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FUNCTIONAL APPROACH IN THE DIVISOR
DISTRIBUTION PROBLEMS

E. MANSTAVICIUS* (Vilnius)

1. Results

One-dimensional laws of the iterated logarithm for additive arithmetic
functions have been investigated in [1], [9] and in several papers by the
author. Our main results were summarized in [13]. Independently, R. R.
Hall and G. Tenenbaum (7] considered a partial case and gave a new number-
theoretical application. On the other hand, the functional limit theorems for
arithmetical processes have a fairly large literature too. We mention here only
[14] and [20] containing the prehistory of the subject. In the present remark
based upon the Kubilius probabilistic approach [9] we present the functional
law of iterated logarithm of Strassen type (see [10], [19], and [21]).

Let us observe one inconvenient feature of the theorems concerning the
strong convergence of sequences of arithmetical functions or arithmetical
processes. Usually, we have a sequence of probabilistic spaces which is
difficult to inbed into some fixed and at the same time not too complicated
space. As far as we know, the authors who have dealt with the. law of
iterated logarithm for sums of independent random variables (i.r.v.’s), except
W .Feller [5] did not pay any attention to the origin of the common probability
space. In some number theoretical problems, contrary to our case (see,
for instance, [17]) the product space is quite appropriate. To get over this
obstacle, we [11] have suggested a new approach.

Our concept is based on the following definitions. Let (S,d) be a separa-
ble metric space and Y, Y},...,Y, be S-valued random elements all defined
on the probability space {Q,, F,,P.},n=1,2,....

Let, as usual,

d(X,A)=inf{d(X,2): Z€ A}, AcCS.

* The final version of the paper has been prepared during my visit to the Mathemat-
ical Institute of the Hungarian Academy of Sciences. F inancially supported by Hungarian
National Foundation for Science, Grant No 1901 (Number Theory).
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2 E. MANSTAVICIUS
We say that Y; converges to Y P,-almost surely (P,-a.s.) if for each ¢ > 0

lim limsup P, ( max d(Yx,Y)2¢€) =0
zSkEn

=00 p—oo

Thus, a compact set A C S such that, for each ¢ > 0 and each X € A,

(1) Jim lim sup P max d(Yi,A) 2 ¢€) =0
and
2) Jim liminf P min d(Yi, X)<¢) =1

may be called a cluster set of the sequence {Yi} Pp-a.s. In what follows we
denote the relations (1) and (2) by

(3) Y= A (Pp-a.s.).
Instead of (2) sometimes we shall write
Yy, — X (Pyp-a.s.)

having in mind that &, is a random increasing subsequence. The following
lemma will be repeatedly used to deduce corollaries from the principal result.

LEMMA 1. Let (S,d) and (S;,d;) be separable metric spaces and let
f:S — S; be a continuous map into S;. Then (3) in (S,d) implies the
convergence

f(Yi) = f(A)  (Pn-a.s.)
in the second space (S;,d;).

The proof is evident (see [6], Lemma 137, or [21], Lemma 1.5.11).

If P, = P does not depend on n, due to monotonicity of the events in (1)
and (2), one returns to the traditionally treated situation. Here it should be
observed that the proposition Yy => A for a compact set A is equivalent to
two assertions: the sequence Yj is relatively compact and A is the set of its
limit points. Observe that in the concept of strong convergence introduced
above we need the separability of the spaces to assure the measurability of
the distances only. This condition is superfluous when P, has a finite carrier,
as in the case considered afterwards. So, at the cost of simplicity we have
gained the desired property: we do not need a product space or some other
construction of the fixed probabilistic space, common for all Y, k 2 1.

