Nonlinear stochastic differential equations and $1/f$ noise

Julius Ruseckas and Bronsilovas Kaulakys

Institute of Theoretical Physics and Astronomy, Vilnius University, Lithuania

August 28, 2012
1. Introduction: $1/f$ noise

2. Stochastic differential equations giving $1/f$ noise

3. Some models resulting in proposed SDE
 - Point processes
 - Simple model of herding behavior

4. Summary
1. Introduction: $1/f$ noise

2. Stochastic differential equations giving $1/f$ noise

3. Some models resulting in proposed SDE
 - Point processes
 - Simple model of herding behavior

4. Summary
Outline

1. Introduction: $1/f$ noise

2. Stochastic differential equations giving $1/f$ noise

3. Some models resulting in proposed SDE
 - Point processes
 - Simple model of herding behavior

4. Summary
Outline

1. Introduction: $1/f$ noise
2. Stochastic differential equations giving $1/f$ noise
3. Some models resulting in proposed SDE
 - Point processes
 - Simple model of herding behavior
4. Summary
What is $1/f$ noise?

$1/f$ noise

a type of noise whose power spectral density $S(f)$ behaves like

$$S(f) \sim 1/f^\beta, \quad \beta \text{ is close to } 1$$

- occasionally called “flicker noise”
- or “pink noise”
What is $1/f$ noise?

$1/f$ noise

a type of noise whose power spectral density $S(f)$ behaves like

$$S(f) \sim 1/f^\beta,$$

β is close to 1

- occasionally called “flicker noise”
- or “pink noise”
What is $1/f$ noise?

$1/f$ noise

A type of noise whose power spectral density $S(f)$ behaves like

$$S(f) \sim 1/f^\beta$$

β is close to 1

- Occasionally called “flicker noise”
- Or “pink noise”
Fig. 6. Frequency variation for tube No. 2, coated filament; same data as in Fig. 4 plotted to a frequency scale; curves E and F give Hartmann's results for 2 m-a. and 20 m-a.; points G were obtained with less steady measuring circuit.

First observed (in 1925) by Johnson in vacuum tubes.
Fluctuations of signals exhibiting $1/f$ behavior of the power spectral density at low frequencies have been observed in a wide variety of physical, geophysical, biological, financial, traffic, Internet, astrophysical and other systems.
Many mathematical models:

- Superposition of relaxation processes

\[S(f) = \int_{\gamma_1}^{\gamma_2} \frac{N}{\gamma^2 + \omega^2} \, d\gamma \approx \frac{\pi N}{2\omega}, \quad \gamma_1 \ll \omega \ll \gamma_2 \]

- Dynamical systems at the edge of chaos

\[x_{n+1} = x_n + x_n^z \mod 1 \]

- Alternating fractal renewal process

- Self-Organized Criticality
Many mathematical models:

- Superposition of relaxation processes

\[S(f) = \int_{\gamma_1}^{\gamma_2} \frac{N}{\gamma^2 + \omega^2} \, d\gamma \approx \frac{\pi N}{2\omega}, \quad \gamma_1 \ll \omega \ll \gamma_2 \]

- Dynamical systems at the edge of chaos

\[x_{n+1} = x_n + x_n^2 \mod 1 \]

- Alternating fractal renewal process

- Self-Organized Criticality
Many mathematical models:

- Superposition of relaxation processes

\[S(f) = \int_{\gamma_1}^{\gamma_2} \frac{N}{\gamma^2 + \omega^2} \, d\gamma \approx \frac{\pi N}{2\omega}, \quad \gamma_1 \ll \omega \ll \gamma_2 \]

- Dynamical systems at the edge of chaos

\[x_{n+1} = x_n + x_n^2 \mod 1 \]

- Alternating fractal renewal process

- Self-Organized Criticality
1/f noise

Many mathematical models:

- Superposition of relaxation processes

\[
S(f) = \int_{\gamma_1}^{\gamma_2} \frac{N}{\gamma^2 + \omega^2} \, d\gamma \approx \frac{\pi N}{2\omega}, \quad \gamma_1 \ll \omega \ll \gamma_2
\]

- Dynamical systems at the edge of chaos

\[
x_{n+1} = x_n + x_n^z \mod 1
\]

- Alternating fractal renewal process

![Diagram of alternating fractal renewal process]

- Self-Organized Criticality
1/f noise

Many mathematical models:

- Superposition of relaxation processes

\[S(f) = \int_{\gamma_1}^{\gamma_2} \frac{N}{\gamma^2 + \omega^2} \, d\gamma \approx \frac{\pi N}{2\omega}, \quad \gamma_1 \ll \omega \ll \gamma_2 \]

