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Introduction

Importance of the problem

Many problems in engineering, physics, economic and other subjecteduced to
global minimization with many local minimizers. Mathematigalthe problem is

formulated as

f" =minf(x),

xeD
wheref(x) is a nonlinear function of continuos variabfes R">R, D c R" is a
feasible regionn is number of variables. Besides of global minimfinone or all
global minimizers<: f(x') = should be found. No assumptions on unimodality are

included into formulation of the problem.

The global optimization problems are classifiedficlit in the sense of the
algorithmic complexity theory. Therefore global iopkzation algorithms are

computationally intensive.

Large practical problems, unsolvable with availatdenputers, always exist. When
computing power of usual computers is not suffictensolve a practical problem, the
high performance parallel computers may be helgfnlalgorithm is more applicable
in case its parallel implementation is availablegduse larger practical problems may
be solved by means of parallel computers. Thereforplementation and

investigation of parallel versions of new algorithie one part of the research.

Some subclasses of global optimization algoritheng. (random search, evolutionary
strategies) are favorable to parallelization [@8h the other hand, parallelization of
adaptive covering techniques, of the methods basestatistical models and of some
other methods is not straightforward. There is latkesearch in this urgent subject.
The aim of this research is to cover the gap réladeovering methods.



Objectives and tasks of the research

The objectives of the research are:

To develop and justify new versions of algorithms fblack box global
optimization inspired by covering techniques.

To implement the proposed algorithms and to evaldheir performance and
reliability by means of experimental testing.

To implement the parallel versions of the proposlgadrithms and to evaluate the
performance of the implemented codes.

To assess the applicability of the proposed allgorst by means of solving of

typical practical problems.

To reach the objectives the following tasks shdaddulfilled:

The covering global optimization methods shoulcbalyzed.

The covering techniques should be modified to adbem to a black box
situation.

The sequential versions of the proposed algoritsimesild be implemented.

The performance of the implemented algorithms shbel evaluated by means of
experimental testing.

The parallel computing techniques should be andlygspecially the paradigms
of communications between processors.

The parallel algorithms for covering global optietibn should be analyzed.

The parallel versions of the proposed algorithmseukh be implemented and
assessed with respect to criteria of parallelizatio

The applicability of implemented algorithms shoblel assessed by means of the

results of optimization of typical practical probis.

Novelty and originality

The covering global optimization methods have bewdified increasing their
performance and adopting them to a black box simat

New sequential and parallel algorithms have begteémented and evaluated.
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Structure of the dissertation

The structure of the dissertation is as followschapter 1 the global optimization
methods are reviewed. The main attention is paithéocovering global optimization
methods and the branch-and-bound technique to ghbal optimization problems.
In this chapter parallel computing is also analyzdthe load balancing and
termination detection of parallel algorithms is lgmad in detail. The literature on the
parallel branch-and-bound technique is reviewedte@a of efficiency of parallel

algorithms are discussed.

In chapter 2 a new Lipschitz global optimizationgaithm with simplicial
partitioning is presented. The numerical resulteexperiments with the sequential
algorithm are discussed and compared with resultsotber Lipschitz global
optimization algorithms. The parallelization of atighm is described. The parallel

implementations are assessed with respect toiargéparallelization.

In chapter 3 a new black box global optimizationtimd inspired by interval
arithmetic is presented. Sequential algorithm iplemented and investigated. The
results of experimental testing are compared wita tesults of interval global

optimization algorithm [43]. Parallel version okthlgorithm is implemented.

In chapter 4 application of the presented black pmbal optimization method is
presented. The method is applied to practical prabl multidimensional scaling,
growth model of the human mandible and many bodyblpms. The results of

optimization are discussed.

The dissertation is completed with the conclusiansl with the summary of the

results.



1 Parallel computing from the perspective of global
optimization

In this chapter the global optimization methods @eewed. The main attention is

paid to the covering global optimization methodd #re branch-and-bound technique

to solve global optimization problems. In this ctespparallel computing is also

analyzed. The load balancing and termination detecof parallel algorithms is

analyzed in detail. The literature on the parabbednch-and-bound technique is

reviewed. Criteria of efficiency of parallel algbnins are discussed.

1.1 Global optimization
Mathematically the global optimization problem ésrhulated as

f :nxlanf(x),

where a nonlinear function of continuos variabfeg, f : R">R, is called the

objective functionD < R" is afeasible regionn is number of variables

Besides of global minimurf one or all global minimizers

f(x)=f

should be found. No assumptions on unimodalityimekided into formulation of the
problem [35], [36], [80].

Sometimes an objective function is expressed dnallyt. However, the objective
functions of practical problems usually are givgnrbeans of computer programs,
and the properties of the objective function arfiatilt to elicit. The objective

function values are assumed given byeacle or ablack box

The global optimization problems are classifiedficlit in the sense of the
algorithmic complexity theory. Therefore global iopkzation algorithms are
computationally intensive, and solution time crlgiaepends on the dimensionality
of a problem. In local optimization the decompasitiapproach is proved useful to
reduce a problem of high dimensionality to sevprablems of lower dimensionality.
The possibilities of decomposition of black box dymbjective functions are

considered in [73].



1.1.1 Classification of global optimization methods

A classification of global optimization methodgi®posed in [80]:
e Methods with guaranteed accuracy
e Covering methods
e Direct methods
e Random search methods
e Clustering methods
e Generalized descent methods
e Indirect methods
e Methods approximating the level sets

e Methods approximating the objective function

Random search methods may be adaptive and nonaslaplonadaptive methods
generate random trial points with predefined disiiion. The trial points could be
used as starting points of local searches. For pleampure random search does not
contain local searches at all. Single start perfoansingle local search starting from
the best trial point (with the smallest value oé tbbjective function). Multi start
performs local searches starting from all trialng®iand the global minimum is the

smallest minimum found.

These methods are very simple but inefficient. Naiyrthe probability of finding the
global minimum approaches 1 when the number of rebtiens of the objective
function approaches infinity. Usually nonexpertg tisese methods to solve practical
problems because the methods are simple and easyplement. Sometimes these
methods are used by the researchers to extraathéracteristic of a problem: the
global minimum, the number of global and local miizers, probability that a local

search started from a random point would reaclyglibigal minimum.

The parallelization of the nonadaptive methods tisviaus. Each processor
independently runs the same algorithm on equas fdiror on overall feasible region.
There is no need to communicate between procesEbesspeedup is equal to the

number of processors, the efficiency of paralléiorais equal to 1.
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The main idea of adaptive random search is toilligtr the trial points nonuniformly
in the feasible region with greater density in mpsimising subregions. The best
function values found indicate the promising sulmeg. The practical efficiency of
adaptive random search methods usually dependsherchoice of rather many

parameters and work well when used by their authors

In the clustering methods the trial points are gexliinto clusters identifying the
neighborhoods of the local minimizers and just moal search is started from every
cluster. The repeated descent to a local minimg@revented. The trial points may

be sampled using a grid or randomly.

The generalized descent methods are the genemratizidtthe local search methods to
global optimization. In the trajectory methods thiferential equation describing the
local descent is modified. In the penalty metholde tocal search algorithm is
repeatedly applied to a modified objective functmeventing the descent to known

local minima.

In the methods approximating the objective functtbe statistical models of the
objective function are used. The unknown valuesth& objective function are
modeled using random variables. The auxiliary co@mpns to determine the next
trial point are expensive, therefore these metharésreasonable for the expensive
objective functions. The optimization techniquedzhsn a stochastic function model
and minimization of the expected deviation of trstireate from the real global

optimum is called Bayesian [57].

Theoretically the covering methods solve the glat@imization problems of some
classes with guaranteed accuracy. Covering metltsdect the subregions not
containing the global minimum and discard them ffanther search. The partitioning
of the subregions stops when global minimizers dmacketed in small

multidimensional intervals guaranteeing the présatiaccuracy.

A lower bound of the objective function over thésegion may be used to indicate
the subregions who can be discarded. Some methed®ased on lower bound

constructed as convex envelope of an objectivetimmd27], [38], [39]. Lipschitz

11



optimization assumes that the slope of an objediinvetion is bounded. Interval
methods estimate the range of a function over smval using interval arithmetic. A
branch and bound technique can be used for man#genlist of subregions and the

process of discarding and partitioning.

Covering methods are usually not applicable inaxlbox situation. In our research
we are interested in development of covering methodproving their performance

and making them applicable in a black box situation

1.1.2 Lipschitz methods

Lipschitz optimization is based on the assumptibat tthe slope of an objective
function is bounded [36], [61]. A functionf :D - R, Dc R" is said to be
Lipschitz if it satisfies the condition

[f()—f(y)|<L|x-y|, vxeD, vyeD,
whereL>0 is a constant called Lipschitz constdhtis compact anq|~|| denotes the

Euclidean norm; other norms could be also consitere

In [31] several Lipschitz global optimization metlsoare discussed and compared
experimentally, the advantages and disadvantagebi®fapproach are discussed.
Lipschitz global optimization is applicable wherp&chitz constant of the objective
function is available. The efficient algorithms &xfor the one-dimensional case. In
this case the lower bound is inexpensive to compimevever, the calculation of tight
lower bound becomes expensive in multidimensioaakec Moreover, the Lipschitz
constant depends on scaling of the variables anidnigation is inefficient when
scaling is made not properly. If an estimate oflthpschitz constant is too small then
the global minimizer may be missed. On the othemdhaverestimation of the
Lipschtiz constant implies the overestimated bouadd loss of the optimization
efficiency. Another difficulty is that it is not kan into account that the Lipschitz

constant may vary greatly over different regionshef domain.

The Lipschitz constant normally is unknown for piead problems whose objective

functions are defined by means of computer codg84ha method for estimating the

12



Lipschitz constant is presented. Extensions of ¢hiig optimization for the case of

unknown Lipschitz constant are considered in [62].

1.1.3 Interval methods

Interval global optimization methods are based mterval arithmetic proposed in

[58]. The interval arithmetic operates with real tenvals
X =[x X] ={xeR|x<x<x}, wherex and x are real numbers. Any real arithmetic
operationx opy has the corresponding interval arithmetic opena¥@p Y:

XopY =[ min xopy, max xopy] ={xopy|xe X,yeY}.
xeX,yeY xe X,yeY

X opY contains every possible number which can be formeddpy for eachx e X

and y € Y. The common interval arithmetic operations are defined as:
X+Y :[1<+X,;<+§/] :

X =Y =[x-y,x-yl,

X Y =[min(xy, Xy, Xy, Xy), max(xy, xy, xy, xy)]

XY =[xx [L/ylly] if 0eY.

Let a functionf(x) be defined over the “boxX ={xe R" | x, < x; < xi}. The lower
and upper bounds for the function values can binattd applying the interval
operations with the interval[sgi,;q] instead of the real operations wixhin the

algorithm of calculation the function values. Theuhds are useful to detect the
subregions of the feasible region not containirgiodal minimizer. Such subregions
may be discarded from the further search. If thieailve function is differentiable it

is possible to compute the intervals of the dervest and discard the subregions
where the objective function is monotone. If thejeocbve function is twice

continuously differentiable it is possible to cortgpuhe intervals of the second
derivatives and discard the subregions where tlectite function is concave. If the
objective function is twice differentiable the s@dnterval Newton method can be
applied to reduce the subregions, and discard tibeegions where there are no

stationary points [30].

13



The disadvantage of interval methods is that tredmmathematical expression of the
objective function, and they are not applicablethie black box situation. Another
disadvantage is the dependency problem [30]: whginemn variable occurs more than
once in an interval computation, it is treated a#farent variable in each occurrence.
The latter causes widening of computed interval&ingait more difficult to obtain
tight intervals. One should always be aware of #ghisrtcoming and take appropriate
steps to reduce its effect. However it is not alsvpgssible to overcome the problem,
when the objective function is defined by meana obmputer code.

The first version of the interval global optimizati algorithm was oriented to
minimization of a rational function by bisection slub-domains [69]. Interval
methods for global optimization were further deyeld in [28], [29], [59], e.g. the
interval Newton method and the test sifict monotonicitywere introduced. A
thorough description including theoretical as vesllpractical aspects can be found in
[30] where the very efficient interval global optration method involving
monotonicity and nonconvexity tests and speciariragl Newton method is proposed.
The method assumes that the objective functiowiset continuously differentiable.
The mathematical expressions of the functions shobé available. If the
monotonicity and nonconvexity tests and intervaivéa method are not used the

method can minimize even noncontinuous functioositen it is not so efficient.

The interval methods has been combined with searichglemented in real number
arithmetic, see for instance [7], [40]. In [43] ap0] the global unconstrained
minimization method involving a combination of lbcsearch, branch-and-bound
technique and interval arithmetic is proposed. His tmethod derivatives are not

required.

1.1.4 Branch and bound technique

Branch and bound is a technique to solve combimt@nd covering global

optimization problems. An iteration of a classis®@quential branch and bound
algorithm processes a node in the search treesemiag a not yet explored subspace
of the solution space [8]. Iteration has three ntamponents: selection of the node to

process, bound calculation and branching. Parsitmistained with branch and bound

14



algorithms for global optimization differ from th®sused in combinatorial
optimization in that [31]:
e The number of possible partitions is infinite.

e The classes of partitions may overlap.

Let LB(X) and UB(X) denote upper and lower bounds d&fi, over X
LB(X) < mixn f(x), UB(X) > mixn f(X). The general branch and bound algorithm is

shown in Algorithm 1.

Algorithm 1. General branch and bound algorithm.
UB(X) < .
Cover the feasible regiohby C={C, | j=1...,m}, X cUC;.

While C=J,
SelectBe C, C<=C\{B}.

p
BranchB: B c jk:JlTj, T={T,|T,nX=}.

UB(X) < min{UB(X)} U{UB(T, " X)| j=1...,p}) .
C<{B:CUT|LB(B) <UB(X)+¢}.

C is called thecandidate setThe branch and bound scheme aims to reduead
make it converge tX .

The rules of covering, selection, branching and bounding differ from #igoiio

algorithm.

