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Introduction 

Importance of the problem 

Many problems in engineering, physics, economic and other subjects are reduced to 

global minimization with many local minimizers. Mathematically the problem is 

formulated as  

)(min* xff
Dx∈= , 

where f(x) is a nonlinear function of continuos variables f : ℜn→ℜ, D ⊆ ℜn is a 

feasible region, n is number of variables. Besides of global minimum f* one or all 

global minimizers x*: f(x*) = f* should be found. No assumptions on unimodality are 

included into formulation of the problem. 

 

The global optimization problems are classified difficult in the sense of the 

algorithmic complexity theory. Therefore global optimization algorithms are 

computationally intensive. 

 

Large practical problems, unsolvable with available computers, always exist. When 

computing power of usual computers is not sufficient to solve a practical problem, the 

high performance parallel computers may be helpful. An algorithm is more applicable 

in case its parallel implementation is available, because larger practical problems may 

be solved by means of parallel computers. Therefore implementation and 

investigation of parallel versions of new algorithms is one part of the research. 

 

Some subclasses of global optimization algorithms (e.g. random search, evolutionary 

strategies) are favorable to parallelization [68]. On the other hand, parallelization of 

adaptive covering techniques, of the methods based on statistical models and of some 

other methods is not straightforward. There is lack of research in this urgent subject. 

The aim of this research is to cover the gap related to covering methods. 
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Objectives and tasks of the research 

The objectives of the research are: 

• To develop and justify new versions of algorithms for black box global 

optimization inspired by covering techniques. 

• To implement the proposed algorithms and to evaluate their performance and 

reliability by means of experimental testing. 

• To implement the parallel versions of the proposed algorithms and to evaluate the 

performance of the implemented codes. 

• To assess the applicability of the proposed algorithms by means of solving of 

typical practical problems. 

 

To reach the objectives the following tasks should be fulfilled: 

• The covering global optimization methods should be analyzed. 

• The covering techniques should be modified to adopt them to a black box 

situation. 

• The sequential versions of the proposed algorithms should be implemented. 

• The performance of the implemented algorithms should be evaluated by means of 

experimental testing. 

• The parallel computing techniques should be analyzed, especially the paradigms 

of communications between processors. 

• The parallel algorithms for covering global optimization should be analyzed. 

• The parallel versions of the proposed algorithms should be implemented and 

assessed with respect to criteria of parallelization. 

• The applicability of implemented algorithms should be assessed by means of the 

results of optimization of typical practical problems. 

Novelty and originality 

• The covering global optimization methods have been modified increasing their 

performance and adopting them to a black box situation. 

• New sequential and parallel algorithms have been implemented and evaluated. 
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Approval of the research 

The results of the research are presented in the following conferences and seminars: 

• International Workshop on Global Optimization 1999, University of Florence, 

Firenze, 1999. 

• Conference “Informacin÷s technologijos’2000”, KTU, Kaunas, 2000. 

• Second International Conference "Simulation, Gaming, Training, Business 

Process Reeingineering in Operations", RTU, Riga, 2000. 

• Edinburgh University  Seminar on Optimization, Edinburgh, 2001. 

• TRACS-ACCESS-MINOS User Group Meeting, Edinburgh, 2001. 

• BORNHOLM’02 Nordic Summer Course on Applied Optimization and Modeling, 

Bornholm, 2002. 

Publications 

The results of the research has been published in the following papers: 

1. O. Tingleff, A. Žilinskas, J. Žilinskas. A Two Dimensional Optimization 

Algorithm Based on New Statistical Model of Multimodal Functions. In: C. 

Carlsson et al. (eds.), Global & Multiple Criteria Optimization and Information 

System Quality, Åbo Akademi Press, Finland, 103-112, 1998. 

2. J. Žilinskas. Optimization of Lipschitzian functions by simplex based branch and 

bound. Information Technology and Control No.1(14), Kaunas, Technologija, 45-

50, 2000. 

3. K. Madsen, J. Žilinskas. Testing Real and Interval Methods for Global 

Optimization. Technical report IMM-Report-2000-05, Department of 

Mathematical Modelling, DTU, Denmark, 22 pages, 2000. 

4. K. Madsen, J. Žilinskas. Evaluating Performance of Attraction Based 

Subdivision Methods for Global Optimization. Second International Conference 

"Simulation, Gaming, Training, Business Process Reeingineering in Operations", 

RTU, Riga, 38-42, 2000. 

5. J. Žilinskas. Black Box Global Optimization Inspired by Interval Methods. 

Information Technology and Control No.4(21), Kaunas, Technologija, 53-60, 

2001. 



 8 

Structure of the dissertation 

The structure of the dissertation is as follows. In chapter 1 the global optimization 

methods are reviewed. The main attention is paid to the covering global optimization 

methods and the branch-and-bound technique to solve global optimization problems. 

In this chapter parallel computing is also analyzed. The load balancing and 

termination detection of parallel algorithms is analyzed in detail. The literature on the 

parallel branch-and-bound technique is reviewed. Criteria of efficiency of parallel 

algorithms are discussed. 