- Dynamical systems at the edge of chaos

\[x_{n+1} = x_n + x_n^z \mod 1 \]

- Alternating fractal renewal process

- Self-Organized Criticality
A bibliography on $1/f$ noise is vast

Published items in each year. Topic: $1/f$ noise, $1/f$ fluctuations, flicker noise, pink noise (Web of Science)
1/f noise

- 1/f noise is intermediate between white noise, $S(f) \sim 1/f^0$ and Brownian motion $S(f) \sim 1/f^2$

- In contrast to the Brownian motion generated by the linear stochastic equations, the signals and processes with 1/f spectrum cannot be understood and modeled in such a way.

Goal

to find a simple nonlinear stochastic differential equation (SDE) generating signals exhibiting 1/f noise
1/f noise

- 1/f noise is intermediate between white noise, $S(f) \sim 1/f^0$ and Brownian motion $S(f) \sim 1/f^2$
- In contrast to the Brownian motion generated by the linear stochastic equations, the signals and processes with 1/f spectrum cannot be understood and modeled in such a way.

Goal
to find a simple nonlinear stochastic differential equation (SDE) generating signals exhibiting 1/f noise
1/f noise

- 1/f noise is intermediate between white noise, \(S(f) \sim 1/f^0 \) and Brownian motion \(S(f) \sim 1/f^2 \)

- In contrast to the Brownian motion generated by the linear stochastic equations, the signals and processes with 1/f spectrum cannot be understood and modeled in such a way.

Goal
to find a simple nonlinear stochastic differential equation (SDE) generating signals exhibiting 1/f noise
Often $1/f$ noise is defined by a long-memory process, characterized by $S(f) \sim 1/f^\beta$ as $f \to 0$.

A pure $1/f$ power spectrum is physically impossible because the total power would be infinity.

We search for a model where the spectrum of signal has $1/f^\beta$ behavior only in some intermediate region of frequencies, $f_{\text{min}} \ll f \ll f_{\text{max}}$, whereas for small frequencies $f \ll f_{\text{min}}$ the spectrum is bounded.
Often $1/f$ noise is defined by a long-memory process, characterized by $S(f) \sim 1/f^\beta$ as $f \to 0$.

A **pure** $1/f$ power spectrum is **physically impossible** because the total power would be infinity.

We search for a model where the spectrum of signal has $1/f^\beta$ behavior only in some intermediate region of frequencies, $f_{\text{min}} \ll f \ll f_{\text{max}}$, whereas for small frequencies $f \ll f_{\text{min}}$ the spectrum is bounded.
Often $1/f$ noise is defined by a long-memory process, characterized by $S(f) \sim 1/f^\beta$ as $f \to 0$.

A **pure** $1/f$ power spectrum is **physically impossible** because the total power would be infinity.

We search for a model where the spectrum of signal has $1/f^\beta$ behavior only in some **intermediate** region of frequencies, $f_{\text{min}} \ll f \ll f_{\text{max}}$, whereas for small frequencies $f \ll f_{\text{min}}$ the spectrum is bounded.
Heuristic derivation of SDE

- If $S(f) \sim f^{-\beta}$ then power spectral density has a scaling property
 \[S(af) = a^{-\beta} S(f) \]

- Wiener-Khintchine theorem
 \[C(t) = \int_{0}^{+\infty} S(f) \cos(2\pi ft) \, df \]

- Autocorrelation function $C(t)$ has scaling property
 \[C(at) \sim a^{\beta-1} C(t) \]
Heuristic derivation of SDE

- If $S(f) \sim f^{-\beta}$ then power spectral density has a scaling property
 \[S(af) = a^{-\beta} S(f) \]

- Wiener-Khintchine theorem
 \[C(t) = \int_0^{+\infty} S(f) \cos(2\pi ft) \, df \]

- Autocorrelation function $C(t)$ has scaling property
 \[C(at) \sim a^{\beta-1} C(t) \]
Heuristic derivation of SDE

- If $S(f) \sim f^{-\beta}$ then power spectral density has a scaling property

 $$S(af) = a^{-\beta} S(f)$$

- Wiener-Khintchine theorem

 $$C(t) = \int_{0}^{+\infty} S(f) \cos(2\pi ft) \, df$$

- Autocorrelation function $C(t)$ has scaling property

 $$C(at) \sim a^{\beta-1} C(t)$$
Heuristic derivation of SDE

- Autocorrelation function can be written as

\[C(t) = \int dx \int dx' \, xx' P_0(x) P_x(x', t|x, 0) \]