The rules of covering and branching depend on type of partitions Raeidions may
be hyper-rectangular, simplicial, hyper-conic or hyper-spheridaually feasible
regions of general global optimization problems are hyper-reesngll interval and
most of Lipschitz global optimization branch and bound algorithms useyiber-h
rectangular partitions. In this case initial covering is sim@ke{X}. Covering by
hyper-spheres causes overcovering of feasible region as svedverlapping of

spheres themselves. In [12] a two dimensional case is consideresl vaeching is

15



implemented as partitioning into regular sub-simplices with Intiiger-covering.
Such a non-overlapping branching is not known in more than two dimensions. The
use of irregular simplices enables nonovercovering of feasiblerrezg well as

nonoverlapping branching.

There are three main strategies of selection:
e Best first — select an element@©fwith minimal lower bound.
e Depth first — select the youngest elementof

e Breadth first — select the oldest elementof

The bounding rule describes how the bounds of minimum are found. For the upper
bound the best currently found value of the objective function might lepi@ct The
lower bound may be estimated using convex envelopes of function valuesthesing

Lipschitz condition or interval arithmetic.

1.2 Parallel computers

When computing power of usual computers is not sufficient to solve icplac
problem, the high performance parallel computers may be helpfullePacamputers
are classified to be a shared memory multiprocessor systemessage-passing

multicomputer system.

The shared memory multiprocessor system consists of multiglenahtprocessors
and the shared memory, as it is shown in Figure 1. The shared measoaysingle
address space and each processor can access it. The datadsirs the shared
memory. The processors communicate through shared data strughatsnakes

parallel programming attractive.

The shared memory can become a bottleneck when processors frequeatly the
shared memory. It is difficult to implement the hardware to aehfast access to all

the shared memory by all the processors, especially when tieengaay processors.
The hierarchical memory structure is usually implemented involtinegfast local
cache memory and the mechanism of updating the global memory (cache coherency)

16



ME ME ME

Interconnection network

PE PE PE

Processors

Figure 1. Shared memory multiprocessor system.

In a distributed message-passing multicomputer system each smobes its local
memory which is not accessible by other processors. The memaistriuted. The
interconnection network should be provided for processors to communicateal Speci
mechanisms for controlling simultaneous access of data are nossaBceA

distributed message-passing multicomputer system is shown in Figure 2.

Interconnection network

PE PE Processors PE

ME ME Local memory: | ME

Figure 2. Distributed message-passing multicomputer system.

Such a system may be a specially designed computer systeisual computers
connected using an interconnection network. Specially designed systaaily have
static interconnection networks [82] who have direct physical linksdmst nodes.
Possible topologies of the static network are [20], [70], [82] comlyletonnected
network, line-mesh, ring-torus, star, tree, hypercube.

Processors communicate using messages who include data. The rpessatg

multicomputer will physicallyscale easier than a shared memory multiprocessor,

what means it can more easily be made larger [82].

17



Implementation of parallel programs for message-passing syst@ore complicated
than for shared memory systems [82]. However, the messagegassiadigm is
more general. It can be implemented in a shared memory rockgsor by using
shared memory to hold data to be sent between processors. Tdédrefgrossible to
implement parallel message-passing algorithms portable amongypethof parallel
systems — shared memory and message-passing multiprocessoes. exists a
standardized portable communication protocol used on massively parattaines,
the Message Passing Interface (MPI) [55]. Because of itsrajigpethe message-
passing model has been chosen in our research for implementatioaradielp

programs.

INMOS has introduced transputer — a multicomputer building block. Tramspute
specially designed device, which integrates a reduced-insinegét-computer
processor, some memory and a set of inter-processor communicak® i8], [71].
Some families of transputers have been manufactured: T222, T425, T800.
Multiprocessor boards based on transputers for personal computerselatirely

low cost parallel-processing solutions. The transputer network topologgualf
boards may be set up as a pipeline, a ring, a binary traecobe [76]. The Occam
language [37] developed by INMOS was used to implement papatdgrams on

transputer systems.

Parallel computing is one of the most developing branches ofcgcand technology.
The top list of most powerful supercomputers is updated twice ra[¥8pg There is
number of international journals and conferences on parallel computinge Mas
lack of parallel computer systems in Lithuania. Therefore ghr@dmputing was not
very popular here. However it is developing. There are IBM RS/600pasilel
computer with four processors at Vilnius Gediminas Technical Uriiyeand some
clusters of workstations. A book on parallel algorithms for studentsatfiematics
and computer science [13] is published at Vilnius Gediminas Techdiugkrsity.
Few doctoral dissertations related to parallel computing dended, for example
[63], [72].
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There are some published results on parallel computing researithuariia. In [15]
the implementation of numerical adaptive algorithms for multi-dinoeas
quadrature on distributed-memory parallel systems is describedaldbethms are
targeted at clusters of workstations with standard messagmgasterfaces. The
most important issues are communication and load balancing. Namesstlts on

various workstation clusters are reported.

Parallel numerical integration algorithms for multi-dimensionategrals are
considered in [14]. A new hyper-rectangle selection strategyraposed for the
implementation of globally adaptive parallel quadrature algoritAie. master-slave
parallel algorithm prototype is used for the realization of figerehm. Numerical

results on the SP2 computer and on a cluster of workstations are reported.

The analysis of the method for multiple criteria optimization mwtsl applying a
computer network has been proposed in [19]. The essence of the proposedisnethod
the distribution of the concrete optimization problem into the netwaitier than the

parallelization of some optimization method.

1.3 Load balancing and termination detection

The development of on algorithm in order to run the parts of the &lgonit parallel

is calledparallelization The parallelization aims to obtain the smallest possible time
of execution of the algorithm. The processors should not become idleot.e.
contributing to common goal. Ideally the processors should compute continaadsly
finish together. The possibly uniform distribution of the work betwg@tessors is
calledload balancing The detection when the computations are completed is called

termination detection

1.3.1 Centralized load balancing

The load balancing is called centralized if one processor dyalyndistributes the
tasks and the other processors do not interchange them betweeaotteachrThis
corresponds to the master-slave paradigm. The master procesisotheoktollection
of tasks, so calledork poolor task queueWhen the slave processor becomes idle it

requests a task from the master processor. The master progesdsrout the most
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complex or the most important task it has. When the slave fintbleetask it sends

the results to the master processor.

The master processor also manages the termination. In thigt cas®t difficult to
detect the termination conditions defined as follows:
e The task queue is empty.

e All slave processors request a task.

The second condition means that all slaves have finished theiratagksave sent the
results to master. If a slave processor is still running oissible that new tasks will
be generated. The disadvantage of this scheme is that the roastérecome a
bottleneck especially when the system is large and the comrtiangare frequent:

the slaves can become idle when waiting for new tasks.

1.3.2 Static load balancing

The load balancing is called static if the work is distribuit@tially before the
computations start. The synonyms of the static load balancingtatie mapping,
static scheduling. When the number of initial tasks is equal tontmber of
processors each processor gets one task. When the number of kagler ithe static
load balancing techniques are used to distribute the tasks among the processors:
e Round robin algorithm distributes tasks in sequential order of prasessming
back to the first processor after the last one.
e Randomized algorithms distribute tasks in random order.
e Optimization techniques distribute tasks minimizing the timexetetion of the

parallel algorithm.

The optimization techniques could be used for the static load balawtieg the
execution time for each task is known in advance. However it is diffigult to
estimate the execution times without actually executing tbgram. Moreover the
system may be heterogeneous — processors and interconnections ofiaiifieeent

type and speed.
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The termination is easy because the processors do not commumécsasks. When
the processors finish their work they terminate. However the baémhce may be

poor since the processors may finish their work at different times.

1.3.3 Distributed dynamic load balancing

By distributed dynamic load balancing the processors exchange hetlween
themselves. The aim is to share the work uniformly. Processdmsmpecalculations

as well as communicate to exchange the tasks.

The transfer of task could be initiated either by the recawdry the sender. When
the processor has few or no tasks it initiates the transfeequests a task from
another processor, which sends one or more tasks if it has. An a\eflpeocessor
may initiate the transfer: it sends one or more tasks to the mtheessors it selects.
However, the processor should determine that it is overloaded, whasriat it has
more tasks than the others. The determination could be expensive, b#wause

processors should know the load of other processors.

Two dynamic distribution strategies are indicated in [11]:
e “on demand” is the receiver initiated strategy,
e “on overload” is the sender initiated strategy.

A local approach of determination overload is presented in [11].

The processor could be selected for communication having the struaftuthe
interconnection network in mind. If the interconnection network is knowmeheest
neighbors are usually selected. If the structure is generatlnown, all processors
are equal candidates and any other processor could be selsstbegrocessor has its
own local selection algorithm. The processor could be selected tmind robin or
random algorithms. The round robin algorithm selects candidate poocess
sequential order coming back to the first processor after theastThe random

selection algorithm selects the random processor from the candidate set.

Five dynamic load balance strategies are discussed in [81]:
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e Sender Initiated Diffusion (SID) is an asynchronous highly distrcbdteal
approach using near-neighbor information only. The heavily loaded sender
processor initiates balancing.

e Receiver Initiated Diffusion (RID) is similar to SID apprbadhe underloaded
receiver processor initiates balancing.

e Hierarchical Balancing Method (HBM) is an asynchronous global appnaich
organizes the system into hierarchy of subsystems and balandest Iddferent
levels of hierarchy.

e Gradient Method (GM) uses a gradient map of the proximities of loaaied
processors in the system to guide the migration of tasks betwedoaolesl and
underloaded processors.

e Dimension Exchange Method (DEM) is a global, fully synchronousatiter

approach.

The strategies illustrate the tradeoff between:
e Knowledge — the accuracy of balancing decision,
e Overhead — the amount of added processing and communication incurred by the

balancing.

The results of experiments with implementations of all fivatsgies on an Intel
IPSC/2 hypercube indicate that the RID approach performs welcamdoe most
easily be scaled to support highly parallel systems [81].

Using the distributed dynamic load balancing the work could be distdbut
uniformly. However communications between processors cause an overhegad dur
execution, because some time is spent on communications. Sometinresotiid be

not enough tasks to share.

1.3.4 Termination detection

To detect the termination of a distributed computation may be wiffiche general
distributed termination conditions are:
e All the processors have finished their tasks. This is local termination condition.

e There are no tasks in transit. The task in transit may restart a texchpratessor.
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It is not difficult to detect the first condition. However the secooildition could not
be detected locally. One of the termination techniques should be usedisTifbuted
termination method using request and acknowledgement messagasrial geethod
to cope with tasks in transit [82]. In [4] the formal mathemhtizguments of the
method are given in detail. In this method each processor is in ohe states —
active or inactive. Initially a processor has no tasks and ¢$ivea It becomes active
when it gets a task from other processor. The activating pardessomes the parent
of the activated processor. In this way a tree of active psoce are created. Each
active processor has a unique parent. The active processor reaje remre tasks
from other processors. If it gets the task from the processor svhet ihis parent, it
has to send an acknowledgement message. The processor sends ackn@mtedgem
message to its parent when it becomes inactive. It becomes inactive when:

e It has finished all its tasks. The local termination condition is satisfied.

e It has sent all its acknowledgement messages for the tasks it has received.

e It has received all the acknowledgment messages for the tasks it has sent.
The processor becomes inactive before its parent processor. i¢heyot processor

becomes inactive the computation can terminate.

Some other termination algorithms are given in [82]. The ringitetion algorithms
organize processors in a ring structure and use tokens to detenatemmconditions.
The fixed energy distributed termination algorithm uses notaticam fofed quantity
within the system. The energy is spread out when distributingasles and it is
returned after the tasks are completed. The termination condatiersatisfied when
all the energy is returned to the root and the root finishes its tasks.

The termination method using request and acknowledgement method was fcnose
distributed algorithms with dynamic load balancing because gfeiterality and its

proven soundness [82].

1.4 Parallel branch-and-bound

The literature on parallel branch-and-bound published up till 1994 has beewaévi

in [22], where a new classification of parallel branch and bound #igwihas been

23



proposed. The authors identify three main approaches in designintglplarahch-

and-bound algorithms:

e Parallelism of typel introduces parallelism performing the operations on
generated subproblems. It consists, for example, of executing dinedibg
operation in parallel for each subproblem to accelerate the exectitius, this
type of parallelism has no influence on the general structutikeobranch-and-
bound algorithm and is particular to the problem. For example, thetiobje
function may be computed in parallel.

e Parallelism of type2 consists of building the branch-and-bound search tree in
parallel by performing operations on several subproblems simaitalye Hence,
this type of parallelism may affect the design of the algorithm.

e Parallelism of type3 implies that several search branch-and-bound trees are built
in parallel. The trees are characterized by different atjpers (branching,
bounding, testing for elimination, or selection), and the information gedera

when building one tree can be used for the construction of another.

The second type of parallelism may be further classifiedordow to the
implementation techniques [22%ynchronousalgorithms are executed in phases. In
each phase processors work independently and communicates only behases.
Processors must synchronize before communications what cause dvehhea
asynchronousalgorithms processors may communicate at any unpredictabde tim

These algorithms have nondeterministic behavior.

The second implementation difference depends on the location wiothkepoo] i.e.

the store of subproblemsSingle pool algorithms store the subproblems in one
memory location. Single pool algorithms may be implemented usingaiseer-slave
paradigm presented in Section 1.3.1. In this case the master protessges the
single work pool.Multiple pool algorithms use several work pools — store the
subproblems in several memory locations. These algorithms corretspdistributed

paradigm.

According to the classification of [22] parallel branch-and-bound ifgos of type 2

are classified as follows:
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e Synchronous Single Po($SP),

e Asynchronous Single PoGASP),

e Synchronous Multiple PogEMP),
e Asynchronous Multiple PogAMP).

General features of known branch-and-bound algorithms depending to #rerdiff
subclasses are analyzed in [22]. Authors conclude that synchronizatiomeisessary
in most cases, ASP algorithms are appropriate only for problethsamnontrivial

bounding operation and parallel architectures with small number of processors.