 

In chapter 2 a new Lipschitz global optimization algorithm with simplicial 

partitioning is presented. The numerical results of experiments with the sequential 

algorithm are discussed and compared with results of other Lipschitz global 

optimization algorithms. The parallelization of algorithm is described. The parallel 

implementations are assessed with respect to criteria of parallelization. 

 

In chapter 3 a new black box global optimization method inspired by interval 

arithmetic is presented. Sequential algorithm is implemented and investigated. The 

results of experimental testing are compared with the results of interval global 

optimization algorithm [43]. Parallel version of the algorithm is implemented. 

 

In chapter 4 application of the presented black box global optimization method is 

presented. The method is applied to practical problems: multidimensional scaling, 

growth model of the human mandible and many body problems. The results of 

optimization are discussed. 

 

The dissertation is completed with the conclusions and with the summary of the 

results. 
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1 Parallel computing from the perspective of global 

optimization 

In this chapter the global optimization methods are reviewed. The main attention is 

paid to the covering global optimization methods and the branch-and-bound technique 

to solve global optimization problems. In this chapter parallel computing is also 

analyzed. The load balancing and termination detection of parallel algorithms is 

analyzed in detail. The literature on the parallel branch-and-bound technique is 

reviewed. Criteria of efficiency of parallel algorithms are discussed. 

1.1 Global optimization 

Mathematically the global optimization problem is formulated as  

)(min* xff
Dx∈= , 

where a nonlinear function of continuos variables f(x), f : ℜn→ℜ, is called the 

objective function; D ⊆ ℜn is a feasible region, n is number of variables. 

 

Besides of global minimum f* one or all global minimizers x*  

f(x*)= f* 

should be found. No assumptions on unimodality are included into formulation of the 

problem [35], [36], [80]. 

 

Sometimes an objective function is expressed analytically. However, the objective 

functions of practical problems usually are given by means of computer programs, 

and the properties of the objective function are difficult to elicit. The objective 

function values are assumed given by an oracle or a black box. 

 

The global optimization problems are classified difficult in the sense of the 

algorithmic complexity theory. Therefore global optimization algorithms are 

computationally intensive, and solution time crucially depends on the dimensionality 

of a problem. In local optimization the decomposition approach is proved useful to 

reduce a problem of high dimensionality to several problems of lower dimensionality. 

The possibilities of decomposition of black box type objective functions are 

considered in [73]. 
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1.1.1 Classification of global optimization methods 

A classification of global optimization methods is proposed in [80]: 

• Methods with guaranteed accuracy 

• Covering methods 

• Direct methods 

• Random search methods 

• Clustering methods 

• Generalized descent methods 

• Indirect methods 

• Methods approximating the level sets 

• Methods approximating the objective function 

 

Random search methods may be adaptive and nonadaptive. Nonadaptive methods 

generate random trial points with predefined distribution. The trial points could be 

used as starting points of local searches. For example, pure random search does not 

contain local searches at all. Single start performs a single local search starting from 

the best trial point (with the smallest value of the objective function). Multi start 

performs local searches starting from all trial points and the global minimum is the 

smallest minimum found. 

 

These methods are very simple but inefficient. Normally the probability of finding the 

global minimum approaches 1 when the number of observations of the objective 

function approaches infinity. Usually nonexperts use these methods to solve practical 

problems because the methods are simple and easy to implement. Sometimes these 

methods are used by the researchers to extract the characteristic of a problem: the 

global minimum, the number of global and local minimizers, probability that a local 

search started from a random point would reach the global minimum. 

 

The parallelization of the nonadaptive methods is obvious. Each processor 

independently runs the same algorithm on equal parts of or on overall feasible region. 

There is no need to communicate between processors. The speedup is equal to the 

number of processors, the efficiency of parallelization is equal to 1. 
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The main idea of adaptive random search is to distribute the trial points nonuniformly 

in the feasible region with greater density in most promising subregions. The best 

function values found indicate the promising subregions. The practical efficiency of 

adaptive random search methods usually depends on the choice of rather many 

parameters and work well when used by their authors. 

 

In the clustering methods the trial points are grouped into clusters identifying the 

neighborhoods of the local minimizers and just one local search is started from every 

cluster. The repeated descent to a local minimizer is prevented. The trial points may 

be sampled using a grid or randomly. 

 

The generalized descent methods are the generalization of the local search methods to 

global optimization. In the trajectory methods the differential equation describing the 

local descent is modified. In the penalty methods the local search algorithm is 

repeatedly applied to a modified objective function preventing the descent to known 

local minima. 

 

In the methods approximating the objective function the statistical models of the 

objective function are used. The unknown values of the objective function are 

modeled using random variables. The auxiliary computations to determine the next 

trial point are expensive, therefore these methods are reasonable for the expensive 

objective functions. The optimization technique based on a stochastic function model 

and minimization of the expected deviation of the estimate from the real global 

optimum is called Bayesian [57]. 

