Publications by Subject

Topics of research

Ultracold atomic gases

  1. J. Armaitis, J. Ruseckas, and G. Juzeliūnas, Omnidirectional spin Hall effect in a Weyl spin-orbit-coupled atomic gas, Phys. Rev. A 95, 033635 (2017). arXiv 1701.08773 [cond-mat.quant-gas]; PDF
  2. S.-W. Su, S.-C. Gou, Q. Sun, L. Wen, W.-M. Liu, A.-C. Ji, J. Ruseckas, and G. Juzeliūnas, Rashba-type spin-orbit coupling in bilayer Bose-Einstein condensates, Phys. Rev. A 93, 053630 (2016). arXiv 1603.09043 [cond-mat.quant-gas]; PDF
  3. S.-W. Su, S.-C. Gou, I.-K. Liu, I. B. Spielman, L. Santos, A. Acus, A. Mekys, J. Ruseckas, and G. Juzeliūnas, Position-dependent spin-orbit coupling for ultracold atoms, New. J. Phys. 17, 033045 (2015). PDF
  4. A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas, and M. Lewenstein, Synthetic Gauge Fields in Synthetic Dimensions, Phys. Rev. Lett. 112, 043001 (2014). PDF
  5. R. Juršėnas and J. Ruseckas, Bound states of the spin-orbit coupled ultracold atom in a one-dimensional short-range potential, J. Math. Phys. 54, 051901 (2013). PDF
  6. G. Juzeliūnas, J. Ruseckas, D. L. Campbel and I. B. Spielman, Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration, Proc. SPIE 7950, 79500M (2011). PDF
  7. G. Juzeliūnas, J. Ruseckas, and J. Dalibard, Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms, Phys. Rev. A 81, 053403 (2010). arXiv 1002.0578 [cond-mat.quant-gas]; PDF
  8. J. Y. Vaishnav, J. Ruseckas, C. W. Clark, and G. Juzeliūnas, Spin Field Effect Transistors with Ultracold Atoms, Phys. Rev. Lett. 101, 265302 (2008). arXiv 0807.3067v1 [cond-mat.mes-hall]; PDF
    Erratum:
    J. Y. Vaishnav, J. Ruseckas, C. W. Clark, and G. Juzeliūnas, Publisher's Note: Spin Field Effect Transistors with Ultracold Atoms [Phys. Rev. Lett. 101, 265302 (2008)], Phys. Rev. Lett. 103, 129902(E) (2009). PDF
  9. G. Juzeliūnas, J. Ruseckas, A. Jacob, L. Santos, and P. Öhberg, Double and Negative Reflection of Cold Atoms in Non-Abelian Gauge Potentials, Phys. Rev. Lett. 100, 200405 (2008). arXiv 0801.2056v1 [cond-mat.other]; PDF
  10. G. Juzeliūnas, J. Ruseckas, M. Lindberg, L. Santos, and P. Öhberg, Quasirelativistic behavior of cold atoms in light fields, Phys. Rev. A 77, 011802(R) (2008). arXiv 0712.1677v1 [cond-mat.mes-hall]; PDF
  11. G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, Formation of solitons in atomic Bose-Einstein condensates by dark-state adiabatic passage, Lithuanian. J. Phys. 47 (3), 351-360 (2007). arXiv 0710.1702v1 [cond-mat.soft]; PDF
  12. J. Ruseckas, G. Juzeliūnas, P. Öhberg, and M. Fleischhauer, Ligt-induced effective magnetic fields for ultracold atoms in planar geometries, Phys. Rev. A 73, 025602 (2006). PDF
  13. P. Öhberg, G. Juzeliūnas, J. Ruseckas, and M. Fleischhauer, Filled Landau levels in neutral quantum gases, Phys. Rev. A 72, 053632 (2005). arXiv cond-mat/0509766; PDF
  14. G. Juzeliūnas, J. Ruseckas, and P. Öhberg, Effective magnetic fields induced by EIT in ultra-cold atomic gases, J. Phys. B: At. Mol. Opt. Phys. 38, 4171 (2005). arXiv quant-ph/0511087; PDF
  15. J. Ruseckas, G. Juzeliūnas, P. Öhberg, and M. Fleischhauer, Non-Abelian Gauge Potentials for Ultracold Atoms with Degenerate Dark States, Phys. Rev. Lett. 95, 010404 (2005). arXiv cond-mat/0503187; PDF
  16. G. Juzeliūnas, P. Öhberg, J. Ruseckas, and A. Klein, Effective magnetic fields in degenerate atomic gases induced by light beams with orbital angular momenta, Phys. Rev. A 71, 053614 (2005). arXiv cond-mat/0412015; PDF
  17. G. Juzeliūnas, J. Ruseckas, and P. Öhberg, Effective Magnetic Fields in Ultracold Atomic Gases, Lithuanian. J. Phys. 45 (3), 191 (2005). PDF