In the present paper we consider sequences of functions related to the
multiplicative structure of natural numbers. Let C = C[0, 1] be the Banach
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FUNCTIONAL APPROACH IN THE DIVISOR DISTRIBUTION PROBLEMS 3

space of continuous functions on the interval [0, 1] endowed with the supre-
mum distance p(-,-). We recall that the Strassen set K agrees with the set
of absolutely continuous functions ¢ such that g(0) =0 and

! 2
/ (g'()) “dt £ 1.
0
Now we return to arithmetical functions. Let

hi(m) = Y h(p*),
pe||m

pSk

where h(p®) € R, m,a € N, and p stands for a prime number. As usual,
p* || m denotes that p™ divides m but p**! does not. We put

h h? 1
A(u) = Z Q)—, D(u) = Z —(I-'L)(l — =), and B(u) = /2D (u)L,D(u),
—~ p ~ P P

rp>u pu
where Lv = logmax {v,e} and Lyu = L(Li_yu), k 2 1. Let g, ¢’ be two
consecutive primes belonging to the set S(h) = {p: h(p) # 0}. For a fixed
natural number m, joining the points (0,0) and (D(q), hy(m) — A(g)), g€
€ §(h), by straight lines in the coordinate plane we get the graph of the
function defined by

D(¢) -t - D)
B(g) - D(g) T he(m) = AD) e Th

H(m,t) = (he(m) - A(q))

when D(q) £t < D(q'). Let further Gg(m,t) = B(k)"'H(m,D(k)t) when
0St<1landk 2ko>q = min{qg:q€ S(h)}. Thus, G¢(m,-) € C.
Observe that we use natural subscripts k for the sequence Gi(m,1t) instead
of primes g for convenience only.

Supposing that each m < n is taken at random with equal probability
1/n, we insert the sequence Gx(m,-), k > ko, in the context described above.
Formally speaking one can take Q, = N, F, = 2N, and P, = v, where

Va(A) = n7'#{m < n,m € A}, ACN.

Our main result is the following theorem.

THEOREM 1. Let D(p) — oo and

(4) o) = o\ o2 )
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4 E. MANSTAVICIUS

as p — oo. Then we have
(5) Gr(m, ) =K (Vn-a.s.)

in the space C.

Applying Lemma 1, from Theorem 1 one can derive some of the known
results as well as new ones. For instance, we have

CoROLLARY 1 ([12]). If the conditions of Theorem 1 are satisfied, then
Gr(m,1) = [-1,1] (Vn-a.s.).

COROLLARY 2. If the conditions of Theorem 1 are satisfied, then

(Gk(m, 1/2),Gk(m, 1)) = L:= {(u, v):ul4(v—u)? < 1/2} (Vn-a.s.).

More sophisticated applications can be based on the ideas of [6] and [21].
Further we shall present several examples characterizing features of the last
relation.

Theorem 1 has its analogue in the space D = D|0, 1] of right continuous
functions defined on the unit interval and having limits from the left. In our
case instead of the Skorokhod distance in D we can use the metrics p.

THEOREM 2. Let the sequence of step functions Ux(m,t) be defined by

Uk(m, t) = B(k)™  (he(m) — A(g))

when D(q)/D(k) £t < D(q')/D(k) and q £ k. If the conditions of Theorem
1 are satisfied, then

Uk(m,:) = K (Vn-a.s.)

in the space D.

If w(m) denotes the number of different prime divisors of m € N and
w(m,u) = w,(m), then we have A(z) ~ D(z) = Lz + O(1) as z — oo.

Thus, setting b(k) := (2(L2k)Lak) v

w (m,exp {(Lk)'}) — tLayk
0

Ui(m,t) =

we obtain
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FUNCTIONAL APPROACH IN THE DIVISOR DISTRIBUTION PROBLEMS 5

CoRroOLLARY 1. The following relations hold (v,-a.s.):
i) \I'k(m, ) == }C;
i) ¥p(m,1) = [-1,1];
iii) (Wr(m,1/2),¥k(m,1)) = L;
iv) We(m,1/2) = [-v2/2,v2/2];
v) if ky is the subsequence for which Uy, (m,1/2) — \/2/2, then we have
Vi (m,-) — g1, where

(1) = tv2, if 05112,
T\ VA, i 12sts

vi) if ky is the subsequence for which ¥y, (m,1/2) — 1/2 and ¥y, (m,1) —
— 0, then we have Ui, (m,t) — g2, where

=t if 0<t<1/2,
I =\1-t, f 1/2<t<1

The proof is based upon the calculations of all possible values on g € K
of related functionals. Details are given in [6] (pp. 87, 88) but the evident
misprint in the definition of the function g(z) on line 8 of page 88 should be

corrected.
In 1969 P.Erd6s [2] proved that

w(m,t) — w(m,s) ~ L%

for almost all m uniformly in s < ¢ £ m provided that
Lt 2 (Ls)exp{¥(m)Lsm}

with arbitrary ¥(m) — oo as m — oo. In particular case we can say more.