 

Theoretically the covering methods solve the global optimization problems of some 

classes with guaranteed accuracy. Covering methods detect the subregions not 

containing the global minimum and discard them from further search. The partitioning 

of the subregions stops when global minimizers are bracketed in small 

multidimensional intervals guaranteeing the prescribed accuracy. 

 

A lower bound of the objective function over the subregion may be used to indicate 

the subregions who can be discarded. Some methods are based on lower bound 

constructed as convex envelope of an objective function [27], [38], [39]. Lipschitz 
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optimization assumes that the slope of an objective function is bounded. Interval 

methods estimate the range of a function over an interval using interval arithmetic. A 

branch and bound technique can be used for managing the list of subregions and the 

process of discarding and partitioning. 

 

Covering methods are usually not applicable in a black box situation. In our research 

we are interested in development of covering methods, improving their performance 

and making them applicable in a black box situation. 

1.1.2 Lipschitz methods 

Lipschitz optimization is based on the assumption that the slope of an objective 

function is bounded [36], [61]. A function ℜ→Df : , nD ℜ⊆  is said to be 

Lipschitz if it satisfies the condition 

yxLyfxf −≤− )()( , Dx∈∀ , Dy∈∀ , 

where L>0 is a constant called Lipschitz constant, D is compact and ⋅  denotes the 

Euclidean norm; other norms could be also considered. 

 

In [31] several Lipschitz global optimization methods are discussed and compared 

experimentally, the advantages and disadvantages of this approach are discussed. 

Lipschitz global optimization is applicable when Lipschitz constant of the objective 

function is available. The efficient algorithms exist for the one-dimensional case. In 

this case the lower bound is inexpensive to compute. However, the calculation of tight 

lower bound becomes expensive in multidimensional case. Moreover, the Lipschitz 

constant depends on scaling of the variables and optimization is inefficient when 

scaling is made not properly. If an estimate of the Lipschitz constant is too small then 

the global minimizer may be missed. On the other hand overestimation of the 

Lipschtiz constant implies the overestimated bounds and loss of the optimization 

efficiency. Another difficulty is that it is not taken into account that the Lipschitz 

constant may vary greatly over different regions of the domain. 

 

The Lipschitz constant normally is unknown for practical problems whose objective 

functions are defined by means of computer code. In [84] a method for estimating the 
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Lipschitz constant is presented. Extensions of Lipschitz optimization for the case of 

unknown Lipschitz constant are considered in [62]. 

1.1.3 Interval methods 

Interval global optimization methods are based on interval arithmetic proposed in 

[58]. The interval arithmetic operates with real intervals 

}|{],[ xxxxxxX ≤≤ℜ∈== , where x  and x  are real numbers. Any real arithmetic 

operation x op y has the corresponding interval arithmetic operation X op Y: 

},|op{]opmax,opmin[op
,,

YyXxyxyxyxYX
YyXxYyXx

∈∈== ∈∈∈∈ . 

 

X op Y contains every possible number which can be formed by x op y for each Xx∈  

and Yy∈ . The common interval arithmetic operations are defined as: 

],[ yxyxYX ++=+ , 

],[ yxyxYX −−=− , 

)],,,max(),,,,[min( yxyxyxyxyxyxyxyxYX =⋅ , 

]/1,/1[],[/ yyxxYX ⋅=  if Y∉0 . 

 

Let a function f(x) be defined over the “box” }|{ iii
n xxxxX ≤≤ℜ∈= . The lower 

and upper bounds for the function values can be estimated applying the interval 

operations with the intervals ],[ ii xx  instead of the real operations with xi in the 

algorithm of calculation the function values. The bounds are useful to detect the 

subregions of the feasible region not containing a global minimizer. Such subregions 

may be discarded from the further search. If the objective function is differentiable it 

is possible to compute the intervals of the derivatives and discard the subregions 

where the objective function is monotone. If the objective function is twice 

continuously differentiable it is possible to compute the intervals of the second 

derivatives and discard the subregions where the objective function is concave. If the 

objective function is twice differentiable the special interval Newton method can be 

applied to reduce the subregions, and discard the subregions where there are no 

stationary points [30]. 
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The disadvantage of interval methods is that they need mathematical expression of the 

objective function, and they are not applicable in the black box situation. Another 

disadvantage is the dependency problem [30]: when a given variable occurs more than 

once in an interval computation, it is treated as a different variable in each occurrence. 

The latter causes widening of computed intervals making it more difficult to obtain 

tight intervals. One should always be aware of this shortcoming and take appropriate 

steps to reduce its effect. However it is not always possible to overcome the problem, 

when the objective function is defined by means of a computer code. 

 

The first version of the interval global optimization algorithm was oriented to 

minimization of a rational function by bisection of sub-domains [69]. Interval 

methods for global optimization were further developed in [28], [29], [59], e.g. the 

interval Newton method and the test of strict monotonicity were introduced. A 

thorough description including theoretical as well as practical aspects can be found in 

[30] where the very efficient interval global optimization method involving 

monotonicity and nonconvexity tests and special interval Newton method is proposed. 