Slow light

  1. H. R. Hamedi, J. Ruseckas and G. Juzeliūnas, Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme, J. Phys. B: At. Mol. Opt. Phys. 50, 185401 (2017). PDF
  2. J. Ruseckas, I. A. Yu, and G. Juzeliūnas, Creation of two-photon states via interactions between Rydberg atoms during light storage, Phys. Rev. A 95, 023807 (2017). arXiv 1606.00562 [quant-ph]; PDF
  3. M.-J. Lee, J. Ruseckas, C.-Y. Lee, V. Kudriašov, K.-F. Chang, H.-W. Cho, G. Juzeliūnas, I. A. Yu, Experimental demonstration of spinor slow light, Proc. SPIE 9763, 97630P (2016). PDF
  4. M.-J. Lee, J. Ruseckas, Ch.-Y. Lee, V. Kudriašov, K.-F. Chang, H.-W. Cho, G. Juzeliūnas and I. A. Yu, Experimental demonstration of spinor slow light, Nat. Commun. 5, 5542 (2014). PDF, Supplementary information.
  5. J. Ruseckas, V. Kudriašov, I. A. Yu, and G. Juzeliūnas, Transfer of orbital angular momentum of light using two-component slow light, Phys. Rev. A 87, 053840 (2013). arXiv 1306.1709 [quant-ph]; PDF
  6. J. Ruseckas, V. Kudriašov, G. Juzeliūnas, R. G. Unanyan, J. Otterbach, and M. Fleischhauer, Photonic-band-gap properties for two-component slow light, Phys. Rev. A 83, 063811 (2011). arXiv 1103.5650 [quant-ph]; PDF
  7. J. Ruseckas, A. Mekys, and G. Juzeliūnas, Optical vortices of slow light using a tripod scheme, J. Opt. 13, 064013 (2011). arXiv 1104.5536 [quant-ph]; PDF
  8. J. Ruseckas, A. Mekys, and G. Juzeliūnas, Slow polaritons with orbital angular momentum in atomic gases, Phys. Rev. A 83, 023812 (2011). arXiv 1102.4321 [quant-ph]; PDF
  9. R. G. Unanyan, J. Otterbach, M. Fleischhauer, J. Ruseckas, V. Kudriašov, and G. Juzeliūnas, Spinor Slow-Light and Dirac Particles with Variable Mass, Phys. Rev. Lett. 105, 173603 (2010). PDF
  10. J. Ruseckas, A. Mekys, and G. Juzeliūnas, Manipulation of Slow Light with Orbital Angular Momentum in Cold Atomic Gases, Opt. Spektrosc. 108, 438 (2010). PDF
  11. J. Otterbach, J. Ruseckas, R. G. Unanyan, G. Juzeliūnas, and M. Fleischhauer, Effective Magnetic Fields for Stationary Light, Phys. Rev. Lett. 104, 033903 (2010). PDF
  12. J. Ruseckas, G. Juzeliūnas, P. Öhberg, and S. M. Barnett, Polarization rotation of slow light with orbital angular momentum in ultracold atomic gases, Phys. Rev. A 76, 053822 (2007). arXiv 0706.0477v1 [cond-mat.other]; PDF

