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A FUNCTIONAL LIMIT THEOREM
RELATED TO NATURAL DIVISORS

E. MANSTAVICIUS* (Vilnius) and N. M. TIMOFEEV** (Vladimir)

Functional limit distributions related to additive functions, which by the
very definition are determined by their values on prime divisors of natural
numbers, were intensively studied (see, for instance, [4,11,12] and references
therein). In [6,7] these investigations were applied to random processes de-
fined in terms of natural divisors. As it was mentioned in a lecture in Novem-
ber, 1993, at the University of Bordeaux I (see also [5], [7]) of the first author,
recent investigations of natural divisors done by G. Tenenbaum and others
[2,8,9,10] can be also treated from the point of view of probabilistic func-
tional limit theorems.

Let D[0, 1] be the space of real-valued functions on [0, 1] which are right-
continuous and have left-hand limits. Suppose that the Skorokhod topology
is introduced in D[0,1] and D is the Borel o-algebra (see [1]). For a nonneg-
ative multiplicative function f(d), we put

F(mv)= Y f(d), F(m,m)=F(m),

d|m,dSv
where m,d e N. 0 £t <1, then
X, = Xn(m,t) := F(m) ' F(m,n*) € D[0, 1].

Further, if v,(...) denotes the frequency of m < n satisfying the condition
written instead of the dots, then the distributions v,(X,, € B), where B € D,
define a probability measure on D. We denote it by v, - X 1. Now one can
ask: Under what conditions the sequence v, - X! converges weakly to a limit
measure when n — 007

Before giving an answer, we quote two well-known results. Let 7(m,v) be
the number of natural divisors of m € N which do not exceed v 2 1 and 7(m)

= 7(m,m). The theorem of J.-M. Deshouillers, F. Dress, and G. Tenenbaum
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(2] asserts that

1 ¢ L2

— r(m)7'r(m,nt) = - arcsin vt + o(1)
n

m=1

uniformly in ¢ € [0,1] as n — co. Moreover (9], the sequence of distribution
functions

Un, (1'(m)'1 (r(m,n*) - r(m,n*)) < :c)

weakly converges to a purely discrete limiting distribution as n — oo for all
0 £ s <t £ 1. Evidently, the first relation deals with the expectation while
the second one considers the increments of the processes defined above when
f(d) = 1. That gives also some motivation to our investigation.

In the present paper we will prove the following result.

THEOREM. If f(p) = % > 0 and f(p*) 2 0 for all prime numbers p and
k 2 2, then v, - X! weakly converges to a limit measure defined on D,

PROOF. According to the criteria ([1], Theorem 15.4) we must verify
that

(I) Gu(T) := Ga(T;21,-..,2k) := va(Xn(m,ty) < Ty Xn(m, t) < zi)
weakly converges as n — oo to a k-dimensional distribution function for each
k 2 1 and any fized T := (t1,...,t) € [0, l]k, t1 < ... <ty except some rare
set, and

(IT) the sequence of measures v, - X1 is tight.
In what follows we will use a few well known estimates.

LEMMA 1 ([3]). Let g(m) be a multiplicative function, 0 < g(p*) < A for
all prime numbers p and k 2 1. Then forn 2 2,

n 9(p)
(1) gg(m) <4 lognexP{ET}
and
om) o [ 500
@ a2 )

As we will see, the contribution of numbers m having small prime factors
to the distribution of X can be neglected. For 0 < € < 1, we denote

m(e) = [] »*

p%|lm
p>n’
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A FUNCTIONAL LIMIT THEOREM 3

and 9 = log 1/¢. For brevity write a = m/m(¢), b = m(¢), and let p(v) stand
for the Dickman—de Bruijn function. In what follows summation over a < y
(respectively b < y) will denote that a = a(m) (b = b(m)) runs over all pos-
sible values of the numbers not exceeding y and having small (large) prime
factors. We have

LEMMA 2. The estimates

logy y y I
Zl yp(slogn)<<£logn Z <eslc»gn §b< ¢

aly b<y

hold uniformly in n® < y < n.
PROOF. See, for instance [9], pages 8 and 10.