The method assumes that the objective function is twice continuously differentiable. 

The mathematical expressions of the functions should be available. If the 

monotonicity and nonconvexity tests and interval Newton method are not used the 

method can minimize even noncontinuous functions, but then it is not so efficient. 

 

The interval methods has been combined with searches implemented in real number 

arithmetic, see for instance [7], [40]. In [43] and [40] the global unconstrained 

minimization method involving a combination of local search, branch-and-bound 

technique and interval arithmetic is proposed. In this method derivatives are not 

required. 

1.1.4 Branch and bound technique 

Branch and bound is a technique to solve combinatorial and covering global 

optimization problems. An iteration of a classical sequential branch and bound 

algorithm processes a node in the search tree representing a not yet explored subspace 

of the solution space [8]. Iteration has three main components: selection of the node to 

process, bound calculation and branching. Partitions obtained with branch and bound 
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algorithms for global optimization differ from those used in combinatorial 

optimization in that [31]: 

• The number of possible partitions is infinite. 

• The classes of partitions may overlap. 

 

Let LB(X) and UB(X) denote upper and lower bounds of fmin over X: 

)(min)( xfXLB
Xx∈≤ , )(min)( xfXUB

Xx∈≥ . The general branch and bound algorithm is 

shown in Algorithm 1. 

 

Algorithm 1. General branch and bound algorithm. 

∞⇐)(XUB . 

Cover the feasible region X by },,1|{ mjCC j K== , jCX ∪⊆ . 

While ∅≠C , 

Select CB∈ , }{\ BCC ⇐ . 

Branch B: j

p

j
TB

1=∪⊆ , }|{ ∅≠∩=Τ XTT jj . 

}),,1|)({)}(min({)( pjXTUBXUBXUB j K=∩∪⇐ . 

})()(|:{ ε+<∪⇐ XUBBLBTCBC . 

 

C is called the candidate set. The branch and bound scheme aims to reduce C and 

make it converge to X*. 

 

The rules of covering, selection, branching and bounding differ from algorithm to 

algorithm. 

 

The rules of covering and branching depend on type of partitions used. Partitions may 

be hyper-rectangular, simplicial, hyper-conic or hyper-spherical. Usually feasible 

regions of general global optimization problems are hyper-rectangles. All interval and 

most of Lipschitz global optimization branch and bound algorithms use the hyper-

rectangular partitions. In this case initial covering is simple: C={X}. Covering by 

hyper-spheres causes overcovering of feasible region as well as overlapping of 

spheres themselves. In [12] a two dimensional case is considered where branching is 
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implemented as partitioning into regular sub-simplices with initial over-covering. 

Such a non-overlapping branching is not known in more than two dimensions. The 

use of irregular simplices enables nonovercovering of feasible region as well as 

nonoverlapping branching. 

 

There are three main strategies of selection: 

• Best first – select an element of C with minimal lower bound. 

• Depth first – select the youngest element of C. 

• Breadth first – select the oldest element of C. 

 

The bounding rule describes how the bounds of minimum are found. For the upper 

bound the best currently found value of the objective function might be accepted. The 

lower bound may be estimated using convex envelopes of function values, using the 

Lipschitz condition or interval arithmetic. 

1.2 Parallel computers 

When computing power of usual computers is not sufficient to solve a practical 

problem, the high performance parallel computers may be helpful. Parallel computers 

are classified to be a shared memory multiprocessor system or message-passing 

multicomputer system. 

 

The shared memory multiprocessor system consists of multiple internal processors 

and the shared memory, as it is shown in Figure 1. The shared memory has a single 

address space and each processor can access it. The data is stored in the shared 

memory. The processors communicate through shared data structures what makes 

parallel programming attractive.  

 

The shared memory can become a bottleneck when processors frequently access the 

shared memory. It is difficult to implement the hardware to achieve fast access to all 

the shared memory by all the processors, especially when there are many processors. 

The hierarchical memory structure is usually implemented involving the fast local 

cache memory and the mechanism of updating the global memory (cache coherency). 
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Interconnection network

Shared memory

Processors

PE PEPE

MEMEME

 

Figure 1. Shared memory multiprocessor system. 

 

In a distributed message-passing multicomputer system each processor has its local 

memory which is not accessible by other processors. The memory is distributed. The 

interconnection network should be provided for processors to communicate. Special 

mechanisms for controlling simultaneous access of data are not necessary. A 

distributed message-passing multicomputer system is shown in Figure 2. 

 

Interconnection network

ProcessorsPE PEPE

MEMEME Local memory

 

Figure 2. Distributed message-passing multicomputer system. 

 

Such a system may be a specially designed computer system or usual computers 

connected using an interconnection network. Specially designed systems usually have 

static interconnection networks [82] who have direct physical links between nodes. 

Possible topologies of the static network are [20], [70], [82] completely connected 

network, line-mesh, ring-torus, star, tree, hypercube. 

