A femtosecond stimulated Raman spectroscopic study on the oxazine ring opening dynamics of structurally-modified indolobenzoxazines

Supplementary material

Kipras Redeckas¹, Stepas Toliautas², Rasa Steponavičiūtė³, Algirdas Šačkus³, Juozas Sulskus², and Mikas Vengris¹

¹Department of Quantum Electronics, Faculty of Physics, Vilnius University, Saulėtekio av. 10,

LT-10223 Vilnius, Lithuania

²Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 9, LT– 10222 Vilnius, Lithuania

³Department of Organic Chemistry, Kaunas University of Technology, K. Baršausko st. 59, LT– 50270 Kaunas, Lithuania

Email: kipras.redeckas@ff.vu.lt

Contents

A.	Information on the spontaneous Raman scattering experiments	3
B.	FSRS spectra of supplementary phenyl-substituted IB compounds	4
C.	Global analysis fitting of the FSRS experimental data	5
D.	Optimized molecular structures of the IB compounds	6
E.	Vibrational modes of IB compounds	. 10
F.	Displacement vectors of vibrational modes of IB compounds	. 12
G.	References	16

A.Information on the spontaneous Raman scattering experiments

Spontaneous Raman spectra of samples **IB1** and **IB4** were recorded using an Echelle type spectrometer *RamanFlex 400 (PerkinElmer, Inc.)*, equipped with a thermoelectrically cooled (up to -50 °C) CCD camera and a fiber optic cable for excitation and collection of the Raman spectra in a 180° scattering geometry. The excitation of the IB samples was performed with a λ =785 nm, P=30 mW diode laser radiation, focused to a 200 µm diameter spot. The resolution of the experiments was ca. 1 cm⁻¹.

Spontaneous Raman spectra of samples **IB0**, **IB2**, and **IB3** were recorded using a FT-Raman spectrometer *Multiram* (*Brucker Optik GmbH*). The excitation was performed with a λ =1064 nm, P=300 mW Nd:YAG laser, and the spectra were recorded with liquid N₂ cooled Ge diode. The resolution of the experiments was ca. 4 cm⁻¹.

All of the above-described spontaneous Raman scattering measurements were performed on crystalline **IB** samples at room temperature.

B. FSRS spectra of supplementary phenyl-substituted IB compounds

Figure B1. Experimentally-resolved background-corrected FSRS datamaps (top panels) of several additional *para*-substituted **IB** compounds (structural formulae, along with their spontaneous Raman scattering spectra, are presented in the bottom panels). Optical excitation was performed with λ_{AP} =325 nm, E_{AP} =1 µJ, τ_{AP} =70 fs actinic pulses; the Raman pumps, acknowledging the results of ref. [1], were set to (a) **IB3**: λ_{RP} =610 nm, E_{RP} =4 µJ, τ_{RP} =4 ps, and (b) **IB4**: λ_{RP} =795 nm, E_{RP} =5 µJ, τ_{RP} =3.5 ps.

C. Global analysis fitting of the FSRS experimental data

Table C1. Reciprocal transition rates (in ps) between the intermediate states of compounds **IB1** and **IB2**. The model for the global fit [2] (presented on the left) was for simplicity purposes adapted from previous studies on substituted IBs [3,4] and used as is. Result of the global fit are depicted as continuous curves in Fig. 3 in the main text.

1		IB1	IB2
$\tau_{1 \rightarrow 2}$ 2	$ au_{1 ightarrow 2}$	0.75	0.95
$\tau_{1 \rightarrow 0}$ $\tau_{2 \rightarrow 3}$	$\tau_{2 \rightarrow 3}$	7	18
	$ au_{3 ightarrow 3}$	25000	13300
$\tau_{0 \rightarrow 0}$ $\tau_{3 \rightarrow 3}$	$ au_{1 ightarrow 0}$	0.9	0.7
GS	$\tau_{0 \to 0}$	0.4	0.4

D. Optimized molecular structures of the IB compounds

Figure D1. Molecular structure and markings of IB compounds.

