
ON THE FUNCTION WHICH IS DEFINED BY THE MINIMAL SOLUTION TO
n2 + f 2(n) = a2 + b2, a, b, f(n) > n

GIEDRIUS ALKAUSKAS

Abstract. For every n ∈ N, let f(n) > n be the smallest integer for which there exists two integers
a, b > n satisfying n2+f2(n) = a2+ b2. This is the sequence A360796 in OEIS. The aim of this paper
is to investigate values of n such that f(n) = f(n+ 1).

1. Introduction

We start with the definition of the function in question.

Definition 1. For every positive integer n, let f(n) > n be the smallest integer for which there exist
two integers a > n and b > n such that

n2 + f(n)2 = a2 + b2.

The sequence {f(n) : n ∈ N} is well-defined due to the identity n2+(2n+5)2 = (n+4)2+(2n+3)2,
showing that f(n) ≤ 2n + 5. Actually, the largest n when this bound is achieved is n = 16. The
sequence is labelled A360796 in [?] with first 50 terms being as follows (the offset is n = 1):

7, 9, 11, 13, 14,17,17, 19, 20, 25, 23, 29, 26, 27, 29, 37, 31, 40, 34, 35, 38, 46, 39, 41, 44,

43, 44, 54, 47, 58, 49, 51, 56, 53, 54, 67, 62,59,59, 70, 62, 73, 64, 65, 74, 78, 69,71,71, 75.

Consecutive equal values are marked in bold. There appears to be infinitely such pairs, and this
phenomenon constitutes the main topic of our paper.

Let us therefore define two ordered sets

A =
{
[n, f(n)] : n ∈ N, f(n) = f(n+ 1)

}
, T =

{
n ∈ N : f(n) = f(n+ 1)

}
.

The set T is just a projection of A onto its first component. Here is the set T ∩ [1, 1400] :

6, 38, 48, 63, 94, 131, 142, 160, 174, 207, 223, 278, 284, 339, 362, 373, 390, 406, 474, 493, 587, 643, 644,

712, 758, 798, 807, 814, 831, 849, 987, 998, 1006, 1043, 1158, 1159, 1217, 1246, 1279, 1332, 1369.

It is impossible to fully describe the set T . Indeed, we will soon demonstrate that it can be decom-
posed into three disjoint subsets

T = T 1
R

⋃
T 1

S

⋃
T >1

(notation will be explained soon). The structure of the two subsets (apparently, infinite) heavily
depend on the irregularities in the distribution of primes. Consequently, not much (still something)
can be said about these two sets.
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n f(n) (q, w) n f(n) (q, w)
807 926 (1, 2) 1019814 1023863 (2, 1)
1369 1528 (1, 2) 1019932 1024001 (2, 1)
9302 9789 (1, 3) 1037337 1041416 (1, 2)
58003 58994 (1, 2) 1211041 1215448 (1, 2)
64897 65924 (1, 2) 1291147 1295702 (1, 2)
84564 85997 (1, 3) 1438690 1446389 (1, 5)
256483 258514 (1, 2) 1530897 1535852 (1, 2)
309720 312935 (2, 2) 1551003 1555994 (1, 2)
357870 361265 (2, 2) 1600989 1606058 (1, 2)
373974 376463 (2, 1) 1846032 1852769 (1, 3)
477799 480590 (1, 2) 1905667 1911194 (1, 2)
550059 554270 (2, 2) 1942813 1948534 (1, 2)
618469 621620 (1, 2) 2428696 2435173 (2, 1)
655254 660065 (2, 2) 2698206 2704799 (2, 1)
881457 885224 (1, 2) 2977984 2984893 (2, 1)
964672 968669 (2, 1) 3133951 3141098 (1, 2)

Table 1. Solutions to f(n) = f(n+ 1) and q(n+ 1) · w(n+ 1) > 1

On the other hand, the first component can be described precisely. Let us define

P (u, v) =
(uv + u+ v − 1)(uv − 2)

2
− 1, R(u, v) =

uv(u+ 1)(v + 1)

2
− 1.