 

Processors communicate using messages who include data. The message-passing 

multicomputer will physically scale easier than a shared memory multiprocessor, 

what means it can more easily be made larger [82].  
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Implementation of parallel programs for message-passing system is more complicated 

than for shared memory systems [82]. However, the message-passing paradigm is 

more general. It can be implemented in a shared memory multiprocessor by using 

shared memory to hold data to be sent between processors. Therefore it is possible to 

implement parallel message-passing algorithms portable among both types of parallel 

systems – shared memory and message-passing multiprocessors. There exists a 

standardized portable communication protocol used on massively parallel machines, 

the Message Passing Interface (MPI) [55]. Because of its generality the message-

passing model has been chosen in our research for implementation of parallel 

programs. 

 

INMOS has introduced transputer – a multicomputer building block. Transputer is a 

specially designed device, which integrates a reduced-instruction-set-computer 

processor, some memory and a set of inter-processor communication links [83], [71]. 

Some families of transputers have been manufactured: T222, T425, T800. 

Multiprocessor boards based on transputers for personal computers were relatively 

low cost parallel-processing solutions. The transputer network topology of such 

boards may be set up as a pipeline, a ring, a binary tree or a cube [76]. The Occam 

language [37] developed by INMOS was used to implement parallel programs on 

transputer systems. 

 

Parallel computing is one of the most developing branches of science and technology. 

The top list of most powerful supercomputers is updated twice a year [78]. There is 

number of international journals and conferences on parallel computing. There was 

lack of parallel computer systems in Lithuania. Therefore parallel computing was not 

very popular here. However it is developing. There are IBM RS/6000 SP parallel 

computer with four processors at Vilnius Gediminas Technical University and some 

clusters of workstations. A book on parallel algorithms for students of mathematics 

and computer science [13] is published at Vilnius Gediminas Technical University. 

Few doctoral dissertations related to parallel computing are defended, for example 

[63], [72]. 
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There are some published results on parallel computing research in Lithuania. In [15] 

the implementation of numerical adaptive algorithms for multi-dimensional 

quadrature on distributed-memory parallel systems is described. The algorithms are 

targeted at clusters of workstations with standard message passing interfaces. The 

most important issues are communication and load balancing. Numerical results on 

various workstation clusters are reported. 

 

Parallel numerical integration algorithms for multi-dimensional integrals are 

considered in [14]. A new hyper-rectangle selection strategy is proposed for the 

implementation of globally adaptive parallel quadrature algorithms. The master-slave 

parallel algorithm prototype is used for the realization of the algorithm. Numerical 

results on the SP2 computer and on a cluster of workstations are reported. 

 

The analysis of the method for multiple criteria optimization problems applying a 

computer network has been proposed in [19]. The essence of the proposed method is 

the distribution of the concrete optimization problem into the network rather than the 

parallelization of some optimization method. 

1.3 Load balancing and termination detection 

The development of on algorithm in order to run the parts of the algorithm in parallel 

is called parallelization. The parallelization aims to obtain the smallest possible time 

of execution of the algorithm. The processors should not become idle, i.e. not 

contributing to common goal. Ideally the processors should compute continuously and 

finish together. The possibly uniform distribution of the work between processors is 

called load balancing. The detection when the computations are completed is called 

termination detection. 

1.3.1 Centralized load balancing 

The load balancing is called centralized if one processor dynamically distributes the 

tasks and the other processors do not interchange them between each other. This 

corresponds to the master-slave paradigm. The master processor holds the collection 

of tasks, so called work pool or task queue. When the slave processor becomes idle it 

requests a task from the master processor. The master processor sends out the most 
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complex or the most important task it has. When the slave finishes the task it sends 

the results to the master processor. 

 

The master processor also manages the termination. In this case it is not difficult to 

detect the termination conditions defined as follows: 

• The task queue is empty. 

• All slave processors request a task. 

 

The second condition means that all slaves have finished their tasks and have sent the 

results to master. If a slave processor is still running it is possible that new tasks will 

be generated. The disadvantage of this scheme is that the master can become a 

bottleneck especially when the system is large and the communications are frequent: 

the slaves can become idle when waiting for new tasks. 

1.3.2 Static load balancing 

The load balancing is called static if the work is distributed initially before the 

computations start. The synonyms of the static load balancing are static mapping, 

static scheduling. When the number of initial tasks is equal to the number of 

processors each processor gets one task. When the number of tasks is larger the static 

load balancing techniques are used to distribute the tasks among the processors: 

• Round robin algorithm distributes tasks in sequential order of processors coming 

back to the first processor after the last one. 

• Randomized algorithms distribute tasks in random order. 

• Optimization techniques distribute tasks minimizing the time of execution of the 

parallel algorithm. 

 

The optimization techniques could be used for the static load balancing when the 

execution time for each task is known in advance. However it is very difficult to 

estimate the execution times without actually executing the program. Moreover the 

system may be heterogeneous – processors and interconnections may be of different 

type and speed. 
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The termination is easy because the processors do not communicate the tasks. When 

the processors finish their work they terminate. However the load balance may be 

poor since the processors may finish their work at different times. 

