 6 and u ∈ V3

Exercise 6.5 Show that C ⊆ D ⇒ co-C ⊆ co-D

Exercise 6.6 Show that SACi ⊆ NCi+1.

Exercise 6.7 Show that SAC1 ⊆ pdC.

Exercise 6.8 1) Show that PATH (Example 1.3) is in pdC.

2) Find some graph problems in pdC.

Exercise 6.9 Show that recognition of a context free language is in pdC.

Hint: use the following algorithm (based on dynamic programming).

Let G = (N, Σ, P, S) be a context free grammar in Chomsky normal form.
N is the set of nonterminals, Σ is the set of input symbols, S is the start symbol
and P is the set of production rules being in the form A → BC or A → a
(A, B, C ∈ N, a ∈ Σ).

For a string w = a1a2 · · · an the following algorithm decides whether w ∈ L(G).
The Mij’s are sets of nonterminals satisfying (A ∈Mij)⇔ (A⇒∗ aiai+1 · · · aj).

w ∈ L(G)
for i := 1 to n do

Mii ← {A ∈ N |A→ ai}
od

for i := 1 to n do

for j := i + 1 to n do

Mij ← ∅
od

od

for k := 1 to n− 1 do

for i := 1 to n− k do

for j := i to i + k − 1 do

104 6 CONSTRUCTIONS II

Mi,i+k ← {A ∈ N |A→ BC, B ∈Mij , C ∈Mj+1,i+k} ∪Mi,i+k

od

od

od

output S ∈M1n

Exercise 6.10 Show that the problem of computing the determinant of an integer
matrix is in NC2.

Exercise 6.11 Show that the size of the circuit constructed in the proof of theo-
rem 6.12 can be reduced to O(s2d log s).

Literature

1. Borodin, A., Cook, S. A., Dymond, P. W., Ruzzo, W. L. and Tompa, M.
L. (1989), Two Applications of inductive Counting for Complementation
Problems. SIAM J. Comput. 18, 559–578.

2. Coppersmith, D. and Winograd, S. (1990) Matrix Multiplication via Arith-
metic Progressions. J. Symbolic Computation 9, 251–280.

3. Immerman, N. (1988), Nondeterministic Space is Closed Under Comple-
mentation. SIAM J. Comput. 17, 935–938.

4. Strassen, V. (1969), Guassian Elimination is not Optimal. Numer. Math.
13, 354–356.

5. Strassen, V. (1973), Vermeidung von Divisionen. J. Reine Angew. Math.
264, 184–202.

6. Valiant L. G. and Skyum, S. (1981), Fast Parallel Computation of Polyno-
mials using few Processors. Proc. from 10th MFCS.

7. Valiant L. G., Skyum, S., Berkowitz, S. and Rackoff, C. (1983), Fast Parallel
Computation of Polynomials using few Processors. SIAM J. Comput. 12,
641–644.

105

7 Lower Bounds II

We start this section by introducing communication complexity, which is a rich
subject on its own in addition to providing a technique for proving lower bounds
on circuit depth. We prove a lower bound on the probabilistic communication
complexity of deciding disjointness and apply this result to prove a linear depth
lower bound for monotone solutions to a matching problem (which have low depth
general solutions).

Finally, we present Razborov’s original super-polynomial size lower bound for
monotone solutions to the NP-complete k-clique problem.

7.1 Communication Complexity

Just as time, space and hardware size are fundamental resources, when comput-
ing a function, one may consider communication a resource, i.e. if the input is
distributed between several agents, how much communication is needed for the
agents to agree on a function value?

Results from communication complexity theory applies directly to distributed
systems. There are also less obvious applications, e.g. trade off results in VLSI
theory (see exercise 7.2), lower bounds on depth (see section 7.3), and most
recently lower bounds on data type implementation.

The study of communication complexity was initiated by Yao (1979).

Definition 7.1 Let X, Y, Z be finite sets. A deterministic communication pro-
tocol A over X, Y, Z specifies the exchange of information between two players
I and II who initially receive inputs x ∈ X and y ∈ Y respectively, and finally
agree on a value A(x, y) ∈ Z. Let CA(x, y) denote the number of bits exchanged
between the two players using protocol A on input x, y.

A computes the function f : X × Y 7→ Z defined by f(x, y) = A(x, y) for all
(x, y) ∈ X × Y , and we let CA(f) = max(x,y)∈X×Y CA(x, y). The communication
complexity of f is

C(f) = min{CA(f) | A computes f}

More generally, A is said to compute a (non-unique) relation R ⊆ X × Y × Z,
if (x, y, A(x, y)) ⊆ R for all (x, y) ∈ X × Y . CA(R) and C(R) is defined in the
obvious way.

106 7 LOWER BOUNDS II

Definition 7.2 For a Boolean function f ∈ B2n, we let CX↔Y (f) denote the
communication complexity of f with respect to a specific division X ⊆ {x1, . . . , x2n}
and Y = {x1, . . . , x2n} −X.

We have a default division: C(f) = C{x1,...,xn}↔{xn+1,...,x2n}(f).

We also need Cbest(f) = min{CX↔Y (f) | |X| = |Y | = n, and X ∪ Y =
{x1, . . . , x2n} }

Proposition 7.1 For all f ∈ B2n, C(f) ≤ n + 1.

Proof. We may assume that player I and II initially have inputs x ∈ {0, 1}n and
y ∈ {0, 1}n respectively. Player I sends all of x to player II that computes f(x, y)
and returns the result bit to player I. ✷

Example 7.1 Examples of problems having nontrivial deterministic communi-
cation complexity – in class only.

Definition 7.3 The communication matrix Mf of f ∈ B2n is the 2n × 2n 0, 1-
matrix {mij} defined by

m[x],[y] = f(x, y).

Proposition 7.2 C(f) ≥ log rank(Mf).

Proof. A communication protocol A for computing f specifies who sends the first
bit, say player I does. This bit is determined by the input x to player I . In
other words the protocol divides the rows of Mf in two classes and the bit sent
tells player II in which of the two classes x belongs. The rows in this class forms
a submatrix M1 of Mf . The ith bit exchanged between player I and player II
chooses either a subset of the rows or the columns in the previous matrix Mi−1

resulting in a submatrix Mi of Mi−1.

When the protocol ends, say after the exchange of k bits, the rows of Mk cor-
respond to the set of x’s consistent with player II’s knowledge and similarly the
columns of Mk correspond to the set of y’s consistent with player I’s knowledge.
Since player I knows that player II knows the value of f(x, y), each column of Mk

must be all 1’s or all 0’s. By a symmetric argument, each row of Mk must also
be all 1’s or all 0’s, i.e. Mk is monochromatic (all 1’s or all 0’s), and therefore
rank(Mk) ≤ 1.