- \(P_0(x) \) is the steady state PDF
- \(P_x(x', t|x, 0) \) is the transition probability
- The transition probability can be obtained from the solution of the Fokker-Planck equation with the initial condition

\[P_x(x', 0|x, 0) = \delta(x' - x). \]
Heuristic derivation of SDE

- Autocorrelation function can be written as

\[C(t) = \int dx \int dx' xx' P_0(x) P_x(x', t|x, 0) \]

- \(P_0(x) \) is the steady state PDF
- \(P_x(x', t|x, 0) \) is the transition probability
- The transition probability can be obtained from the solution of the Fokker-Planck equation with the initial condition
 \(P_x(x', 0|x, 0) = \delta(x' - x) \).
Heuristic derivation of SDE

- Autocorrelation function can be written as

\[C(t) = \int dx \int dx' xx' P_0(x) P_x(x', t|x, 0) \]

- \(P_0(x) \) is the steady state PDF
- \(P_x(x', t|x, 0) \) is the transition probability
- The transition probability can be obtained from the solution of the Fokker-Planck equation with the initial condition
 \(P_x(x', 0|x, 0) = \delta(x' - x) \).
Autocorrelation function can be written as

\[C(t) = \int dx \int dx' xx' P_0(x) P_x(x', t|x, 0) \]

- \(P_0(x) \) is the steady state PDF
- \(P_x(x', t|x, 0) \) is the transition probability
- The transition probability can be obtained from the solution of the \textbf{Fokker-Planck equation} with the initial condition
 \[P_x(x', 0|x, 0) = \delta(x' - x). \]
Let us assume that

- Steady state PDF has power-law form
 \[P_0(x) \sim x^{-\nu} \]

- Transition probability has a scaling property
 \[P(ax', t|ax, 0) = a^{-1} P(x', a^{2(\eta - 1)} t|x, 0) \]

Then the autocorrelation function will have the required scaling with

\[\beta = 1 + \frac{\nu - 3}{2(\eta - 1)} \]
Let us assume that

- Steady state PDF has power-law form

\[P_0(x) \sim x^{-\nu} \]

- Transition probability has a scaling property

\[P(ax', t|ax, 0) = a^{-1} P(x', a^{2(\eta-1)}t|x, 0) \]

Then the autocorrelation function will have the required scaling with

\[\beta = 1 + \frac{\nu - 3}{2(\eta - 1)} \]
Heuristic derivation of SDE

Let us assume that

- Steady state PDF has power-law form
 \[P_0(x) \sim x^{-\nu} \]

- Transition probability has a scaling property
 \[P(ax', t|ax, 0) = a^{-1} P(x', a^{2(\eta-1)}t|x, 0) \]

Then the autocorrelation function will have the required scaling with

\[\beta = 1 + \frac{\nu - 3}{2(\eta - 1)} \]
Let us assume that

- Steady state PDF has power-law form

\[P_0(x) \sim x^{-\nu} \]

- Transition probability has a scaling property

\[P(ax', t|ax, 0) = a^{-1} P(x', a^{2(\eta-1)}t|x, 0) \]

Then the autocorrelation function will have the required scaling with

\[\beta = 1 + \frac{\nu - 3}{2(\eta - 1)} \]
Heuristic derivation of SDE

To get the required scaling of transition probability:

- SDE should contain only powers of x
- The diffusion coefficient should be of the form $x^{2\eta}$
- The drift term is fixed by the requirement that the steady-state PDF should be $x^{-\nu}$

Proposed SDE

$$dx = \sigma^2 (\eta - \nu/2) x^{2\eta-1} dt + \sigma x^{\eta} dW_t$$

Heuristic derivation of SDE

To get the required scaling of transition probability:

- SDE should contain only powers of x
- The diffusion coefficient should be of the form $x^{2\eta}$
- The drift term is fixed by the requirement that the steady-state PDF should be $x^{-\nu}$

Proposed SDE

$$dx = \sigma^2(\eta - \nu/2)x^{2\eta-1}dt + \sigma x^\eta dW_t$$

Heuristic derivation of SDE

To get the required scaling of transition probability:

- SDE should contain only powers of x
- The diffusion coefficient should be of the form $x^{2\eta}$
- The drift term is fixed by the requirement that the steady-state PDF should be $x^{-\nu}$

Proposed SDE

$$dx = \sigma^2 (\eta - \nu/2) x^{2\eta - 1} dt + \sigma x^{\eta} dW_t$$

Heuristic derivation of SDE

To get the required scaling of transition probability:

- SDE should contain only powers of x
- The diffusion coefficient should be of the form $x^{2\eta}$
- The drift term is fixed by the requirement that the steady-state PDF should be $x^{-\nu}$

Proposed SDE

$$dx = \sigma^2 (\eta - \nu/2) x^{2\eta-1} dt + \sigma x^{\eta} dW_t$$

Heuristic derivation of SDE

To get the required scaling of transition probability:
- SDE should contain only powers of x
- The diffusion coefficient should be of the form $x^{2\eta}$
- The drift term is fixed by the requirement that the steady-state PDF should be $x^{-\nu}$

Proposed SDE

$$dx = \sigma^2(\eta - \nu/2)x^{2\eta-1}dt + \sigma x^{\eta}dW_t$$

Introducing

\[z = x^\alpha \]

we get the equation of the same type

\[dz = \sigma'^2 (\eta' - \nu' / 2) z^{2\eta'-1} dt + \sigma' z^{\eta'} dW_t \]

only with different parameters

\[\sigma' = \alpha \sigma, \quad \eta' = (\eta - 1) / \alpha + 1, \quad \nu' = (\nu - 1) / \alpha + 1 \]
Because of the divergence of the power-law distribution and the requirement of the stationarity of the process, the SDE should be analyzed together with the appropriate restrictions of the diffusion in some finite interval.

When diffusion is restricted, scaling properties are only approximate, but $1/f$ spectrum remains in a wide interval of frequencies.
Because of the divergence of the power-law distribution and the requirement of the stationarity of the process, the SDE should be analyzed together with the appropriate restrictions of the diffusion in some finite interval.

When diffusion is restricted, scaling properties are only approximate, but $1/f$ spectrum remains in a wide interval of frequencies.
Possible forms of restriction:

- Reflective boundary conditions at $x = x_{\text{min}}$ and $x = x_{\text{max}}$
- Exponential restriction of the diffusion

$$\begin{align*}
dx &= \sigma^2 \left(\eta - \frac{\nu}{2} + \frac{m}{2} \left(\frac{x_{\text{min}}}{x} \right)^m - \frac{m}{2} \left(\frac{x}{x_{\text{max}}} \right)^m \right) x^{2\eta-1} dt + \sigma x^\eta dW_t
\end{align*}$$

Steady state PDF:

$$P_0(x) \sim x^{-\nu} \exp \left(- \left(\frac{x_{\text{min}}}{x} \right)^m - \left(\frac{x}{x_{\text{max}}} \right)^m \right)$$
Restriction of diffusion

Possible forms of restriction:

- Reflective boundary conditions at \(x = x_{\text{min}} \) and \(x = x_{\text{max}} \)
- Exponential restriction of the diffusion

\[
dx = \sigma^2 \left(\eta - \frac{\nu}{2} + \frac{m}{2} \left(\frac{x_{\text{min}}}{x} \right)^m - \frac{m}{2} \left(\frac{x}{x_{\text{max}}} \right)^m \right) x^{2\eta - 1} dt + \sigma x^{\eta} dW_t
\]

Steady state PDF:

\[
P_0(x) \sim x^{-\nu} \exp \left(- \left(\frac{x_{\text{min}}}{x} \right)^m - \left(\frac{x}{x_{\text{max}}} \right)^m \right)
\]
Restriction of diffusion

Possible forms of restriction:

- Reflective boundary conditions at $x = x_{\text{min}}$ and $x = x_{\text{max}}$
- Exponential restriction of the diffusion

\[
x = \sigma^2 \left(\eta - \nu \frac{m}{2} \left(\frac{x_{\text{min}}}{x} \right)^m - \frac{m}{2} \left(\frac{x}{x_{\text{max}}} \right)^m \right) x^{2\eta-1} dt + \sigma x^{\eta} dW_t
\]

Steady state PDF:

\[
P_0(x) \sim x^{-\nu} \exp \left(- \left(\frac{x_{\text{min}}}{x} \right)^m - \left(\frac{x}{x_{\text{max}}} \right)^m \right)
\]
Restriction of diffusion

- q-exponential steady-state PDF

\[
\frac{dx}{dt} = \sigma^2 (\eta - \nu/2) (x + x_0)^{2\eta-1} dt + \sigma (x + x_0)^\eta dW_t
\]

\[P_0(x) \sim \exp_{1+1/\nu}(-\nu x/x_0)\]