Definition 2. Consider the region T = {(u, v) ∈ Z2 : u ≥ v ≥ 1}.

Theorem 1. Let (u, v) ∈ Z2, u = v, or v + 2 ≤ u ≤ 6v − 3. Then

P (u, v) ∈ T 1
R .

Next, not all pairs [P (u, v), Q(u, v)] belong to A , but the number of exceptions is small.

1.1. Exceptional case. If u = v + 1, then

P (v + 1, v) + 1 =
(v − 1)v(v + 2)(v + 3)

2
=

(v2 + v − 2)(v2 + 3v)

2
,

P (v + 1, v) + 2 =
(v2 + 2v − 1)(v2 + 2v − 2)

2
.

The fact that in this particular case P (v + 1, v) + 1 factors into linear components is responsible for
that fact that f(P (v + 1, v)) ̸= f(P (v + 1, v) + 1). Indeed,

1.2. Consecutive numbers in T . We note that 643, 644 ∈ T . This implies f(643) = f(644) =
f(645) = 719. With the help of our main theorem, in general, we are able to prove the infinitude of
n satisfying f(n) = f(n+ 1) = f(n+ 2). For this purpose it is enopugh to note that, first

P (3v, 2v + 1) = P (6v + 2, v) + 1, P (3v + 2, 2v) = P (6v + 3, v) + 1,

and, second (3v, 2v + 1), (6v + 2, v), (3v + 2, 2v), (6v + 3, v) belong to H .
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Figure 1. The set G , u ≤ 80 (rights), and the set H (left, the line v = u− 1 is not shown).
.

Theorem 2. Let

n = (6v − 1)(v + 1)(3v2 + 3v − 1) v ≥ 5, or

n = (3v2 + 5v + 1)(6v2 + 3v − 2), v ≥ 3.

Then f(n− 1) = f(n) = f(n+ 1) .

It is known that every prime number p ≡ 1 (mod 4) can be given a unique representation
p = x2 + y2, x > y, x, y ∈ N. It seems that the full description of the set of integers satisfying
the condition f(n) = f(n + 1) relies on fine arithmetic of these pairs (x, y) (for instance, the infini-
tude of representations with y = 1 has not yet been proved). However, there are elementary ways to
provide an infinite sequences satisfying f(n) = f(n+1). In the proof given below, no number theory
beyond the notion of greatest common divisor is being used, and also no algebra beyond the formulas
for a2 − b2 and (a + b)2 . In the very end of the solution (see Lemma) we need to check a simple
fact about factorization of 2n2−1. It is indeed surprising that no sophistication beyond that is needed.

Solution. To show that f(n) is well-defined, note that n2 +(2n+5)2 = (n+4)2 +(2n+3)2. This
demonstrates that f(n) ≤ 2n+ 5. 1

Proposition 1. For every n ∈ N, one has f(2n2 − 1) = 2(n+ 1)2 − 1.

1Remark for PSC: the largest n when this bound is achieved is n = 16.
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Figure 2. ...

Proof. Indeed, the identity

(2n2 − 1)2 +
(
2(n+ 1)2 − 1

)2
= (2n2 + 2n+ 1)2 + (2n2 + 2n+ 1)2 (1)

shows that f(2n2 − 1) ≤ 2(n + 1)2 − 1. Let N = 2n2 − 1. Suppose there exists c ≤ 2n2 + 4n and
a, b ≥ 2n2, satisfying

N2 + c2 = a2 + b2, a, b ∈ [N + 1, c− 1]. (2)

Since M2 ≡ 1 (mod 4) for odd M , and M2 ≡ 0 (mod 4) for even M , parity of one of a, b matches
the parity as N , while the parity of the other matches that of c. Let a ≡ N (mod 2). Identity (2)
now rewrites as

a−N

c− b
=

c+ b

a+N
. (3)