7.1 Communication Complexity 107

There exists an input such that rank(Mi) ≥ 1
2
rank(Mi−1) for all i, and therefore

A uses at least log rank(Mf) bits of communication in the worst case. ✷

Definition 7.4 Define EQUAL2n,DISJ2n ∈ B2n by

EQUAL(x, y) =

{

1, if x = y
0, otherwise

DISJ(x, y) =

{

1, if xiyi = 0 for all i
0, otherwise

Proposition 7.3 n ≤ C(EQUAL), C(DISJ) ≤ n + 1

Proof. The communication matrices for both problems have rank 2n (exercise
7.3). Thus the lower bound follows from proposition 7.2. The upper bound
follows from the trivial communication protocol, proposition 7.1. ✷

Less communication may suffice when coin tossing is allowed:

Definition 7.5 A probabilistic communication protocol A is a probability dis-
tribution over deterministic protocols. CA(x, y) is the expected number of bits
exchanged by the two players on an input x, y.

A probabilistic protocol ǫ-computes a function f , if for all (x, y) in the domain
of f , Pr(A(x, y) 6= f(x, y)) ≤ ǫ and we let CA(f) = maxx,y CA(x, y). The ǫ-error
probabilistic communication complexity of f is

Cǫ(f) = min{CA(f) | protocol A ǫ-computes f}.

For a relation R, Cǫ(R) is defined similarly.

Proposition 7.4 Cǫ(EQUAL2n) ≤ log n + log(ǫ−1) + O(1)

Proof. For each prime p, we have a deterministic protocol Ap that works as
follows: player I sends the value [x] mod p (log p bits) to player II. If [x] mod p =
[y] mod p then the result of the protocol is 1 and otherwise 0. Player II notifies
player I of the result, using a single bit.

108 7 LOWER BOUNDS II

If x = y then Ap(x, y) = EQUAL2n(x, y) for all p. If x 6= y then Ap(x, y) =
EQUAL2n(x, y) except when p divides |[x] − [y]| ≤ 2n. Define Chebyshev’s ϑ-
function by

ϑ(x) =
∑

p≤x

ln p

A version of the prime number theorem states that limx→∞
ϑ(x)

x
= 1 (see Apostol,

Introduction to Analytic Number Theory, Springer-Verlag, 1976). In particular
this means that there is a constant c such that ϑ(cx) ≥ x for all x ≥ 2. Let
m = c ln 2

ǫ
n. The probabilistic protocol A, will use the protocol Ap with probability

ln p
ϑ(m)

for p ≤ m and

Pr(A(x, y) 6= EQUAL(x, y)) ≤

Pr(p divides [x]− [y] | x 6= y) ≤

ln(2n)

ϑ(m)
≤ ǫ

The number of bits transfered in the protocol is

log p + 1 ≤ log m + 1 = log n + log(ǫ−1) + O(1)

✷

7.2 Lower bound on probabilistic communication com-
plexity

The last result has no analogue for the disjointness problem. In fact it holds that

Proposition 7.5 (Kalyanasundaram and Schnitger, 1987)

C 1
3
(DISJ) = Ω(n)

7.2 Lower bound on probabilistic communication complexity 109

Proof. Omitted. A relatively short proof is given by Razborov (1992). ✷

We give the details of a weaker result with a simpler proof, namely C1
3
(DISJ) =

Ω(
√

n).

We need some definitions and lemmas.

Lemma 7.6 Let f ∈ B and let ǫ, δ be fixed constants such that 0 < δ ≤ ǫ < 1
2
.

It holds that Cδ(f) = O(Cǫ(f)).

Proof. see exercise 7.6. ✷

Notation 7.1 We will when convenient regard x as the subset of {1, 2, . . . , n}
defined by x = {i | xi = 1}, and accordingly we use set notation such as

x ∩ y = z where zi = xiyi

#x = |{i | xi = 1}|

Definition 7.6 Let Q = {x ∈ {0, 1}n | #x =
√

n} and define DISJ-Q =
DISJ|Q×Q.

Lemma 7.7 Cǫ(DISJ) ≥ Cǫ(DISJ-Q) for all ǫ.

Proof. Any probabilistic protocol for DISJ will also work for DISJ-Q. ✷

Definition 7.7 For f : X × Y 7→ Z and ǫ > 0 let dǫ(f) be the minimum of
CA(f), where the minimum is taken over all possible deterministic protocols A
that compute f correctly on all inputs except for a fraction ǫ.

Lemma 7.8 2Cǫ(f) ≥ d2ǫ(f).

Proof. See exercise 7.7. ✷

Definition 7.8 Let M denote the |Q| × |Q| communication matrix for DISJ-Q.
A submatrix R = F ×G of M is an ǫ-error 1-rectangle if x ∩ y = ∅ except for a
fraction ǫ of all (x, y) ∈ F ×G.

110 7 LOWER BOUNDS II

Lemma 7.9 There exists ǫ0 > 0 and c0 > 0 such that for all 0 < ǫ < ǫ0 and
0 < c < c0 the following holds.

Let R = F ×G be an ǫ-error 1-rectangle.

Let F1 = {x ∈ F | #{y ∈ G|x ∩ y 6= ∅} ≤ 2ǫ|G| }.

(i) If |F1| ≥ 1
2
|Q|2−c

√
n then we may choose x1, x2, . . . , x√

n/3 ∈ F1 such that

|
√

n/3
⋃

i=1

xi| ≥
n

6

provided n is sufficiently large.

(ii) |R| ≤ |Q|22−c
√

n provided n is sufficiently large.

Proof. part (i): It suffices to choose xl such that |xl − ∪l−1
i=1xi| ≥

√
n

2
. Since

| ∪l−1
i=1 xi| <

√
n

3

√
n = n

3
, the number of choices for xl is at least

|F1| −
√

n
∑

i=
√

n
2

+1

(

n
3

i

)(

2n
3√

n− i

)

≥

1

2
|Q|2−c

√
n −
√

n

2

(n
3√
n

2

)(2n
3√
n

2

)

≥

1

2

(

n√
n

)

2−c
√

n − n
√

n

2
(
1

3
)

√
n
2 (

2

3
)

√
n

2

(√
n

√
n

2

)(

n√
n

)

≥

1

2

(

n√
n

)

2−c
√

n − n
√

n

2
(
2
√

2

3
)
√

n

(

n√
n

)

which is strictly positive for n sufficiently large provided that 2−c > 2
√

2
3

, i.e.
c < log 3

2
√

2
≈ 0.09.

part (ii): If |F | ≤ |Q|2−c
√

n then |R| = |F × G| ≤ |Q|22−c
√

n, and therefore we
will assume that |F | ≥ |Q|2−c

√
n. By a counting argument, we also have that

7.2 Lower bound on probabilistic communication complexity 111

|F1| ≥ |F |/2 ≥ 1
2
|Q|2−c

√
n, and therefore we can use part (i) of the lemma. In

the following let x1, . . . , x√
n/3 be given (and fixed) such that | ∪

√
n/3

i=1 xi| ≥ n
6
. Let

G1 = {y ∈ G | #{i|xi ∩ y 6= ∅, 1 ≤ i ≤
√

n

3
} ≤ 4ǫ

√
n

3
}.