A slightly different classification of parallel branch-and-boundathms is proposed

in [54]. The algorithms are characterized by the implementafidihne work pool and

synchronization:

e Select Highest Overa{EHO). Highly synchronized algorithms with a global work
pool.

e Select Highest AvailableSHA). Algorithms with a global work pool but without
synchronization.

e Select Highest LocallySHL). Each unsynchronized processor has its own work
pool.

e Select Highest with a shared pd@HQ, and SHA,) are based on SHO and SHA
respectively. Processors are grouped imgroups ( is less than the number of
processors) and all processors in the same group share the sanp@oloEHQ

and SHO, SHAand SHA are equivalents respectively.

The results of the experiments with SHO, SHA and SHL algorigm@agjiven in [54].

The results show that SHA performs best when the evaluation sutiproblem is
reasonably accurate and cost time, and there are a small nunyirecegsors. The

SHL performs best for problems with non-accurate and cheap ewaluatithe
subproblems. When the time to evaluate the subproblem is not constant, the
synchronization step is costly and SHO performs badly.

Parallel branch-and-bound algorithms of different classes magob#ined. A

parallel branch-and-bound algorithm with two phases: a synchronosization
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and an asynchronous exploration, is proposed in [23]. The synchronous atitaliz
phase is a generalization of the sequential best-first seaatdgst In the exploration

phase the asynchronous processors perform independent depth-first searches.

An original depth-first branch-and-bound algorithm for shared menmmaghines is
proposed in [50]. The feeding tree is introduced. It allows a goodbdistm of tasks
to the processors. The shared feeding tree is the upper part skdheh tree
developed down to the predefined depth. The leaves of the feedingetrénee aoots
of the subtrees allocated to the processors. The algorithm weasted on shared
memory machine on up to 4 processors. The results show that speedantyisaqeal

to the number of processors.

The search strategy (the selection criterion) in paralbeidir-and-bound is discussed
in [10]. The best first and the depth first search strategeeseated on the Quadratic
Assignment and the Job Scheduling combinatorial optimization probleratedss
are compared in terms of running times and in terms of numberfofiped bound

calculations.

Parallel branch-and-bound algorithms may be classified by nafatiee used load
balancing strategy:

e Centralized load balancing,

e Static load balancing,

e Distributed dynamic load balancing.

Similar classification was used in [8]:

e The Master-Slave Paradigm,

¢ Distributed Branch-and-Bound,

e Parallel Branch-and-Bound with static work distribution.

Parallel branch-and-bound algorithms may correspond to one of two nmadigmas
of parallel programming: master-slave or distributed.

In the parallel master-slave system there is one mpsteessor, which controls the

optimization process. The slave processors receive subproblems Heomaister,
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perform computations, and send the results to the master. Iltusedrthat all slaves
perform computations on promising subproblems, the master controls loaditgla
and termination. The disadvantage of this scheme is the potenti@nbokt of the

master especially when the system is large and the comaioni are frequent and

long lasting. The slaves may become idle when waiting for subproblems.

The second paradigm, i.e. distributed parallelization, assumes a ¢o@peak of a
set of equal communicating processors. The main problems of stebuted

parallelization are load balancing and termination detection.

There are two different balancing strategies: static gndrdic. When the static load
balancing is used, the subproblems are initially distributed andttigeprocessors
work independently and do not exchange any later generated subprobleens. T
application of static load balancing to the considered problem condspo the
method of geometric parallelization. Its implementation is simple, $disadvantage

Is unpredictable distribution of work load implying situations when soroeegsors

become idle.

Dynamic load balancing aims to share the work load uniformigwé¥er, to
implement such a strategy the problems of controlling the loalkkhnce and

termination detection should be solved.

All earlier mentioned references on parallel branch-and-bound dsoedi
combinatorial optimization. The literature on parallel branchiameid for global
optimization is limited. However parallel branch-and-bound methods for
combinatorial optimization and global optimization posses many sitigitaand few

differences, as discussed in [8].

The results of some numerical experiments with an intervahodefor global
optimization on a transputer system are presented in [24]. Algbamzethod for
verified global optimization using a centralized mediator for tlyeachic load

balancing is proposed in [3].

The use of a depth first strategy in parallel global optimization is desduis$32].
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1.5 Criteria of parallelization

The efficiency of the parallelization is measured using seeetaria. A commonly

used criterion of parallel algorithms is speedup:

wheret,, is time used by the algorithm implementedrorprocessors. The speedup

divided by number of processors is usually called the efficiency:

m

e:S_m
m

Normally, 1<s, <m and O0<e, < 1 However in parallel branch and bound the
progress of the search may differ for the different number of poresThis depends

on:

e initial partitioning,

e how sub-problems are subdivided,

e when better values of the objective functioh are found and exchanged

(sometimes earlier and sometimes later than by the corresgosdguential

algorithm).

If the progress of search is different, then the searchidrédferent, and the total
number of expanded subdomains is different. There may be either miengeoror
the same number of expanded subdomains. This may cause anomalies:

e detrimental anomalg,<1, more expanded subdomains,

e deceleration anomaly,, >s, , for m<m, more expanded subdomains when

more Processors,

e acceleration anomak,>m, fewer expanded subdomains.

The anomalies are mentioned in number of papers about the paratieh aad
bound, for example [65], [22]. The performance of the parallel brandtzaund
algorithms with the best first strategy by examining masi anomalies was analyzed
in [51].
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The initial partitioning must not depend on the number of processorscteade
anomalies. However, the large number of initial sub-problems museterajed
when various numbers of processors are used. Furthermore, the |loazk lsdpends
on the number of processors if the initial partitioning does not. Tlupems since
number of initial sub-problems for each processor decreases whewurftger of
processors increases. When the initial partitioning depends on the nuwhber
processors and each processor gets the same number of initial sepagrdhke load
balance does not depend on the number of processors. In this cagalih@on of

criteria is more correct, but anomalies are more likely.

The speedup and the efficiency are not well appropriate critedase of anomalies.
The criteria of pseudo efficiency and proportion of time spent on esiloas (other
time is spent on communications or being idle) are less sengitimaomalies. The
criterion of pseudo efficiency is proposed in [65]

__ /M

P& =t T

where |Tm| is the measure of amount of work done by the algorithm using

processors. The good measure of amount of work must be chosen whenuttee pse
efficiency criterion is used. In [65] the amount of work is the nundfgoroblem-
states expanded during the solution. The problem-state is similae &ub-problem

in the global optimization branch and bound.

The total number of calls of the objective function is good measuiteeaimount of

work:

e when the objective function is “expensive”, i.e. its calculation reguinore time
than the auxiliary calculations by the optimization algorithm,

e when the amount of the auxiliary calculations is proportional to thebeumf
calls of the objective function.

In the other cases the number of calls of the objective fundiontia good measure

of the amount of work.

The proportion of time spent on calculation is also called processor utilizatidhi$9].

the average percentage of the total solution time spent bypeacessor doing useful
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work as opposed to being idle or waiting for communication or memwgss. The
processor utilization is always between 0 and 1. It gives someaiimaticon whether
the given implementation suffers from problems with workload distobuand

communication bottlenecks.
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2 Lipschitz global optimization with simplicial partitioning

In this chapter a new Lipschitz global optimization algorithnmthwsimplicial
partitioning is presented. The numerical results of experimeitksthe sequential
algorithm are discussed and compared with the results of otpschiiz global
optimization algorithms. The parallelization of the algorithm is describedpdizdiel

implementations are assessed with respect to criteria of paraitelizat

2.1 Introduction

The global optimization problem is considered: find,, € X < R" such that

fmin = f(Xmin

) < mixn f(X)+&, whereg is a small positive constant. The objective
Xe

functionf defined overX < R" is supposed to be Lipschitzian, i.e.
F)-f(y)|<L|x-y|  vxeX, vyeX,

whereL is a constant called Lipschitz consté*”t,denotes the Euclidean norm.

Lipschitz optimization is one of the most deeply investigated subpcigobal
optimization. The advantages and disadvantages of this approach asselis@.g. in
[31], [61]. In this chapter the possibilities of enhancing of efficy of Lipschitz
global optimization branch and bound algorithms is considered introduciwg ne

irregular simplex-based branching and bounding techniques.

In Section 2.2 a partitioning method of irregular simplices is propdseskection 2.3
the calculations of bounds for Lipshitzian functions are discussed. tiois@c4 the
test results of the proposed simplex-based branch and bound algoritgiveareThe
proposed algorithm is compared with other branch and bound algorithorgliagcto

the criterion of the number of function evaluations. In Section 2.5mghtation and

evaluation of parallel algorithms is discussed.

2.2 Simplex-based branching

Simplex is the convex hull ai+1 points inn-dimensional Euclidean space i€ a
positive integer). In one-dimensional space a simplex is a segrhding, in two-

dimensional space it is a triangle, in three-dimensional spaseaittetrahedron. A
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simplex is a polyhedron in-dimensional space, which has the minimal number of

vertices.

Usually, a feasible region in Lipschitz optimization is definedaahyper-rectangle.
There are two main covering strategies of a hyper-relgabpg simplices: over-

covering and face to face vertex triangulation.

Using the first strategy a hyper-rectangle is coveredrgysimplex. One version is to

fit a hyper-rectangle into a simplex matching a vertex. @egex of the hyper-
rectangle and one vertex of the simplex are matched, edgles simplex from this
vertex include edges of the hyper-rectangle from this vesieck,the opposite vertex

of the hyper-rectangle is placed on the opposite face of nmglest. The one- and
two-dimensional examples are shown in Figure 3. Covering is not uniquen Whe

implementing, it is aimed to minimize the over-covering.

Figure 3. Covering by matching a vertex.

The other version is to fit a hyper-rectangle into a simplaging a face of the hyper-
rectangle on a face of the simplex. The examples of such cgvara shown in

Figure 4. In this case covering using a regular simplex is possible.
An n-dimensional hyper-rectangle is face-to-face vertex triangaili&it is partitioned

into finitely manyn-simplices, where the vertices fsimplices are also the vertices

of the hyper-rectangle. The examples of such partition are shown in Figure 5.
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a. b.

Figure 4. Covering by placing a face of the hyper-rectangle on a face of the

simplex.

b.

Figure 5. Face to face vertex triangulation of a hyper-rectangle.

Branching is carried out by means of partitioning a simplex suf-simplices. It is
known that tight bounds for function values can not be constructed for atpdrver

simplex. An irregular triangle (two-dimensional simplex) niag divided into 4
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similar triangles, a right equilateral triangle may be dbd into 2 similar triangles,
see Figure 6. If other branching strategies are used, thiergien of simplices must
be prevented. One way of prevention is to divide simplices by aripfane passing
through the middle point of the longest edge and the vertices not lmgjaiogthe

longest edge. This ensures that the longest edge of sub-simpliagsmore than two

times longer than other edges. The examples of such division are shown in7Eigure

a. b.

Figure 6. Partition of a triangle into similar triangles.

a. b.
Figure 7. Partition of a simplex into two simplices using the midpoint oftte

longest edge.

2.3 Bounds for Lipschitz function values on a polyhedron

The efficiency of the branch and bound technique depends on the bound calculation.

The algorithm stops faster in case of tight bounds of the minimuoe v f over
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polyhedronl. However, calculation of tight bounds usually is time consumihg. T
general algorithm for calculation of upper and lower bounds of the mmiwalue of

f over polyhedrori is presented in Algorithm 2. First, the points in a polyhedron are
chosen and the function values at these points are calculated. Théooppérs the
minimum of these values. The lower bound is calculated using tladsesvand the

Lipschitz condition.

Algorithm 2. General algorithm for calculating bounds of the minimum value of

a function on a polyhedron.

Choose a finite sdd of points inl.

UB(l) = rInDn f(X).

Build a lower bounding functiok onl.

ComputeLB(l) = miln F(x).

The lower bounding function is the upper envelope of a set of circalascwith
parallel symmetry axes. If >J,(I c R”) and more than one point ihis used, the
minimization of lower bounding function is time consuming. The fisgé of local
optimum points of such function could be computed by solving systems of tjcadra

equations [31].

Usually, one point in the interior of a polyhedron or some/all ofeextr points
(vertices of a polyhedron) are chosen for evaluation of the funcfiamel point is

used, the lower bound is simple to calculate:

LB(1) = f(%,) - Lmaxx—x,.
The lower bound would be more tight if

X, = argmin(malvﬂx— X, ||) :

x el Xe
If the polyhedron is simplex and the center poihtavering hyper-sphere is in the
interior of the simplexy, is the center point of covering hyper-sphere. Ploisit is an
intersection of hyper-planes passing through thapoints of and perpendicular to the

edges. It can be found by solving a system of tiegaiations.
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The function values at vertices of a polyhedron banused also when calculating
bounds for neighboring and descendant polyheditdogever, ifn>1 and more than
one vertex is used, the minimization of lower bangdunction is time consuming.
The calculations are simpler when one vertex islu$sbe lower bound is calculated
using the function value at this vertex and thegllerof the longest edge from this
vertex. The lower bound is underestimated. Theteiglower bound is the highest

lower bound calculated using each vertex:
LB(l) = mxva>{f (x,)-L rrx13>1|x— xv||)

The algorithm for calculation of such bounds iswhas Algorithm 3.

Algorithm 3. Algorithm for simple calculation of bounds of the minimum value

of a function on a polyhedron.

LB=w
For all vertices
maxk0
For all verticeg
maxkEmax(maxl |k —x| )
LB=max(LB, f(x) — L x maxl)

2.4 Numerical results

Thorough theoretical investigation of the proposed version of branchbound
algorithm is difficult, although their convergence is obvious. Therefmrumerical
modeling method was used for the investigation.

The C++ program for simplex-based branch and bound was implemenkethrei¢
strategies of selection. The latest implementation is availblnoncommercial use
at [88]. The best first strategy was implemented as prigptgyue, the depth first
strategy as FILO, the breadth first strategy as FIFO.

Three ways of initial covering were implemented: over-coverirgydllastrated in
Figure 3 and Figure 4 and face to face vertex triangulatiolluasated in Figure 5.

Two ways of branching were implemented: through the midpoint dbtigest edge
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as illustrated in Figure 6b and Figure 7 and through the midpointd etigés as

illustrated in Figure 6a.

The bounds of the minimum of the objective function are calculated in dhe ofo
ways described in the Section 2.3: using function value at center pobovefing

hyper-sphere, or function values at one or more vertiggs

The number of calls of the objective function is used as aiontef efficiency. A set

of two-dimensional test functions from [31] was used for testing and evaluation.