Let 2D = g.c.d.(c + b, a + N). Note that if a ≤ b, then a ≤ 2n2 + 2n, otherwise the inequality on
c would be breached. Since a is odd, a ≤ 2n2 + 2n − 1. If a > b, then a ≤ 2n2 + 4n − 1. Let
g.c.d.(a−N, c− b) = 2w. The identity (3) shows that

4n2 + 2 ≤ c+ b = 2D
(a−N)

2w
≤

 D
w
· 4n (in case a > b) ⇒ D > wn,

D
w
· 2n (in case a ≤ b) ⇒ D > 2wn.
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Now, note that

0 < c+ b− a−N ≤

 c−N − 1 ≤ 4n (in case a > b),

2(c−N)− 2 ≤ 8n (in case a ≤ b).

This shows that w ≥ 2 cannot occur, since the fact 2D|(c+ b−a−N) would lead to a contradiction.
Hence w = 1. This also shows that c + b− a−N = 2D, since c + b− a−N = 4D would also lead
to a contradiction. So, if c− b = 2r, we must have

a−N = 2r + 2, c− b = 2r, c+ b = (2r + 2)D, a+N = 2rD.

Accordingly,

N = rD − r − 1, a = rD + r + 1, b = rD +D − r, c = rD +D + r.
(4)

Now comes a simple though a crucial trick. First, we see that c − N = D + 2r + 1. On the the
other hand, the AM-GM inequality (x+ y)2 ≥ 4xy implies

r(D − 1) = N + 1 = 2n2 ⇒ 2r(D − 1) = 4n2 ⇒ D + 2r − 1 ≥ 4n ⇒ c ≥ 2n2 + 4n+ 1,

which is a contradiction. □

Proposition 2. For every n ∈ N, one has f(2n2 − 2) ≥ 2(n+ 1)2 − 1.

Proof. Let us very carefully repeat the previous series of arguments in case N = 2n2 − 2, starting
from the equation (2). Suppose, there exists c ≤ 2n2 + 4n and a, b ≥ 2n2 − 1, satisfying (2). In the
same vein, if a ≤ b, a ≤ 2n2 + 2n. In fact, the equality cannot be achieved, since then

(2n2 − 2)2 + c2 ≥ (2n2 + 2n)2 + (2n2 + 2n)2 ⇒ c > 2n2 + 4n− 1.

It is checked directly that c = 2n2 + 4n, a = b = 2n2 + 2n is not a solution. In short, we show in the
same manne that in case N = 2n2 − 2 representation (2) must hold, too. However, full carefulness
is needed, since (as an instance) it is untrue that f(2n2 − 3) ≥ 2(n + 1)2 − 1 holds (see Remark 4
below). Apart from representation (4), in case N = 2n2− 2 the following simple lemma is crucial for
the bound to work. □

Lemma. Let r,D, n ∈ N, n ≥ 2. Assume r(D − 1) = 2n2 − 1. Then D + 2r − 1 ≥ 4n+ 1.

Proof. Indeed, 2r(D − 1) = 4n2 − 2, so AM-GM inequality gives 2r +D − 1 > 4n − 1. However, if
2r +D − 1 = 4n, then D − 1 = 2n + t, 2r = 2n− t, t ∈ Z. These two identities cannot hold, since
this would imply 2r(D − 1) = 4n2 − t2 ̸= 4n2 − 2. 2 Thus, 2r +D − 1 ≥ 4n+ 1.

To finish the proof of Proposition (2), note that Lemma implies c = N+D+2r+1 ≥ 2n2+4n+1,
and this is a contradiction. □

Now we will find when the equality in Proposition 2 holds. Let

(2n2 − 2)2 +
(
2(n+ 1)2 − 1

)2
= a2 + b2. (5)

Suppose a = 2n2+2n+1−s, b = 2n2+2n+1+ t, s, t ≥ 0. Numbers s, t must have different parities.
The equation simplifies to

4n2 − 3 + s2 + t2 = 2(2n2 + 2n+ 1)(s− t).