By a counting argument, we also have that |G1| ≥ |G|/2. For S being some

subset of the xi’s with |S| = 4ǫ
√

n
3

, let GS
1 be those y ∈ G1 that intersect no xi

not contained in S. For a fixed S there must be at least n
6
− 4ǫ

√
n

3

√
n ≥ n

9
(for

ǫ ≤ 1
24

) elements in {1, . . . , n} that are not included in any y ∈ GS
1 , and therefore

|GS
1 | ≤

(8n
9√
n

)

. Combined we get

|G| ≤ 2|G1| ≤ 2|
⋃

S

GS
1 | ≤ 2

(

√
n

3

4ǫ
√

n
3

)(

8n
9√
n

)

By exercise 7.8 this expression is ≤ 2−c
√

n|Q| for ǫ, c sufficiently small and n
sufficiently large. ✷

Theorem 7.10 (Babai, Frankl and Simon, 1986)
C 1

3
(DISJ2n) = Ω(

√
n)

Proof. By lemmas 7.6, 7.7 and 7.8 it suffices to prove that dǫ(DISJ-Q2n) = Ω(
√

n)
for some ǫ < 1

2
.

Remember that in the communication matrix M for DISJ-Q2n a 1 corresponds
to an input pair x, y with x ∩ y = ∅, and a 0 corresponds to an input pair x, y
with x ∩ y 6= ∅

Given a deterministic communication protocol A, all inputs x, y that lead to
the same communication (i.e. same bit sequence) between the two players as
a given input (x0, y0

) corresponds to a submatrix M(x0,y
0
) of M . M(x0,y

0
) may

contain both 0’s and 1’s, but the protocol will give the same answer to all the
corresponding inputs, either always 0 or always 1.

The fraction of 1’s in the communication matrix M for DISJ-Q2n is

(

n−√n√
n

)

/

(

n√
n

)

≥ (
n − 2

√
n + 1

n−√n + 1
)
√

n ≥ (1− 1√
n− 1

)
√

n

112 7 LOWER BOUNDS II

which is greater than 1
3

for n sufficiently large.

If A is a deterministic protocol erring on no more than a fraction ǫ of inputs then
at least (1

3
− ǫ)|Q|2 of all the 1’s in M must also lead to the answer 1 by A.

If more than 1
2
(1

3
− ǫ)|Q|2 of the 1’s in M lead to 1-answers based on submatrices

with more than a fraction 6ǫ of 0’s, then the total number of 0’s leading to a
wrong 1-answer is at least 1

2
(1

3
− ǫ) 6ǫ

1−6ǫ
|Q|2 > ǫ|Q|2. This is a contradiction, so at

least 1
2
(1

3
− ǫ)|Q|2 of the 1’s in M lead to a 1-answer based on submatrices that

are 6ǫ-error 1-rectangles. Each such submatrix has size ≤ |Q|22−c
√

n for some
c > 0 (if ǫ is sufficiently small) according to lemma 7.9(ii). Hence there are at
least

1
2
(1

3
− ǫ)|Q|2

|Q|22−c
√

n
= 2c

√
n 1

2
(
1

3
− ǫ)

distinct submatrices M(x,y). Therefore the protocol must take at least log(2c
√

n 1
2
(1

3
−

ǫ)) = Ω(
√

n) steps. ✷

7.3 Lower bound on monotone depth

Definition 7.9 MATCH(n
2)
∈ B(n

2)
is defined by

MATCH(n
2)

(x) =

{

1, if G[x] has a matching of size n
3

0, otherwise

Mulmuley, Vazirani and Vazirani (1987) constructs a randomised parallel algo-
rithm for MATCH using nO(1) processors and logO(1) n time with error probability
≤ 1

4
. By the techniques of section 4.6 this means that MATCH ∈ NCk. See also

exercise 7.14.

MATCH is a monotone problem, and one might expect that a good parallel and
monotone solution also exists. However, Raz and Wigderson (1992) proved that
Dm(MATCH) = Ω(n).

Definition 7.10 Let f ∈ MONn.

x is a minterm for f if f(y) = 1 for all y ≥ x and f(y) = 0 for all y < x.

x is a maxterm for f if f(y) = 1 for all y > x and f(y) = 0 for all y ≤ x.

7.3 Lower bound on monotone depth 113

Let MIN(f),MAX(f) ⊆ {0, 1}n be the set of minterms and maxterms, respec-
tively, for f . Define the relation R(f) ⊆ MIN(f) ×MAX(f)× {1, 2, . . . , n} by

(x, y, i) ∈ R(f) iff xi = 1 and yi = 0

Lemma 7.11 Dm(f) ≥ C(R(f)) for all f ∈ MON.

Proof. A (+, ·)-formula F of depth d is known to both players. Player I has an
input x such that F (x) = 1 and player II has an input y such that F (y) = 0.
If F = F0 · F1 then one of F0(y) and F1(y) must be 0. Assume that Fi(y) = 0
then player II sends the bit i to player I and since Fi(x) = 1, the protocol may
continue recursively on Fi that has depth ≤ d− 1. In case F = F0 + F1 the roles
of the two players are reversed. After at most d steps the formula is reduced to
a single variable, the index of which is known to both players. ✷

Definition 7.11 Let Pn be the set of all n
3
-matchings over n vertices (Each mem-

ber of Pn is a graph with n
3

disjoint edges). Let Qn be the set of all (n
3
−1)-subsets

of n vertices (Each member of Qn is n
3
− 1 vertices). Let En be all edges in the

complete graph on n vertices. Define ˆMATCHn ⊂ Pn ×Qn × En by

(p, q, e) ∈ ˆMATCHn iff e ∈ p and e ∩ q = ∅.

Lemma 7.12 Dm(MATCH(n
2)

) ≥ C(ˆMATCHn)

Proof. This follows from lemma 7.11, since p ∈ Pn is a minterm for MATCH and
q ∈ Qn induces a maxterm r (all the edges in q × {1, 2, . . . , n}). For any edge e,
we have that e ∈ p and e ∩ q = ∅ if and only if e ∈ p− r. ✷

Definition 7.12 Define DIST 2n
3

: {a, b, c}n
3 × {a, b, c}n

3 7→ {0, 1} by

DIST 2n
3
(x, y) = 1 iff xi 6= yi for all 1 ≤ i ≤ n

3

Proposition 7.13 C(ˆMATCHn) ≥ C1
3
(DIST2n

3
)

Proof. We first design a deterministic protocol for every triple (S, ρ, k), where

114 7 LOWER BOUNDS II

S = (S1, S2, . . . , Sn
3
) is a partition of the vertex set {1, 2, . . . , n} into triples,

i.e. |Si| = 3, and |Si ∩ Sj| = ∅ for i 6= j, and

ρ = (ρ1, ρ2, . . . , ρn
3
) is a sequence of bijections, ρi : {a, b, c} 7→ Si, and

k ∈ {1, 2, . . . , n
3
}.