COROLLARY 2. We have
Ui(m,1) — ¥i(m,1/2) = [——\@/2,\/5/2] (Vn-a.s.).

PROOF. This assertion is contained in (iii) of Corollary 2.
Let us consider another example (see [7])

log, 6 (m,exp { (Lk)'}) — tLsk
b(k) ’

Ag(m,t) =

where 6(m,u) = #{d € N : d|m,p(d) < u}. Here p(d) stands for the maxi-
mal prime divisor of d.
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6 E. MANSTAVICIUS

CoOROLLARY 3. All assertions in Corollary 1 to Theorem 2 remain valid
if one replaces Wi(m,-) by Ar(m,-).

In [7] on pages 25, 26 a proof of the one dimensional law of iterated log-
arithm for the function 7(m,t) := #{d € N : d|m, d < t} has been sketched.
We shall obtain the functional form of the law.

THEOREM 3. Let

log, 7 (m,exp { (Lk)'}) — tLqk

Ti(m,t) = o(k) : <t<

Then Ti(m,) = K (vp-a.s.).

Further, we shall deal with the inverses of functions and sequences in-
volved too. Proposition (ii) of Corollary 1 implies that

e[

:xék§n}§1+€

for each € > 0 and almost all m provided that n and z are sufficiently large.
Let pj(m), 1 £ 7 £ w(m), be the j-th prime factor of m. It can be called
the success epoch of the function w(m, -) (compare with that treated in [21]).
Then the last inequality with the choice k = p;(m) yields

(E) | Lapi(m) — j| £ (1 +€)v/25 L2

uniformly in z(m) £ j £ w(m) for almost all m provided that z(n) — oo as
n — oo. Similarly, starting from the estimates given on page 292 in [13] one
obtains the following sharper inequality '

. L. 3 . A2
|Lap;j(m) — j| £ (21(L2] + §L3] +Lyj+...+(1+ E)sz) ,

valid for each s 2 4. These estimates considered for all j, z(m) £ j £ w(m),
with sufficiently slowly increasing z(m) can not be essentially improved, that
is, one can not substitute 1 — ¢ in place of 1 + .

The estimate (E) has been announced in 1946 by P. Erdés [1] (see [2]
and [3] too). It is proved in the monograph [7] (Theorem 12), where further
very deep applications are presented. Later the investigation of the sequence
pj(m) was continued in [4] and [14]. Our functional approach sheds more
light on the problem.

Denote p(m,u) = p,)(m). Here and in what follows the domain for u is
to be confined to 0 £ u < w(m) and we put p(m,u) = 0 when 0 < u < 1.
Let
Lap(m,tk) — tk

V2ELE

Pr(m,t) = t €10,1].
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FUNCTIONAL APPROACH IN THE DIVISOR DISTRIBUTION PROBLEMS 7

The following law of iterated logarithm is true.

THEOREM 4. We have
P(m,)= K (Vn-a.s.).

The last assertion implies

COROLLARY. We have
Pi(m,1) = [-1,1] (Vn-a.s.)

and
(Pi(m,1/2), Pe(m,1)) = L.

Other propositions mentioned in Corollaries of Theorem 2 in the case of
Pr(m,t) hold true too.

Inverting Theorem 3 we obtain a result about d(m,u), the [u]-th natural
divisor of m € N with the convention that d(m,u) = 0 when 0 £ u < 1.

THEOREM 5. Let

Lad(m, k) — t(Lk)/L2

Di(m,t) :=
<) \/2((Lk)L3k)/L2

, t €[0,1].

Then Dg(m,-) = K (vn-a.s.).

CoroLLARY. All assertions in Corollary 1 to Theorem 2 remain valid if
one replaces Wi(m,-) by Di(m,-).

Observe that this corollary extends Theorem 13 of [7].