2This argument fails for N = 2n2 − 3, since 4n2 − t2 = 4n2 − 4 does, obviously, have a solution. That is why
f(2n2 − 3) can be given an algebraic formula; namely, it equals 2(n+ 1)2 − 3 for n ≥ 3.
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We additionally have bounds t ≤ 2n− 1, s ≤ 2n+2. This implies s− t = 1 or s− t = 2. The latter,
however, is impossible due to parity restriction. And so,

s2 + (s− 1)2 = 4n+ 5 ⇒ n =
s(s− 1)

2
− 1, s ≥ 3.

Remarks for Problem Selection Committee

Proposition 3. Let x, y, z, w be solutions to x+ y − z − w = 1,

xy = zw.

satisfying |x− y| <, |z−w| <, Then The formulas (4) for (r1, D1) =
(
x
2
− 1, y− 1

)
and, respectively,

for (r2, D2) =
(
z
2
− 1, w − 1

)
, provide a solution to f(n) = f(n+ 1). This common value is equal to

xy
2
− 1.

As one of x, y must be even, as well as one of z, w, let it be the first one, Define a quadruple
(N1, c1, a1, b1) by formulas (4) using a pair (r1, D1). Analogously, define a a quadruple (N2, c2, a2, b2)
by formulas (4) using a pair(r2, D2). We have

N2 −N1 = r2(D2 − 1)− r1(D1 − 1) =
(z
2
− 1

)
· (w − 2)−

(x
2
− 1

)
· (y − 2)

=
1

2
(zw − xy)− z − w + x+ y = 1,

c2 − c1 = (r1 + 1)(D1 + 1)− (r1 + 1)(D1 + 1) =
z

2
· w − x

2
· y = 0.

The solution to equations in Poposition are given by x = uv, y = (u+ 1)(v + 1),

z = u(v + 1), w = (u+ 1)v.

Then

N2 =
1

2
(uv + u+ v − 1)(uv − 2).

2. General solution

N = RD −Rw − qw, a = RD +Rw + qw, b = RD +Dq −Rw, c = RD +Dq +Rw.

Let the ordered set of divisors of N + qw be {d1, d2, . . . dL}, where L = σ0(N + qw), d1 = 1,
dL = N + qw. If R = di, then D − w = dL+1−i. Thus,

c−N = 2Rw +Dq + qw = 2diw + dL+1−iq + 2qw.

Regarding this, let us define

f(n; q, w) = min
R,D∈N

(RD +Dq +Rw), subject to the restriction RD −Rw − qw = n.

The following MAPLE procedure calculates the value.
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a:=proc(n,q,w)::integer;

local S,L,M,i;

S:=Divisors(n+q*w):

L:=nops(S):

M:=n*q+w*(q^2+2*q+2):

for i from 1 to L do

M:=min(M,2*S[i]*w+S[L+1-i]*q+2*q*w):

end do:

n+M:

end proc:

In this notation,

f(n) = min
q,w∈N

f(n; q, w).

Proposition 4. If q(n) · w(n) > 1, then f(n+ 1) < f(n).

Proof. Indeed, assume q(n)·q(n) > 1, and let n+qw = R(D−w). Then n+1+qw−1 = R(D−w), □

We see that any quadruple (N, c; a, b) comes from specific factorization of N + qw = R(D − w).
We can interchange the roles of q, w, as well as of those to factors. This gives

N(R,D; q, w) = N(D − w,R + w; q, w) = N(R,D − w + q;w, q) = N(D − w,R + q;w, q).

Proposition 5. We have f(n; q, w) = f(n;w, q).

Proof. Indeed, this follows from the identity

N + qw = R(D − w) = (D − w)(R + q − q) = R0(D0 − q),where R0 =

c(R0, D0;w, q) = c(D − w,R + q, w, q)

□

We will rewrite this equation in three particular case (q, w) = (1, 1), (q, w) = (1, 2) and (q, w) =
(2, 1).

Suppose N+2 = xy. The second formula gives N−c = 4x+y+4. The third one N−c = 2x+2y+6.