For each ρi, we define a complementary mapping, by ρi(γ) = Si − {ρi(γ)}.

To a triple (S, ρ, k), we associate two mappings σI : {a, b, c}n
3 7→ Pn and σII :

{a, b, c}n
3 7→ Qn defined by

σI(x) = {ρ1(x1), ρ2(x2), . . . , ρn
3
(xn

3
)}

σII(y) = {ρ1(y1), ρ2(y2), . . . , ρn
3
(yn

3
)} − {ρk(yk)}

The deterministic protocol B(S,ρ,k) works as follows. On input (x, y), player I
computes p = σI(x) and player II computes q = σII(y). Next they apply a

deterministic protocol A for ˆMATCH to find an e such that (p, q, e) ∈ ˆMATCH.
The result of the protocol is 1 if ρk(yk) ∈ e and otherwise it is 0.

The probabilistic protocol B for DIST is defined as follows. With probability 1
3

the result is 0 (without any communication) and with probability 2
3

it chooses
some protocol B(S,ρ,k) uniformly at random, and uses the result of this protocol.

If DIST(x, y) = 1, then ρi(yi) ∈ ρi(xi) for all 1 ≤ i ≤ n
3
, and therefore the value

returned by protocol A must be e = ρk(xk) satisfying that ρk(yk) ∈ e, i.e. we
have

Pr(B(x, y) = 1 | DIST(x, y) = 1) =
1

3
· 0 +

2

3
· 1 =

2

3
.

If DIST(x, y) = 0, then for some j, ρj(yj) 6∈ ρj(xj). If k happens to be equal
to such a j, then we necessarily have that ρk(yk) 6∈ e, resulting in a 0 from the
protocol. If in stead ρk(yk) ∈ ρk(xk) then there is probability ≥ 1

2
that protocol

A returns an e = ρj(xj) with j 6= k, resulting in a 0, i.e. we have:

Pr(B(x, y) = 0 | DIST(x, y) = 0) ≥ 1

3
· 1 +

2

3
· 1
2

=
2

3
.

✷

7.4 Lower bound on Monotone Size 115

Proposition 7.14 Cǫ(DIST2n) ≥ Cǫ(DISJ2n)

Proof. Define two mappings τI , τII : {0, 1} 7→ {a, b, c} by τI(0) = a, τII(0) = b
and τI(1) = τII(1) = c. Both maps are extended to {0, 1}n in the natural way.
Clearly, (x, y) ∈ DISJ2n iff (τI(x), τII(y)) ∈ DIST2n. A probabilistic protocol D
for DISJ may be constructed by letting player I and player II compute τI(x) and
τII(y), respectively, and use a probabilistic protocol for DIST. ✷

Theorem 7.15 Dm(MATCH(n
2)

) = Ω(n)

Proof. Combine the above propositions and proposition 7.5. ✷

7.4 Lower bound on Monotone Size

We have so far encountered a number of monotone problems, e.g. threshold
functions, binary sorting and Boolean matrix multiplication. We know that the
monotone basis {+, ·} is complete for MON (exercise 1.6). Obviously, Sm(f) =
Ω(S(f)) for all f ∈ MON, but is it also true that Sm(f) = O(S(f)) ? The
question came into focus, when Razborov (1985) gave a super-polynomial lower
bound on the size of a monotone circuit for a specific (monotone) NP-complete
function (This result is shown in the following subsection).

Already Lamagna and Savage (1974) had proven the following result:

Theorem 7.16 Sm(SORTn) = Ω(n log n)

Proof. We will use the substitution technique to show that Sm(SORTn) ≥
⌈log n⌉+ Sm(SORTn−1), which implies the theorem.

Let C be an optimal circuit over {+, ·} for computing SORTn. Since SORTn(x) =
(Thn

n(x), . . . ,Th1
n(x)), we denote the n outputs from C by Th1

n, . . . ,Thn
n. Since

Thn
n depends on all inputs, C must contain a path from each input to Thn

n. Each
gate has fan-in 2, and we can therefore find an input xi, satisfying that a shortest
path from xi to Thn

n passes at least ⌈log n⌉ gates. Let C ′ be the circuit arising
from C when substituting 0 for xi and eliminating all gates that have one or
more constant inputs. Since the Thn

n-output is now constantly 0, we must have
eliminated all gates on a path from xi to Thn

n, implying that

Sm(C) ≥ Sm(C ′) + ⌈log n⌉.

116 7 LOWER BOUNDS II

Since C ′ computes SORTn−1(x1, . . . , xi−1, xi+1, . . . , xn) on the last n− 1 outputs,
we have that

Sm(SORTn) ≥ Sm(SORTn−1) + ⌈log n⌉,

which implies the theorem. ✷

Since binary sorting is computed by a circuit of size O(n), when allowing negation
(exercise 3.19), there is at least a factor log n slack between Sm and S.

The following result makes the situation even worse:

Theorem 7.17 Let MM ∈ MON2n2,n2 denote Boolean matrix multiplication,
i.e. MM2n2,n2(x, y)ij =

∑n
k=1 xi,kyk,j.

Then Sm(MM2n2,n2) = Ω(n3) and S(MM2n2,n2) = O(n2.81).

Proof. The upper bound is shown in exercise 7.18. We omit a proof of the lower
bound. ✷

Any hope of a polynomial relation between Sm and S was eventually terminated
by Razborov (1985) who proved a super-polynomial lower bound for the size of
any monotone circuit deciding the existence of a perfect matching in a bipartite
graph, a problem in P and even in NC2 (exercise 7.14).

7.4.1 The k-clique problem

We are now going to prove Razborovs first lower bound.

Let k be a fixed integer. k-CLIQUE∈ MON(n
2)

is the function that when input

an undirected graph with n nodes (represented by a bit for each possible edge)
returns the value 1, if the graph contains a complete subgraph (clique) on k
nodes.

We are going to prove that any family of monotone circuits computing k-CLIQUE
has size nΩ(

√
k). The proof follows Boppana and Sipser (1990).

The basic idea of the proof is the following. For every monotone circuit C we
describe an approximator circuit C̃ disagreeing with C on few inputs only provided
C is small. However, all approximators will disagree with the k-CLIQUE function
on many inputs, implying that C must be large in order to compute k-CLIQUE
correctly.