Probability theory suggests two equivalent approaches to deal with
p(m,u) or d(m, u). The first one, described in [8], uses the concept of count-
ing processes, while the second one, considered in [21], is based on generalized
inverses of nondecreasing functions. We exploit the ideas of both sources.

Direct theorems

We divide the proof into several simple auxiliary lemmas. In limiting
passages we always take at first n — oo and then z — oc.

Let hx(m) and Gi(m,t) be the functions obtained from hi(m) and

Gi(m,t) using the numbers A(p®) = h(p) instead of h(p®) for all a > 1
and primes p.
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8 E. MANSTAVICIUS

LEMMA 2. For each ¢ > 0,
(7) lim limsupvn( max p(Gk(m,‘),ak(m,-)) 2 s) =0.

I—20 nooo zSkSn

PRrOOF. Since for ¢,q¢’ € S(h)

ma,x{|6:k(m,t) — Gi(m,t)| : D(q)/D(k) £ 1 & D(q’)/D(k)} <

g ﬁ(k)_] max{ I ﬁq(m) - hq(m)l y li],q:(m) - hq’(m)| }s

the frequency in (7) does not exceed

(3 17| 2e0(0)) S 3 |W] 2 eB@)) +ox(1) =

pC|Im pO||m
a2 a22,p°>K
=:vp + 0k(1)

as n — oo and z — oo for each K > 2. But

Vn Svp(m:3p%m, p> K1/2) < E p << K712,
pgKllz

Since K is arbitrary, the above estimates imply the assertion of Lemma. 2.

COROLLARY. Proposition (5) for the function Gr(m,t) is equivalent to
that for the function Gr(m,t).

In what follows we shall use the function a‘k(m,t) omitting the “cap”.
Let r 2 2, 1 := max{q:¢q £ r}, and H"(m,t) = H(m,t) if t £ D(q;) and
H'(m,t) = H(m, D(q1)) if t > D(q1). Put Gi(m,t) = B(k) " H"(m, D(k)t)
when 0 £ ¢ < 1. :

LEMMA 3. There erists a sequence r = t(n) such that 1 — oo, logr =
= o(logn) as n — oo and

lim lim supun( max p(Gr(m,),Gi(m,")) 2 s) =0.

I—0 p—oo

PROOF. We need to consider the difference H(m,t) — H"(m,t) in the
interval D(¢;) £t £ D(k) only. Then in virtue of the definitions we have

| H(m,t) - H'(m,t)| £ Txglaé)gc | hi(m) — h(m) — (A(l) - A(r)) |-
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FUNCTIONAL APPROACH IN THE DIVISOR DISTRIBUTION PROBLEMS 9

Hence by Lemma 2 [11]

vn( max p(Gh(m, ), G(m, ) 2 3E

nggn

D(n) - D(r)

S o (s [Cm) = ) = (401 - 40) | 2 o)) << 2

Condition (4) implies that

max |h(p)| << /D(n)pn
pSn

with u, = (L2 D(n)) L 0asn o oo. Thus, taking r = n#~ as in [9]
we obtain that D(n) — D(r) = o(D(r)) as n — co. Lemma 3 is proved.

COROLLARY. Letr = r(n) be the sequence from Lemma 3. Then proposi-
tion (5) of Theorem 1 is equivalent to that with Gr(m,t) in place of Gr(m,1).

Now we are in a position to apply the Kubilius model of the probabilistic
space [9]. We do not need its construction in detail. Let &p, where p runs
over the sequence of primes, be a sequence of i. 1. v.s such that

(8) P(Ep = h(p)) =1- P(fp = 0) =1/p.

Denote by Z(t) the process starting at the point (0,0) and joining linearly
the points (D(g), X,) where

Zu=) & — A(u).

pSu

Let Z7(¢) = E(¢) if t < D(q1) and 2" (t) = Z(D(q1)) if t > D(g,). We denote
Ck(t) = B(k)T'E(D(k)t) and ¢[(t) = B(k)"'E7(D(k)t). Then we have the
following partial case of the fundamental lemma 9.