Reflective boundary condition at $x = 0$

- q-Gaussian steady-state PDF

\[
\frac{dx}{dt} = \sigma^2 (\eta - \nu/2) (x^2 + x_0^2)^{\eta-1} x dt + \sigma (x^2 + x_0^2)^{\eta/2} dW_t
\]

\[P_0(x) \sim \exp_{1+2/\nu}(-\nu x^2/2x_0^2)\]

- q-exponential function: $\exp_q(x) \equiv (1 + (1 - q)x)^{1/(1-q)}$

Restriction of diffusion

- q-exponential steady-state PDF

\[dx = \sigma^2 (\eta - \nu/2) (x + x_0)^{2\eta - 1} dt + \sigma (x + x_0)^\eta dW_t \]

\[P_0(x) \sim \exp_{1 + 1/\nu} (-\nu x / x_0) \]

Reflective boundary condition at $x = 0$

- q-Gaussian steady-state PDF

\[dx = \sigma^2 (\eta - \nu/2) (x^2 + x_0^2)^{\eta - 1} x dt + \sigma (x^2 + x_0^2)^{\eta/2} dW_t \]

\[P_0(x) \sim \exp_{1 + 2/\nu} (-\nu x^2 / 2x_0^2) \]

- q-exponential function: $\exp_q(x) \equiv (1 + (1 - q)x)^{1/(1-q)}$

For some choices of parameters our SDE takes the form of well-known equations.

- \(\eta = 0 \) and \(\sigma = 1 \) corresponds to the **Bessel process**

\[
dx = \frac{\delta - 1}{2} \frac{1}{x} dt + dW_t
\]

of dimension \(\delta = 1 - \nu \)

- \(\eta = 1/2, \sigma = 2 \) corresponds to the **squared Bessel process**

\[
dx = \delta dt + 2\sqrt{x} \, dW_t
\]

of dimension \(\delta = 2(1 - \nu) \)
Connection with other equations

For some choices of parameters our SDE takes the form of well-known equations.

- $\eta = 0$ and $\sigma = 1$ corresponds to the **Bessel process**
 \[
 dx = \frac{\delta - 1}{2} \frac{1}{x} dt + dW_t
 \]
 of dimension $\delta = 1 - \nu$

- $\eta = 1/2$, $\sigma = 2$ corresponds to the **squared Bessel process**
 \[
 dx = \delta dt + 2\sqrt{x} dW_t
 \]
 of dimension $\delta = 2(1 - \nu)$
Connection with other equations

For some choices of parameters our SDE takes the form of well-known equations.

- $\eta = 0$ and $\sigma = 1$ corresponds to the **Bessel process**

$$\frac{d\eta}{\delta - \frac{1}{2}} - \frac{1}{\delta} \frac{1}{\eta} dt + dW_t$$

of dimension $\delta = 1 - \nu$

- $\eta = \frac{1}{2}, \sigma = 2$ corresponds to the **squared Bessel process**

$$dx = \delta dt + 2\sqrt{x} dW_t$$

of dimension $\delta = 2(1 - \nu)$
Connection with other equations

- SDE with exponential restriction with $\eta = 1/2$, $x_{\text{min}} = 0$ and $m = 1$ gives **Cox-Ingersoll-Ross (CIR) process**

 \[dx = k(\theta - x)dt + \sigma \sqrt{x} \, dW_t \]

 where $k = \sigma^2 / 2x_{\text{max}}$, $\theta = x_{\text{max}}(1 - \nu)$

- When $\nu = 2\eta$, $x_{\text{max}} = \infty$ and $m = 2\eta - 2$ then we get the **Constant Elasticity of Variance (CEV) process**

 \[dx = \mu x dt + \sigma x^\eta \, dW_t \]

 where $\mu = \sigma^2 (\eta - 1) x_{\text{min}}^{2(\eta - 1)}$
SDE with exponential restriction with \(\eta = 1/2 \), \(x_{\min} = 0 \) and \(m = 1 \) gives Cox-Ingersoll-Ross (CIR) process

\[
dx = k(\theta - x)dt + \sigma \sqrt{x} \, dW_t
\]

where \(k = \sigma^2/2x_{\max} \), \(\theta = x_{\max}(1 - \nu) \)

When \(\nu = 2\eta \), \(x_{\max} = \infty \) and \(m = 2\eta - 2 \) then we get the Constant Elasticity of Variance (CEV) process

\[
dx = \mu xd\, t + \sigma x^{\eta} \, dW_t
\]

where \(\mu = \sigma^2(\eta - 1)x_{\min}^{2(\eta - 1)} \)
Numerical example

Power spectral density

Typical signal

Distribution of x

$$dx = \left(1 + \frac{x_{\text{min}}}{2x} - \frac{x}{2x_{\text{max}}} \right) x^4 dt + x^{\frac{5}{2}} dW_t$$

$$\nu = 3, \eta = \frac{5}{2}, x_{\text{min}} = 1, x_{\text{max}} = 10^3.$$
Signals generated by proposed SDE exhibit **intermittent behavior**: there are bursts corresponding to large deviations, separated by laminar phases.