Anomalous diffusion

  1. R. Kazakevičius, J. Ruseckas, Influence of External Potentials on Heterogeneous Diffusion Processes, Noise and Fluctuations (ICNF), 2017 International Conference on (2017). doi: 10.1109/ICNF.2017.7985943 ; PDF
  2. R. Kazakevičius and J. Ruseckas, Influence of external potentials on heterogeneous diffusion processes, Phys. Rev. E 94, 032109 (2016). arXiv 1608.07335 [cond-mat.stat-mech]; PDF
  3. J. Ruseckas, R. Kazakevičius and B. Kaulakys, 1/f noise from point process and time-subordinated Langevin equations, J. Stat. Mech. 2016, 054022 (2016). arXiv 1512.03910 [cond-mat.stat-mech]; PDF
  4. R. Kazakevičius, J. Ruseckas, Power-law statistics from nonlinear stochastic differential equations driven by Lévy stable noise, Chaos, Solitons & Fractals 81, Part B, 432-442 (2015). PDF
  5. R. Kazakevičius, J. Ruseckas, Anomalous diffusion in nonhomogeneous media: Power spectral density of signals generated by time-subordinated nonlinear Langevin equations, Physica A 438, 210 (2015). arXiv 1506.09059 [cond-mat.stat-mech]; PDF
  6. R. Kazakevičius, J. Ruseckas, Lévy flights in inhomogeneous environments and 1/f noise, Physica A 411, 95 (2014). arXiv 1403.0409 [cond-mat.stat-mech]; PDF