LEMMA 4. Letr = r(n) be the sequence from Lemma 3. Then

© vn( max p(Ghm, 1K) 2 ) = P( max p(ci(1.6) 2 ) +o)

zlk<n z<ksn
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10 E. MANSTAVICIUS

and

(10) Vn( min p(Gj(m,-),9) < é‘) = P( min p(¢i(.),9) < E) + o(1)

z<ksn z<kSn

for eache > 0 and g € K as n — oo.

ProOOF. The events under the frequency notation v, in (9) and (10)
belong to the algebra generated by the sets {m : m = 0 mod p}, p < r. For
the remaining arguments see in [9].

LEMMA 5. Let r = r(n) be the sequence from Lemma 3. Then

P(;gggnp(ck(.),c;(-)) 2¢) = o(1)

asn — oo and r — 00.

The proof goes along the same lines as that of Lemma 3.

Now we need the following probabilistic result of P. Major [10]. For
independent random variables X; such that £EX; =0, ¢t = 1,2,..., we put
Se=X1+ ...+ X, and B, = EX?+ ...+ EX2. Define the process Y(t)
starting at the point (0,0) and joining linearly the points ( By, S).

THEOREM A ([10]). Let X3, Xs,... be independent random variables
given on a common probabilistic space, EX; =0, ¢ 2 1. Suppose that there
exists a sequence of numbers M, such that

P(| Xa| £ Ms) =1
for each n 2 1, M, = o((B,/L2B,)"/?) and B, — 0 asn — oo. Then

Y (Bnt)
V2B, L,B,

PrOOF OF THEOREM 1. In virtue of (4) the random variables £, satisfy
the conditions of Theorem A. Thus,

=K (P-a.s.).

(t) =K (P-a.s.).
By Lemma 5 the same holds for {[(¢) in the place of {x(¢). Now the relations

(9), (10), and Corollary of Lemma 3 imply the assertion of Theorem 1.
PrOOF OF THEOREM 2. Let 7o = D(q)/D(k), m < n, and k£ £ n. Then

p(Uk(TTL, 1), Gk(m, )) <
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FUNCTIONAL APPROACH IN THE DIVISOR DISTRIBUTION PROBLEMS 11
< B(k) max{ | y(m) ~ ho(m) — (4(a) = AW))]| 7 & 1} <

< B(k)™" max{|h(q)| : ¢ £ k}.

Hence in virtue of condition (4) the assertion of Theorem 2 follows from that
of Theorem 1.

To prove Theorem 3, at the first stage we can follow the way outlined in
[7], pages 25 and 26. Instead of the sketch in the next lemma we present the
necessary details.

LEMMA 6 ([7]). Let 7(m,u,v) := #{d : d|m,d > u,p(d) £ v} then uni-
formly in 2 < u, v £ n we have

Z 7(m, u,v) << nLvexp{ —cLu/Lv}, c>0.

m<n

Further, for o = 1/12, u; := exp{j°}, v; := exp{cj*/3Lj},
Vp (ma.x{'r(m, u,v;): €(z) 5 £ (Ln)lla} > 0) — 0

with {(z) — 0 arbitrarily slowly.

PROOF. From the definition of 7(m,u,v) we have

Z'r(m,u,v)gn Z %énu')‘n(l—p*_l)—l <<

m<n d>u p<v
- p(d)Sv -
<< nexp{—ALu + Zp’\"l}
. <

provided that 0 < A £ 1/3. The choice A = ¢/ Lv with sufficiently small ¢ > 0
proves the first assertion of Lemma 6.

Since 7(m,u,v) € N, the second proposition of Lemma 6 follows from
the first one and the convergence of the series

Z Lujexp{ —cLu;/Lv;}.