Table D1. Atomic coordinates and total energies of the optimized molecular structures of IB compounds.

Calculation parameters:

#p b3lyp cc-pVTZ opt fchk

IB0:

E(RB3LYP) = -1032.20686460 a. u.

0	-0.34084	-1.33994	-0.60149
С	0.91313	-0.87221	-0.42265
С	1.85118	-1.19531	-1.41089
С	3.15267	-0.75139	-1.30767
С	3.51628	0.02217	-0.20961
С	2.59583	0.35869	0.77129
С	1.28462	-0.08062	0.67623
Н	1.53271	-1.79984	-2.24792
Н	3.89045	-0.99222	-2.05669
Ν	4.89616	0.49883	-0.08975
0	5.68555	0.18996	-0.97298
0	5.18458	1.17888	0.88753
H	2.91595	0.97234	1.60102
С	-1.30498	-1.21283	0.51105
С	-2.71549	-1.04993	-0.1528
С	-2.75089	0.45724	-0.34179
С	-3.58292	1.2466	-1.11034
С	-3.44833	2.63641	-1.05772
С	-2.48972	3.2096	-0.23269
С	-1.6452	2.42155	0.55045

C	-1.7893	1.04314	0.48476
N	-1.09945	0.04432	1.19936
С	0.24234	0.26725	1.7122
Н	0.38403	-0.33047	2.61667
Н	0.33725	1.30678	2.01831
С	-1.10344	-2.43161	1.39623
Н	-0.06326	-2.51216	1.70927
Н	-1.72692	-2.37545	2.28529
H	-1.34997	-3.3372	0.8444
С	-2.87668	-1.84934	-1.44827
H	-2.16794	-1.53449	-2.20866
H	-2.73954	-2.91753	-1.27186
H	-3.88556	-1.71174	-1.83856
С	-3.82891	-1.4519	0.83855
H	-4.79683	-1.18375	0.41639
H	-3.83157	-2.52687	1.02327
Н	-3.72586	-0.93401	1.79151
Н	-4.32869	0.79889	-1.75481
H	-0.90263	2.88845	1.18212
H	-2.3865	4.28596	-0.19765
Н	-4.08774	3.26493	-1.66185

IB1:

E(RB3LYP) = -1377.90568485 a. u.

0	2.22451	1.34934	1.08724
С	3.08158	0.34824	0.7938
С	3.67038	-0.31291	1.87888
С	4.55164	-1.35219	1.66671
С	4.84375	-1.73279	0.36047
С	4.26063	-1.09408	-0.72336
С	3.37237	-0.04943	-0.52117
Н	3.42077	0.01131	2.87892
Н	5.01713	-1.87227	2.489
Ν	5.77841	-2.83524	0.1231
0	6.2765	-3.38162	1.09883
0	6.01135	-3.14887	-1.038
Н	4.50393	-1.42933	-1.72133
С	1.73798	2.20834	-0.01224
С	0.28738	2.64635	0.38967
С	-0.50955	1.48127	-0.1738
С	-1.81282	1.09645	0.05611
С	-2.36875	0.01344	-0.64805
С	-1.56317	-0.643	-1.58283
С	-0.24583	-0.26036	-1.82757
С	0.27298	0.80882	-1.11361
Ν	1.54114	1.41524	-1.20781
С	2.70269	0.67135	-1.66659
Н	3.40134	1.35987	-2.14965
Н	2.39194	-0.03361	-2.43472
С	2.76275	3.31818	-0.17951
Н	3.75655	2.90416	-0.345
Н	2.50961	3.9559	-1.02299

