
CONSECUTIVE INTEGERS IN SETS Sn = {d+ n
d
: d|n}

GIEDRIUS ALKAUSKAS

In this note, we solve the following new olympiad-level problem. On the way, two new integer
sequences are being discovered.

Problem. Let n ∈ N. Consider the set Sn, which consists of all numbers d+ n
d
, where d is the

divisor of n.

Prove that there exists infinitely many n such that the set Sn contains 3 consecutive integers.

The smallest such number is n = 144:
144

12
+ 12 = 24,

144

9
+ 9 = 25,

144

8
+ 8 = 26.

Here are all such numbers n in the range [1, 3 · 105]:
144,180,1260,1440, 2520,5040,5544, 7200,14040,15120, 25200,31680,33660,

37800, 46800, 59400,62244,65520, 70560, 83160, 107100,110880,115920, 166320, (1)

169344, 176400, 180180,183600,190944, 221760, 277200,287280,297540.

(Ignore bold and underlined values; these marks are for the sake of Solution 1). It can be
proved that all numbers above are divisible by 36. Performing the division, another sequence
is obtained:

4, 5, 35, 40, 70, 140, 154, 200, 390, 420, 700, 880, 935, 1050, 1300, 1650, 1729, 1820,

1960, 2310, 2975, 3080, 3220, 4620, 4704, 4900, 5005, 5100, 5304, 6160, 7700, 7980, 8265.

These two sequences, as well as several other ones derived from them (for example, take all
odd numbers above) are not yet in The On-Line Encyclopedia of Integer Sequences. Thus,
the problem proposed is (most likely) new. As we will soon witness, it is impossible to fully

characterise all such n. In order to do so, one needs to know all primes of the form F 2+1 or F 2+1
2

.
This cannot be done explicitly, even the infinitude of such primes is not known. Summarizing,
there exists a plethora of different solutions to the proposed problem. Each of them explicitly
describes certain subsequence of (1). However, explicitly or implicitly, any solution is based on
the following lemma. It can be proved by a solver rigorously, or just guessed to be true.

Lemma 1. Suppose, for certain n ∈ N there are two consecutive numbers in the set Sn. Then
there exist x, y ∈ N so that n = xy(x+ 1)(y + 1).

Proof. Suppose d2 < d1 ≤
√
n are such that

d1 +
n

d1
+ 1 = d2 +

n

d2
. (2)
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Let (d1, d2) = y (the greatest common divisor), d2
y

= x, d1
y

= z. Consequently, (x, z) = 1,

z > x. Since d2|n, then n = xyT . Now, d1|n ⇒ zy|xyT ⇒ z|xT . This implies T = zt, t ∈ N.
So, n = xyzt. In terms of x, z, y, t, equality (2) rewrites as

zy + xt+ 1 = xy + zt ⇒ (z − x)(t− y) = 1.

Since we are dealing with integers and z > x, this implies z = x+ 1 and t = y + 1. This gives
n = x(x+ 1)y(y + 1). □

Solution 1 (just guessing the suitable answer). Let

n = 6m(m+ 1)(2m+ 1)(3m+ 2), m ∈ Z \ {0}.

Let d1 = 6m(m + 1), d2 = 2m(3m + 2), d3 = 3m(2m + 1). These are three divisors of n.
Moreover, d3 < d2 < d1 <

√
n. Now,

d1 +
n

d1
= 12m2 + 13m+ 2,

d2 +
n

d2
= 12m2 + 13m+ 3,

d3 +
n

d3
= 12m2 + 13m+ 4,

which solves the problem. Values given by this solution in (1) are marked bold. ■

There are many 4th degree polynomials whose values at integers provide the solution. For ex-
ample, one can take

n = 84m(3m+ 1)(4m+ 1)(7m+ 2), m ∈ Z \ {0}.

The values produced by this polynomial are underlined in (1). Note that n = 15120 is both
bold and underlined. In this particular instance, the sets of three consecutive values of d + n

d
produced are different, respectively, {246, 247, 248}, and {247, 248, 249}. Thus, in total there
are four consecutive values in Sn for n = 15120:

120 +
n

120
= 246, 112 +

n

112
= 247, 108 +

n

108
= 248, 105 +

n

105
= 249.