LEMMA 3. Let w(m) be the number of different prime factors of m,
d=logl/e. Ifc > 1, then

vn(m : w(m(e)) > ed) <. 97
Ifei<1,8>1/(1—¢1), and nV® < y £ 2n, then
vy (m: w(m(e)) < a¥) Ko 971
ProOOF. The propositions follow from the Turdn—Kubilius inequality
1\? 1
> (w(me) - ) 5) <Y > ’
mSy n¢<p<y n*SpSy

and the observation that the sum over primes does not exceed ¥ + o(1) and
is not less than (1 — 1/s)? + o(1) when y belongs to the given interval.

LEMMA 4. We have
Un(Xn(m,t) # Xn(m(e), 1)) < 971/2

uniformly int, ¥c St <1 - e for n 2 no(e).
PRroOF. Via the equality

1
Xn ) = G d d
(m\8) = Ty dllz:"% f(dh) d,?m:(,) f(dz)
dggﬂt

1
~F(m) Yo fd) D f(da),

dy |—(-)-m da|m(e)
e n'/dy<dzEn'
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we obtain

(3) v (Xn(m, ) # Xa(m(e),2)) S v (m:m > nVm(e))

‘v, (m :m S n"/@m(s), Jdz|m(e),
We have

V’

IIA

1 m 1 log p” 1
—_— 1 < :
nevdlogn mZ(ﬂ o8 m(e) = ev/dlogn r>Z pr V9

A

1,pSn*

Now we will show that the same estimate holds for the second summand
in (3) as well. If m(e) =: daby, where

m(e)nt/m £ dy S nt, m < n™Vmle),

we can suppose that
nl—t—Zs\/a g b2 é nl—t‘

Otherwise we had m < nl_‘ﬁ, and hence v" < n=evV9d,
By Lemma 3 for all but O(n9~!) numbers m < n we have w(m(e))

< 39/2. Hence either w(dz) < 39/4 or w(by) < 39/4 ,-and these m can be
expressed as m = db(¢), where all the prime factors of b(¢) belong to the
interval [n°, n] and

o

d€ D; =: {d: w(d(e)) £ =9, nt=2eV¥ < g < nt+‘ﬁ}

with some ¢ € [ {/¢, 1 — ¢/c] . Hence

1 1 . 1
VW<« - max 1491« max =+ 97!
" n %gegl—%dg, b(;)z;:;/d glogn s/;ggg..{*/;dezm d

by Lemma 2. Splitting the sum into the parts over the intervals [@,2Q)] with
Q = 2nt-2eV¥ 5n4 j=0,1,...,J, where J < £v/dlogn, we obtain

Vi €« V¥ max vag(d: w(d(e)) < 39/4) + 971,
ny‘.éqgn

Now the desired estimate follows from Lemma 3. Lemma 4 is proved.
We will also use Lemma 9 of [8].
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LEMMA 5. Leth:R' — R be a Riemann integrable function with support
contained in a compact subset of(O,oo)[. Then

1 1 1 d d
lim 3 p(ER, 2R - [ b w2
n—oo L= P1cPl logn logn R! Uy u;

Now we return to the proof of the Theorem. At first we will prove Propo-
sition (I) for each T = (¢1,...,t). Observe that without loss of generality
we can assume I < 1. To settle the case t; = 0, we evaluate the difference

0 £ vn(Xn(m,t2) < 22,..., Xn(m, 1) < 2)

—vn (Xn(m,0) < z1, Xp(m,t2) < 2a,..., Xn(m, 1) < z4)

n

1 1
< > < - E _
= Vn(Xn(msO) = xl) = n.'£1 = F(m)!