The test results have shown superiority of calculation of bounds fusiagion values
at vertices over using function value at center point of coverypgrisphere. The
disadvantage of the later is non-reusability of the function valudistpoint for
calculation bounds for other simplices. Contrary the function valuesrtites are

used when calculating bounds for neighboring and descendant simplices.

The experiments have confirmed that it is unlikely worth to evalfwiction at all
vertices of a simplex. The best efficiency has been reached Wwbends are
calculated as follows. If function values at vertices have not beslnatded before,
then a function value is evaluated at vertex not belonging to the loedgst It is
used to calculate bounds. In other case all earlier evaluatetbfumatues at vertices

of the simplex are used to calculate lower bound.

The best first strategy is more efficient than the othethpadgh efficiency of the
breadth first strategy is similar. The efficiency is worst for thatdérst strategy. The
experiments have shown that it is better to branch simplceagh the middle point
of the longest edge, but not through the midpoints of all edges. Thefwayering
does not have much influence, although superiority of vertex trigainguls more

frequent than that of over-coverings.
Typical results of minimization one of the test functions from [@dihg different

versions of the proposed algorithm are given in Table 1. The boundslanéated

using function values at vertices. Similar results are obtained for oth&urtegons.
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Table 1. Results of minimization one of the test functions from [31] usg

different versions of the proposed algorithm.

Initial covering Branching Selection Number of
function calls

A face to face vertexTwo descendents adBest first 244
triangulation in Figure 6b and Breadth first 244
Figure 7 Depth first 259
Four descendents a8est first 371
in Figure 6a Breadth first 384
Depth first 658
Regular over{ Two descendents ad$Best first 263
covering, as in Figurein Figure 6b and Breadth first 262
4 Figure 7 Depth first 427
Four descendents a8est first 328
in Figure 6a Breadth first 328
Depth first 321
Over-covering, as inTwo descendents adest first 257
Figure 3 in Figure 6b and Breadth first 260
Figure 7 Depth first 275
Four descendents a8est first 363
in Figure 6a Breadth first 383
Depth first 401

The testing results suggest the following version ofrtidemensional simplex-based
branch and bound algorithm to be used:
e To cover a feasible region by simplices using face to faceexer
triangulation.
e To partition the simplices by a hyper-plane passing through ttpomit
of the longest edge and the vertices whose do not belong to the longest
edge.
e To estimate the bounds of the minimum of the function over the simplex
using function values at one or more vertices.
e To use the best first strategy of selection.

The final sequential algorithm is shown as Algorithm 4.

Algorithm 4. Sequential algorithm.
Cover Regi on( Feasi bl eRegi on );

Whi | e( Wor kPool . | sNot Empty() )
Branch( WorkPool . Best () );
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The best branch and bound algorithm from [31] denoted as GHJ and the two-
dimensional branch and bound algorithm with regular simplex-basedirapJ¥sym

[12] denoted as CZ were used for comparison. The results of optonizae test
functions using GHJ, CZ and proposed algorithms are presented in Table 2.

Table 2. Numbers of function calls minimizing test functions using di€rent

algorithms.
Test function from [31] GHJ [3]] CZ[12]| proposed
1 643 489 611
2 167 37 132
3 3531 2618 2185
3.1 3953 3245 1559
3.2 3035 2665 1225
3.3 3689 3387 1429
4 45 41 70
5 73 53 80
6 969 629 838
7 7969 6370 3117
8 301 255 244
9 13953 8759 3773
9.1 14559 9531 3890
9.2 13281 9002 3729
9.3 12295 8917 3610
10 1123 820 848
11 2677 2222 1566
12 12643 10851 4001
13 15695 10643 4084

The numbers of function calls of minimization most of test functiersmnallest for
the proposed algorithm. The numbers of function calls of other tastidas are
similar. The results of experimental testing show that the propasgaorithm

performs better than other branch and bound algorithms for Lipschitz optimization.

2.5 Parallel algorithms

The rules of covering, branching, bounding and selection by paraj@iitams are

the same as by the sequential algorithm:

e Afeasible region is covered by simplices using face to face vertex traiogul

e The simplices are branched by a hyper-plane passing throughidpeint of the
longest edge and the vertices whose do not belong to the longest edge.
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e The lower and upper bounds of the minimum of the function over the sirapgex
estimated using function values at vertices.

e The best first selection strategy is used.

Three parallel branch-and-bound algorithms are considered, each ofisherone of
the load balancing strategy:

e Algorithm with static load balancing,

e Master-slave algorithm with centralized load balancing,

e Algorithm with distributed dynamic load balancing.

2.5.1 Algorithm with static load balancing

By the static load balancing, the tasks are initially distribated then the processors

work independently and do not exchange any later generated taskspéiatiel

processor runs the same algorithm, which is shown as Algoritirhesalgorithm is

very similar to the Sequential Algorithm 4. The differences are:

e Each processor covers one part of the feasible region. Thiswsissymbolically
using division by the number of processons,

e After completion the results of optimization are collected.

e Processors interchange the best currently found values of the \wbjoiction

when they are found.

Algorithm 5. Parallel algorithm with static load balancing.

Cover Regi on( Feasi bl eRegion / m);
Whi | e( Wor kPool . I sNot Enpty() )

Branch( Wor kPool . Best () );
Col | ect Resul ts();

The algorithm is easy to implement. However the load balancébmaypor since the

processors may finish their work at different times.

2.5.2 Master-slave algorithm

In the parallel master-slave system there is one mpsteessor, which controls the
optimization process. The slave processors receive tasks fromaster, perform
computations on them and send the results to the master. Slaves perform computations

on promising subproblems. The master controls load balancing and termination.
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The algorithm is shown as Algorithm 6. The master processor Hudsork pool —
the collection of subproblems. When the slave processor has no work it requests a task
from the master processor. The master processor sends out thelddpesblem it has.

When the slave finishes the task it sends the results to the master processor.

Algorithm 6. Parallel master slave algorithm.

I f( Rank == Master )
Cover Regi on( Feasi bl eRegi on );
Whi | e( WorkPool . I sNot Enpty() or Not Al | Requested() )
Recei ve( Request, fromAny );
I f( WorkPool . I sNot Enpty() and SoneRequested() )
Send( WorkPool . Best (), toRequested );
Whi | e( Receive( Task, fromAny )
Wor kPool . Add( Task );
Send( Stop, toAll );
El se
Send( Request, toMaster );
Wi | e( not Receive( Stop, fromvaster ) )
| f( Receive( Task, fromvaster ) )
Branch( Task );
VWi | e( Wor kPool . I sNot Enpty() )
Send( WorkPool . Best (), toMaster );
Send( Request, toMaster );
Col | ect Resul ts();

The master processor manages the termination. The termination conditions are:

e The work pool is empty.

e Every slave processor requested for a task. This means thstaxas have
finished their tasks and have sent the results to master. Klawny processor is
running it is possible that it will generate new tasks.

The slaves terminate when they receive the termination mefsagethe master.
After completion the results of optimization are collected.piMicessors interchange
the better values of the objective function when they are found.

The disadvantage of this scheme is that master can becomeenduittespecially

when the system is large and the communications are frequent atyd Tiea slaves

can become idle when waiting for new tasks.
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2.5.3 Algorithm with distributed dynamic load balancing

The distributed parallelization means a cooperative work of aofeequal
communicating processors. Dynamic load balancing aims to sharevork load
uniformly. The main problems of the distributed dynamic load balarari@ghe load

balancing and the termination detection.

The algorithm is shown as Algorithm 7. The distributed terminatiothodeis based
on request and acknowledgement messages. Each processor is in onstaitbthe
active or inactive. Initially a processor has no tasks and ¢$ivea It becomes active
when it gets a task from another processor. The activating gs@céecomes the
parent. In this way a tree of active processors is createl.d€tiwe processor has the
unique parent, which is defined by the variaBer ent in the Algorithm 7. For

inactive processofBar ent = Rank.

The active processor may receive tasks from other proce3dwrsteceived tasks
from non-parent processors are acknowledged by the acknowledgeessaige. The
processor sends acknowledgement message to its parent when iebaécactive. It

becomes inactive when:

e It has finished all its tasks. Local termination condition.

e It has sent all its acknowledgement messages for tasks it has received.

e |t has received all the acknowledgment messages for tasks it has sent.

The process becomes inactive before its parent process. Whenothpraoess

becomes inactive the algorithm terminates.

Two initialization strategies are used: distributed and cenédli The distributed
strategy is similar to the case with static load balandiagh processor covers one
part of the feasible region. This is shown symbolically using dinisy the number

of processoram. The root processor after initialization becomes a parent of all

processors.
The centralized initialization strategy is similar to these with centralized load

balancing. The root processor covers the feasible region. Othesgpoos@re inactive

at the beginning and have no parents.
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Algorithm 7. Parallel algorithm with distributed dynamic load balancing.

Sons[0..m1] = 0;
[f( Init0)
Cover Regi on( Feasi bl eRegion / m);
Parent = Root;
| f( Rank == Root )
Sons[1l..m1l] = 1;
El se
| f( Rank == Root )
Cover Regi on( Feasi bl eRegi on );
Parent = Rank;
Whi | e( not Received( Stop, fronRoot ) )
I f( WorkPool . 1sNot Enpty() )
MyTask = Wbr kPool . Best () ;
El se
MyTask = NULL;
Send( Request, toRoundRobin() );
Whi | e( Receive( Anything, fromAny ) )
| f( Received( Request, fromAny ) )
I f( WorkPool . I sNot Enpty() )
Send( WorkPool . Best (), toSource );
Sons[ Source ] ++;
El se
Send( Rejection, toSource );
| f( Received( Acknow edgenent, fromAny )
Sons[ Source ]--;
| f( Received( Task, fromAny ) )
I f( NoParent() )
Parent == Source,
El se
Send( Acknow edgenent, toSource );
| f( MyTask == NULL )
MyTask = Task;
El se
Wor kPool . Add( Task );
| f( MyTask !'= NULL )
Branch( MyTask );
I f( WorkPool . I sEnpty() and NoSons() )
| f( Rank == Root )
Send( Stop, toAll );
Else If( Parent() )
Send( Acknow edgenent, toParent );
Parent = Rank;
Col | ect Resul ts();

Receiver initiated, or “on demand”, load balancing strategy is ud#éten the

processor has no tasks it requests a task from the other proc€ke general
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structure is used — all processors are equal candidates amutomegsor could be
selected for communications. The round robin algorithm is used tot dblec
candidate processor in sequential order coming back to the first processtnaafast

one.

Using the distributed dynamic load balancing the work could be distdbut
uniformly. However communications between processors cause an overheey dur
execution, because some time is spent on communications. Sometiraesthd not

be enough tasks to share.

The Algorithm 7 with distributed dynamic load balancing is much ncoraplicated
than Algorithm 5 with static load balancing and master-slaveorklgn 6. The
implementation of this algorithm is much more difficult and somes could be not

worth the time spent on implementation.

2.5.4 Results of experiments with parallel algorithms

All three parallel algorithms have been implemented in C++ andl (Miessage-
Passing Interface — a standard specification for messagegébsanies). The latest
implementation is available for noncommercial use at [88]. Tharitigns have been
tested on the Sun HPC 6500 UltraSPARC-II based system with Sun aWMPI

Edinburgh Parallel Computing Center. Up till 24 parallel processors have been use

The same test functions were used in testing and evaluation efiecidts in the

sequential case. The total times of optimization of everyfdastion for the different

number of processors are shown in Figure 8. In this and following §igheze are

four diagrams:

e The left upper diagram represents results of algorithm with tagc doad
balancing.

e The right upper diagram represents results of master-slavstlalg. There must
be not less than two processors: one master and one slave.

e The left lower diagram represents results of the algorithth thie distributed
dynamic load balancing and the distributed initialization.

e The right lower diagram represents results of the algorithth thie distributed
dynamic load balancing and the centralized initialization.
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Every curve in the diagrams represents the results of optionizaf the different test

function from [31].

MM
M

[§)

time, s
time, s

A . i

— 0
123 45 6 78 910111213 14 1516 17 18 19 20 21 22 23 24 123456 78 91011121314 1516 17 18 19 20 21 22 23 24

number of processors number of processars

distributed algorithm master-slave algorithm

with static load balancing

25

“ w
LN @
£ 15

Dag /\
1}
12 3 4 5 6 78 9101121371415 168 17 181920 21 22 23 24

number of processors number of processars

distributed algorithm with dynamic loadistributed algorithm with dynamic load

balancing and distributed initialization  balancing and centralized initialization

Figure 8. Times of optimization of the test functions.

The times of optimization show that the master-slaver paragigmot proper in our
case. The times of optimization decrease slowly and only up to 4spayeethen the
times increase slightly. The time of computations on one task ibigatomparing
with the time of communications needed to send the task and tver¢be results.
The communications are frequent. The master becomes a bottleheck|aves

become idle when waiting for new tasks. Another reason may be the shortasjesof
The performance of all distributed algorithms is better. Thedimf optimization

decrease fast. The time diagrams do not show the differencesebetiistributed

algorithms.
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The diagrams of criteria of parallelization: speeduand efficiencye, diagrams for

the different number of processors are shown in Figure 9 and in Figure 10.
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Figure 9. Speedups of parallel algorithms.

The diagrams show that the deceleration anorsgly s, , for m<m, exists for the

master-slave algorithm. This is because the master-slaw@igrares not proper in our

case because the master becomes a bottleneck.

The acceleration anomasy>m exists for distributed algorithms. It gives large steps
in diagrams in the left. These diagrams represent algorithriis the static load
balancing and with the distributed dynamic load balancing and tteibdied
initialization. The initialization for both these algorithms imar. Each processor

covers one part of the feasible region. The initial partitiodi@gends on the number

46



of processors and the total number of expanded subdomains is differentis Thi

because the progress of search is different, the better \adlties objective function

f are found at different times.
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Figure 10. Efficiencies of parallel algorithms.