Let q be prime such that p = 2q − 1 is prime, too. Put N = p− 1. The minimal value for c given
by these formulas (for q > 10) occurs for (q, w;R,D) = (1, 2; 2, q + 2). namely, it is c = 3q + 10.

Calculation show that under these assumptions, f(n) = 3n+10 indeed holds for n = 19, 31, 37, but
fail for further examples q = 79, 97, 139, . . . (it is not yet known that the number of primes of the form
2q− 1 is infinite). Let us take q = 79. Then the true quadruple (2q− 2, c; a, b) is (156, 233; 180, 215).
It is achieved for (q, w;R,D) = (1, 2; 3, 56). This is a particularly good example, since N + 3 = 3r,
where r is also prime.

As a final remark leadinhg to a general understanding of complication related to this problem,
consider integers N such that N +1 = p, N +2 = 2q, N +3 = 3q, where (p, q, r) is a triple of primes.

N = 6k = p− 1 = 2q − 2 = 3q − 3.

A278583
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3. Solutions to f(N) = f(N + 1) arising from factorizations of N + 1 and N + 3

We have seen that equation (??) has two solution N = 807 and N = 1369 which are nor covered by
the construction of the previous chapter. Indeed, in both cases the first of the quadruples (N, c; a, b)

arises from the factorization of N + 1 ((q, w) = (1, 1)), while the second quadruple (N + 1, c, â, b̂)
arises from factorization of N +3 ((q, w) = w, 1). Thus, let Let N +1 = xy, f(N) = xy+2x+ y+1,
N + 3 = zw, f(N + 1) = zw + 2z + 2w + 2. Thus, we need to find natural positive integer solutions
to 

2x+ y = 2z + 2w + 3,

xy + 2 = zw,

if xy + 1 = uv ⇒ 2u+ v + 1 > 2x+ y.

(6)

Quadruples (x, y; z, w) = (8, 101; 30, 27), (10, 137; 28, 49), (68, 853; 194, 299) or (74, 877, 236, 275) give
rise to solutions of (??) in case N = 808, and, respectively, N = 1370. The first equation shows that
y is odd. There are two ways to look at the system (8).

3.1. Quadratic imaginary field. Multiply the first equation of (8) by α, the second one by a factor
2, and add. We wish to obtain the identity

(2x+ α)(y + α) = 2(z + α)(w + α). (7)

In order this to be the case, α should satisfy

α2 − 3α + 4 = 0.

And so, we will be working in the field K = Q(
√
−7) of class number 1. Let π = 1+

√
−7

2
, ϱ = 1−

√
−7

2
.

In particular, we can take α = −π2 = 3−
√
−7

2
. Its conjugate is β = −ϱ2 = 3+

√
−7

2
. Note that πϱ = 2.

Taking the norm of (7) gives

(4x2 + 6x+ 4)(y2 + 3y + 4) = 4(z2 + 3z + 4)(w2 + 3w + 4).

In case of the quadruples (x, y; z, w) = (8, 101; 30, 27) and (x, y; z, w) = (10, 137; 28, 49) this reduces
to factorization, respectively,

(22 · 7 · 11)× (22 · 37 · 71) = 22 × (2 · 7 · 71)× (2 · 11 · 37),
(24 · 29)× (24 · 11 · 109) = 22 × (23 · 109)× (23 · 11 · 29)

Primes ≡ 1, 2, 4(mod 7) split in K (so, 11, 37, 71, 109 among them), while 7 ramifies. These two
quadruples thus provide solutions to (8) of slightly different quality.

3.2. Two-sheeted hyperboloid. Ìn the other direction, let us substitute the value of y from the
first equation of (8) into the second. We therefore obtain a quadratic equation

2x2 − x · (2z + 2w + 3) + zw − 2 = 0.

By a direct calculation,

D = (2z + 2w + 3)2 − 8(zw − 2) = (2z + 3)2 + (2w + 3)2 + 7.