Bursts are characterized by power-law distributions of burst size, burst duration, and interburst time.
Signals generated by proposed SDE exhibit **intermittent behavior**: there are bursts corresponding to large deviations, separated by laminar phases.

Bursts are characterized by power-law distributions of burst size, burst duration, and interburst time.
1. Introduction: $1/f$ noise

2. Stochastic differential equations giving $1/f$ noise

3. Some models resulting in proposed SDE
 - Point processes
 - Simple model of herding behavior

4. Summary
Point processes

The signal of the model consists of pulses or events

\[I(t) = a \sum_k \delta(t - t_k) \]

Point processes arise in different fields such as physics, economics, ecology, neurology, seismology, traffic flow, financial systems and the Internet.
Point processes

The signal of the model consists of pulses or events

\[I(t) = a \sum_k \delta(t - t_k) \]

Point processes arise in different fields such as physics, economics, ecology, neurology, seismology, traffic flow, financial systems and the Internet.
Let us assume that the signal x is the number of pulses per unit time. How to obtain equation for inter-event time $\tau_k = t_k - t_{k-1}$:

- Transform the equation from the variable x to $\tau = 1/x$
- Discretize the equation according to Euler-Maruyama approximation
- Take time step equal to τ_k
Let us assume that the signal x is the number of pulses per unit time. How to obtain equation for inter-event time $\tau_k = t_k - t_{k-1}$:

- Transform the equation from the variable x to $\tau = 1/x$
- Discretize the equation according to Euler-Maruyama approximation
- Take time step equal to τ_k
Let us assume that the signal x is the number of pulses per unit time. How to obtain equation for inter-event time $\tau_k = t_k - t_{k-1}$:

- Transform the equation from the variable x to $\tau = 1/x$
- Discretize the equation according to Euler-Maruyama approximation
- Take time step equal to τ_k
Let us assume that the signal x is the number of pulses per unit time. How to obtain equation for inter-event time $\tau_k = t_k - t_{k-1}$:

- Transform the equation from the variable x to $\tau = 1/x$
- Discretize the equation according to Euler-Maruyama approximation
- Take time step equal to τ_k
Example: equation

\[dx = \sigma^2 x^4 \, dt + \sigma x^{5/2} \, dW \]

leads to

\[\tau_{k+1} = \tau_k + \sigma \epsilon_k \]

We obtained a simple random walk of inter-event time

One of possible origins of $1/f$ noise

Brownian motion in time axis leads to $1/f$ noise
Point processes

Example: equation

$$dx = \sigma^2 x^4 dt + \sigma x^{5/2} dW$$

leads to

$$\tau_{k+1} = \tau_k + \sigma \varepsilon_k$$

We obtained a simple random walk of inter-event time

One of possible origins of $1/f$ noise

Brownian motion in time axis leads to $1/f$ noise
Point processes

Example: equation

\[\mathrm{d}x = \sigma^2 x^4 \mathrm{d}t + \sigma x^{5/2} \mathrm{d}W \]

leads to

\[\tau_{k+1} = \tau_k + \sigma \varepsilon_k \]

We obtained a simple random walk of inter-event time

One of possible origins of $1/f$ noise

Brownian motion in time axis leads to $1/f$ noise
General case

\[\tau_{k+1} = \tau_k + \gamma \tau_k^{2 \mu - 1} + \sigma \tau_k^\mu \varepsilon_k \]

where \(\mu = 5/2 - \eta, \gamma = \sigma^2(1 - \eta + \nu/2) \).

Used for modeling of the internote interval sequences of the musical rhythms

Point processes

- General case

\[\tau_{k+1} = \tau_k + \gamma \tau_k^{2\mu - 1} + \sigma \tau_k^\mu \varepsilon_k \]

where \(\mu = 5/2 - \eta \), \(\gamma = \sigma^2(1 - \eta + \nu/2) \).