The speedup and the efficiency are not appropriated criteria wherake®mxist.
The pseudo efficiency criterigoey, is less sensitive to anomalies. The good measure
of amount of work must be chosen when the pseudo efficiency criierimed. As a
measure of the amount of work the total number of calls of the algefcinction is
used. The total numbers of calls of the objective function during @atiion of the

test functions for the different number of processors are shown in Figure 11.
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Figure 11. Total numbers of calls of the objective function during optimizabn.

The diagrams confirm the reason of acceleration anomaly goritdims with the
distributed initialization. The initial partitioning depends on the nurob@rocessors
and the total number of expanded subdomains is different. The changes in t

diagrams in the left are similar to diagrams of efficiencies in Figj0re

The total numbers of calls of the objective functions during optinoizaising the
master-slave algorithm is constant. For the distributed algontiim dynamic load

balancing and centralized initialization the amount of work changes vgmigli

The pseudo efficiency diagrams for the different number of proceas®rshown in
Figure 12. Although the influence of different amount of work is overcosnggy the
pseudo efficiency criterion, acceleration still exist in thefqarance of all the

distributed algorithms. The possible reason of this may be the vatomige of the
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amount of work. Another reason may be the non-homogeneity of the system, f

example the different speeds of the processors and communications.
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Figure 12. Pseudo efficiencies of parallel algorithms.

Because of anomalies the shown diagrams of criteria of paaddietithms are not
well suited for the comparison of the parallel algorithms. Theraimag do not show
clear superiority of any of the distributed algorithms. Moreonmifation could be
extracted from the proportion of time spent on calculation or psocautilization. It
gives some indication on whether the given implementation suffens frroblems
with workload distribution and communication bottlenecks. The diagrams of the

proportions of time spent on calculation are shown in Figure 13.
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Figure 13. Proportions of time spent on calculation.

The diagrams show that the processor utilization of the masatex-glgorithm is very
bad. Less than one tenth of time is spent on calculations. Otheristisgent on

communications or being idle.

When 15 processors are used the average processor utilization ajahmal with
static load balancing is 0.6. This means that when 15 processonssedethe
algorithm makes 18).6=9 times more calculations than when 1 processor is used.
When 15 processors are used the distributed algorithm with dyneaddoklancing
and distributed initialization makes on average(5=7.5 times more calculations
than when 1 processor is used. When 15 processors are used the disttijmuttran

with dynamic load balancing and centralized initialization makes average

15x0.3=4.5 times more calculations than when 1 processor is used.
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Except of some changes for the worse of processor utilization tigenumber of
processors is 18-21, the algorithms with distributed initializatrenugilized better.
This is possibly because of the shortage of tasks when the aadralitialization is
used. Only the root processor has tasks after the initializetinole others are idle
waiting for them. Besides the search tree is narrower thémeicase of distributed
initialization. However the search progress almost does not depend oanther of
processors when the centralized initialization is used andvtileagion of criteria of

parallel algorithms is more correct.

Although the worst case of processor utilization of the algorithitis static load
balancing and with dynamic distributed load balancing with distribimigdlization
are similar, the average processor utilization of the algorithth wtatic load
balancing is better. This shows that there are not enough taskaréoasd the load
balance is not good. The communications cause an additional overhead &atlithe

balance is improved away.

2.6 Conclusions

The general simplex-based branch and bound algorithm for Lipschitz optonibhais

been proposed. The rules of selection, covering, branching and bounding have been
justified by results of experimental investigations. Thecifficy of the algorithm,

using the number of function evaluations required to solve the problem, has bee
evaluated and compared with other branch and bound algorithms for Lipschitz

optimization.

The parallel master-slave and distributed algorithms witticséand dynamic load
balancing have been implemented using C++ and MPI. The aritdriparallel
algorithms have been evaluated and discussed. The superiority abudkstr

algorithms has been shown.
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3 Black box global optimization inspired by interval methods

In this chapter a new black box global optimization method inspisedhterval
arithmetic is presented. Sequential algorithm is implemented revadtigated. The
results of experimental testing are compared with the resfdltsiterval global

optimization algorithm [43]. Parallel version of the algorithm is implemented.

3.1 Introduction

Theoretically a solution to a global minimization problem may dend with a
prescribed accuracy in case of bounded rate of change of thi#ofurmalues, e.g.
Lipschitz continuous functions, with a priori known Lipschitz constant. éV@n
such methods lose their theoretical advantages in a black box situtten,
dimensionality of their successful practical applicationsiiser modest [31]. Interval
analytic methods have guaranteed convergence to the set of globhalizersj and
they are efficient for a large class of problems (see 8@, [33]). However, the
interval methods can not always be applied automaticallyfae.g.problem given by
a code not aimed specially for interval arithmetic. This isudised for instance in
[46] where a non-deterministic version of the branch and bound stratedybuse

interval methods is presented.

The proposed black box optimization method is inspired by the intenthbdsebut
the interval arithmetic based procedures are substituted Hyetivéstic procedures.
The method can be interpreted as a strategy for managing éacahss in search for
global minimizers. Once a local minimizehas been found, a domain around left
out from further search, thus we avoid several descents to thel@@heninimizer.
We do not intend to guarantee that the solution will be found withchivesl
accuracy, thus the user should specify limits of storage and cantipugerather than

some accuracy tolerance as required by many traditional approaches.

3.2 A Method

In this section, an algorithm inspired by the interval branch and bogodthm is
presented, for the earlier versions see [45], [46].
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The algorithm uses values of the objective funcficalculated at a number of points
in the boxB. Information onf normally is obtained via finite differences. It is
supposed that a sufficiently efficient algorithm to find locahimizers of f is
available. Our method intends to coordinate local searches in a prapeWhen a

local minimizerz has been found iB, a ballball, = {XE BH|X— 7| < gduste,} is left out

from further consideration, whereser IS @ user provided parameter. Thus the
candidate set consists of boxes where balls with known local marsniave been
left out. For ease of notation we still refer to such a sub-domaibas a

Since the solution may be lost the algorithm is embedded into a logh vdstarts

the calculation. We keep anuter candidate seB, in addition toC. When the model
algorithm has finished, then the element$atoverD except of the balls around the
known local minimizers. In the outer iterati@forms the basis for a re-generation of
the inner candidate s€ For a boxB in G the available information about the local
minimizers ofB is recorded to control the split & into several boxes lateB is
added toC. The recorded parameters determining the number of points used during
the tests of the reduction phase in may be updated in order to increase théyeifabil
the method.

The structure of the new algorithm is shown as Algorithm 8. Tharidie
counterparts of lower bounds and monotonicity test are introduced. Thedowsd
reduction is embedded into the Newton-reduction of the reduce-or-subdivide
procedure. The booleanner-stopis true wherC contains no boxes (i.e. only points).
The outer stopping condition is a time limit set by the user. Gtiopping conditions
might be adopted in case of additional information on the problem. Thebhear
SolSetis intended to converge towards the set of global minimi2ersThe positive
numbery is intended to distinguisk’ from other local minimizers. In theogymight

be 0, but in practice (i.e. when rounding errors are pregehgs to be positive in

order thatSolSeeventually will contairX .
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Algorithm 8. Black box global optimization algorithm inspired by interval
arithmetic.
initialize: C, f, G
while not time-limit exceededo
while notinner-stopdo

remove-bestq)—B
generate sample points

reduce-or-subdivideBj —result, f , garbage

CU{resul —>C
Gu{garbagg —>G
end

{peClf(p)< T+ uju Solset> Solset

while G # & do
remove-oneG)—B
subdivide B)—result
CU{resul —>C
end
perhaps adjust reduction parameters
end

The details of the algorithm are now explained.

e remove-best@): The boxB from C which has the smallest known function value
is chosen.

e Sample points. The sample points are used in the monotonicity and Negtn t
Two strategies are applied for choosing these points. First avéhasfollowing
regular distribution of up tor+1 points: One point an(B), the center oB, and

two points for each coordinate directiarm(B)i%w(B“’) *e;, j=1...,n where
B=B®"x---xB™, w(B) means the width of the ba®, andeg is thej-th unit
vector. The constan% is chosen because it provides a good coverageimmfthe

sense of disjoint balls with centers at the regular sample p8etondly, we may
use random points uniformly distributedBn The total number of sample points,
P1=Nsample has to be provided by the user. We use random poimSnifie iS
greater thanr2+1.

e The reduce-or-subdivide procedure is summarized as Algorithm 9, which is

explained later.
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Algorithm 9. Reduce-or-subdivide procedure.

if monotonehen
Monotone B)—result
B—garbage
elseif (case ) or (case 2then
Newton B)—result

B\ {ball,|ze B} - garbage

elseif (case 3and (LB(B) > f ) then
J—result
B\ {ball |z B} - garbage
else
subdivide B)—B',B
{B*,B%}\{ball,|ze B} - result
J—garbage
update f

e G is emptied in the second innehile-loop of Algorithm 8. AfterB has been
removed fronG it is subdivided.

e Subdivision. We always splB into two by a hyperplane which is orthogonal to
one of the coordinate directions. The result cassi the two new parts. The
subdivision is done as follows:

Case aNo known local minimizer irB: The splitting dividesB into two equal
parts separated by a hyperplane through the ceht&rand perpendicular to the
side of the maximal length.

Case One known local minimizer irB: Find the coordinate for which the
distance from this point to a side Bfis maximal. The splitting plane is chosen to
be perpendicular to this coordinate axis, andlitdgathe distance mentioned.
Case cMore than one known local minimizer B1 Find the two local minimizers
with smallest function values. Find the coordin@atewhich the distance between
these two points is maximal. The splitting is masigh the plane which is
perpendicular to this coordinate direction and ties same distance to the two

local minimizers.
The details of the reduce-or-subdivide procedure:

e The monotonicity test is based on the gradientrmédion at the sample points

(explicitly calculated if possible, by means ofitiindifferences otherwise). If a
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local minimizer has previously been foundBnhowever, thet cannot be strictly
monotonous inB, and hence the test is skipped. Otherwise we earthie

gradients. If there exists at least one coordinatéor which of (x)/0x has

constant sign at all sample points then we detiderio local minimizer exists in

B. Bno,(D) —»result where 0,(D ) denotes the facet ob (box of lower

dimensionality), which is orthogonal t¢ axis, and towards whichdecreases.
The variablegarbageis set taB.

e Newton test is performed if the monotonicity testshnot reduced. Local
searches for finding local minimizers foih B are started from each sample point.
The local technique used in our tests is a versioRowell's Dog-Leg Method
[64]. The gradients are estimated using forwardeddhces. Notice that balls,
ball,, around the local minimizez, which are known at the beginning of the
current Newton test, are considered "outsidB"of

e We distinguish the following four cases:

Case 1Every iteration sequence has an iterate whichuiside ofB. In this case

we decide that no local minimizer exists By and we letBnd(D) — result
whered(D) denotes the border Bf.
Case 2All iteration sequences provide convergence to gshme pointze B.
Then {Z} »>result (In practice a Newton iteration is stopped by of¢he usual
stopping rules for local searches (to prevent itdirterations), and two stopping
points are considered equal if their distancess thareyste)).
Case 3Several local minimizers have been foundBnIn this case the lower
bound reduction may take place. The lower bouB(B) is estimated using the
maximum gradient nornmaxgradobtained during the local searchesBnLet
f(Xmin) be the smallest known function valueBnthen

LB(B) = min{f (x ) — maxgrad* [x - X, [[x € B}.

min min ”

If LB(B)> f then @—result otherwise subdivision takes place. (We decided

only to use the lower bound reduction in Case 3 because our expsrintoate
that this is more efficient).

Case 4None of the first 3 cases has occurred and subdivision takes place.
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Notice that if the local search has the following property: thére is no local
minimizer inB then eventually an iterate outsideBtvill be generated”, then boxes
without local minimizers will always lead to Case 1. Thus thebmimof boxes irC
with full dimensionality and without known local minimizers must beyJenited.
Hence the monotonicity test is most often skipped. Furthermore, taaaishetween

known local minimizers is at leagiuster

Assuming some regularity conditions, the convergence of the method tettloé
global minimizers is proved in [45]. The key observation in the protifasno box
can remain large during the iteration, i.e. all the boxes in thdidate set will be

small when the algorithm has been running for long enough time.

3.3 Testing

Although testing is very important for assessment of new optimizalgorithms, a
well justified testing methodology is not developed for all clessieoptimization
methods. For example, detailed theory approves the structure anckSeatuocal
descent algorithms for smooth objective functions. Specific diffezibf application
of such algorithms are well known, and collections of test problepresenting
important features of practical problems as well as spatifficulties are available
[21], [67]. Therefore, a new algorithm of smooth local optimizatiay be approved
by competitive testing [34] using a standard methodology. A similar development
level is achieved and similar testing methodology is acceptdg for some
subclasses of global optimization problems, e.g. concave quadratiampragg [21].
In case the methods are similar in basic ideas, structure, anteat application
fields, competitive testing of such algorithms may be desirabte. example,
competitive testing of interval methods [33], or of different impdatations of
evolution strategies [84] may be very informative. However, it wdaddhardly
possible to design rational competitive testing experiment fgorithms from
different classes.

A crucial obstacle for competitive testing of global optimmatalgorithms is the
non-compatibility of different stopping conditions defining trade-off ad important
criteria: fast finding of a good approximation and reliability. yowhle algorithms with

similar stopping conditions may be put into fair competing positionsesmted for the
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collections of specified and randomly generated test functions. AmpEe of
competitive testing of different one-dimensional global optimizatigorahms, but
with compatible stopping conditions, is presented in [80]. However, defindf
stopping conditions adequate to real world situations seems even nfimdtdiian
the development of a rational search algorithm. A common approaohaisatk a
problem using all available computing resources. The development afgmuithm
was motivated by a quite frequent real life situation when amaaztion problem
should be solved using a customer's software for calculation of eljdainction
values. Of course, the user would like to get global minimum phecisal with
guarantee. However, normally he is not able to supply any infematipporting
such a claim. Using only the code, without a model of an objectiveiduandhe
accuracy/reliability of a candidate solution can not be estan&tefinition of rational

stopping condition in such a situation is hardly possible.