Thus, if X2 = D, 2z + 3 = Z, 2w + 3 = W , we have an integer point on a two-sheeted hyperboloid

Z2 +W 2 −X2 = −7, x =
Z +W − 3±X

4
, y =

Z +W − 3∓X

2
.
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(q, w) N a b c c−N
(1, 1) RD −R− 1 RD +R + 1 RD +D −R RD +D +R D + 2R + 1
(1, 2) RD − 2R− 2 RD + 2R + 2 RD +D − 2R RD +D + 2R D + 4R + 2
(2, 1) RD −R− 2 RD +R + 2 RD + 2D −R RD + 2D +R 2D + 2R + 2
(3, 1) RD −R− 3 RD +R + 3 RD + 3D −R RD + 3D +R 3D + 2R + 3

The sign is chosen such that x is an integer. As we have seen, there is the unique choice. These are
all solutions for 1 ≤ w ≤ z ≤ 30:

(0, 9;2, 1), (7, 1; 3, 3), (8, 1; 5,2), (2, 31; 8, 8), (1, 25;9, 3), (2, 35; 12, 6), (18, 3; 14, 4), (22, 5;16, 7),

(30, 9; 17,16), (2, 49; 20, 5), (33, 9;23, 13), (7, 89; 25, 25), (32, 5; 27, 6), (8, 101;30, 27).

Two special series of solutions are as follows:

m, (m+ 3)2;
(m+ 1)(m+ 4)

2
,m+ 1.

The bold values of integers M are those that 7|(M2+3M +4). This is equivalent to M ≡ 2 (mod 7).

Alternatively, this can be derived from the property
√
−7|(M + α), since α+ 2 = 7−

√
−7

2
= −

√
−7π.

Thus,
√
−7|(M + α) ⇒

√
−7|

(
(M − 2) + (α + 2)

)
⇒

√
−7(M − 2) ⇒ 7|(M − 2).

4. Solutions to f(N) = f(N + 1) arising from factorizations of N + 1 and N + 4

4.1. Our problem. In relation to our problem, we need to investigate an extension of (8). namely, 2x+ y = 2z + 3w + 5,

xy + 3 = zw.
(8)

(x, y; z, w) = (21, 443; 99, 94)

4.2. Quadratic field. In the same manner, mulitply the first equation by γ, add to the first. We
wish to obtain

(x+ γ)(y + 2γ) = (z + 3γ)(w + 2γ).

Thus,

4γ2 = 5γ − 3 ⇒ γ =
5 +

√
−23

8
.

(4x+ 4γ)(2y + 4γ) = (4z + 12γ)(2w + 4γ).

Taking the norm, we get

(4x2 + 5x+ 3)(2y2 + 5y + 6) = (4z2 + 15z + 27)(2w2 + 5w + 6).

4.3. Two-sheeted hyperboloid.

x(2z + 3w + 5− 2x) + 3 = zw,

2x2 − x(2z + 3w + 5) + zw − 3 = 0.

D = (2z + 3w + 5)2 − 8(zw − 3) = T 2.
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5. ..

in this section we we solve the equationb

P (u, v) = P (x, y) + 1 ⇒ (uv + u+ v − 1)(uv − 2) = (xy + x− 2)(xy + y − 2).

Example 6 · 6 = 4 · 9 gives the first example. Remark 1. We have seen that the equality in case

ii) holds if and only if n = s(s+1)
2

−1, s ∈ N, s ≥ 2. For such n if follows that f(2n2−2) = f(2n2−1).

Expressing explicitly in terms of s, the sequence K =
{ s(s+1)(s2+s−4)

2
: s ≥ 2

}
provides a solution to a

harder version of the problem. SeeRemark 8 where it is shown how a student might arrive at an idea
to consider exactly the pair 2n2 − 1 and 2n2 − 2 even if a harder version of the problem is presented.
On the other hand, if a simpler version is posed to a student, it is straightforward to demonstrate

that equality in part ii) holds if and only if n = s(s+1)
2

− 1. There is no need to prove inequality for
this purpose. This is e an advantage of the problem, since 2/7 points might be earned even with-

out fully solving parts i) or ii). Identities (1) and (in case n = s(s+1)
2

−1) (5) are much easier to obtain.