- Used for modeling of the internote interval sequences of the musical rhythms

Herding model

Simple model describing heterogeneous interacting agents:

- fixed number N of agents
- each of them can be in state 1 or in state 2
- agents do not have memory, dynamics described as a Markov chain
Simple model describing heterogeneous interacting agents:

- fixed number N of agents
- each of them can be in state 1 or in state 2
- agents do not have memory, dynamics described as a Markov chain
Herding model

Simple model describing heterogeneous interacting agents:

- fixed number N of agents
- each of them can be in state 1 or in state 2
- agents do not have memory, dynamics described as a Markov chain
Herding model

- Transition probabilities per unit time:

\[p(n \to n + 1) = (N - n)(\sigma_1 + hn) \]
\[p(n \to n - 1) = n(\sigma_2 + h(N - n)) \]

- \(n \) is the number of agents in state 1
- \(N - n \) is the number of agents in state 2
- \(\sigma_1 \) and \(\sigma_2 \) are probabilities to change the state spontaneously
- \(h \) describes herding tendency

- Non-linear terms represent interaction between agents
- Connectivity between agents increases with the number of agents \(N \). The interactions have a global character, the range of the correlations involves a macroscopic fraction of agents.
Herding model

- Transition probabilities per unit time:

\[p(n \to n+1) = (N - n)(\sigma_1 + hn) \]
\[p(n \to n-1) = n(\sigma_2 + h(N - n)) \]

- \(n \) is the number of agents in state 1
- \(N - n \) is the number of agents in state 2
- \(\sigma_1 \) and \(\sigma_2 \) are probabilities to change the state spontaneously
- \(h \) describes herding tendency

- Non-linear terms represent interaction between agents
- Connectivity between agents increases with the number of agents \(N \). The interactions have a global character, the range of the correlations involves a macroscopic fraction of agents.
Herding model

- Transition probabilities per unit time:

\[p(n \rightarrow n + 1) = (N - n)(\sigma_1 + hn) \]
\[p(n \rightarrow n - 1) = n(\sigma_2 + h(N - n)) \]

- \(n \) is the number of agents in state 1
- \(N - n \) is the number of agents in state 2
- \(\sigma_1 \) and \(\sigma_2 \) are probabilities to change the state spontaneously
- \(h \) describes herding tendency

- Non-linear terms represent interaction between agents
- Connectivity between agents increases with the number of agents \(N \). The interactions have a global character, the range of the correlations involves a macroscopic fraction of agents.
Herding model

- Transition probabilities per unit time:

\[p(n \rightarrow n + 1) = (N - n)(\sigma_1 + hn) \]
\[p(n \rightarrow n - 1) = n(\sigma_2 + h(N - n)) \]

- \(n \) is the number of agents in state 1
- \(N - n \) is the number of agents in state 2
- \(\sigma_1 \) and \(\sigma_2 \) are probabilities to change the state spontaneously
- \(h \) describes herding tendency

- Non-linear terms represent interaction between agents
- Connectivity between agents increases with the number of agents \(N \). The interactions have a global character, the range of the correlations involves a macroscopic fraction of agents.
Herding model

- Transition probabilities per unit time:

\[
p(n \to n + 1) = (N - n)(\sigma_1 + hn)
\]
\[
p(n \to n - 1) = n(\sigma_2 + h(N - n))
\]

- \(n\) is the number of agents in state 1
- \(N - n\) is the number of agents in state 2
- \(\sigma_1\) and \(\sigma_2\) are probabilities to change the state spontaneously
- \(h\) describes herding tendency

- Non-linear terms represent interaction between agents
- Connectivity between agents increases with the number of agents \(N\). The interactions have a global character, the range of the correlations involves a macroscopic fraction of agents.
Herding model

Transition probabilities per unit time:

\[p(n \rightarrow n + 1) = (N - n)(\sigma_1 + hn) \]
\[p(n \rightarrow n - 1) = n(\sigma_2 + h(N - n)) \]

- \(n \) is the number of agents in state 1
- \(N - n \) is the number of agents in state 2
- \(\sigma_1 \) and \(\sigma_2 \) are probabilities to change the state spontaneously
- \(h \) describes herding tendency

Non-linear terms represent interaction between agents

Connectivity between agents increases with the number of agents \(N \). The interactions have a global character, the range of the correlations involves a macroscopic fraction of agents.
Herding model

- Transition probabilities per unit time:

\[
p(n \rightarrow n + 1) = (N - n)(\sigma_1 + hn) \\
p(n \rightarrow n - 1) = n(\sigma_2 + h(N - n))
\]

- \(n \) is the number of agents in state 1
- \(N - n \) is the number of agents in state 2
- \(\sigma_1 \) and \(\sigma_2 \) are probabilities to change the state spontaneously
- \(h \) describes herding tendency

