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AN INVARIANCE PRINCIPLE
FOR ADDITIVE ARITHMETIC FUNCTIONS
UDC 519.216.24

E. MANSTAVICHYUS [MANSTAVICIUS]

Consider a sequence of probability spaces {Qy, Fn,Vn}, where O, ={1,...,n}, F =
2% and vn(---) = n~'#{m < n,---} is the frequency of natural numbers m < n which
satisfy whatever condition is substituted for the three dots. We define a sequence of
arithmetic processes

H, = Hu( = > ha(p*)—an(t), mEN, te[0,T]
pSJ-I.T;)

where h,(p®) € R, p is a prime number, & € N, and p®||m means that p*|m (p*
divides m), but p>*! + m. Let a,(-) € D[0,7] and let 2,(-): [0,T] — {1,...,n} be a
monotonically increasing transformation. We will assume, without mentioning it again,
that 2,([0,T]) = {1 = kn1 < - < knj,, = n}, maxi<;j<j, (knj+1 — knj) = o(n®) for any
e > 0, and max;<,<;, measz, ' (kn;) = o(1). Here and in what follows the passage to
the limit as n — oo is not explicitly indicated.

The aim of this paper is to investigate weak convergence of the measures vy o H;?,
corresponding to the processes Hy, in the space D[0,T] with the Skorokhod topology.
The theorem given here establishes a weak invariance principle for dependent random

variables A (m), p < n, where vu(h$)(m) = ha(p*)) = n~([np=] = [np"1))

Here [u] is the integer part of the number u. It is known [1] that a relatively weak
dependence of the quantities hP )(m), for p < r, Inr = o(Inn), increases with the growth
of p. However, as it was shown in that paper, in the case of limiting processes with
independent increments, the influence of “large” primes is eliminated. This effect, for
particular choices of times and h,(p®) = h(p®)/B(n), where B(n) — oo, was observed in
[2]-[5]. One can also find there bibliographical references to the history of the problem.
Passage to the scheme of series extends the class of the limiting processes. The method
of proof becomes considerably more complicated.

In what follows, X = X(t) is a stochastically continuous process, given on some
probability space {2, , P}, with independent increments and trajectories from D0, T.
We will write its characteristic function in the form

Eexp{i X (t)} = exp {i,\fy(t) + f (e —1 - z'z\u")u“‘2 dgbt(u)} ,

— 00

00

where

P if lu| <1,
T | sgnu, if|ul>1

Here ~(t) is continuous in ¢, while #,(u) is a bounded function, continuous m t and
nondecreasing in ¢ and u, so that for fixed 0 < 7 < t < T the difference ¢y (u) — ¥, (u) is
also nondecreasing.
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Put
An(t) = Z L(,’P)’

p<zn(t) p

Blun) =Y 2alt),

p<u p

e
=y =P
p<zn(t) p
ha(p)<u
The symbols = and = will denote the weak convergence of measures and the convergence
of completely nondecreasing functions, respectively.

THEOREM. Suppose that h,(p®) = o(1) for any fized p*. Then for v, o H;! =
Po X~ it is necessary and sufficient that the following conditions hold:
(I) B(n,n) — B(n®,n) =o(1) for anye, 0 <€ < 1;
(1) 07 (u) = po(u),
(IT) on(t) = An(t) +~(t) +o(1)
foranyt, 0<t<T.

The method of proving the sufficiency is generally well known (see, for example, [4]).
We remark here that with the help of Kubilius’s method and using condition (I) we can

pass to the processes
Z Enp - an(t)a

P=za(t)
where the &np, p < n, are independent random variables, P(£np = hn(p)) = 1/p,
P({np =0) =1 —1/p, and then use Prokhorov’s theorem ([6], Theorem 3.2).