where z, is an arbitrary positive number. Since F(p) = 1 + » for each prime
number p, in virtue of estimate (1) of Lemma 1 the last mean-value is of

order O((log n)_"/(1+")). Thus, in what follows we take t; > 0. For any
fixed €, 0 < € < min {§,(1 - tk)s} , from Lemma 4 we have

Gn(T) = vn(Xn(m(e),t1) < 1y, Xn(m(e),tx) < zx) + O(97Y2) + 0(1)
=: vy (An(m(e),T) € B) + O(9~ %) + o(1)
as n — 00. Further, using the decomposition m = ab, where the prime divi-

sors of a do not exceed n® and those of b are greater than n%, in virtue of
Lemma 2 we obtain

_1 -1/2
Gn(T) = — Yo ) 1+0(7%) 4 0(1)
bSn asn/fb
An(b,T)eB
-1
= > b (M-l) + 097 Y2%) + o(1).
< . €logn
An(bT)eB

The summands of the main term with respect to b having a squared prime
divisor p can be estimated by

o(p; 513) = o(1).
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Hence

Ga(T)= Y Si+0(97'/%) +0(1),

[<e—1

where

- _ log(nb—1)
. 1 ———
S bz< 7p ( elogn
An(5,T)eEB

and * stands for the condition “b consists of exactly ! different prime num-
bers”. Let §; € {0,1}, 1 £ ¢ £/, and denote I;(L) the indicator function of
the event {L <t;},155<k. "Then the condltlons in the definition of S;
define the region D;(E) for the vector (logpy,--,log p;)1/logn contained in

[e,1]'. More precisely,

Di(e)= [\ Dy W(ut,--oouw):m+...+wS1eSu $1)
1555k

and

Dj; = {(ux,...,u:): E PEaanaly ACTMETES +5l“l)<-’”5(1+")’}'
51l

By Lemma 5 we have
I
du, du;
)

NG Zl i o+ oll).

Hence we have the relation
Gn(T;z1,...,2k) = We(T 21, ...,24) + 0(19‘1/2) + o(1)

uniformly in zy,...,% as n — oo for each sufficiently small ¢.

Taking at first n — 0o and later ¢ » 0 in virtue of the notation
¥ = log 1/¢ one can verify that the limit of G, exists and coincides with

lin}] W(T;21,...,2)

which is a k-dimensional distribution function for each vector T. The asser-
tion (I) is proved.
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In order to prove (II), we use the criteria given in Theorem 15.3 [1].
Preserving the notations of the book [1] we consider

w% (m, 6) = sup min {| Xn(m,t) — Xn(m,t1)|, | Xn(m,t2) — Xn(m,1)| },

where the supremum is taken over all t;, t, and t; such that ¢; £t £ 1,
ts — t; £ 6. Observe that

w(m, 8) = sup { min {| Xu(m, t) = Xa(m,t = 6)],
| Xn(m,t+6) = Xa(m,t)| }; 6 S t S 16},
wx (m, [a,0)) = sup {| Xn(m, t) = Xa(m,t)|;a S ts S ¢ < b}
= | Xa(m,b) = Xn(m,a)].

Thus, the criteria for the assertion (II) reduces to
(I11) For each positive ¢ and 1 there exists §, 0 < § < 1/2, such that

(4) U Xn(m,8) 2 €) <,

(5) Vn(Xn(m,1) = Xn(m,1-6) 2 €) <,
and

(6) vn(wk(m,8) 2 ¢€) <7

provided that n is sufficiently large.
All our calculations will be based on moment estimates. We have

1 « f(d)- F(d
vn(Xn(m,8)2€) £ 23 Fos F Z fld) =2 Z F((d)) 2 "ﬁ%%'
kSn/d

m=1 dlm
d<nt

But the multiplicative function g(m) = F(d)/F(md) satisfies the conditions

g(p)=1/(1+ x)if ptd and g(p) £ 1if p|d. Hence estimate (1) of Lemma 1
implies

Va(Xn(m, 6) 2 €) < &7 (logn)™*/(1+>) dz f%z%
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Here and in what follows
e(d) := exp { Z 1}
' p
pld