7.4 Lower bound on Monotone Size 117

When judging how well C̃ approximates C, we will not directly count the inputs
where the two circuits disagree, rather we count the number of positive and
negative test graphs giving rise to different output from the circuits.

A positive test graph has k distinguished nodes forming a clique. There are no
edges apart from the clique. In total, there are (n

k) = Θ(nk) distinct positive test
graphs.

In a negative test graph each node has a single colour out of (k − 1) possible
colours. Two nodes are connected by an edge, precisely when they have distinct
colours. In total there are (k − 1)n distinct negative test graphs, since graphs
with permuted colours are not regarded as identical.

Note that

k-CLIQUE(G) =

{

1 if G is a positive test graph
0 if G is a negative test graph

We need some notation. If X 6= ∅ is a set of nodes, then let ⌈X⌉ denote a clique
indicator, i.e. a circuit detecting whether X forms a clique:

⌈X⌉(G) =

{

1 if X spans a clique in the graph G
0 otherwise

E.g.
∑

|X|=k⌈X⌉ computes k-CLIQUE.

An approximator is a circuit computing a sum of clique indicators:
∑s

i=1⌈Xi⌉,
where s ≤ m and |Xi| ≤ l. If m ≪ (n

k) and l ≪ k, then it seems intuitively
reasonable that any approximator will deviate from k-CLIQUE on many test
graphs. The following values turn out to be appropriate:

l = ⌊
√

k⌋ (8)

m = (p− 1)l · l! (9)

where

p =
√

k log n (10)

We are going to motivate these choices in connection with the upcoming proofs,
of which the first one formalises our intuition that an approximator is really poor
at computing k-CLIQUE.

118 7 LOWER BOUNDS II

Lemma 7.18 An approximator is either identically 0, or it returns 1 on at least
1
2
(k − 1)n of all negative test graphs.

Proof. Let the approximator C̃ compute
∑s

i=1⌈Xi⌉, where s ≤ m and |Xi| ≤ l.
If C̃ is not identically 0, then we must have s ≥ 1. We are going to argue that
⌈X1⌉ alone accepts sufficiently many negative test graphs. For this we use a
probabilistic technique:

Pr
G is negat. test graph

(⌈X1⌉(G) = 1) =

1− Pr
G is negat. test graph

(2 nodes from X1 have same colours in G) ≥

1−
(

|X1|
2

)

1

k − 1
≥

1

2
if |X1| ≤

√
k.

(8) is chosen carefully to satisfy this condition. Since we have (k − 1)n negative
test graphs in total, the lemma follows. ✷

We need to describe for every monotone circuit C the construction of an approx-
imator C̃ such that C and C̃ deviates on a number of test graphs proportional
to the size of C only.

Without loss of generality, we can assume that C does not use constants. C̃ is
constructed from C in the following way:

1. Every input xi is preserved. (If xi represents an edge between the nodes u
and v, then xi is identical to the clique indicator ⌈{u, v}⌉).

2. Every +-operation is replaced by a new operator ⊔.

3. Every ·-operation is replaced by a new operator ⊓.

The remaining problem consists in defining the binary operators ⊔ and ⊓ on
approximators such that ã ⊔ b̃ (respectively ã ⊓ b̃) deviates very little from ã + b̃
(respectively ã · b̃). We start by ⊔:

7.4 Lower bound on Monotone Size 119

Z1

Z

3

2

pZ

Z

Z

Figure 18: Sunflower

Lemma 7.19 Given two approximators ã and b̃, we can find an approximator
ã ⊔ b̃ such that

1. ã ⊔ b̃ ≥ ã + b̃ for all positive test graphs.

2. ã ⊔ b̃ ≤ ã + b̃ for all (apart from m2−p(k − 1)n) negative test graphs.

Proof. If ã =
∑r

i=1⌈Xi⌉ and b̃ =
∑s

j=1⌈Yj⌉ then ã + b̃ is not necessarily an
approximator, since it may hold up to 2m clique indicators.

We are going to form ã⊔b̃ from ã+b̃ by decreasing the number of clique indicators
while only changing the output on test graphs within the limits stated in the
lemma. We need a definition:

A class of distinct sets Z = {Z1, . . . , Zp} is called a sunflower if for all i 6= j it
holds that Zi

⋂

Zj = Z, where Z = ∩p
i=1Zi. Figure 18 shows a sunflower. Z is

the centre of the sunflower, while the Zi’s are the petals. If a class of sets W
contains the sunflower Z, we say that we pick Z from W when we in W replace
the petals of Z with the centre of Z. The following result guarantees that if
|W| > m then it is possible to pick a sunflower with p petals from W and this
result is the reason for fixing m as in (9).

Lemma 7.20 (Erdös and Rado, 1960) If W is a class of distinct sets, where
each set has at most l elements and |W| > (p − 1)l · l! then there is a subclass
Z ⊆ W satisfying that Z is a sunflower with p petals.

120 7 LOWER BOUNDS II

Proof. We use induction on l. If l = 1 then W is a sunflower with centre ∅ and
|W| > p− 1 petals.

If l ≥ 2 we let M ⊆ W be a maximal class of disjoint sets. If |M| ≥ p then M
is a sufficiently large sunflower.

Otherwise we form the set S =
⋃

M∈M M that satisfies

|S| ≤ l(p− 1)

S ∩W 6= ∅ for every W ∈ W (11)

(11) means that we can find an s ∈ S such that s ∈ W for many (at least |W|
|S|)

W ∈ W. We choose such an s and define

W ′ = {W − {s} | s ∈W and W ∈ W}

It holds that

|W ′| ≥ |W||S| >
(p− 1)l · l!
l(p− 1)

= (p− 1)l−1 · (l− 1)!

Since every set in W ′ has at most l − 1 elements, we can (by induction) find a
subclass Z ′ ⊆ W ′ that forms a sunflower with p petals. If this sunflower has
centre C then

Z = {Z ′ ∪ {s} | Z ′ ∈ Z ′}

is a sunflower with centre C ∪ {s} also having p petals. ✷

Proof of lemma 7.19 continued. We can now define ã⊔ b̃. Let W := {X1, . . . , Xr,
Y1, . . . , Ys}. If |W| > m then pick sunflowers (with p petals) from W until
|W| ≤ m. Then ã ⊔ b̃ =

∑

W∈W⌈W ⌉ is an approximator.

We still need to analyse the deviation of ã ⊔ b̃ from ã + b̃.