Such instances of 4 consecutive values are extremely rare, the first such n being those:

15.120, 712.800, 3.341.520, 10.533.600, 23.284.800, 85.503.600, 147.026.880, 171.097.920

In relation to this, see the last subsection of this solution. Apparently, 5 consecutive values can
never occur.

Solution 2. Let x, y ∈ N, x ≥ y. Consider the number n = x(x + 1)y(y + 1). It has two
divisors d1 = xy, and d2 = x(y + 1). Now,

d1 +
n

d1
= xy + (x+ 1)(y + 1) = 2xy + x+ y + 1 = 1 + d2 +

n

d2
.
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In other words, these expressions are two consecutive numbers. We will now look for x, y,D,
so that the following equation in positive integers

D +
n

D
= D +

xy(x+ 1)(y + 1)

D
= 2xy + x+ y − 1 (3)

has a solution. If this is the case, we witness three consecutive integers among values of d+ n
d
.

The discriminant of the quadratic equation (3) is equal to

W = (2xy + x+ y − 1)2 − 4xy(x+ 1)(y + 1) = (x+ y − 1)2 − 8xy.

This expression is quadratic in x, y. If we happen to choose x dependent on y so that it factors
into two linear expressions, the problem might become easier. It is not difficult to notice that
x = ay + 1 does the trick, since W then possesses a linear factor y. We can take, for example,
x = 7y + 1. For this particular choice, W = 8y(y − 1). Since y and y − 1 are coprime, this
is a square of an integer in two cases: either y = P 2, y − 1 = 2Q2, P,Q ∈ N0, or y = 2P 2,
y − 1 = Q2, P,Q ∈ N0. In the first case we have P 2 − 2Q2 = 1. This is the famous Pell’s
equation. It is well-known that it has an infinity of solutions, given by P +Q

√
2 = (3+2

√
2)m,

m ∈ N0. Namely, (P,Q) = (1, 0), (3, 2), (17, 12), and so on. Gathering everything in one place,
we obtain the following fact. Let (P,Q) is the solution of Pell’s equation P 2 − 2Q2 = 1. Then

n = P 2(P 2 + 1)(7P 2 + 1)(7P 2 + 2)

(first values being 144, 374440, . . .) satisfies the conditions of the problem. Thus, there are
infinitely many such numbers. ■

Solution 3. First, one notices that an expression (2) gives the following

1 <
n

d1d2
= 1 +

1

d1 − d2
.

So, even before starting looking for any suitable construction, one knows beforehand that if
there exist three divisors ≤

√
n which satisfy the condition of the problem, they should be quite

close to the upper bound
√
n.

This leads to the following construction. Let a, b, c, d ∈ N, x, y, z, w ∈ Z, and

n = (am+ x)(bm+ y)(cm+ z)(dm+ w) · abcd, m ∈ Z.

To form three divisors, let

d1 = (am+ x)(bm+ y)cd,

d2 = (am+ x)(cm+ z)bd,

d3 = (am+ x)(dm+ w)bc.

A straightforward calculation gives

d1 +
n

d1
− d2 −

n

d2
= (bz − cy)(aw − dx),

d2 +
n

d2
− d3 −

n

d3
= (cw − dz)(ay − bx). (4)
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If both expressions on the right are equal to +1, then n satisfies the condition of the problem
for all m ∈ Z. At first it seems rather tedious to follow all cases where the two factors might
be (+1,+1), as well as (−1,−1). In fact, one needs not to worry about the sign. It is enough
to achieve the following. Find 4 pairs in the following table:

a b c d
x y z w

The only two worries are that columns are not proportional, and “cross-differences” ay − bx,
bz−cy, cw−dz, dx−aw are all equal to either +1 or −1. Then, in case of necessity renumbering
d1, d2, d3, we can always achieve that both expressions in (4) are equal to +1. Here are four
possible collections:

1 1 3 2 1 3 7 4 1 ℓ 2ℓ+ 1 ℓ+ 1 2 7 5 3
0 1 2 1 0 1 2 1 0 1 2 1 1 3 2 1

The first two correspond to expressions, respectively, n = 6m(m + 1)(2m + 1)(3m + 2) and
n = 84m(3m + 1)(4m + 1)(7m + 2). We had them before. This can be even generalized to a
bivariate third expression. Namely,

n = ℓ(ℓ+ 1)(2ℓ+ 1)m(ℓm+ 1)
(
2ℓm+m+ 2

)(
ℓm+m+ 1

)
, ℓ,m ∈ Z.