J

Lemma 6 is proved.
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12 E. MANSTAVICIUS

Proor oF THEOREM 3. Following the idea suggested in [7] we shall
approximate Ti(m,t) by processes considered in Theorem 2. Since Tx(m,t) <
< Ag(m,t),0 <t £ 1, and by Lemma 2

p(mk(ma')aAk(mV)) — 0 (Vn'a*-s-)a

we have the desired upper estimate. We shall express the lower estimate of
Ti(m,t)in terms of Wy (m,t) too. Let as previously z = z(t) = exp { (Lk)t} .
Observe that for each tx > 0 such that zx(¢x) remains bounded as k¥ — oo
we trivially have

1 ,2k(1)) —tLk
un(max sup | oggr(m zk( )) 2 | 2 )——-»0.
zSkSn 0Lty b(k)

On the other hand, by the Cauchy inequality and the definition of KX we
derive

tx
max{|g(t)| :0 St <t} < (tI/ |g'(u)| du) 2/ g
0

uniformly in ¢ € K as t; — 0. The last two estimates show that on the
interval [0,t;] the sequence of arithmetical processes approaches the zero
function belonging to K. Therefore it remains to consider the convergence
in the interval [t;, 1] where ¢, — 0.

As it has been observed in [7], page 25,

gw(mv) < T(m,u) + 7(m, u,v), m,u,v = 1.

We divide the interval [2;,n], in which we need to estimate 7(m,z2) from
below, by the points u;, j; £ j £ J,, where j, — 00 as £ — o0. In virtue of
the monotonicity of r(m, z) with respect to z and Lemma 6, for z € (u;, u;41],
we obtain

T(m,z) g T(’m,, 'u,j) Z 2w(m,v3) - T(m,Uj,TJj) — 2w(m,'vj)

uniformly in j; £ j £ J, and vp-a.s. in m as n,z — oo. It remains to change
v; on the right-hand side by z.

Let as earlier 2z = zk(t) € (uj,uj41], then b2(k) 2 v%(j) := 2a(Lj)Lsj
and

w(m,v;) 2 w(m, z) — (w(m, ujt1) — w(m,v;)).
Later on we shall obtain the estimate

(11)  wu(e):= un(_ max (7)) (w(m, ujs1) — w(m,v;)) > 5) =o(1)

Jr=]=Jn
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FUNCTIONAL APPROACH IN THE DIVISOR DISTRIBUTION PROBLEMS 13

for each £ > 0. Together with the last inequality this implies that Ti(m,t) 2
2 ¥i(m,t) uniformly in ¢, £t <1,z < k < n and v,-a.5. in m. Recalling
our remark about the interval 0 < ¢ < ¢, and the upper estimate of Ti(m,t),
we see that Theorem 3 follows from Corollary 1 of Theorem 2.

To prove (11), in contrast to the approach used in [7], we reduce this
problem to that for independent r.v.’s. In virtue ofL((Lu_,-.,.l)/ij) ~ Lyj =
=0(7(j)) as j — o0 applying Ruzsa’s inequality (see [18], Theorem 2) we
obtain

—1 7>
va(e) << P(j,ISnjaéxJn 7(7) l > fpl 2 5/4),
== v; <pSu;41
where £,, p < n, denote independent r.v.’s defined by (2) with A(p) = 1 and
the bar indicates centering of r.v.’s by their expectations. Let for the sake of
convenience e(k) = [ exp{k}], k; = [Lj,], Kn = [LJ,] + 1,

X, = Z Ep, s=1,...,e(k+1)—e(k):=S
Ve(k)+s—1<PSVe(k)4s
and
YO = Z _gp,
Ve(k) <PSUe(k)
Y, = Z £, r=1,...,e(k+1)+1—e(k) =: R.
Ue(k)+r—1 <P_S_”e(k}+r

Then

L

> 2 er(e(h) f5) +

=1

vn(e) << Z P( max

1<5<S
ke <kSKn =f=

+ 3 P

ke Sk<Kn

IZ;;YI{ 2 ev(e(k)) /3)_.

Thus, we have an ordinary probabilistic problem. From the definitions
of r.v.’s we observe that the variance of the sum of Xi;,121£ 8, is bounded
uniformly in k, while the variance of the sum of Y;, 0 £ 1 £ R, increases as
Lk = o('y(e(k))) when k — oco. Therefore for sufficiently large k, from the
Lévy inequality (see [16], p. 68) we derive

S
va(e) << Y P( > X
=1

ke <k<Kn

> ey (e(k) /9) "
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14 E. MANSTAVICIUS

+ ) P(in

ke SkSKn

2 ex(e(h) /9).