The deviation for positive test graphs is analysed in exercise 7.20. For negative
test graphs we use a probability theoretic argument similar to what we did in the

7.4 Lower bound on Monotone Size 121

proof of lemma 7.18. If Z = {Z1, . . . , Zp} is a sunflower with centre Z then we
have:

Pr
G is negat. test graph

(
p
∑

i=1

⌈Zi⌉(G) = 0 and ⌈Z⌉(G) = 1) ≤

Pr
G is negat. test graph

(
p
∑

i=1

⌈Zi⌉(G) = 0 | ⌈Z⌉(G) = 1) = 1

p
∏

i=1

Pr
G is negat. test graph

(⌈Zi⌉(G) = 0 | ⌈Z⌉(G) = 1) ≤ 2

p
∏

i=1

Pr
G is negat. test graph

(⌈Zi⌉(G) = 0) ≤ 3

p
∏

i=1

1

2
= 2−p

We make no more than 2m−m = m pickings. Therefore

Pr
G is negat. test graph

(ã ⊔ b̃(G) = 1 and ã + b̃(G) = 0) ≤

m2−p

Since we have (k− 1)n negative test graphs in total, there at most m2−p(k− 1)n

negative test graphs with ã ⊔ b̃ > ã + b̃. ✷

Lemma 7.21 Given two approximators ã and b̃, there exists an approximator
ã ⊓ b̃ such that

1This identity uses that the events 〈⌈Zi⌉(G) = 0 | ⌈Z⌉(G) = 1〉 (i = 1, . . . , p) are indepen-
dent, because the Zi’s form a sunflower with centre Z. The identity is the reason for introducing
sunflowers.

2Since ⌈Z⌉(G) = 0 implies that ⌈Zi⌉(G) = 0
3This inequality is implied by the reasoning in the proof of lemma 7.18

122 7 LOWER BOUNDS II

1. ã ⊓ b̃ ≥ ã · b̃ for all (apart from at most m2
(

n−l−1
k−l−1

)

) positive test graphs.

2. ã⊓ b̃ ≤ ã · b̃ for all (apart from at most m22−p(k−1)n) negative test graphs.

Proof. The ·-case is apparently worse than the +-case, since ã =
∑r

i=1⌈Xi⌉ and
b̃ =

∑s
j=1⌈Yj⌉, implies ã · b̃ =

∑r
i=1

∑s
j=1⌈Xi⌉ · ⌈Yj⌉ and the latter expression does

not look like an approximator.

We start by describing, how ã · b̃ is transformed into an approximator, and later
we analyse the error made by the approximator.

We start by replacing ⌈X⌉·⌈Y ⌉ with ⌈X ∪ Y ⌉ obtaining c1 =
∑r

i=1

∑s
j=1⌈Xi ∪ Yj⌉.

It is possible that |Xi ∪ Yj | > l, but all clique indicators that are too large are
thrown away from c1 resulting in c2 =

∑t
k=1⌈Zk⌉, where |Zk| ≤ l. There could

still be up to m2 clique indicators, since t ≤ rs ≤ m2. To decrease this number
we pick sunflowers as in the proof of lemma 7.19 resulting in the approximator
ã ⊓ b̃ =

∑u
k=1⌈Wk⌉.

We first analyse the error of the approximator on positive test graphs. If G is a
positive test graph then ã · b̃(G) = c1(G) ≥ c2(G) ≤ ã ⊓ b̃(G) (see exercise 7.21),
so the error has the proper bias except when transforming c1 into c2. If c1(G) = 1
and c2(G) = 0, then during the transition from c1 to c2 we have deleted a clique
indicator ⌈Z⌉, where |Z| ≥ l + 1 and the nodes in Z form a clique in G. Since

G is a clique on k nodes, there are at most
(

n−l−1
k−l−1

)

distinct such G’s for a given

Z. Since c1 contains at most m2 clique indicators, we see that ã⊓ b̃ ≥ ã · b̃ for all
apart from at most m2

(

n−l−1
k−l−1

)

positive test graphs.

Finally, we consider the case of G being a negative test graph. It holds that
ã · b̃(G) ≥ c1(G) ≥ c2(G) ≤ ã ⊓ b̃(G) (see exercise 7.21), i.e. the error has the
proper bias except in the transition from c2 to ã ⊓ b̃, where we pick up to m2

sunflowers. By an argument similar to the one in the proof of lemma 7.19, we
have that ã ⊓ b̃ ≤ ã · b̃ for all apart from at most m22−p(k − 1)n negative test
graphs. ✷

Theorem 7.22 For a fixed k it holds that

Sm(k-CLIQUE(n
2)

) = nΩ(
√

k).

Proof. Let C be a monotone circuit computing k-CLIQUE(n
2)

, i.e. C = 1 for all
(

n
k

)

positive test graphs, and C = 0 for all (k − 1)n negative test graphs.

7.4 Lower bound on Monotone Size 123

We have so far described the construction of an approximator C̃ over the basis
{⊔,⊓} for a given C. The lemmas 7.19 and 7.21 combined bounds the error of
the approximator:

C̃ ≥ C for all positive test graphs, apart from at most S(C) ·m2 ·
(

n−l−1
k−l−1

)

, and

C̃ ≤ C for all negative test graphs, apart from at most S(C) ·m2 · 2−p · (k− 1)n.

We also know, by lemma 7.18 that the error is large:

Either C̃ = 0 on all positive test graphs or C̃ = 1 for at least 1
2
(k − 1)n negative

test graphs.

When combining this information, we get:

1. Either

S(C) ·m2 ·
(

n − l − 1

k − l − 1

)

≥
(

n

k

)

and with substitutions using (8) and (9) we get

S(C) = Ω(p−2
√

k · n
√

k)

since k is a constant!

2. Or

S(C) ·m2 · 2−p · (k − 1)n ≥ 1

2
(k − 1)n

and similarly with substitutions using (8) and (9) we get

S(C) = Ω(p−2
√

k · 2p)

The two lower bounds are identical, when n
√

k = 2p, which happens to hold
according to (10). By substitution, using (10) we get

S(C) = Ω((
n

log2 n
)
√

k) = nΩ(
√

k).

✷

124 7 LOWER BOUNDS II

Exercises

Exercise 7.1 Let k = log n, and define SHIFT-EQUAL ∈ B2n+k by

SHIFT-EQUAL(x1, . . . , xn, y1, . . . , yn, z1, . . . , zk) =
{

1, if xi = yi+[z] mod n for all 1 ≤ i ≤ n
0, otherwise

Show that Cbest(SHIFT-EQUAL2n+k) = Ω(n).

Hint: Show that Cbest(SHIFT-EQUAL2n+k) ≥ C(EQUAL2m) for m = n
4
−log n+

O(1).

Exercise 7.2 Area-Time trade-off in VLSI.

We consider a chip to be a rectangular grid with processors at selected nodes.
Processors are connected by wires along grid edges. Wires may cross, but each
grid edge carry at most one wire. In one step (systolic: synchronised globally), a
processor can read the bits sent to it in the last step, make some local computation
and sent at most one bit out on each connecting wire.

The chip has n special input wires and an output wire. The chip computes a
function f ∈ Bn in time T if the chip when presented with x1, . . . , xn on the input
wires renders f(x1, . . . , xn) on the output wire after T steps. The area A of the
chip is the number of grid squares (or the total length of wires).