Now inequality (2) of Lemma 1 implies

(7) Un(Xn(m,6) 2 €) < e7167/(0+%),
(4) is proved.
Similarly,
1 f(d) F(d)
_ - > <
Un(Xn(m,1) — X(m,1-6)2¢) £ — @ > Fkd)
nl—6<d<n k<n/d
1 f(d) 2n) e/ (1+2)
< X dF(d) (l"g d ‘

n]-ﬁ <d§ﬂ

By Abel summation the last sum is equal to

@ (L, 2n) 70
Z=nF(d)dd(u(lgu) )

+(log2)—x/(l+x) M
n F(d)

nl—6<dS<n

d n) ~/ 0+ —1/(143
< [0 T g (o) T S 0fagmy o),

Hence in virtue of Lemma 1 we obtain

(8) Un(Xn(m,1) — Xp(m,1-6) 2 ¢)

< 1 /n (1 ~ log u -xl(1+x)it_‘_
~ elogn [,1-s logn u

1
== (1 —v) /U4 gy & =161/ (1+),
1-6

(5) is proved.
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To prove (6), we split the domain for ¢ into several parts as follows. Let
6, = (log 1/6)™". We obtain from (7) and (8)

(9) un(tsgg» (Xn(t+8) = Xa(1) 2 ¢)

+Vn( sup  (Xn(t) — Xa(t-6)) 2 5) € eI (8204 g0y
1—-61§t§1

Further,

V"= un( sup (Xn(t+6) - Xa(2)) 2 6)
1/2-6,<t1/2+46;

1 1
éEZm > f(d)

dim
n]l?—ﬁl SdSﬂll2+61

_1 fd) 5~ F(d)
= En a1/2—6, Szd;s'n”“‘&l F(d) mgznld F(dm)

By Lemma 1,

TP i R ()

£ n1/2-61 <d<nl /2461 dF(d)

As in the estimation of v”, we split the interval [nl/2-%1 nl/2+61] into
O(é, log n) subintervals [M,2M]. Then using (1) we obtain

" -1 sf(14) (d)
(10) V'L e (logn)” g ]’Ognn1 4<M<nM Z F(d)

According to (9) and (10) it remains to take the supremum in w'y(m, 6)
over t € [6,1/2 - 6;]U[1/2 + 61,1 - 6] =: I(§;). In virtue of Lemma, 4 in
this case up to the remainder term O(\/E_ ) we can replace wx(m,§)) by
wx (m(6),6)). Here as previously, m(6) stands for the product of prime
factors of m whnch are greater than n’. Moreover, we can suppose that all

the primes p > n® divide m at most in the first power,

(11) nf/logn <m < m(&)nﬁ‘ﬁ, m(6) > nl‘”ﬁ,
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10 E. MANSTAVICIUS and N. M. TIMOFEEV

where now 9 = log1/6 = 67!, Thus, if we define a new multiplicative func-
tion y(m) by y(p") =0 when p< n® or r 2 2 and y(p) = f(p) = » when
p>nd and put
1
Yu(mst) = m Z y(d)1 Q(m) = Z y(d)?

dim,dgn‘ d|lm

then
vn(w(m,8) 2 €) = vn(wy(m,6) 2 ) + 0(V/4)

provided n 2 ng($é).
Since  sup,min {u(t), v(t)} 21  implies  sup, min {u(t), v(t)}
< sup, (u(t)v(t)) for each pair of functions u(t) and v(t), we have

Vn(wy(m,8) 2 €)

sup (Yn(m,t) — Yo(m,t — 68)) (Ya(m,t + 8) — Yn(m,t)).

Here * over the sum denotes that m satisfies the condition (11) and

m(6) is squarefree. The quantity under the supremum is the sum of
y(d1)y(d2)®@~%(m) over the set

D(m) = {(dl,dz) . d},dzlm, nt"& é dl é nt, n‘ g d2 é n”’é} .