Remark 2. The first 30 terms of the sequence f(n), n ∈ N, are as follows:

7, 9, 11, 13, 14, 17, 17, 19, 20, 25, 23, 29, 26, 27, 29, 37, 31, 40, 34, 35, 38, 46, 39, 41, 44, 43, 44, 54, 47, 58.

MAPLE code which takes as in input n and gives as an output the quadruple (n, f(n), a, b) is as
follows:

a :=proc(n::integer)::List[1..4];

local found::boolean;

local N, SQ, i, c;

found:=false; N:=n+1; SQ:={};

while not found do

SQ:=SQ union {N^2}; N:=N+1;

for i from n+1 to N-1 do

if evalb(N^2+n^2-i^2 in SQ) then found:=true; c:=i; end if;

end do;

end do;

[n,N,simplify((N^2+n^2-c^2)^(1/2)),c]

end proc:

Remark 3. The sequence f(2n2 − 2)− 2(n+ 1)2 + 1, n ≥ 2, starts from

0, 6, 9,0, 11, 15, 17,0, 18, 23, 6, 27,0, 26, 22, 35, 31, 39,0, 36, 45, 47, 41, 51, 53,0, 51, 6, 51, 22, 6, 56, . . .

Remark 4. Carefulness is needed indeed, since the argument breaks, say, for N = 2n2 − 3. Truly,
we have the following result.

Proposition 6. For n ≥ 3, one has f(2n2 − 3) = 2(n+ 1)2 − 3, and the corresponding identity is

(2n2 − 3)2 +
(
2(n+ 1)2 − 3

)2
= (2n2 + 2n− 3)2 + (2n2 + 2n+ 1)2.

If we try similarly to compute f(2n2 − 4)− 2(n+ 1)2 + 3, n ≥ 4, this would lead to a sequence

7, 9, 4,0, 2, 17, 18, 19,0, 23, 24, 29, 28, 2,0, 33, 34, 36, 38, 39, 47,0, 4, 18, 48, 2, . . .

Value 0 is achieved for n = s(s+1)
2

− 3, s ≥ 4. Thus, with the same technique as before it is possible

to show that the sequence L =
{ (s2−6)(s2+2s−5)

2
− 1 : s ≥ 4

}
also provides a solution to a harder

problem. In the other direction, if we fix M , the sequence f(2n2−M)−2(n+1)2 (as a rule) behaves
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unpredictably. The subsequence of M ’s given by M = 2s2 + 1, s ∈ N∪ {0}, is an exception. Indeed,
it can be shown that the following holds. If s is fixed, then

f(2n2 − 2s2 − 1) = 2(n+ 1)2 − 2s2 − 1 for sufficiently large n.

Remark 6. With the same technique as used in the proof of Proposition 1, one can show that

f(N) ≥ N +
√

8(N + 1) + 2,

end the equality holds if and only if N = 2n2 − 1.
Remark 7. Which polynomial identities give solutions to f(n) = f(n + 1)? Suppose f(n) =

f(n+ 1). This implies the existence of positive integers a, b, c, d, e, such that

n2 + c2 = a2 + b2,

(n+ 1)2 + c2 = d2 + e2.

Now, if we fix d− a = t, this gives the unique identity, as can be demonstrated in a special example
t = 3. Assume therefore d = a+ 3. This, after some calculation, one is lead to a pair of identities

(3n2 − 2n− 2)2 + (3n2 + 3n− 1)2 = (3n2 − 2)2 + (3n2 + n+ 1)2,

(3n2 − 2n− 1)2 + (3n2 + 3n− 1)2 = (3n2 + 1)2 + (3n2 + n− 1)2.