Assume that a chip of area A computes a function f ∈ B in time T . Prove that

AT 2 = Ω((Cbest(f))2)

Exercise 7.3 Show that the communication matrices for EQUAL2n and DISJ2n

both have full rank 2n.

Exercise 7.4 Find O(log n) bounds for the following communication problems.

(i) The two players have initially bit vectors x and y, respectively, with the prop-
erty that the parity of the number of 1’s in x is different from the parity of the
number of 1’s in y. The two players must agree on an index “i” such that xi 6= yi.

(ii) The two players have initially bit vectors x and y, respectively, with the
property that the number of 1’s in x is different from the number of 1’s in y. The
two players must agree on an index “i” such that xi 6= yi.

7.4 Lower bound on Monotone Size 125

Exercise 7.5 Prove a linear lower bound on the communication complexity for
the problem of computing the inner product (modulo 2) of two binary vectors.

Exercise 7.6 Prove lemma 7.6.

Exercise 7.7 Prove lemma 7.8.

Exercise 7.8 Show that

2

(

√
n

3

4ǫ
√

n
3

)(

8n
9√
n

)

≤ 2−c
√

n

(

n√
n

)

for ǫ, c > 0 sufficiently small and n sufficiently large.

Hint: Use Sterling approximation to show that
(

m
m/k

)

≤ (ke)m/k.

Exercise 7.9 Show that the reverse inequality of the one in lemma 7.11 also
holds, i.e.

Dm(f) = C(R(f)) for all f ∈ MON

Exercise 7.10 State and prove a non-monotone version of lemma 7.11 (and
definition 7.10)

Exercise 7.11 Define PM ∈ MON by

PM(n
2)

(x) =

{

1, if the graph G[x] has a perfect matching
0, otherwise

Show that Dm(PM) = Ω(n).

Exercise 7.12 Define BPM ∈ MON by

BPMn2(x) =

{

1, if the bipartite graph BPG[x] has a perfect matching
0, otherwise

Show that Dm(BPM) = Ω(n).

126 7 LOWER BOUNDS II

Exercise 7.13 Define CL(k) ∈ MON by

CL(k)(n
2)

(x) =

{

1, if the graph G[x] has a clique of size k
0, otherwise

Show that Dm(CL(k)) = Ω(k).

Hint: Show that Dm(CL(2n
3

+ 1)) = Ω(n).

Exercise 7.14 Define BPM ∈ MON by

BPMn2(x) =

{

1, if the bipartite graph BPG[x] has a perfect matching
0, otherwise

For a bipartite graph G on vertices {1, 2, . . . , n} ∪ {1̄, 2̄, . . . , n̄} define a matrix
T G(z) with indeterminates z = {z11, . . . , znn} at the entries by

[T G(z)]ij =

{

zij, if (i, j̄) is an edge in G
0, otherwise

1. Show that if G has a perfect matching then det(T G(z)) is a nontrivial poly-
nomial of degree n, and if G has no perfect matching then det(T G(z)) is
the 0-polynomial.

2. Choose some prime p > 2n. Show that

Pr
a∈{0,1,...,2n}n2

(det(T G(a)) 6= 0 mod p | det(T G(z)) 6≡ 0) >
1

2

Hint: observe that det(T G(z)) = p0ij(z) + zijp1ij(z) where pkij does not
contain zij and use the inequality (1− 1

2n+1
)n > 1

2
.

3. Show that there exists a1, a2, . . . , an2 ∈ {0, 1, . . . , 2n}n2
such that for all

bipartite graphs G on n + n nodes,

det(T G(z)) is the 0-polynomial

if and only if

det(T G(ai)) = 0 for all i = 1, . . . , n2

7.4 Lower bound on Monotone Size 127

4. Show that D(BPM) = O(log2 n)

Hint: See exercise 6.10

Exercise 7.15 Given any two functions g, h with g(n) ≤ √n and h(n) = o(g(n)),
construct a monotone function f such that Dm(f) 6∈ O(h(n)) and Dm(f) =
O(g(n)).

Exercise 7.16 Given any function g with g(n) ≤ √n, construct a monotone
function f such that Dm(f) = Ω(g(n)) and D(f) = O(log2g(n)).

Hint: Use exercises 7.12 and 7.14.

Exercise 7.17 Let S∧
m(f) denote the minimum number of ·-gates a correct mono-

tone circuit for f can possibly have. Similarly, let S∨
m(f) denote the minimum

number of +-gates in any correct monotone circuit for f .

1. Show that S∨
m(Th2

n) ≥ 2n − 4. (Hint: modify the proof of theorem 5.8)

2. Show that S∨
m(Th2

n) = S∧
m(Thn−1

n). (Hint: duality)

3. Show that Sm(f) ≥ 4n− 12 for the function

f(x1, . . . , xn) =

Thn−2
n−1(x1, . . . , xn−1) + (xn · Th2

n−1(x1, . . . , xn−1))

Exercise 7.18 Show that S(MM2n2,n2) = O(nlog2 7 log2 n).

Exercise 7.19 Show the following modified version of lemma 7.20, where the
assumption of the sets being distinct is removed:

If W1, W2, . . . , Wn is a collection of sets (not necessarily distinct) with at most l
elements in a single set and n > (p− 1)(l+1) · l! then there exists a sub-collection
Wk1 , Wk2, . . . , Wkp such that ∩p

i=1Wki = Wki ∩Wkj for all i 6= j.

Exercise 7.20 Show that the construction of ã ⊔ b̃ in lemma 7.19 satisfies that
ã ⊔ b̃(G) ≥ ã + b̃(G) for all positive test graphs G.

Exercise 7.21 In the proof of lemma 7.21 we named some sub-results c1 and c2

when constructing the approximator ã ⊓ b̃ for ã · b̃. Show that

128 7 LOWER BOUNDS II

1. ã · b̃(G) = c1(G) ≥ c2(G) ≤ ã ⊓ b̃(G) for every positive test graph G.

2. ã · b̃(G) ≥ c1(G) ≥ c2(G) ≤ ã ⊓ b̃(G) for every negative test graph G.

Exercise 7.22 What fails, if you try to generalise the proof of theorem 7.22 to
obtain a lower bound for S(k-CLIQUE(n

2)
)?

Literature

1. Babai, L., Frankl, P. and Simon, J. (1986), Complexity Classes in Commu-
nication Complexity Theory. Proc. 27th Ann. IEEE Symp. on Foundations
of Computer Science, 337-347.

2. Boppana, R. B. and Sipser, M. (1990), The Complexity of Finite Functions.
Handbook of Theoretical Computer Science A, 757–804.