Algorithms for a general (not always precisely defined)ssl of smooth global
optimization problems are based on different ideas [80]. The tfidetween fast
finding of a good approximation and reliability is frequently based amidiis,

experience etc. If a new algorithm oriented to such a broask ath global

optimization problems has no close prototypes, then competitivagestems to be
not realistic and a bit premature. The goasaentific testing [34]: to show why and
under what conditions the application of the proposed algorithm may besprgm

what direction of development of the algorithm seems prospective.

The main criteria of efficiency of global optimization algorithare the numbers of
calls of the objective function and perhaps its gradient, and khaatson time of the
optimization. The number of calls is useful when the objective funidierpected to
be "expensive", i.e. its calculation requires more time than thidamycalculations
by the optimization algorithm. In case of the contrary relatioa,calculation time is
an important criterion. We use the numbers of function calls aseeify criterion of

sequential algorithms.

Criteria of efficiency of our algorithm are the number of otayecfunction calls (Nrf)
and the number of gradient calls (Nrg). If the gradient is esgpkanalytically, then a

gradient call may cost the same as the objective function ie sases, in other cases
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up ton times a call of the objective function. If the gradient is evahliaising

automatic differentiation then a gradient call usually costs abduntes an objective
function call. If the gradient is evaluated using finite diffeeeapproximations, then
a call of the gradient function costs approximatet} calls of the objective function.
In our experiments most gradients expressed analytically, oteelfar instance in

the two practical problems) they are found using finite difference approgimea

Interval methods are the closest prototypes of our algorithm, which may be cedsider
as an extension of the former to the cases when interval atithis@ot applicable.
The results of a minimization of the same test functions by asailable
implementation, [43], of the interval method of [40] are presenteatdorparison.
The method of [40] combines interval methods with real searchesubhieer of real
function calls (Nrf) and the number of interval function callg)(ldre the efficiency
criteria of this algorithm. The authors of this algorithm sthtg the average cost of

an interval function is twice the cost of a corresponding real function [40].

Comparison of two algorithms with respect to function calls of therative
optimization is well grounded when the stopping conditions are the. d@cause the
stopping conditions are different, we chose to use the numbers ohe@atled to find
the first and the last global minimizer, respectively, as therion of efficiency for

both algorithms.

During the experimentation test functions defined by means of aalyormulas
were used. An oracle for gradients was modeled by a subroutine apatiog
derivatives by forward differences. The testing methodology discusn [79]
requests to use test functions of different complexity (diffigulfest functions with
different dimensions and different numbers of local and global miensiwere used
in the experiments. The dimensions and numbers of minimizers ofsthimetions
are shown in Table 3. There the problems are divided into the cagbriocal
minimizer; 1 global minimizer and a few local; 1 global minieriand many local,
practical problems where the number of local minimizers is unknewfew global

minimizers.
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Table 3. The dimensions and the numbers of local and global minimizers ofte

functions.

Function n Number of local | Number of global

min. min.
Rosenbrock 2 1 1
McCormic 2 1 1
Box and Betts 3 1 1
Paviani 10 1 1
Generalized Rosenbrock 3 1 1
Goldstein and Price 2 4 1
Shekel 5 4 5 1
Shekel 7 4 7 1
Shekel 10 4 10 1
Levy 4 4 71000 1
Levy 5 5 10 1
Levy 6 6 16 1
Levy 7 7 18 1
Griewank 10 19 1
Cola 17 Unknown 1
Bone Growth 12 Unknown Unknown
Six Hump Camel Back 2 6 2
Branin 2 23 5
Shubert 2 400 9
Hansen 2 760 9

Representatives of easy and moderately difficult test probleens @hosen among
well known and widely used functions. A detailed description of the fumettan be
found in [47], [48], C codes are available in [47]. Two practical @il were used

as difficult test problems. The first practical problem, denote€bla, is the MDS
problem which is discussed in [53]; the data used in this testspomd to the
classical "Cola testing" problem. The number of variables isHg7 pest currently
known value of the objective function being 11.7464. There are many local
minimizers with function values close to the global minimum [53)e Tsecond
practical problem denoted by Bone Growth is given in [2]. It iateel to a linear
growth model of the human mandible (the lower jaw). The dimensionsoptbhblem

is 12, the best known function value being 205.104 and there are many local

minimizers.

The default values of the parameters of the algorithms, whehypical for many

applications, were used. In the proposed algorithm the localhssastopped when
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the gradient norm is less than “00f course, for the analytically defined test
functions much smaller tolerance may be fixed, but we wantedottelna real life
situation with modest precision of input data; it seems not ratimnatquest the
precision of solution be higher than the precision of the data. Fopataneter
preventing multiple determination of the same local minimizgkes the two values
0.1 and 0.01 were chosen for all test examples. The toleraoicdetecting whether a
(known) global minimizer is considered to be global ig'.10he number of sample
points was fixed equal to the empirically justified vahdgnpi=2n+1; such a choice
has an advantage to perform testing in deterministic setting tharargeeing easy

reproduction of testing results.

Table 4. The numbers of the objectiveNrf) and gradient (Nrg) functions calls
needed to find the first and all minimizers with default parametes. &juse=0.1.

The two blocks of the table indicate whether there is one or several galb

minimizers.
Function all minimizers
Nrf Nrg
Rosenbrock 27 23
McCormic 11 10
Box and Betts G 6
Paviani 14 11
Generalized Rosenbrock 359 346
Goldstein and price 75 51
Shekel 5 66 37
Shekel 7 24 13
Shekel 10 22 12
Levy 4 30502 23798
Levy 5 2786 2147
Levy 6 5292 4154
Levy 7 35 30
Griewank 124 81
Cola 8995 7226
Bone Growth 529 414
Function first minimizer all minimizers
Nrf Nrg Nrf Nrg
Six Hump Camel Back 3y 33 49 45
Branin 21 10 666 527
Shubert 26 15 6825 4412
Hansen 218 129 7655 5037




The numbers of the objective and gradient functions calls needed thdirfidst and
all global minimizers with different values @fi,sier are given in Table 4 and Table 5.
All global minimizers were found for all test problems. (For BumeGrowth problem
this means that the smallest known function v&le205.104 and the corresponding

minimizer was found.)

Table 5. As Table 4 except thaty,ge=0.01.

Function all minimizers
Nrf Nrg

Rosenbrock 27 23

McCormic 11 10

Box and Betts @ 6

Paviani 14 11

Generalized Rosenbrock 359 346

Goldstein and Price 8 56

Shekel 5 66 37

Shekel 7 24 13

Shekel 10 22 12

Levy 4 44316 33438

Levy 5 2823 2184

Levy 6 5389 4241

Levy 7 35 30

Griewank 124 81

Cola 9229 7413

Bone Growth 529 414

Function first minimizer all minimizers
Nrf Nrg Nrf Nrg

Six Hump Camel Back 3 33 49 45

Branin 21 10 733 580

Shubert 26 15 8810 5380

Hansen 218 129 10296 6409

For many test functions the two choicess@fsir give the same performance. For the
8 problems with differencesguste=0.1 is always the best, however the differences are
not very large (except for the Levy 4 function). In general we ocdeckhat the

experiments indicate some independence of the choiggf

The algorithm has difficulties with functions having very mangilizgions and local
minima, like the Levy, Shubert and Hansen functions. For such functians

performance seems to be a bit chaotic. For Levy 4, which is#sgest” of the four

62



Levy functions, the solution requires many function evaluations, \&@heiee most
difficult one, Levy 7, is solved rather quickly because the algorabadentally finds
the global minimizer at the beginning of the optimization. Theoperd@nce in such
cases may depend on how close the starting points of the lacehag are to a global
optimizer. Thus the performance may change if the boxes$ feasible regions are
shifted. For other difficult functions with many local minimizelike the Griewank,

Cola and BoneGrowth functions, the algorithm works rather well.

Table 6. Results of interval algorithm [43]. The number of subdivisions per
iteration, ng, is 2 for all problems.Nrf is the number of real function callsNif is
the number of interval function calls. The two blocks of the table indicat

whether there is one or several global minimizers.

Function All minimizers
Nrf Nif

Rosenbrock 170 13

McCormic 97 9

Box and Betts 97 21

Paviani 366 41

Generalized Rosenbrock 6513 125

Goldstein and Price 129 9

Shekel 5 172 17

Shekel 7 166 17

Shekel 10 211 17

Levy 4 614 6839

Levy 5 555 202

Levy 6 527 330

Levy 7 543 506

Griewank fails

Cola fails

Bone Growth fails

Function first minimizer all minimizers
Nrf Nif Nrf Nif

Six Hump Camel Back 2256 554 321 819

Branin 324 119 fails

Shubert 524 1543 fails

Hansen 89 17 862 | 1421

The interval algorithm [43] used for comparison is based on a combiradtiogal
searches, branch-and-bound technique and interval arithmetic. Wadwaldifferent

values of the parametag which determines how many subboxes a box is split into at

63



each iterationng = 2 (which is the default value used for the corresponding parameter
of our method)ny = n+1 andny = a value tuned for each individual test problefhe
numbers of real and interval function calculations needed to findidteahd all

minimizers are shown in Table 6, Table 7 and Table 8.

Table 7. As Table 6 except thamg is n+1.

Function all minimizers
Nrf Nif

Rosenbrock 104 19

McCormic 96 13

Box and Betts 103 33

Paviani 524 221

Generalized Rosenbrock 14260 1921

Goldstein and Price 243 226

Shekel 5 98 41

Shekel 7 101 41

Shekel 10 101 41

Levy 4 111 41

Levy 5 127 61

Levy 6 235 85

Levy 7 235 113

Griewank 186 221

Cola fails

Bone Growth fails

Function first minimizer all minimizers
Nrf Nif Nrf Nif

Six Hump Camel Back 268 4532 342 5411

Branin 506 453 803 687

Shubert 940 3802 1550 4776

Hansen 193 200 892 1686

The tables demonstrate some dependence of the choige Béble 8 shows that
sometimes quite a lot may be gained by tuning this paramatehel Generalized
Rosenbrock, for instance, the number of the real function calls feoi®s2698 to

14260.

The algorithm failed to minimize the two practical problems Gold Bone Growth.

To be more specific the computation broke down because of overflow of memory. For

the Cola problem the number of unexplored boxes generated by thmghalgwas
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more than 131072 at the stopping time, and the number of interval funatiswas

greater than 393213. Similar results were seen for the Bone Growth problem.

Table 8. As Table 6 except thatg is tuned for each individual problem.

Function Ny All minimizers
Nrf Nif

Rosenbrock 3 104 19

McCormic 2 97 9

Box and Betts ] 93 11

Paviani 2 366 41

Generalized Rosenbrock 7 2698 431

Goldstein and Price 1 120 5

Shekel 5 4 94 33

Shekel 7 4 85 33

Shekel 10 4 85 33

Levy 4 5 111 41

Levy 5 6 127 61

Levy 6 4 178 49

Levy 7 4 233 57

Griewank 8 186 221

Cola any| fails

Bone Growth any fails

Function Ng first minimizer all minimizers
Nrf Nif Nrf Nif

Six Hump Camel Back L 273 352 365 443

Branin 3 506 453 803 687

Shubert 4 357 1008 1060 3472

Hansen 2 89 17 862 1421

The numbers of calls needed to minimize the mathematical preslems are

relatively small, i.e. the method performs well for these problems.

The comparison of performance of both algorithms is summarizedhle 9. For our
algorithm &ste=0.1 was chosen. For the interval algorithm the number of
subdivisions in each iteration was chosen equakt which is generally the most
efficient default value for the problems we tested. The nundddfge functions calls
before all global minimizers are detected is used as eritgri most cases all the
global minimizers (or the best currently known values) were foynduip algorithm

in the first inner loop of the algorithm, i.e. the garbageGetas not necessary in
these tests. The interval method "fails” for both practical problems.
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Table 9. Numbers of function and gradient or interval calls needed to find all

global minimizers. The columns with “Black box” correspond to the proposed

method, the column "Interval" corresponds to [43]. The notations: Nrf — numbe
of real function calls, Nrg — number of real gradient calls, Nif — number of

interval function calls.

Function Black box Interval
Nrf Nrg Nrf Nif

Rosenbrock 27 23 104 19
McCormic 11 10 96 13
Box and Betts G 6 103 33
Paviani 14 11 524 221
Generalized Rosenbrock 359 346 14260 1921
Goldstein and Price 76 51 243 226
Shekel 5 66 37 98 41
Shekel 7 24 13 101 41
Shekel 10 22 12 101 41
Levy4d 30502 23798 111 41
Levy5 2786 2147 127 61
Levy6 5292 4154 235 85
Levy7 35 30 235 113
Griewank 124 81 186 221
Cola 8995 7226 fails

Bone Growth 529 414 fails

Six Hump Camel back 49 45 342 5411
Branin 666 527 803 687
Shubert 6824 4412 1550 4776
Hansen 7655 5037 892 1686

The test results indicate that the proposed algorithm is stalhe isense that it has
solved all the problems we have tried. The use of two values of thengtar for
preventing multiple determination of the same local minimizggser indicates a
relative robustness with respect to this parameter. Although garithim is rather
efficient for many problems, we occasionally see slow convergenpeoblems with

very many local minimizers, e.g. the Levy problems.

It is important to notice that interval methods are very efficier test functions
composed by not too large number of trigopnometric functions (like hiokest and
Levy problems). This may be explained by availability of éffit methods for

calculating interval inclusion functions in such cases, thus makmghreshold test
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(4) efficient. The heuristic lower bounds found by our method, howeveroften

much more pessimistic since we cannot utilize inequalities su|sh1(as| <1.

In conclusion, the new method has been solving all the problems werigalvdttis
sometimes even faster than the interval method, but for some probleansuch
slower. On the other hand it seems to be generally more applicdideprdposed
method can not guarantee evaluation of global minimum with prescrilvedaay,
but it seems a good candidate to substitute the interval methodshehaittér are not

applicable, e.g. in a "black box" situation.

3.4 Comparison with Lipschitz algorithm

Comparison of two different algorithms with different stopping coodtiis difficult.

The test functions for unconstrained global optimization (whose global ragisnare
not on the edge of the feasible region) from [31] were optimized usdagk box
global optimization algorithm and Lipschitz global optimization algoritimith

simplicial partitioning. The results are given in Table 10. The grasliof functions
were not provided for the black box algorithm, they were estimasgag finite
differences. The numbers of objective function calls needed toHedirst and the
last global minimizers are given as results of the black bokat)loptimization
algorithm. The numbers of objective function calls of overall optinunatre given

as results of the Lipschitz global optimization algorithm with simpljgéatitioning.