Н	2.80668	3.92332	0.72462
С	0.10869	2.86197	1.89431
Н	0.29969	1.95433	2.45937
Н	0.77622	3.64306	2.26214
Н	-0.91266	3.18596	2.09676
С	-0.11673	3.93232	-0.36336
Н	-1.17495	4.12822	-0.19414
Н	0.44423	4.7976	-0.00804
Н	0.03679	3.83351	-1.43743
Н	-2.42366	1.6363	0.76806
Н	0.34484	-0.80533	-2.55057
Н	-1.96106	-1.4966	-2.11456
С	-3.76218	-0.42034	-0.40052
С	-4.59155	-0.84716	-1.44836
С	-5.89233	-1.25509	-1.2227
С	-6.41801	-1.24992	0.07138
С	-5.61484	-0.8292	1.12921
С	-4.30686	-0.42306	0.8841
Н	-4.21586	-0.8358	-2.46281
Н	-6.52693	-1.57281	-2.03842
0	-7.70885	-1.66786	0.1947
Н	-5.98691	-0.82352	2.14245
Н	-3.6921	-0.127	1.72386
С	-8.29664	-1.67558	1.48458
Н	-8.32221	-0.67285	1.91971
Н	-9.31382	-2.03319	1.3489
Н	-7.76601	-2.34869	2.16337

IB2:

E(RB3LYP) = -1722.97192412 a. u.

0	1.96668	1.32582	1.10748
С	2.90289	0.39525	0.81894
С	3.49164	-0.26169	1.90625
С	4.45154	-1.22988	1.6984
С	4.82201	-1.54304	0.39421
С	4.23991	-0.90862	-0.69231
С	3.27262	0.06457	-0.49443
Н	3.17991	0.0094	2.90464
Н	4.91912	-1.74497	2.52266
Ν	5.84148	-2.56947	0.16109
0	6.33649	-3.11417	1.13891
0	6.14238	-2.82421	-0.99862
Н	4.54686	-1.19072	-1.68918
С	1.48676	2.1994	0.01987
С	-0.00131	2.55158	0.36791
С	-0.71325	1.3747	-0.27844
С	-2.00481	0.92026	-0.12725
С	-2.4722	-0.15662	-0.90163
С	-1.5941	-0.73896	-1.81921
С	-0.28614	-0.28867	-1.9808
С	0.14549	0.77549	-1.20266
Ν	1.38372	1.43918	-1.20994

С	2.60155	0.77534	-1.64558
Н	3.27503	1.51399	-2.08836
Н	2.35776	0.07291	-2.43953
С	2.46171	3.36202	-0.06699
Н	3.47988	3.00082	-0.20614
Н	2.212	4.01741	-0.89775
Н	2.44198	3.93503	0.85849
С	-0.25936	2.69455	1.86997
Н	-0.04811	1.77439	2.40679
Н	0.35032	3.49124	2.29932
Н	-1.30384	2.95975	2.03669
С	-0.43404	3.84704	-0.35159
Н	-1.50698	3.98597	-0.22366
Н	0.06752	4.72146	0.06425
Н	-0.22852	3.8021	-1.4206
Н	-2.67307	1.40173	0.57493
Н	0.36435	-0.77793	-2.69197
Н	-1.92539	-1.58744	-2.40211
С	-3.85564	-0.66034	-0.74574
С	-4.60344	-1.08336	-1.85096
С	-5.90037	-1.55172	-1.69641
С	-6.49148	-1.60869	-0.44008
С	-5.75057	-1.18768	0.65452
С	-4.45247	-0.72201	0.51885
Н	-4.17385	-1.01976	-2.84097
Н	-6.46508	-1.86683	-2.56368
Н	-7.50103	-1.96891	-0.31025
Cl	-6.46781	-1.25874	2.25515
Н	-3.8986	-0.43211	1.39941

E. Vibrational modes of IB compounds

Table E1. Properties of selected vibrational modes of IB compounds. See Fig. D1 for notation. Raman shift values (cm⁻¹, columns 1 and 2) correspond to the listed compounds in the following order (if present): **IB0**, **IB1**, and **IB2**.