1.3.3 Distributed dynamic load balancing 

By distributed dynamic load balancing the processors exchange tasks between 

themselves. The aim is to share the work uniformly. Processors perform calculations 

as well as communicate to exchange the tasks. 

 

The transfer of task could be initiated either by the receiver or by the sender. When 

the processor has few or no tasks it initiates the transfer: it requests a task from 

another processor, which sends one or more tasks if it has. An overloaded processor 

may initiate the transfer: it sends one or more tasks to the other processors it selects. 

However, the processor should determine that it is overloaded, what means that it has 

more tasks than the others. The determination could be expensive, because the 

processors should know the load of other processors. 

 

Two dynamic distribution strategies are indicated in [11]: 

• “on demand” is the receiver initiated strategy, 

• “on overload” is the sender initiated strategy. 

A local approach of determination overload is presented in [11]. 

 

The processor could be selected for communication having the structure of the 

interconnection network in mind. If the interconnection network is known, the nearest 

neighbors are usually selected. If the structure is general or unknown, all processors 

are equal candidates and any other processor could be selected. Each processor has its 

own local selection algorithm. The processor could be selected using round robin or 

random algorithms. The round robin algorithm selects candidate processor in 

sequential order coming back to the first processor after the last one. The random 

selection algorithm selects the random processor from the candidate set. 

 

Five dynamic load balance strategies are discussed in [81]: 
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• Sender Initiated Diffusion (SID) is an asynchronous highly distributed local 

approach using near-neighbor information only. The heavily loaded sender 

processor initiates balancing. 

• Receiver Initiated Diffusion (RID) is similar to SID approach. The underloaded 

receiver processor initiates balancing. 

• Hierarchical Balancing Method (HBM) is an asynchronous global approach which 

organizes the system into hierarchy of subsystems and balances load at different 

levels of hierarchy. 

• Gradient Method (GM) uses a gradient map of the proximities of underloaded 

processors in the system to guide the migration of tasks between overloaded and 

underloaded processors. 

• Dimension Exchange Method (DEM) is a global, fully synchronous, iterative 

approach. 

 

The strategies illustrate the tradeoff between: 

• Knowledge – the accuracy of balancing decision, 

• Overhead – the amount of added processing and communication incurred by the 

balancing. 

 

The results of experiments with implementations of all five strategies on an Intel 

iPSC/2 hypercube indicate that the RID approach performs well and can be most 

easily be scaled to support highly parallel systems [81]. 

 

Using the distributed dynamic load balancing the work could be distributed 

uniformly. However communications between processors cause an overhead during 

execution, because some time is spent on communications. Sometimes there could be 

not enough tasks to share. 

1.3.4 Termination detection 

To detect the termination of a distributed computation may be difficult. The general 

distributed termination conditions are: 

• All the processors have finished their tasks. This is local termination condition. 

• There are no tasks in transit. The task in transit may restart a terminated processor. 
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It is not difficult to detect the first condition. However the second condition could not 

be detected locally. One of the termination techniques should be used. The distributed 

termination method using request and acknowledgement messages is general method 

to cope with tasks in transit [82]. In [4] the formal mathematical arguments of the 

method are given in detail. In this method each processor is in one of the states – 

active or inactive. Initially a processor has no tasks and is inactive. It becomes active 

when it gets a task from other processor. The activating processor becomes the parent 

of the activated processor. In this way a tree of active processors are created. Each 

active processor has a unique parent. The active processor may receive more tasks 

from other processors. If it gets the task from the processor who is not his parent, it 

has to send an acknowledgement message. The processor sends acknowledgement 

message to its parent when it becomes inactive. It becomes inactive when: 

• It has finished all its tasks. The local termination condition is satisfied. 

• It has sent all its acknowledgement messages for the tasks it has received. 

• It has received all the acknowledgment messages for the tasks it has sent. 

The processor becomes inactive before its parent processor. When the root processor 

becomes inactive the computation can terminate. 

 

Some other termination algorithms are given in [82]. The ring termination algorithms 

organize processors in a ring structure and use tokens to detect termination conditions. 

The fixed energy distributed termination algorithm uses notation of a fixed quantity 

within the system. The energy is spread out when distributing the tasks and it is 

returned after the tasks are completed. The termination conditions are satisfied when 

all the energy is returned to the root and the root finishes its tasks. 

 

The termination method using request and acknowledgement method was chosen for 

distributed algorithms with dynamic load balancing because of its generality and its 

proven soundness [82]. 

1.4 Parallel branch-and-bound 

The literature on parallel branch-and-bound published up till 1994 has been reviewed 

in [22], where a new classification of parallel branch and bound algorithms has been 
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proposed. The authors identify three main approaches in designing parallel branch-

and-bound algorithms: 

• Parallelism of type 1 introduces parallelism performing the operations on 

generated subproblems. It consists, for example, of executing the bounding 

operation in parallel for each subproblem to accelerate the execution. Thus, this 

type of parallelism has no influence on the general structure of the branch-and-

bound algorithm and is particular to the problem. For example, the objective 

function may be computed in parallel. 