So, for which n do both identities f(3n2 − 2n − 2) = f(3n2 − 2n − 1) = (3n2 + 3n − 1) hold? It
appears to happen quite often. For example, for 200 ≤ n ≤ 230, these are the needed values:

201, 202, 206, 207, 211, 212, 215, 218, 219, 221, 225, 227, 230.

Thsi approach might also lead to a solution of a harder problem.

Remark 8. Even in the case of harder version, one can arrive to the easier one via a logical
path. Namely, a general solution to equation in integers M2 + c2 = a2 + b2 can be given several
equivalent forms. We will provide one, particularly suited for our problem. Assume (as we have)
a, b ∈ [M + 1, c− 1]. Let parities of M and a match, as well as those of b and c. Thus,

a−M

c− b
=

c+ b

a+M
> 1.

Let g.c.d.(a−M, c− b) = 2w. Thus let a−M = 2Rw+2qw, c− b = 2Rw, R, q ∈ N, g.c.d.(R, q) = 1.
Let, g.c.d.(c+ b, a+M) = 2D. A standard analysis shows that the solution is given by

M = RN − (R + q)w, a = RN + (R + q)w, b = (R + q)N −Rw, c = (R + q)N +Rw,

where N is a certain multiple of D. Any choice of R,N, q, w ∈ N provides a solution to M2 + c2 =
a2+b2. However, if we want M,a, b, c be large positive integers, R,N should be large as well. On the
other hand, in order c−M = 2Rw+Nq+qw to be as small as possible in comparison to M , integers
q, w should be as small as possible. Take q = w = 1. Then M = R(N −w)− qw = R(N − 1)− 1. If
this value is fixed, we want to minimize the difference c−M = 2Rw +Nq + qw = 2R+N + 1. We
thus naturally arrive at the condition 2R = N − 1 = 2n, and this gives M = 2n2 − 1. Thus, even in
the harder formulation of the problem it is very natural to try first f(2n2 − 1).

Remark 9. Let
(
n, f(n), a, b

)
be the quadruple in the formulation of the problem. MAPLE

program presented above shows that a+ b− n− f(n) attains only the values 2 and 4, the sequence
being

2 (seventeen times in a row), 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 4, . . .
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Indices at which value 4 occurs are as follows:

18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60,61, 66, 70, 72,73, 78, 82,85, 88,93, 96, 100, . . .

The non-bold ones are immediately recognized as p − 1, p ≥ 19 being a prime number (the bold
ones are of the form 2p + 1 for some special primes). On the other hand, b + c − a − f(n) − 2 ·
g.c.d.

(
b+ c, a+ f(n)

)
= 0 for all n ∈ N without exceptions. Thus, this reasoning yields the following

conclusion.

Proposition 7. Suppose N ∈ N. If 2(N + 1) = KL for K,L ∈ N being relatively close to one
another, then the representation (4) holds.

We do not specify here the meaning of the phrase “relatively close”. In our solution, n = s(s+1)
2

−1,
N = 2n2 − 2. Thus, 2(N + 1) = (s2 − 2)(s2 + 2s − 1), 2(N + 2) = (s + 2)2(s − 1)2. Yet, a student
might find another way to arrive at the representation (4), which always holds for N if f(N) can be
given a simple algebraic formula.

P =
x(x+ 1)(x+ 2)(x+ 3)

2
.

Then we have identities(
P − (x+ 1)(x+ 2)

)2

+
(
P + (x+ 1)(x+ 2)− 1

)2

=
(
P − (x+ 1)

)2

+
(
P + (x+ 2)

)2

,(
P − (x+ 1)(x+ 2) + 1

)2

+
(
P + (x+ 1)(x+ 2)− 1

)2

= 2
(
P + 1

)2

.

Let q = x2 + 3x+ 1. Then (x+ 1)(x+ 2) = q + 1, x(x+ 3) = q − 1. Thus,

P =
(q + 1)(q − 1)

2
⇒ q2 = 2P + 1 = (P + 1)2 − P 2.

2(P + 1)2 = 2(P 2 + q2) = (P − q)2 + (P + q)2.
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