$v_{ m harm}$	v_{anh}	Compound	Location	Туре	Description, notes
1017	996	IB2	B ring	CCC bend	3-fold
1081	1060				Out of plan o
1084	1060	All	CH ₃	CH bend	Strongly approximatic
1084	1061				Strongly usymmetric
1104	1081				
1105	1081	All	P ring	CCH bend	2-fold rocking
1105	1081				
		IB2	B ring	CCH bend	2-fold rocking
1203	1176	IB1	B ring	CCH bend	2-fold scissoring
1211	1183				
1211	1184	All	P ring	CCC bend	3-fold beat
1211	1184				
1261	1233				
1267	1237	All	Collective	CH bend	Various movements
1266	1237				
1303	1269				
1314	1282	All	P ring	CCH bend	2-fold rocking
1313	1282				
			CH_2	CH bend	Out-of-plane twisting
		IB0	I ring	CCH bend	Twisting
		IB1, 2	B ring	CCH bend	2-fold rocking
			I ring	CCC bend	3-fold beat
1338	1306	ID1 0	I. D. min co	CCII hand	Truisting/ as aling
1321	1290	1D1, 2	I, D rings	CCH bend	Twisting/ rocking
1352	1321				
1350	1318	All	P ring	CC stretch	3-fold
1350	1318				
			CH ₂	CH bend	Out-of-plane wagging
		IB1, 2	B ring	CCH bend	Twisting
1365	1334				
1365	1331	All	NO_2	ON stretch	Symmetric
1365	1332				
				CN stretch	
			CH ₂	CH bend	Out-of-plane wagging

$v_{ m harm}$	$v_{\rm anh}$	Compound	Location	Туре	Description, notes
1393	1361				
1386	1352	All	I ring	CC stretch	3-fold
1387	1353				
			CH ₂	CH bend	Out-of-plane twisting
1553	1512	IR1 2	I B rings	CCH band	2-fold rocking
1531	1491	1D1, 2	I, D I IIIgs	CCITbella	CC stretching along BP axis
1626	1585				2 fold antiammatric
1627	1582	All	P ring	CC stretch	2-101d, antisymmetric
1626	1583				Ojj propri uxis
			NO ₂	ON stretch	Antisymmetric
1633	1588	IB2	B ring	CC stretch	2-fold, symmetric
1647	1606	IB0	I ring	CC stretch	2-fold, antisymmetric
1650	1604	IB1	I, B rings	CC stretch	2-fold, symmetric
1654	1615		Dring	CC stratch	2-fold, symmetric
1654	1609	100, 2	r mig	CC siletti	Off pNph axis
			NO ₂	ON stretch	Antisymmetric
		IB2	I ring	CC stretch	2-fold, symmetric

F. Displacement vectors of vibrational modes of IB compounds

Table F1. Images of displacement vectors corresponding to selected vibrational modes of **IB** compounds. Raman shifts (cm⁻¹, first column) correspond to the compounds in left-to-right order. Omitted data indicates missing/ inactive mode. Animated GIF files of the vibrations are provided separately.

ν	IB0	IB1	IB2
 1017			
1081 1084 1084			The second secon
1104 1105 1105			

ν	IB0	IB1	IB2
 1203 			
1211 1211 1211			
1261 1267 1266			
1303 1314 1313			

ν	IBO	IB1	IB2
 1338 1321			
1352 1350 1350			
1365 1365 1365			
1393 1386 1387			

ν	IBO	IB1	IB2
 1553 1531		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
1626 1627 1626			
1647 1650 1633		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
1654 1654			

G.References

- [1] V. Voiciuk, K. Redeckas, V. Martynaitis, R. Steponavičiūtė, A. Šačkus, M. Vengris, J. Photochem. Photobiol., A 278 (2014) 60.
- [2] I.H.M. van Stokkum, D.S. Larsen, R. van Grondelle, BBA Bioenergetics 1657 (2004) 82.
- [3] K. Redeckas, V. Voiciuk, R. Steponavičiūtė, V. Martynaitis, A. Šačkus, M. Vengris, J. Photochem. Photobiol., A 285 (2014) 7.
- [4] K. Redeckas, V. Voiciuk, R. Steponavičiūtė, V. Martynaitis, A. Šačkus, M. Vengris, J. Phys. Chem. A 118 (2014) 5642.