Table 10. Comparison of black box and Lipschitz global optimization algorithms.

Test function | Black box| Lipschitz
3 32 1287 | 2185
3.1 38 1607 | 1559
3.2 57 1307 | 1225
3.3 32 1644 | 1429
4 413 70

7 110 3117
9 228 3773
9.1 297 3890
9.2 259 3729
10 64 848
11 20 1566
12 28 4001
13 131034 4084
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The table does not help to compare algorithms because the stoppingposndiput
and results of algorithms are different. The black box globamigtion algorithm
stops after defined duration of time. The numbers of objective function calls rteeded
find the first and the last global minimizer is the criteriorefifciency of algorithm.
All found global minimizers are outputted. Minimizers are found duriogall

searches whose are stopped when the gradient norm is less than 10

Lipschitz global optimization algorithm with simplicial partitiogi guarantees that
the global minimum with predefined accuracy is found. The Lipsafdirstants of
objective functions should be provided. The number of objective function afalls
overall optimization is the criterion of efficiency of algbnt. Only one point is
outputted — the point of the best value of the objective function. The dimelitgioha

successful Lipschitz optimization applications is modest.

The black box global optimization is generally more applicable. algerithm can
not guarantee evaluation of global minimum with prescribed accubbatyipschitz

constants of functions are not needed.

3.5 Parallel algorithm

The most straightforward implementation of a parallel algorittfnthe method is
using geometric parallelization. In this case the domain of the pnolslanitially
divided into sub-problems whose are distributed to parallel processors. The
processors work independently running Algorithm 8 and do not exchandattamy
generated sub-problems. The currently known best value of the mbjémiction?

can be exchanging between processors. Such an algorithm corregpotios
distributed paradigm of parallel programming with the static loaldnce strategy.
The termination of the algorithm is the same as the stopping tmondn the
sequential case — time limit. The existence of the outer logjenAlgorithm 8
ensures that all processors always have work to do, but it isuttiffo know do

processors perform computations on equally promising sub-problems.

The portable parallel algorithm has been implemented in C++ &pld(Message-

Passing Interface — a standard specification for messagegplibgaries). Portability
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problems of incompatible C++ translators and MPI implementatias to be
overcome. The latest implementation is available for noncommesegaht [88]. The
algorithm has been tested on the available parallel systergsiaburgh Parallel
Computing Center:

e Sun HPC 6500 UltraSPARC-II based system with Sun MPI,

e Beowulf-type PC cluster with MPICH 1.2.0,

e Cray T3E,

and IBM RS/6000 SP at Vilnius Gediminas Technical University.

The usually used criteria of efficiency of parallel algorithmthe speedug, and the

efficiency ey, are not suitable for evaluation of parallel implementations ef th

proposed method, because the stopping condition is time limg.adcande, = i
m

The pseudo efficiencye, and the proportion of time spent on calculations (other time
is spent on communications or being idle) are also not well suitabler case. They

are maximal when there are no communications at all and theth&yresuggest not
exchange the currently known best value of the objective functipmvhat is not

desirable practically.

When the stopping condition is time limit, the evaluation of criteriaparallel
algorithm is difficult. The stopping condition must be changed to eraldluation of
criteria. The stopping condition could be the predefined number of detations.
The experiments with the sequential version have shown that allgldbal

minimizers were found in the first inner loop of the algorithm.

Typical efficiency criteria as functions of the number of pssors are shown in
Figure 14. These figures are obtained running the parallelithigoof the method on
the Beowulf-type PC cluster when the stopping condition is one owietion.
Initially, the domain of the problem is subdivided into sub-problems soethet
processor gets one sub-problem. Then processors exchange the cunantiybest
value of the objective function, but do not exchange any latter gethesate

problems.
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Figure 14. Speedup, efficiency, pseudo efficiency and proportion of timpent on

calculations as functions of the number of processors.

We use as a measure of the amount of work the total numbersobtée objective
function. This measure is good when the objective function is expectdzk to
“expensive”, i.e. its calculation requires more time than the ianxitalculations by
the optimization algorithm, or when the amount of the auxiliary caticuls is

proportional to the number of calls of the objective function.

Figures show that anomalies take place, and therefore the speditipe efficiency
are not appropriate criteria. The pseudo efficiency and the propofttone spent on
calculations show similar results. The pseudo efficiency isyavess than 1. This

shows that the measure of amount of work is chosen properly.

The worst case pseudo efficiency and processor utilization areHowever the
average pseudo efficiency and processor utilization are not veéryrba work load is
not always balanced good. Possibly the load balancing could be irdpusieg
dynamic load balancing, but it is not always the case aastslvown in section 2.5.4.
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Moreover these results are gotten when the stopping condition is @reitetdtion

and do not represent the method when the stopping condition is time limit.

3.6 Conclusions

The black box global optimization algorithm inspired by intervathoés has been
proposed. The sequential algorithm of the method has been impleme@ted, iand

the numerical experiments with some well-known test problemseisas with two

practical problems have been performed. The experimentahgestiows that the
method is applicable and performs well not only for the standatduections but

also for practical problems.
The portable parallel algorithm of the method has been implemente+iand MPI.

The algorithm has been tested on the various parallel sysidmscriteria of the

parallel algorithm have been discussed.
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4 Application of black box global optimization algorithm for
practical problems

In this chapter application of the presented black box global optionizenethod is
presented. The method is applied to practical problems: multidiomahsscaling,
growth model of the human mandible and many body problems. The results

optimization are discussed.

The application of the presented black box global optimization algod#pends on

the following properties of the algorithm:

e |t is multidimensional global optimization algorithm.

e Feasible region is box constrained. The algorithm can be appbed f
unconstrained global optimization problems.

e The algorithm is applicable in a “black box” situation. It does noeddmn how
the objective function is expressed.

e The trust region local search algorithm with BFGS is useddigmntss are

calculated using provided function or estimated using forward differences.

4.1 Multidimensional scaling

Experimental sciences collect large amounts of data supposed liysiabg different
techniques. Frequently researcher’s experience and intuition shocdeniteened with
mathematical methods to elicit the desired knowledge frométae However, human
heuristic abilities are mostly developed and oriented to patieriisree (or two)
dimensional space. A mapping of multidimensional data into the patietms- or
three- dimensional space may be greatly aid the heuristigsemand enhance the
validity of the conclusions. Multidimensional scaling is a widebed technique to
analyze structure and inherent dimensionality of sets of mubitsional data a well
as visualization of data by means of their mapping into spacesvalimensionality
[16], [6], [25].

Multidimensional scaling addresses the problem Hewobjects represented by
proximity data can be faithfully visualized as points in a lowatisional Euclidean
space [42]. Proximity data are represented as pairwise dmsiynivalues. The
dissimilarity of i object toj™ object is defined as a real numbgr A spatial
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representation of the objects should be determined. Objects areergpdeas points
in m-dimensional space. The distance between two pointand x; is usually
measured by the Euclidean distamie|xi-X;||. Sometimes the raw dissimilarity data
are not suitable for Euclidean embedding and dissimilaritiestraresformed to
disparitiesD;;=D(dj).

The quality of visualization is measured by s#ess function aggregating the
differences between the proximity values and the distancesbetthe respective
points. Multidimensional scaling problem could be solved optimizing thessst
function. The coordinates of thHé points inmdimensional space should be found
such that the stress function would be minimal. The most frequentty sisess

function is
f(X)= zzvvij (d; _Dij)2
i

wherew; are nonnegative weights. They may be used to normalize thes \iltiee
disparities. A local, global or intermediate normalization is defined asafslin [42]:

wh = 1 ,
" N(N-D)D;

The different choices correspond to a minimization of relative, alesotuit
intermediate error. The weightings might also be used to disclspurities with a
high degree of experimental uncertainty.

Sometimes the squared Euclidean distances are used to simplify computations:
f(X) = ZZ (I =x; 1P =65)7
Such function is called SSTRESS. A more natural choice of stress function is

f(X) :ZZ\Nij (”Xi _Xj ”_5ij)2 .
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In most cases symmetric dissimilarities are usge: J; what allows to reduce

computations:

f(X) :ZWij (”Xi _Xj ||_5ij)2-

j<i

If weighting is not used the function may be further reduced:

f(X) = Z(\/zm;(xiyk —x, f -5, Jz ,

j<i k=1

wherex; 1. m are the coordinates of tie point,i=1.N, j=1.N.

Minimization of stress function is difficult because of the following features

e the practical minimization problems normally are high dimensionahbeun of
optimization variables is equal kxm,

e the stress function is not everywhere differentiable,

e the problem is multimodal,

e the stress function is invariant with respect to translation, rotation and mirroring

Some of the mentioned difficulties may be, at least partiallpjded. For example,
the subsets of the local minimizers may be reduced to the péitjtby means of
fixing of several coordinates:

Xii.m=0, fori=1.m

and defining some to be non negative:

Xij-120, fori=2.m+1.

Non fixed coordinates are arguments of the problem:

X2,1=Uy, . .. Xp,m=Un.

The dimensionality of the problem is:

~ mM(2N -m-1)
— 5

n

Many authors minimize different versions of stress function bgma of either local
techniques or their modifications. Some modifications of local metheddesived to
achieve non-local behavior of the method. Most widely known method of sual a ki
is SMACOF based on majorization of an objective function [17], [18hAlgh the
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method not necessary converges to the closest local minimgeeadtch strategy is

rather local.

The tunneling method is known as one of global optimization methods [80&sIt w
adopted to the problems of multidimensional scaling and investigatedaih idethe
doctoral dissertation by P.Groenen [26]. It was very efficientemsed by such an
experienced researcher of multidimensional scaling as P.Groerewever, the
average user would hardly use this method because of its dependencanyn

heuristically tuned parameters.

Although improved local search procedures are used for some #ppkcaf
multidimensional scaling certain applications can be solved only widibal
optimization. Two examples of such applications are described in (32¢ of
applications is the estimation of the GSM mobile’s position usingntkasured

powers of the 6 signals received from surrounding base stations.

A frequently used test problem for multidimensional scalingrittyns [52], [53],
[25] is based on experimental results on testing of severalraois [25]. 38 students
have tested ten different Cola brands. Each pair was judged on insildisty on a 9
point scale (1 - very similar, 9 — completely different). The uaundated
dissimilarities are the data of the problem. The scaled down adaiet

dissimilarities are given in Table 11.

Table 11. Scaled accumulated dissimilarities between 10 Cola brands.

Pepsi| Coke|[Classi( Diet | Diet | Diet | Dr. | Slice| 7-Up| Tab
Coke| Pepsi| Slice| 7-Up |Pepper

Pepsi "

Coke 1.27| ...

Classic Cokel1.69 | 1.43| ...

Diet Pepsi 204 23% 248 ..

Diet Slice 3.09| 3.18 3.26 285 ..

Diet 7-Up 3.20| 3.22 3.27 2.88 1.55 J.

Dr. Pepper | 2.86 256 258 259 3[12 3|06 |..

Slice 3.17| 3.18 3.18 3.12 131 1.64 3/00 ..

7-Up 3.21| 3.18 3.18 3.1y 1.70 136 295 132 |..
Tab 2.38| 231 242 194 285 281 2/56 291 2.97
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The goal of this multidimensional scaling problem is to find the gondition of 10
objects representing each Cola brand in two-dimensional sphad would help to
interpret the data. It is shown in [52] that there are many lozaima and
interpreting the data on the basis of the achieved configuration looah minima
leads to different results. So it is necessary to find the glol@mum and the

corresponding configuration which explains the data best.

The number of objects for this global optimization proba10. The configuration
of objects inm=2 dimensional space should be find. The number of variablEs.
The feasible region i®=([0,4%[-4,4]"?). The objective function of the problem is

f(X) = Z(\/Zm:(xi’k —x, f -4, JZ .

j<i k=1

There are many local minimizers with function values closiaeoglobal minimum.

The best known value of the objective functibn11.7464. The black box global
optimization algorithm has found this global minimum after 25242 callshef
objective function. The found global minimizer is

U'=(0.6519, 1.3019, 0.0992, -0.8838, -0.8796, 0.2047, -3.2841, 0.8512, -3.4625,
2.5325, -0.8952, 1.4099, -3.0737, 1.9626, -2.9787, -0.8078, -1.6898).

The representing solution configuration of the cola problem is shown in Figure 15.

ol o Popsi o Coke 4 Classic Coke
1l ¢ Diet Pepsi <Dr. Pepper
< Tah
21
S o glice © 7UP
@ Diet Slice
@ Diet 7-Up
-4
-2 1 0 1 2 3 4

Figure 15. The solution of the Cola problem.
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An available implementation [43], of the interval method [40], whick used for the
comparison in section 3.3 has not found the global minimum of the problenmaand h

broken down because of overflow of memory.

4.2 Growth model of the human mandible

The problem represents a growth model of the human mandible (the &weiThe
data of the problem are the coordinates of 271 points of equivalent morylfiaoy
the 3 mandibles of the same patient at the age of 9 months, 21 montlyearg [2].
The goal of the problem is to position the three mandibles in tloe spathat the sum
of distances of points from the middle mandible to the lines conneximgsponding
points from the first and third mandibles is minimal (Figure 16§ fitiddle mandible
is fixed and each of the two others has 6 degrees of freedomle3 ahgotation and
3 directions of translation. Thus the dimension of the problens12. The domain
D=([-7, % [-120,120).

Q\MA
’\f

271

f(X)=lehi

Figure 16. The growth model problem.

The distance of the point from the middle mandible to the line congecti
corresponding points from the first and third mandibles is found usingxiression

of area of triangle:
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whereSis area of the triangle whose corners are the points of eguoivalorphology
from the three mandibleb,is the distance between the points from the first and third

mandibles. Area of the triangle is:

s=p(p-a)p-b(p-0), p=%(a+b+c),

wherea is the distance between the points from the first and secandibles ana

is the distance between the points from the second and third mandibles.