Necessity. The main difficulty is in deriving condition (I). For 0 < ¢ < 1 we set
tn(c) =sup{t € [0,T]; 2n(t) <n°}. Leti_y =1,ip=3,41 =1, 4= 2, and i = 1/k
when k > 3, and let Jx = (ik,?x+1]. From the conditions imposed on z,(t) we obtain
zn(tn(c)) > n**+1 if ¢ € Ji and n is sufficiently large. We will show by induction that

(1) B(n,n) — B(n°,n) = o(1),

when ¢ € Ji, k > —1. As in [4], the condition h,(p*) = o(1) allows us to pass to the case
hn(p®) = h(p) for an arbitrary prime number p and o > 1. We single out the principal
term of the characteristic function ¢7,()) of the quantity H,(m,t) — H,(m,T), when
7 <t < T and z,(7) > n**+!. Letting

fn(m) = exp { 1A Z hn(p) ¢ = Zgn(d)a
p|lm d|m
zZn(7)<p<L2n(t)

we obtain

) PTN) = exp{=iXan(t) — an(1)} - 3 gald) [3]
d<n

For a strongly multiplicative function f,(m), the multiplicative function g, (d) has the
following properties: gn(1) = 1, gn(p) = fu(p) — 1, and gn(p*) = 0 if @ > 2. Thus, in
the sum in (2), it is enough to consider only square-free d < n. Moreover, g, () =0
when p & (2,(7), 2,(t)] = %, and the nonzero terms correspond only to d = 1 and
d = p1--pg, where p; < --- < pg and p; € %4, 1 < i < q, and ¢ runs through the
values 1,...,s. The maximal number of prime factors is determined by the inequalities
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p1--DPs <mand p; > ntk+1; thus s = s(k) < z';il. We have s(—1) = s(0) =1, s(1) =2,
and s(k) = k for k > 2, and also another form of (2):

(3) (X)) = exp{—iA(an(t) — an(7))}

sy a®, v semE

PEFr: p1<p2, P1p2sn P1P3

pld’ﬂegbrt

+ ) gn(p1) - - gn(ps)

P1°Ds

P1<-<Ps\P1 ' Ps ST
3] |"-spleg1"l

P1,...Pg>nk+l

From the prime number theorem, it is easy to obtain a bound o(1) for the last term.
For brevity, we leave the cases k = —1,0, 1,2 to the reader. The main ideas can be
seen in the following inductive step of the proof. Suppose estimate (1) has been proved
when ¢ € [J*7' J;. The relation B(n°+°(!) n) — B(n®,n) = o(1) allows us to include also
the point ¢ = ix. Suppose further that ¢ € Jx and k > 3.
Because of the inductive hypothesis, we may pass to the case in which A, (p) = 0 for
nl/k < p < n. Indeed, if for any o > 1 we put

b (p) = { Fn(P); when p < n!/,
n(p®) = 0, when p> nl/k

and denote by Gn(m,t) the arithmetic process obtained from Hy, by replacing h,(p®)
with b, (p®), then it follows from (1) that, for any 6 > 0 and sufficiently large n, we have

Y BB o(Bn,n) - BV m) ) <

nl/k<p<u

max

nl/n<u<sn '

M| O

Un (m:len(m, t) — Gn(m,t)| > 5)

ha(p)| 8
< —_— nVAl > = : = .
Svn |, max >~ ha(p) > > |22 +0o(1) = o(1)
- plm nl/k<p<u
n'/*<p<u

The last estimate is obtained from an analogue of the Kolmogorov inequality (see [4],
inequality (11)). Thus, using the convergence v, 0 G;! = P o X~!, we could consider
the values of b, (p®).

Without changing the notation, and supposing that h,(p) = 0 for p > nl/*. we
simplify (3). Since gn(p) = 0 for p > n!/*, then, by considering p < n'/", the conditions
p1--Pg <n,qg=2,...,k, can be omitted from the sums. Using the symmetry of the
terms for 7 < t < T when 2,(7) > n'/*¥+1 we obtain

X .
(4) ©7a(A) = exp{=iM(an(t) — an(r))} (1 + }:(amz\nw) +o(1)
g=1
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uniformly in A € R. Here

= 3 SRlmE) -

pegrt p

Well-known properties of prime numbers give

sz X ptszm(1+g) o),

nl/k+1ep<nl/k
zk:M<(1+o(1)) 1.|._1, 2_1 <§
= ¢ k =9

if n is sufficiently large and k > 3 is fixed.
We now verify that the convergence t,(c) — t' < T along some subsequence n =n' —
oo (we omit the primes from now on) implies the equality