• Parallelism of type 2 consists of building the branch-and-bound search tree in 

parallel by performing operations on several subproblems simultaneously. Hence, 

this type of parallelism may affect the design of the algorithm. 

• Parallelism of type 3 implies that several search branch-and-bound trees are built 

in parallel. The trees are characterized by different operations (branching, 

bounding, testing for elimination, or selection), and the information generated 

when building one tree can be used for the construction of another. 

 

The second type of parallelism may be further classified according to the 

implementation techniques [22]. Synchronous algorithms are executed in phases. In 

each phase processors work independently and communicates only between phases. 

Processors must synchronize before communications what cause overhead. In 

asynchronous algorithms processors may communicate at any unpredictable time. 

These algorithms have nondeterministic behavior. 

 

The second implementation difference depends on the location of the work pool, i.e. 

the store of subproblems. Single pool algorithms store the subproblems in one 

memory location. Single pool algorithms may be implemented using the master-slave 

paradigm presented in Section 1.3.1. In this case the master processor manages the 

single work pool. Multiple pool algorithms use several work pools – store the 

subproblems in several memory locations. These algorithms correspond to distributed 

paradigm. 

 

According to the classification of [22] parallel branch-and-bound algorithms of type 2 

are classified as follows: 
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• Synchronous Single Pool (SSP), 

• Asynchronous Single Pool (ASP), 

• Synchronous Multiple Pool (SMP), 

• Asynchronous Multiple Pool (AMP). 

 

General features of known branch-and-bound algorithms depending to the different 

subclasses are analyzed in [22]. Authors conclude that synchronization is unnecessary 

in most cases, ASP algorithms are appropriate only for problems with a nontrivial 

bounding operation and parallel architectures with small number of processors. 

 

A slightly different classification of parallel branch-and-bound algorithms is proposed 

in [54]. The algorithms are characterized by the implementation of the work pool and 

synchronization: 

• Select Highest Overall (SHO). Highly synchronized algorithms with a global work 

pool. 

• Select Highest Available (SHA). Algorithms with a global work pool but without 

synchronization. 

• Select Highest Locally (SHL). Each unsynchronized processor has its own work 

pool. 

• Select Highest with a shared pool (SHOn and SHAn) are based on SHO and SHA 

respectively. Processors are grouped into n groups (n is less than the number of 

processors) and all processors in the same group share the same work pool. SHO1 

and SHO, SHA1 and SHA are equivalents respectively. 

 

The results of the experiments with SHO, SHA and SHL algorithms are given in [54]. 

The results show that SHA performs best when the evaluation of the subproblem is 

reasonably accurate and cost time, and there are a small number of processors. The 

SHL performs best for problems with non-accurate and cheap evaluation of the 

subproblems. When the time to evaluate the subproblem is not constant, the 

synchronization step is costly and SHO performs badly. 

 

Parallel branch-and-bound algorithms of different classes may be combined. A 

parallel branch-and-bound algorithm with two phases: a synchronous initialization 
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and an asynchronous exploration, is proposed in [23]. The synchronous initialization 

phase is a generalization of the sequential best-first search strategy. In the exploration 

phase the asynchronous processors perform independent depth-first searches. 

 

An original depth-first branch-and-bound algorithm for shared memory machines is 

proposed in [50]. The feeding tree is introduced. It allows a good distribution of tasks 

to the processors. The shared feeding tree is the upper part of the search tree 

developed down to the predefined depth. The leaves of the feeding tree are the roots 

of the subtrees allocated to the processors. The algorithm was executed on shared 

memory machine on up to 4 processors. The results show that speedup is nearly equal 

to the number of processors. 

 

The search strategy (the selection criterion) in parallel branch-and-bound is discussed 

in [10]. The best first and the depth first search strategies are tested on the Quadratic 

Assignment and the Job Scheduling combinatorial optimization problems. Strategies 

are compared in terms of running times and in terms of number of performed bound 

calculations. 

 

Parallel branch-and-bound algorithms may be classified by means of the used load 

balancing strategy:  

• Centralized load balancing, 

• Static load balancing, 

• Distributed dynamic load balancing.  

Similar classification was used in [8]: 

• The Master-Slave Paradigm, 

• Distributed Branch-and-Bound, 

• Parallel Branch-and-Bound with static work distribution. 

 

Parallel branch-and-bound algorithms may correspond to one of two main paradigms 

of parallel programming: master-slave or distributed. 

 

In the parallel master-slave system there is one master processor, which controls the 

optimization process. The slave processors receive subproblems from the master, 
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perform computations, and send the results to the master. It is ensured that all slaves 

perform computations on promising subproblems, the master controls load balancing 

and termination. The disadvantage of this scheme is the potential bottleneck of the 

master especially when the system is large and the communications are frequent and 

long lasting. The slaves may become idle when waiting for subproblems. 