Now we use the representations m = ab, dy = a1b;, dy = azb,, where none
of the ?rime factors of @, a;,a; exceed n® and those of b, b;, b, are greater
than n°. In virtue of condition (11) for (d;,dz) € D(m), we have b; < asb,

< b,n®V? If t € I(6;) and (11) holds, then

by 2 (azbg) =0/ t+gT1 > pop 2/ ()1 > pop=ba 5y .= 3610g 1/6
provided 4 is sufficiently small. Together with the previous estimate we get
(12) by € B(by) := [byn~%, byn®].

To simplify the conditions for b, we observe that n* < azb, < nt+é implies
(13) b; € B := [n‘s‘/z, n(l_‘s‘)ﬂ]
when &; <1< 1/2 - 6.
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When 1/2+ 6, £t £1- 6, we will substitute d; and d2 by m/ds and
m/dy, respectively. Then (11) and the inequalities

nt—6

A
A

M o<nt, <D<t 1/246<t<1-6
b "albl" - =

imply (12) and (13) as well.
Now

vn (wy(m,6) 2 €)

< o Z @2(a)<1>2(b) Z (y(a‘)y(“’) > fba) D f(b)

a, aza b2|b bl|b
b€B by €B(b3)
a a b b
2@ @) TG) 5 )
VAN R A b
b€B b1 €B(b2)

Here as in the sum with * above, we remain assuming that m(d) is squarefree.
According to the definition of the function y, we have y(a;) = y(a/a;) = 0,
i = 1,2, except the case y(1) = 1. Hence

va(wf(m,8) 2 ) £ = ZF2 Yo fb) D> f(by)

) o balb
b2€B b1€B(b2)
1 f2(b) 1
tn 2 gy > = X1t 2o
3 nabgnF ®) f(bz o f(b1) |
b2€B b1€B(bs)

Observe that the quantities considered are determined by the common value
of f(p) = > 0 on primes and the second sum I, can be obtained from ¥,
by the substitution f — 1/f. Hence an estimate of ¥, in terms of » will be
also valid for X, after the change » — 1/5. It remains to deal with one of
these sums. We have

1 f(by) F2([b1,b ])
3, < o Z f(b2) Z F_z([},'f'j,;]')‘m Z Fz(m(ﬁ)[blz:bz])'

b2€B by €B(bz) Sn/[by,b2]
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12 E. MANSTAVICIUS and N. M. TIMOFEEV

1-61/2 the inner sum can be ma-

)

According to Lemma 1 in virtue of b1b; S n
jorized by

> oo+ Y

né<pEn/[b1,b2] plfbs 52]

[bl,bgﬁl logn { Z P (1+x)

ne(by )e(by)61-1/(1+)’
(61, b2)6,

Hence using the estimate

e(b)gexp{ﬁgl} <exp{6i }<< 1

for n 2 ng(6), we obtain

61 1/(1+;¢)2

f(b1)
R S bgze;a 1) by ezB%b y (b1, b2] F%([b1, ba])°

Further we denote s = (by,b;) and recall that all the prime factors of s are
also greater than n’. Substituting sb; and sb, for b; and b, resp., we have

51— 1/(1+x)’ £(s) f(b2) _f()
(14) ¥ L Z 3F2(3) Z bng(zbg) Z by F2(by)

by €B(b2)

Applying (1) for the subintervals [N,2N] with N = byn~% we see that
the inner sum of the last inequality can be estimated by

(bl) 61~x/(1+x)2

51/3<N<n N b;N Fz(bl) 5%

d3logn

The estimate (2) of Lemma 1 yields also

SH8) = _fb2) s
s<2n Fz(s) Z szz(bz) < 670,

Thus, the last two estimates and (14) imply

()
EI(;}?“’O
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as 6 — 0.
Since the same estimate holds for ¥, the assertion (II) is established.
The Theorem is proved.

Acknowledgement. The authors thank Prof. G. Tenenbaum for his
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