3. Erdös, P., and Rado, R. (1960), Intersection Theorems for Systems of Sets.
J. London Math. Soc. 35, 85–90.

4. Kalyanasundaram, B. and Schnitger, G. (1987), The Probabilistic Commu-
nication Complexity of Set Intersection. Proc. 2nd Ann. Conf. Structure
in Complexity Theory, 41–49.

5. Lamagna, E. A. and Savage, J. E. (1974), Combinational Complexity of
some Monotone Functions. Proc. 15th Ann. IEEE Symp. on Switching
and Automata Theory, 140–144.

6. Mulmuley, K., Vazirani, U. V. and Vazirani, V. V. (1987), Matching is as
easy as Matrix Inversion. Combinatorica 7, 105-113.

7. Pratt, V. R. (1974), The Power of Negative Thinking in Multiplying Boolean
Matrices. SIAM J. Comput. 4, 326–330.

8. Raz, R. and Wigderson, A. (1992), Monotone Circuits for Matching Require
Linear Depth. J. of the Assoc. Comput. Mach. 39, 736-744.

9. Razborov, A. A. (1985), Lower Bounds on the monotone Complexity of
Some Boolean Functions. Soviet Math. Dokl. 31, 354–357.

10. Razborov, A. A. (1985), A Lower Bound on the Monotone Network Com-
plexity of the Logical Permanent. Math. Notes 37, 485–493.

11. Razborov, A. A. (1992), On the Distributional Complexity of Disjointness.
Theoretical Computer Science 106, 385-390.

7.4 Lower bound on Monotone Size 129

12. Yao, A. C.-C. (1979), Some Complexity Questions Related to Distributive
Computing. Proc. 11th ACM Symp. on Theory of Computing, 209–213.

130 8 OVERVIEW

Class Exists Example (if exists)
AC0 no
TC0 ?
NC1 yes a specific regular language

NL/poly yes PATH
SAC1 yes a specific context free language

P/poly yes linear programming
NP/poly yes SAT

B no

Table 1: The existence (and examples) of p-complete problems for selected classes

8 Overview

8.1 Class Overview

In figure 19 we present known inclusion relations between some of the non-uniform
classes that we have seen. We know that AC0 6= TC0, but it would be consistent
with our present knowledge if TC0 = NP/poly.

In figure 20 we, similarly, present known inclusion relations between some uniform
classes. The space hierarchy theorem (presented in dAlg) implies that NL 6=
PSPACE. It is, however, consistent with our present knowledge if L = PH. En
route we have seen some relations between uniform and nonuniform complexity
classes. In particular, we know that BPP ⊆ P/poly in addition to C ⊆ C/poly.

In table 1 we have indicated the existence of p-complete problems for selected
classes. Completeness in the class NP is a property indicating that it is hard to
find an efficient solution at all to the problem in question, and similarly com-
pleteness in the class P is a property indicating that it is hard to find an efficient
parallel solution to the problem in question. It is perhaps surprising that such
a large number of classes (as it happens) do possess p-complete problems. The
existence of a p-complete problem for a class means that all the difficult problems
in the class are quite similar. They can all be solved by p-projection to a single
family of circuits.

Johnson (1990) presents a comprehensive class overview and Skyum and Valiant
(1985) show the existence of p-complete problems for pF, pdC, pC and pD.

8.1 Class Overview 131

B

NP/poly = pD

P/poly = pC

NC

NCi+1

TCi

ACi

SACi = co-SACi

NCi

SAC1 = co-SAC1 = pdC

NL/poly = co-NL/poly

L/poly

NC1 = pF

TC0

AC0

Figure 19: Non-uniform Classes

132 8 OVERVIEW

DSPACE(t2) DTIME(ct)

NSPACE(t) = co-NSPACE(t)

❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

DSPACE(t)

NTIME(t)

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

co-NTIME(t)

❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯

DTIME(t)

❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

PSPACE

PH

∑P
i+1

∏P
i+1

∑P
i

❞❞
∏P

i

❩ ❩

∑P
2

∏P
2

∑P
1 = NP

❞❞❞

BPP

❯ ❯

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

co-NP =
∏P

1

❩ ❩

P

❱ ❱

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

NL = co-NL

L

Figure 20: Uniform Classes

8.2 General Literature 133

8.2 General Literature

There exist several encyclopedic treatises covering most of the existing knowledge
(with extensive bibliographies) within a restricted subject area at the time of
publishing:

1. Handbook of Theoretical Computer Science, Vol A Algorithms and Com-
plexity (ed. van Leeuwen). Elsevier, 1990.

Each chapter of the book presents a thorough overview within a selected
(narrow) subject. Among the chapters are: Machine Models and Simula-
tion, A Catalog of Complexity Classes, Machine-Independent Complexity
Theory, Kolmogorov Complexity and its Applications, Algebraic Complex-
ity Theory, The Complexity of Finite Functions, Communication Networks,
VLSI Theory.

2. Wagner, K. and Wechsung, G., Computational Complexity. Reidel, 1986.

The book is concerned with classic (Turing Machine based) complexity
theory. A nonstandard notation impedes browsing.

3. Wegener, I., The Complexity of Boolean Functions. Wiley, 1987.

Compared to encyclopaedia the text books present selected bits of a broader
subject. Usually, problems and exercises are provided to support the students
work with the subject.

1. Balcázar, J. L., Dı́az, J. and Gabarro, J., Structural Complexity. Springer
Verlag, 1988 (Vol. 1), 1990 (Vol. 2).

These volumes have a machine based perspective on complexity theory, but
they do also describe nonuniform complexity measures.

2. Papadimitriou, C. H., Computational Complexity. Addison Wesley, 1994.

New results are published at conferences and/or in journals. The following jour-
nals are particularly rich with results from complexity theory:

1. Computational Complexity

2. J. of the Assoc. Comput. Mach.

3. SIAM J. Comput.

134 8 OVERVIEW

4. Mathematical Systems Theory

5. Information and Computation

6. J. of Complexity

7. SIAM J. Discr. Math.

8. Theoretical Computer Science

One should keep an eye on proceedings from the following conferences (among
others):

1. “STOC”: ACM Symposium on Theory of Computing.

2. “FOCS”: IEEE Symposium on Foundations of Computer Science.

3. “Structures”: IEEE Structure in Complexity Theory.

4. “STACS”: Symposium on Theoretical Aspects of Computer Science.

Recently, electronic publications have become an increasingly important source
of both new and old results.

1. Electronic Colloquium on Computational Complexity.

http://www.eccc.uni-trier.de/eccc/

This www-page contains access to tech reports, lecture notes, text books,
email addresses of complexity theoreticians, conference lists and much more.

Literature

1. Johnson, D. S. (1990), A Catalogue of Complexity Classes. Handbook of
Theoretical Computer Science A, 67–161.

2. Skyum, S and Valiant, L. G. (1985), A Complexity Theory Based on
Boolean Algebra. J. Assoc. Comput. Mach. 32, 484–502.