This produces many values in (1), but not all. Fo example, n = 37800 is missed.

The last collection correspond to the new solution

n = 210(2m+ 1)(3m+ 1)(5m+ 2)(7m+ 3).

General solution. We can describe a complete scenario when three consecutive values among
numbers in Sn occur. A direct calculation shows that

W = 2(x− y)2 − (x+ y + 1)2 + 2.

If x = y, then W < 0. Therefore, we can assume x > y. Let

x− y = F, x+ y + 1 = G. (5)

These are two positive integers of distinct parity. On the other hand, for each pair F,G so
that G ≥ F + 3, F,G ∈ N, and F,G are of distinct parity, there exists a unique pair x, y ∈ N
which solves (5). Suppose, we have such a pair (F,G). We want to find all integer solutions to
W = H2. In other words,

2F 2 + 2 = G2 +H2, where H ≥ 0, G ≥ F + 3.

For such integer solution, G and F are automatically of distinct parity, and G,H are of the
same. Thus, (G−H

2

)2

+
(G+H

2

)2

= F 2 + 1.
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In other words, F 2 + 1 = A2 + B2, A ≥ B, but (A,B) ̸= (F, 1). As is known from algebraic
number theory, this happens if and only if 2−η(F 2 + 1) is not prime; here η = F (mod 2) + 1
(value of mudulo is supposed to be 0 ir 1).

One cannot hope to explicitly describe all prime of the form F 2 + 1.

1. Calculations

Here is MAPLE code which calculates all values of n satisfying the condition of the problem
into a set Ki.

First, suppose n = x(x + 1)y(y + 1) ≤ M . Then M > 2x2. Thus x <
√
M√
2
. Further,

G = x+ y+ 1 ≤ 2x. Consequently, F < G <
√
2M . Next, one has x+ 1

2
= G+F

2
, y+ 1

2
= G−F

2
.

Squaring and multiplying, we obtain

16
(
x2 + x+

1

4

)(
y2 + y +

1

4

)
= (G2 − F 2)2. (6)

Since n = (x2 + x)(y2 + y), the left side of (6) is equal to

16n+ 4(x2 + y2 + x+ y) + 1 ≤ 16n+ 4
(n
2
+ 2

)
+ 1 = 18n+ 9 < 19M.

Therefore,

G2 − F 2 <
√
19M.

Now, G = F + t, where t = 2y + 1 is odd. The last inequality gives

t2 < Ft+ t2 <
√
19M ⇒ t <

4
√
19M ⇒ y <

1

2
4
√
19M.

So, to calculate all values of the sequence in the range n ≤ M , we run a double cycle.
Variable F runs from 1 to

√
2M − 4, while variable G = F + 2y + 1 runs from y = 1 to

y = min
{

1
2

4
√
19M, 1

2
(
√
2M − F )

}
.

restart;

M:=300000:

Ki:={}: Vi:=floor(sqrt(2*M)):

Ski:=floor((19*M)^(1/4)/2):

for F from 1 to Vi-4 do

for y from 1 to min(floor((Vi-F)/2),Ski) do

G:=F+2*y+1:

if issqr(2*F^2-G^2+2) then

x:=(F+G-1)/2;y:=(G-F-1)/2:

n:=x*(x+1)*y*(y+1):

Ki:=Ki union {n}:

end if:

end do: end do:

Ki;
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Four consecutive values. To describe instances where four consecutive values in the set Sn

occur, one needs to find integer solutions to

2(x− y)2 − (x+ y + 1)2 + 2 = S2,

3(x− y)2 − 2(x+ y + 1)2 + 6 = T 2.

In other words,

2F 2 −G2 + 2 and 3F 2 − 2G2 + 6 are both squares,

where G ≥ F+3. One easily adjusts the MAPLE code. There seem to exist infinitely many such
n. To find five consecutive values, one also needs to satisfy the condition that 4F 2 − 3G2 + 12
is also a square. No immediate obstruction is to be seen, but no such values were found.
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