- non-linear terms represent interaction between agents

- connectivity between agents increases with the number of agents \(N \). The interactions have a global character, the range of the correlations involves a macroscopic fraction of agents.
Herding model

- Ratio of the number of agents in the state 2 to the number of agents in the state 1:
 \[y = \frac{N - n}{n} \]

- For large \(N \) we can represent the dynamics by SDE
 \[dy = [(2h - \sigma_1)y + \sigma_2](1 + y)dt + \sqrt{2hy(1 + y)}dW \]

- When \(y \gg 1 \) we get our non-linear SDE with parameters \(\eta = 3/2, \nu = 1 + \sigma_1/h \)

If \(\sigma_1 = 2h \), we obtain \(1/f \) spectrum

Herding model

- Ratio of the number of agents in the state 2 to the number of agents in the state 1:
 \[y = \frac{N - n}{n} \]

- For large \(N \) we can represent the dynamics by SDE
 \[dy = [(2h - \sigma_1)y + \sigma_2](1 + y)dt + \sqrt{2hy}(1 + y)dW \]

- When \(y \gg 1 \) we get our non-linear SDE with parameters \(\eta = 3/2, \nu = 1 + \sigma_1/h \)

If \(\sigma_1 = 2h \), we obtain \(1/f \) spectrum

Herding model

- Ratio of the number of agents in the state 2 to the number of agents in the state 1:
 \[y = \frac{N - n}{n} \]

- For large \(N \) we can represent the dynamics by SDE
 \[dy = [(2h - \sigma_1)y + \sigma_2](1 + y)dt + \sqrt{2hy}(1 + y)dW \]

- When \(y \gg 1 \) we get our non-linear SDE with parameters \(\eta = 3/2, \nu = 1 + \sigma_1/h \)

If \(\sigma_1 = 2h \), we obtain \(1/f \) spectrum

Herding model

- Ratio of the number of agents in the state 2 to the number of agents in the state 1:
 \[y = \frac{N - n}{n} \]

- For large \(N \) we can represent the dynamics by SDE
 \[dy = [(2h - \sigma_1)y + \sigma_2](1 + y)dt + \sqrt{2hy(1 + y)}dW \]

- When \(y \gg 1 \) we get our non-linear SDE with parameters \(\eta = 3/2, \nu = 1 + \sigma_1/h \)

If \(\sigma_1 = 2h \), we obtain 1/f spectrum

Power spectral density of the ratio of the numbers of agents.

\(N = 10000 \)
We obtain a class of nonlinear SDEs giving the power-law behavior of the power spectral density in any desirably wide range of frequencies and power-law steady state distribution of the signal intensity.

In special cases we obtain other well-known SDEs.

One of the reasons for the appearance of the $1/f$ spectrum are scaling properties of the SDE.

Proposed SDEs can be obtained from
- point processes with Brownian motion of inter-event time
- a simple agent model describing a herding behavior.
We obtain a class of nonlinear SDEs giving the power-law behavior of the power spectral density in any desirably wide range of frequencies and power-law steady state distribution of the signal intensity.

In special cases we obtain other well-known SDEs. One of the reasons for the appearance of the $1/f$ spectrum are scaling properties of the SDE.

Proposed SDEs can be obtained from point processes with Brownian motion of inter-event time and a simple agent model describing a herding behavior.
We obtain a class of nonlinear SDEs giving the power-law behavior of the power spectral density in any desirably wide range of frequencies and power-law steady state distribution of the signal intensity.

In special cases we obtain other well-known SDEs.

One of the reasons for the appearance of the $1/f$ spectrum are scaling properties of the SDE.

Proposed SDEs can be obtained from:
- point processes with Brownian motion of inter-event time
- a simple agent model describing a herding behavior.
We obtain a class of nonlinear SDEs giving the power-law behavior of the power spectral density in any desirably wide range of frequencies and power-law steady state distribution of the signal intensity. In special cases we obtain other well-known SDEs. One of the reasons for the appearance of the $1/f$ spectrum are scaling properties of the SDE. Proposed SDEs can be obtained from point processes with Brownian motion of inter-event time and a simple agent model describing a herding behavior.
We obtain a class of nonlinear SDEs giving the power-law behavior of the power spectral density in any desirably wide range of frequencies and power-law steady state distribution of the signal intensity.

In special cases we obtain other well-known SDEs.

One of the reasons for the appearance of the $1/f$ spectrum are scaling properties of the SDE.

Proposed SDEs can be obtained from
- point processes with Brownian motion of inter-event time
- a simple agent model describing a herding behavior.
Thank you for your attention!