Now we apply the exponential estimates of the probabilities involved. Veri-
fying the conditions of Theorem 15 of [16], p. 70, we have

Eexp{tX;} < exp{6t’a/}

for 0 < t < to with some positive tg, § = é(1o), and a; such that a; + ...+
as << 1. Similarly,

Eexp{tY;} < exp{é:1t°},

where 6,,b; > 0,0 <t Stg,and b+ ...+ bp << Lk = o('y(k)). If 65 is a
sufficiently small positive constant, then by the aforementioned Theorem we

obtain
vn(e) << Z exp{——éﬂ(e(k))} — 0

ks SkSKn

as n and z tend to infinity. This is the desired estimate (11).
Theorem 3 is proved.

3. Inverses

Let Do denote the subspace of D = D[0,1] consisting of nonnegative
nondecreasing functions. For X € Dy, we define X L. ¢y 1 € Dy by

X;7Y(t) = sup{u € [0,1]: X(u) £ t},
X;71(t) = inf{u € [0,1]: X (u) > t}.

Here and in what follows we put X;'(t) =1for X(1) St < 1.

LEMMA 7. Let X, € Dg and §, be a sequence of positive numbers, 6, —
— 0. If Y € C[0,1], then as n — oo in both cases j = 1 or 2 the following
two relations are equivalent:

sup{ %—Y(t)l : 1€ [0,1]} — 0
and
-1
sup{ i{-’nj;iFl-}-Y(t) (1€ [0,1]} — 0.
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The proof of Lemma 7 is the same as that of Theorem 3.1.4 in [21].
ProoF oF THEOREM 4. We apply Lemma 6 for the function

Xi(m,t) = w (m,exp {(Lk)'}) / Lok

and & = ((2Lsk)/L2k) /2 Observe that, for ko < k < exp{exp {w(m)}}
and 0 St <1,

Xl (m,t) = (L2k) ' L(sup{l £ z £ Lk : w(m,e*) £ tLok}) =
= (L2k) ' Ly(sup{e £ w £ k : w(m,w) S tLak}) <
< (L2k) ™' Ly(sup{w 2 0 : w(m,w) £ tLqk}) =
= (L2k) ' La(p(m,tLok + 1) — 1).
Similarly,
Xz (myt) = (Lok) ' Lo(inf{e £ w £ k :w(m,w) > tLyk}) 2
> (L2k) ™' Ly(inf{w 2 0 : w(m,w) > tLyk}) = (L2k) " Lop(m,tLok + 1).

Since according to Lemma 7 for almost all m the cluster set of the se-
quence of functions (X ,;}l(m,t) — t) /6, agrees with K, the same holds

for ((L2k) ™' Lyp(m,tLok + 1) — t) /6k. This, in virtue of Lap(m,j+ 1) ~
~ Lap(m,7) for almost all m as j — oo, implies Theorem 4.
ProOF OF THEOREM 5. If now

Xi(m,t) = (logy 7 (m,exp { (Lk)'})) / L2k,
then for its generalized inverses introduced in Lemma 7 we have
X (m,t) £ (Lok) ™ Lo (d(m, 22k 4 1) — 1)

and _
Xt (m,t) 2 (Lok) " Lod(m, 2tE2% 4+ 1).
Thus, by Lemma 7 the desired result follows from Theorem 4.

Addendum. To the Exercises in Chapter 1 of [7] we would suggest to
add the following relations:
(1) uniformly in £ £ j £ n, v,-a.s in.m, and for each s > 5, we have

2L_7 3 )
| Lod(m, 5) | < ( (Lsj + glai+Lsj+ .. +(1+E)Ls9))
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16 E. MANSTAVICIUS

when n and z tend to infinity;

(2) we have
N . /8Ly )
lim lim sup vy, min =~ max | Lp(m,1)=1| £1-¢) =0
51100 mevoo (Iéié*—U(M) LAV | Lap(m, 1)~ 1] <

but

lim Iiminfvn( min v8 %Jma.legp(m,l)—ll §1+s) =1;
T—0C0 n—o0 xéjgw(m) Tl'-\/; <5

(3) we have

.1 ) Vv 8(L2)L3j Ll )
lim limsup v, min Y———"max|Lyd(m,)— —=|L1-¢) =0
z—00 n—»oop (I§J’§T(m) TVLj 1<5 l 2d(m, 1) L2| -

but

V8(L2)Lsj max | Lpd(m,1) — Ll

o S P
Jim timinf v (_min 2 ma Ll S1re) =1

Finally, we frankly confess that our attempt to extend Exercises 2 and 3
into a functional form have failed.
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gary I remain indebted to Prof. Dr. I. Kétai, to Prof. Dr. I. Z. Ruzsa, and to
other colleagues.