The best known function value of the problenf 205.104. The black box global
optimization algorithm has found the global minimum after 13101 callshef
objective function. The found minimizer is

X'=(-0.125288, -0.048084, 0.0683822, -5.28448, 13.5913, 47.4381, 0.100655,
0.00663149, 0.0861344, 15.1711, -19.2757, -44.7489).

The corresponding solution of the growth problem is shown in Figure 17.

Data Solution

8 merrrre

f=610.342 f=205.104

Figure 17. The solution of the growth problem.

An available implementation [43], of the interval method [40], whick used for the
comparison in section 3.3 has not found the global minimum of the problenaand h

broken down because of overflow of memory.

4.3 Many-Body Problem

There are many problems in physics, chemistry and mateigaicecwhose require to

know the total energy of a system of atoms as a function of atpostions.
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Structural and energetic properties of complex systems could Ib@ated using
empirical interatomic potentials. A new approach for construcioogentials
incorporating the dependence of bond orders is presented in [74]. An ersmonm
dependent bond order is included into the potential because it depends on local
geometry and plays the crucial role. The interatomic poteistitdken to have the
form
E=>F =%Zvij :

i iz]
V= fe ()8 fo(r) + by £.0)],
whereE is the total energy of the system which is decomposed intersieiesE;
and bond energieg;. The indices andj run over all atoms of the systen,is the

distance betweeif' andj" atoms.

The termfg represents a repulsive pair potential which includes the orthogatiatiz
energy when atomic wave functions overlap. The termepresents an attractive pair
potential associated with bonding. These terms are expressed exgingential

functions:
fo(r) = AexpEAr),
fo(r) =—BexpEA,r).

The termfc is a smooth cutoff function to limit the rangepaitential:

Lr<R-D

fo(r) = 1 lgyzr=R) ,R-D<r<R+D
2 2 2D
Or>=R+D

which goes from 1 to 0 in a small range aro&®dFor most structureR is chosen to

include only the first neighbor shell.

The functionb; represents a measure of the bond order and isnadsto be a
monotonically decreasing function of the coordioatiof i and ™ atoms. It also

includes terms whose act to limit the range ofraatgon to the first neighbor shell:

D, = (1 4727 .
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i = Z fe (rik)g(eijk)exp[ﬂ“g(rij -1)°l,

ki, |

2 2

c c
0)=1+—— ,
9 d®> d?+(h-cos9)?

whereo;, is the bond angle between bomdandik.

The cosine of the bond angle could be found as:

cosh.. — (% = % )Xy = X5 ) + (K5 = X )Xo = X5 ) + (Xg; = X5 ) (X — Xg)
ik — ,
i Mk

wherex is thei™ coordinate oK™ particle.

The functiong; consists of range limiting terms:

1

8, =L+ )=,
= Z fe (rik)exp[ﬂg(rij -1)°l.

ki, |

A B, 41, 4, a, B, n, ¢, d, h, 43, R, D are fitted parameters. Parameters for arsenic
potential denoted by As and for two silicon potentials denoted by &i(@)Si(C) are
given in Table 12. These parameters are taken from [1], [74]7&)dHarameters for

other potentials are discussed in [5].

Table 12. The parameters of the potentials.

As Si(B) Si(C)
A | 10.45561332| 3.2647e+3  1.8308e43
B | 14.41961332| 9.5373e+] 4.7118e42
J1 | 6.739581257 | 8.7963 6.7339
4, | 4.886847795| 3.6001 4.7036
a | 0.0 0.0 0.0
§ | 0.00748809 | 0.33675 | 1.0999e-6
n | 0.60879133 | 22.956 0.78734
c 52731318 | 4.8381 1.0039e+5
d |0.75102662 | 2.0417 16.216
h |0.15292354 | 0.0000 -0.59826
Js | 0.0 0.0 0.0
R |1.2381 1.1048 1.0496
D |0.0503062 | 0.073654 | 0.055240

80



The goal of the problem presented in [1] is to find the minimumggnar clusters of
particles whose interact through well defined many-body inieragtotentials. The
energy of a particle depends on the distances and angles esjiect to other

particles, different particles have different energies.

The objective functiori is a function of the atomic positions of the particles. When
minimizing the objective function, we fix the first particletla¢ origin, lay the second
particle on the positive-axis and the third particle on thxg-plane. The position of
the third particle is defined using the distance from the oagdthe polar angle. The
positions of additional particles are defined as the coordinatdsdn-dimensional

space.

The physics involved in the problems imposes restrictions on the ‘emiabhe
distances between the first-second and first-third particletakes to lie in [0,1.30]
for As and [0,1.16] for Si. The polar angle is taken to lie im][0The coordinate
variables are in [-1.5,1.5], however the third coordinates of the fourth iihd f
particles constrained to be nonnegative and nonpositive respectively.siinions

on the variables of the problems are given in Table 13.

Table 13. The restrictions on the variables of the many-body problems.

Particle | As Si

2" 0<x;<1.30 xx;<1.16

3¢ 0<x,<1.30, GXz<rt 0<x,<1.16, Exs<m

4" -1.5<Xy,x5<1.5, (Kxe<1.5 =154, %5515, (Kx6<1.5
5M -1.5<%7,%e<1.5, -1.5%<0 | -1.5¢%7,%g<1.5, -1.5Xg<0

-1.5<x<1.5,i=10,11,12

-1.85x<1.5,i=10,11,12

The problems are difficult because of large number of localmizeirs. The authors
of [1] extracted some characteristics of the problems perfgrinital searches from
10000 random points within the feasible regions. This gave the probabihae a
local search started from a random point would reach the global ommifBased on
the estimated probabilities the authors conclude that all probleths 3vand 4
particles and Si(B) with 5 particles are easy to solve €tenated probabilities are
larger than 4%). The others are more difficult, Si(C) with 5 @rghrticles already
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respectively difficult (the estimated probabilities are ks 0.01%). Problems with

larger number of particles are increasingly difficult to solve.

The results of minimization the many-body problems using the Hiaskglobal
optimization algorithm: the smallest found value of the objectivetimmand the
number of the objective function calls needed to find the global mininfiumig
found, are given in Table 14. When the global minimum is the same [a§ it is
shown in brackets. The found global minimums for As problems are less than given in
[1], where the details about global minimizers are not givers [tossible that the
parameters of the As problems are wrong, so it is not recomohémdese the results

of As problems for comparison of performances of the algorithms.

Table 14. The results of minimization.

Number of particles| As Si(B) Si(C)

3 -8.07739 182 [-7.87096] 64 [-5.33194] 88

4 -12.8546 45498| [-15.7057] 186 [-7.99786] 1631
5 -16.6568 11808| [-20.3985] 327 -10.2009

6 -16.816 [-26.5196] 256460 -13.9692

The global minimum of Si(B) problem with 3 particlesfis-7.87096. The found
corresponding solution X =(0.852, 0.852, 1.047) which represents the particles on

the corners of a regular triangle as in Figure 18.

The global minimum of Si(B) problem with 4 particlesfis-15.7057. The found
corresponding solution i¥'=(0.852, 0.852, 1.047, 0.426, 0.246, 0.696) which

represents the particles on the corners of a regular tetrahedron as inlBigure

The global minimum of Si(B) problem with 5 particlesfis-20.3985. Two found
corresponding symmetric solutions a¢e=(0.871, 0.871, 1.047, 0.436, 0.251, 0.706,
0.436, 0.252, -0.706) and=(0.867, 0.867, 1.903, 0.438, 0.615, 0.436, 0.438, 0.615,
-0.436). The solutions represent the particles on the corners of twoarregul

tetrahedrons as in Figure 18.
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The global minimum of Si(B) problem with 6 particlesfis-26.5196. The same
solution was found two times with exchanged fourth and sixth partile$0.871,

0.871, 1.57, 0.436, 0.436, 0.616, 0.436, 0.436, -0.616, 0.871, 0.871, 0.0) and
X'=(0.871, 0.871, 1.57, 0.871, 0.871, 0.0, 0.436, 0.436, -0.616, 0.436, 0.436, 0.616).
The solution represents the particles on the corners of a regilredron as in

Figure 18.

triangle tetrahedron two tetrahedrons octahedron
3 particles 4 particles 5 particles 6 particles

Figure 18. Solutions of Si(B) problems.

In [1] the results of minimization the As and Si(B) problems\gisight stochastic
algorithms are given. The performances of the black box global iaption
algorithm and these eight stochastic algorithms were compairegi nesults of Si(B)
problem. The results of minimization Si(B) problem using the sgihalgorithms
(CSR2, CRS3, CRS4, CRS5, ABSA, SA, TMSL, MSL) and the black box global

optimization algorithm (BB) are given in Table 15.

Table 15. Results of stochastic algorithms [1] and black box algorithm.

MBP| CRS2| CRS3 CRS4# CRS5 ABSA SA | TMSL| MSL | BB
3[7 [[-7.87]| [-7.87]| [-7.87]| [-7.87] | [-7.87] | [-7.87] | [-7.87] | [-7.87] | [-7.87]

FE| 1123 | 1094| 755| 808| 13992 13978 212 210 64
41 |[-15.71][-15.71]|[-15.71][-15.71] [-15.71][-15.71][-15.71][-15.71] [-15.71]
FE| 4304 | 3724| 2418 2967 27988 46458 25P0 5312 186
5(f |[-20.40] -20.31|[-20.40] -15.70] -20.31| -20.31| -18.97 |[-20.40]|[-20.40]
FE 11111| 18348 3971 4321 36417 112053504 | 12954 327
6|f | -24.51| -24.51|[-26.52] -24.51| -25.98| -23.12| -24.44| -24.51|[-26.52]
FE 37677| 64067 44980 42134 1511096166 4139 | 18666 256460

All algorithms have found the global minimum of the problems with®4particles

and the efforts needed to find the global minimum were used for cog@es in [1].
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The black box global optimization algorithm is the best one, bectusquires the

smallest number of the objective function evaluations to find the global minimum.

Not all stochastic algorithms have found the global minimum of tbblgms with 5
and 6 particles and the reliabilities in finding the best solutiame used for
comparing as in [1]. Only one stochastic algorithm has solv@) $roblem with 6
particles and only three of them have solved the problem with 5 parti&ain the
black box global optimization algorithm is one of the best, becatmses isolved both
Si(B) problems with 5 and 6 particles. The algorithm is bothbigliand efficient. In
[1] the reliability rankings were roughly negatively correthtwith the efficiency

rankings for all except two algorithms whose were neither reliable noieett
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Results

1. The general n-dimensional simplex-based branch and bound algorithm for
Lipschitz optimization has been proposed. The rules of selectionyirgve
branching and bounding have been justified by results of experimental
investigations. The performance of the algorithm, using the numbfemofion
evaluations required to solve the problem, has been evaluated and abmiplare
other branch and bound algorithms for Lipschitz optimization.

2. The parallel master-slave and distributed simplex-based brandbhoand global
optimization algorithms with static and dynamic load balancinge hbeen
implemented using C++ and MPI. The criteria of parallel algots have been
evaluated and the superiority of distributed algorithms has been shown.

3. The black box global optimization algorithm inspired by intervathods is
proposed. The sequential algorithm of the method has been implemented and
tested using the numerical experiments with some well-knowrpteblems as
well as with two practical problems. The experimental testisg shown that the
method is applicable and performs well not only for the matherhaish
functions but also for the practical problems.

4. The portable parallel algorithm of the black box global optimizatiethod has
been implemented. The local garbage sets always provide thesswocavith
tasks and even with static load balancing processors alwaysnpaddculations.

The algorithm has been tested on the various parallel systems.

5. The black box global optimization algorithm has been applied tce sthikee

typical practical problems: multidimensional scaling, growth modl¢he human

mandible and many-body.
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Conclusions

The investigation of a simplex based Lipshitzian global optimizatiethod may be

summarized as follows:

e The versions of the method with the Lipshitzian bounds calculated wsintjan
values at vertices are more efficient than using function valu@sher points
since the same function values are attributed to neighboring andndast
simplices. It is not reasonable to calculate tight bounds takingaictount all
vertices since the cheaper bounds imply similar ratio of discardingot
prospective simplices.

e The partition of a simplex in two subsimplices defined by the raigdint of the
longest edge is more efficient than its partitiom#2 subsimplices using middle
points of all edges. It is not reasonable to maintain regularitigeofubsimplices
while partitioning. The initial covering does not have much influeatthough
the vertex triangulation has been observed slightly betterttiegaover-covering
by regular simplices.

e The proposed irregular simplex based method performs better thaothie
known branch and bound algorithms with respect to the number of function
evaluations.

e The master-slave paradigm is not efficient for parallel em@ntation of the
proposed method since the calculation of bounds is cheap comparing with the time
needed to send the task and the results. The communications are frequent,
therefore master becomes a bottleneck and the slaves becoméetievaiting
for new tasks.

e Acceleration anomaly takes place for the parallel implementgtwith the
distributed initialization. The reason is the dependence of distiibofisimplices
of initial partitioning on the number of processors.

e The proportion of time spent on calculations of the parallel implememsawith
the distributed initialization is better than that with the @dizted initialization.

This may be explained by the shortage of tasks in the latter caly the root
processor has tasks after the initialization while othersddeewaiting for them.
The search tree in case of central initialization is namrdhan the search tree in

case of distributed initialization.
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The proportion of time spent on calculations by the parallel implextientwith
static load balancing is better than by the implementatiadh dynamic load
balancing since tasks are small with respect to the comntiomicaverheads. The
communications cause an additional overhead, but the search tresois aad

there are not enough tasks to share.

The investigation on black box global optimization inspired by the iatenethods

may be summarized as follows:

The proposed method is reliable; in all testing cases the globamhom has been
found. The method is applicable much widely than the interval method$otieere
it is a good candidate to substitute the interval methods in a "btacksituation
when interval methods can not be applied.

The proposed method has been applied to several practical problenasrdbfa
competes with the methods originally used to solve these problemsesjtect to
the criterion of calls of the objective function.

The implementation of parallel version of the proposed black box Igloba
optimization method is efficient. Since the solution may be lstaigorithm is
embedded into a loop which restarts the calculation. A logtr candidate sets
always provide the processors with tasks, and processors alwaysnperf

calculations even in case of static load balancing.
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