Modelling and theory of 1/f noise

  1. J. Ruseckas, R. Kazakevičius and B. Kaulakys, 1/f noise from point process and time-subordinated Langevin equations, J. Stat. Mech. 2016, 054022 (2016). arXiv 1512.03910 [cond-mat.stat-mech]; PDF
  2. B. Kaulakys, M. Alaburda and J. Ruseckas, Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations, J. Stat. Mech. 2016, 054035 (2016). PDF
  3. J. Ruseckas, R. Kazakevičius and B. Kaulakys, Coupled nonlinear stochastic differential equations generating arbitrary distributed observable with 1/f noise, J. Stat. Mech. 2016, 043209 (2016). arXiv 1603.03013 [cond-mat.stat-mech]; PDF
  4. A. Kononovicius, J. Ruseckas, Stochastic dynamics of N correlated binary variables and non-extensive statistical mechanics, Phys. Lett. A 380, 1582 (2016). arXiv 1601.06968 [cond-mat.stat-mech]; PDF
  5. B. Kaulakys, M. Alaburda and J. Ruseckas, 1/f noise from the nonlinear transformations of the variables, Mod. Phys. Lett. B 29, 1550223 (2015). PDF
  6. R. Kazakevičius, J. Ruseckas, Power-law statistics from nonlinear stochastic differential equations driven by Lévy stable noise, Chaos, Solitons & Fractals 81, Part B, 432-442 (2015). PDF
  7. R. Kazakevičius, J. Ruseckas, Anomalous diffusion in nonhomogeneous media: Power spectral density of signals generated by time-subordinated nonlinear Langevin equations, Physica A 438, 210 (2015). arXiv 1506.09059 [cond-mat.stat-mech]; PDF
  8. R. Kazakevičius, J. Ruseckas, Power law statistics in the velocity fluctuations of Brownian particle in inhomogeneous media and driven by colored noise, J. Stat. Mech. 2015, P02021 (2015). arXiv 1502.03268 [cond-mat.stat-mech]; PDF
  9. A. Kononovicius, J. Ruseckas, Nonlinear GARCH model and 1/f noise, Physica A 427, 74 (2015). arXiv 1412.6244 [q-fin.ST]; PDF
  10. R. Kazakevičius, J. Ruseckas, Lévy flights in inhomogeneous environments and 1/f noise, Physica A 411, 95 (2014). arXiv 1403.0409 [cond-mat.stat-mech]; PDF
  11. J. Ruseckas and B. Kaulakys, Scaling properties of signals as origin of 1/f noise, J. Stat. Mech. 2014, P06005 (2014). arXiv 1402.2523 [cond-mat.stat-mech]; PDF
  12. J. Ruseckas and B. Kaulakys, Intermittency in relation with 1/f noise and stochastic differential equations, Chaos 23, 023102 (2013). arXiv 1111.1306 [nlin.CD]; PDF
  13. J. Ruseckas, B. Kaulakys, Intermittency generating 1/f noise, Noise and Fluctuations (ICNF), 2013 22nd International Conference on (2013). doi: 10.1109/ICNF.2013.6578906 ; PDF
  14. J. Ruseckas, B. Kaulakys, 1/f noise and q-Gaussian distribution from nonlinear stochastic differential equations, Noise and Fluctuations (ICNF), 2013 22nd International Conference on (2013). doi: 10.1109/ICNF.2013.6578907 ; PDF
  15. B. Kaulakys, R. Kazakevičius, J. Ruseckas, Modeling Gaussian and non-Gaussian 1/f noise by the linear stochastic differential equations, Noise and Fluctuations (ICNF), 2013 22nd International Conference on (2013). doi: 10.1109/ICNF.2013.6578944 ; PDF
  16. J. Ruseckas, V. Gontis, and B. Kaulakys, Nonextensive statistical mechanics distributions and dynamics of financial observables from the nonlinear stochastic differential equations, Advances in Complex Systems 15 Suppl. 1, 1250073 (2012). PDF
  17. J. Ruseckas, B. Kaulakys and V. Gontis, Herding model and 1/f noise, EPL 96, 60007 (2011). arXiv 1111.1306 [nlin.AO]; PDF
  18. J. Ruseckas and B. Kaulakys, Tsallis distributions and 1/ f noise from nonlinear stochastic differential equations, Phys. Rev. E 84, 051125 (2011). arXiv 1111.2995 [cond-mat.stat-mech]; PDF
  19. B. Kaulakys, J. Ruseckas, Solutions of nonlinear stochastic differential equations with 1/f noise power spectrum, IEEE Conferences: Noise and Fluctuations (ICNF), 2011 21st International Conference on, p. 192-195 (2011). PDF
  20. J. Ruseckas and B. Kaulakys, 1/f noise from nonlinear stochastic differential equations, Phys. Rev. E 81, 031105 (2010). arXiv 1002.4316v1 [nlin.AO]; PDF
  21. V. Gontis, J. Ruseckas, A. Kononovičius, A long-range memory stochastic model of the return in financial markets, Physica A 389, 100 (2010). PDF
  22. Vygintas Gontis, Julius Ruseckas and Aleksejus Kononovičius, A Non-Linear Double Stochastic Model of Return in Financial Markets, Stochastic Control, Chris Myers (Ed.), ISBN: 978-953-307-121-3, Sciyo (2010). Available from: http://www.intechopen.com/articles/show/title/a-non-linear-double-stochastic-model-of-return-in-financial-markets.
    PDF; PDF of full book.
  23. B. Kaulakys, M. Alaburda, V. Gontis, and J. Ruseckas, Modeling long-memory processes by stochastic difference equations and superstatistical approach, Brazil. J. Phys. 39, 453 (2009). PDF
  24. V. Gontis, B. Kaulakys and J. Ruseckas, Nonlinear stochastic differential equation as the background of financial fluctuations, AIP Conf. Proc. 1129, 563-566 (2009). PDF
  25. V. Gontis, B. Kaulakys, J. Ruseckas, Trading activity as driven Poisson process: Comparison with empirical data, Physica A 387, 3891 (2008). PDF
  26. B. Kaulakys, M. Alaburda and J. Ruseckas, Modeling Non-Gaussian 1/f noise by the stochastic differential equations, AIP Conf. Proc. 922, 439-442 (2007). PDF
  27. B. Kaulakys, M. Alaburda, V. Gontis, T. Meškauskas and J. Ruseckas, Modeling of flows with the power-law spectral densities and power-law distributions of flow's intensities, Traffic and Granular Flow'05, Proc. Intern. Conf., Berlin, 10-12 October 2005, Editors.: A. Schadschneider, T. Poschel, R. Kuhne, M. Schreckenberg and D. E. Wolf, Springer-Verlag, Berlin, p. 603-611 (2007). PDF
  28. B. Kaulakys, J. Ruseckas, V. Gontis, M. Alaburda, Nonlinear stochastic models of 1/f noise and power-law distributions, Physica A 365, 217 (2006). PDF
  29. V. Gontis, B. Kaulakys and J. Ruseckas, Point process models of 1/f noise and Internet traffic, AIP Conf. Proc. 776, 144-149 (2005). PDF
  30. B. Kaulakys and J. Ruseckas, Stochastic nonlinear differential equation generating 1/f noise, Phys. Rev. E 70, 020101 (2004). arXiv cond-mat/0408507; PDF
  31. V. Gontis, B. Kaulakys, M. Alaburda and J. Ruseckas, Evolution of complex systems and 1/f noise: from physics to financial markets, Solid State Phenomena, 97-98, 65-70 (2004). PDF
  32. J. Ruseckas, B. Kaulakys, and M. Alaburda, Modelling of 1/f noise by sequences of stochastic pulses of different duration, Lithuanian. J. Phys. 43, 223-228 (2003).