References

[1] P. Exrdés, On the distribution function of additive functions, Ann. of Math., 47 (1946),
1-20.

[2] P. Erdds, On the distribution of prime divisors, Aequationes Math., 2: (1969), 177-183.

[3] P. Erdds, Some unconventional problems in number theory, Asterisque, 61 (1979),
73-82.

[4] P. Erdds and G. Tenenbaum, Sur les densités de certaines suites d’entiers, Proc. London
Math. Soc., 59 (1989), 417-438.

[5] W. Feller, The general form of the so-called law of the iterated logarithm, Trans.
Amer. Math. Soc., 54 (1943), 373-402.

[6] D. Freedman, Brownian Motion and Diffusion, Holden-day (San Francisco, Cam-
bridge, London, Amsterdam, 1971).

[7] R. R. Hall and G. Tenenbaum, Divisors, Cambridge University Press (Cambridge,
New York, New Rochelle, Melbourne, Sydney, 1988).

[8] D. L. Iglehart and W. Whitt, The equivalence of functional central limit theorems for
counting processes and associated partial sums, The Annals of Math. Statistics,
42 (1971), 13721378,

Acta Mathematica Hungarica 67, 1995



FUNCTIONAL APPROACH IN THE DIVISOR DISTRIBUTION PROBLEMS 17
i

[9] 1. Kubilius, Probabilistic Methods in the Theory of Numbers, Transl. Math. Mono-
graphs, Amer. Math. Soc., 11 (Providence R.I., 1964).

[10] P. Major, A note on Kolmogorov’s law of iterated logarithm, Studia Scient. Math.
Hung., 12 (1977), 161-167.

[11] E. Manstavi¢ius, Strong convergence of additive arithmetic functions (in Russian),
Liet. Matem. -Rink., 25 (1985), 127-137.

[12] E. Manstavi¢ius, Law of the iterated logarithm in the Strassen formulation and additive
functions (in Russian), Liet. Matem. Rink., 26 (1986), 81-90.

[13] E. Manstavigius, Laws of the iterated logarithm for additive functions, Colloquia Math.
Soc. J. Bolyai, 51 (1987), pp. 279-299.

[14] E.Manstavicius, An invariance principle for additive arithmetic functions, Soviet.
Math. Dokl., 37 (1988), 259-263.

(15] M. Mendés France and G. Tenenbaum, Systémes de points, diviseurs, et structure
fractale, Bull. Soc. Math. de France, 121 (1993), 197-225.

[16] V. V. Petrov, Sums of Independent Random Variables (in Russian), Nauka (Moscow,
1972).

[17] W. Philipp, Mizing Sequences of Random Variables and Probabilistic Number Theory,
Memoires of the Amer. Math. Soc., 114 (Providence, R.I, 1971).

(18] I. Z. Ruzsa, Generalized moments of additive functions, J. Number Theory, 18 (1984),
27-33.

[19] V. Strassen, An invariance principle for the law of iterated logarithm, Z. Wahrschein-
lichkeitstheorie verw. Gebiete, 3 (1964), 211-226.

[20] N. M. Timofeev and Kh. Kh. Usmanov, On arithmetical modelling of random processes
with independent increments (in Russian), Dokl. Akad. Nauk Tadzhik. SSR, 25
(1984), 556-559. |

[21] W. Vervaat, Success epochs in Bernouilli trials with applications in number theory,
Math. Centrum, Amsterdam.

(Received June 29, 1993; revised February 10, 1994)

DEPARTMENT OF PROBABILITY AND NUMBER THEORY
VILNIUS UNIVERSITY

NAUGARDUKO STR. 24

2006 VILNIUS

LITHUANIA

Acta Maethematica Hungarica 67, 1995