(6) Wr(+00) — Pr(—00) =0

for any t,t' < t < T. Supposing the contrary, because of the continuity and monotonicity
in ¢ of the function 1;(+00), we select fixed moments of time t'=t1 < - <tgg41 =T
so that 9y, (+00) — ¥y, (+00) > 0,1 < j <1 < 2k + 1. We have altogether K = k(2k+1)
such inequalities. Using the property z,(t1) > n/%¥*!, convergence of the characteristic
functions of the increments, and the asymptotic independence of these increments, we
obtain from (4)

(7) Q(a%,:,(N)Q(er,r (V) = Qlor, (X)) + o(1)

uniformly in |A| < M, for any M > 0 and j = 2,...,2k + 1. Here and in what follows
Q(z) =1+ 2z+22/2+---+ 2 /k!. Moreover, if 7 < t is an arbitrary pair of points ¢;,
1<j<2k+1,and k(A) = E exp{sA(X(t) — X (7))}, then

(8) exp{—iA(an(t) — an(7))}Q(07;(A)) = £7e(A) +o(1)

for |\| < M. Because of (5) we can take logarithms in a nontrivial neighborhood of A = 0
and ascertain that a,(t) — an(7) is bounded. Further, let n = n" — oo be a subsequence
of the sequence {n'} for which ay(t) — ax(r) = a;; + o(1) simultaneously for any pair 7
and t. Set k(A) = Kr¢(A) exp{irare}.

Note that for the sequence n = n” — oo, equality (8) implies the existence of the
limit limy_.00 07%(A) in an interval |A| < Ak in which |1 — x(A)| < 1/k. To establish
this we have to verify that the polynomial Q(z) — k(A) has only one root in the disk
|2| < 2In(1+ 1/k). Since on the boundary of this disk

11— k(A +22/2+ -+ 2/k!| < (1 +1/k)? = 1 = 2In(1 + 1/k) < 2In(1+ 1/k) = |z],

the uniqueness of this root follows from Rouché’s theorem.

Thus, we have the limiting relations of, (A) = oji(A) + o(1), when n = n" — oo
for all jand I, 1 < j <! < 2k+ 1. For a given A € [—Ax, Ag], there must be zeros
among the limits o5¢(}). If not, in view of (7) and the inequality Reo;; < 0, we would
have 2k + 1 different roots 0,012(A),...,012k+1 = 012(A) + -+ + Oax,2k+1(A) of the
polynomial Q(2)Q(c1,2x+1(A) — 2) — Q(01,2k+1(A)) of degree at most 2k. Moreover, the
set Aj; = {) € [—Ak, Ak); 051(A) = 0} for some pair of indices 7, I has its Lebesgue
measure meas A;; > 2Ax/K. Since Aj; £ A; ;i C Aj;, we conclude, on account of Steinhaus’
lemma, that Aj; = [—Ak, Ak]. From this and from (8) it follows that |xu;¢, (A =1 for
|A| € A, which leads to 1, (+00) — ¥, (+00) = 0. This contradiction proves (6).

If (6) holds, then k,7()) = exp{iA(y(T) — ~(t))}, and on account of (5) it is easy to
derive from (8) that an(T) — an(t) = Y(T) — 7(t) + o(1), and further, ofr(A) = o(1)

()
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for any |A| £ M. This last result implies the estimate o(1) = B(n,n) — B(2,(t'),n) >
B(n,n) — B(n°*¢,n) with an arbitrary € > 0 and ¢ € Ji. Since ¢ is arbitrary in case of
(6), assertion (1) follows.

When t,(c) — T, it is enough to use a consequence of the denseness of the family of
the measure vy, o H;1:

Vn(!Hn(miT) - Hn(ms tﬂ(c))l 2 6) = 0(1)!

where § > 0 is arbitrary, and equality (8) which follows from it, in which x.¢(}) = 1,
t=T, and 7 = t,(c). Estimate (1) follows again, if ¢ € Jk.

From (1), with arbitrary ¢ € Ji and k > —1, condition (I) follows. In what follows
it is enough to repeat arguments used in the proof of Theorem 1 from [4]. Theorem is
proved.

The author would like to thank J. Kubilius and the members of his seminar for very
helpful remarks.
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