Non-extensive statistical mechanics

  1. J. Ruseckas, Canonical ensemble in non-extensive statistical mechanics, q>1, Physica A 458, 210 (2016). arXiv 1602.06122 [cond-mat.stat-mech]; PDF
  2. A. Kononovicius, J. Ruseckas, Stochastic dynamics of N correlated binary variables and non-extensive statistical mechanics, Phys. Lett. A 380, 1582 (2016). arXiv 1601.06968 [cond-mat.stat-mech]; PDF
  3. J. Ruseckas, Canonical ensemble in non-extensive statistical mechanics, Physica A 447, 85 (2016). arXiv 1503.03778 [cond-mat.stat-mech]; PDF
  4. J. Ruseckas, Probabilistic model of N correlated binary random variables and non-extensive statistical mechanics, Phys. Lett. A 379, 654 (2015). arXiv 1408.0088 [cond-mat.stat-mech]; PDF
  5. A. Kononovicius, J. Ruseckas, Continuous transition from the extensive to the non-extensive statistics in an agent-based herding model, Eur. Phys. J. B 87, 169 (2014). arXiv 1404.0856 [physics.soc-ph]; PDF
  6. J. Ruseckas, V. Gontis, and B. Kaulakys, Nonextensive statistical mechanics distributions and dynamics of financial observables from the nonlinear stochastic differential equations, Advances in Complex Systems 15 Suppl. 1, 1250073 (2012). PDF
  7. J. Ruseckas and B. Kaulakys, Tsallis distributions and 1/ f noise from nonlinear stochastic differential equations, Phys. Rev. E 84, 051125 (2011). arXiv 1111.2995 [cond-mat.stat-mech]; PDF
  8. B. Kaulakys, M. Alaburda, V. Gontis, and J. Ruseckas, Modeling long-memory processes by stochastic difference equations and superstatistical approach, Brazil. J. Phys. 39, 453 (2009). PDF

Graphene

  1. A. Orlof, J. Ruseckas, and I. V. Zozoulenko, Effect of zigzag and armchair edges on the electronic transport in single-layer and bilayer graphene nanoribbons with defects, Phys. Rev. B 88, 125409 (2013). PDF
  2. J. Ruseckas, A. Mekys, G. Juzeliūnas, and I. V. Zozoulenko, Electron transmission through graphene monolayer-bilayer junction: An analytical approach, Lithuanian. J. Phys. 52 (1), 70 (2012). PDF
  3. J. Ruseckas, G. Juzeliūnas, and I. V. Zozoulenko, Spectrum of π electrons in bilayer graphene nanoribbons and nanotubes: An analytical approach, Phys. Rev. B 83, 035403 (2011). arXiv 1010.1673 [cond-mat.mes-hall]; PDF

Quantum Zeno and anti-Zeno effects

  1. J. Ruseckas and B. Kaulakys, Quantum trajectory method for the quantum Zeno and anti-Zeno effects, Phys. Rev. A 73, 052101 (2006). arXiv quant-ph/0605022; PDF
  2. J. Ruseckas and B. Kaulakys, General expression for the quantum Zeno and anti-Zeno effects, Phys. Rev. A 69 (3), 032104 (2004). arXiv quant-ph/0403123; PDF
  3. J. Ruseckas, Influence of the detector's temperature on the quantum Zeno effect, Phys. Rev. A 66 (1), 012105 (2002). arXiv quant-ph/0307005; PDF
  4. J. Ruseckas, Influence of the finite duration of the measurement on the quantum Zeno effect, Phys. Lett. A 291, 185-189 (2001). arXiv quant-ph/0202157; PDF
  5. J. Ruseckas and B.Kaulakys, Real measurements and quantum Zeno effect, Phys. Rev. A 63 (6), 062103 (2001). arXiv quant-ph/0105138; PDF

Tunnelling time problem

  1. J. Ruseckas and B. Kaulakys, Time problem in quantum mechanics and its analysis by the concept of weak measurement, Lithuanian. J. Phys. 44 (3), 161-182 (2004). PDF
  2. J. Ruseckas and B. Kaulakys, Weak measurement of arrival time, Phys. Rev. A 66 (5), 052106 (2002). arXiv quant-ph/0307006; PDF
  3. J. Ruseckas and B. Kaulakys, Time problem in quantum mechanics and weak measurements, Phys. Lett. A 287, 297-303 (2001). arXiv quant-ph/0202156; PDF
  4. J. Ruseckas, Possibility of tunneling time determination, Phys. Rev. A 63 (5), 052107 (2001). arXiv quant-ph/0101136; PDF