 

The second paradigm, i.e. distributed parallelization, assumes a cooperative work of a 

set of equal communicating processors. The main problems of the distributed 

parallelization are load balancing and termination detection. 

 

There are two different balancing strategies: static and dynamic. When the static load 

balancing is used, the subproblems are initially distributed and then the processors 

work independently and do not exchange any later generated subproblems. The 

application of static load balancing to the considered problem corresponds to the 

method of geometric parallelization. Its implementation is simple, but its disadvantage 

is unpredictable distribution of work load implying situations when some processors 

become idle. 

 

Dynamic load balancing aims to share the work load uniformly. However, to 

implement such a strategy the problems of controlling the load balance and 

termination detection should be solved. 

 

All earlier mentioned references on parallel branch-and-bound considered 

combinatorial optimization. The literature on parallel branch-and-bound for global 

optimization is limited. However parallel branch-and-bound methods for 

combinatorial optimization and global optimization posses many similarities and few 

differences, as discussed in [8]. 

 

The results of some numerical experiments with an interval method for global 

optimization on a transputer system are presented in [24]. A parallel method for 

verified global optimization using a centralized mediator for the dynamic load 

balancing is proposed in [3]. 

 

The use of a depth first strategy in parallel global optimization is discussed in [32]. 
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1.5 Criteria of parallelization 

The efficiency of the parallelization is measured using several criteria. A commonly 

used criterion of parallel algorithms is speedup: 

m
m t

t
s 1

=  

where tm is time used by the algorithm implemented on m processors. The speedup 

divided by number of processors is usually called the efficiency: 

m

s
e m

m = . 

 

Normally, msm ≤≤1  and 10 ≤≤ me . However in parallel branch and bound the 

progress of the search may differ for the different number of processors. This depends 

on: 

• initial partitioning,  

• how sub-problems are subdivided,  

• when better values of the objective function f  are found and exchanged 

(sometimes earlier and sometimes later than by the corresponding sequential 

algorithm).  

 

If the progress of search is different, then the search tree is different, and the total 

number of expanded subdomains is different. There may be either more or fewer or 

the same number of expanded subdomains. This may cause anomalies: 

• detrimental anomaly sm<1, more expanded subdomains, 

• deceleration anomaly 
21 mm ss > , for m1<m2, more expanded subdomains when 

more processors, 

• acceleration anomaly sm>m, fewer expanded subdomains. 

 

The anomalies are mentioned in number of papers about the parallel branch and 

bound, for example [65], [22]. The performance of the parallel branch-and-bound 

algorithms with the best first strategy by examining various anomalies was analyzed 

in [51]. 
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The initial partitioning must not depend on the number of processors to decrease 

anomalies. However, the large number of initial sub-problems must be generated 

when various numbers of processors are used. Furthermore, the load balance depends 

on the number of processors if the initial partitioning does not. This happens since 

number of initial sub-problems for each processor decreases when the number of 

processors increases. When the initial partitioning depends on the number of 

processors and each processor gets the same number of initial sub-problems, the load 

balance does not depend on the number of processors. In this case the evaluation of 

criteria is more correct, but anomalies are more likely. 

 

The speedup and the efficiency are not well appropriate criteria in case of anomalies. 

The criteria of pseudo efficiency and proportion of time spent on calculations (other 

time is spent on communications or being idle) are less sensitive to anomalies. The 

criterion of pseudo efficiency is proposed in [65] 

mm
m Ttm
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×
=

11 ,  

where mT  is the measure of amount of work done by the algorithm using m 

processors. The good measure of amount of work must be chosen when the pseudo 

efficiency criterion is used. In [65] the amount of work is the number of problem-

states expanded during the solution. The problem-state is similar to the sub-problem 

in the global optimization branch and bound. 

 

The total number of calls of the objective function is good measure of the amount of 

work: 

• when the objective function is “expensive”, i.e. its calculation requires more time 

than the auxiliary calculations by the optimization algorithm,  

• when the amount of the auxiliary calculations is proportional to the number of 

calls of the objective function.  

In the other cases the number of calls of the objective function is not a good measure 

of the amount of work. 

 

The proportion of time spent on calculation is also called processor utilization [9]. It is 

the average percentage of the total solution time spent by each processor doing useful 
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work as opposed to being idle or waiting for communication or memory access. The 

processor utilization is always between 0 and 1. It gives some indication on whether 

the given implementation suffers from problems with workload distribution and 

communication bottlenecks. 
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2 Lipschitz global optimization with simplicial partitioning 

In this chapter a new Lipschitz global optimization algorithm with simplicial 

partitioning is presented. The numerical results of experiments with the sequential 

algorithm are discussed and compared with the results of other Lipschitz global 

optimization algorithms. The parallelization of the algorithm is described. The parallel 

implementations are assessed with respect to criteria of parallelization. 

2.1 Introduction 

The global optimization problem is considered: find nRXx ⊆∈min  such that 

ε+≤= ∈ )(min)( minmin xfxff
Xx

, where ε is a small positive constant. The objective 

function f defined over nRX ⊆  is supposed to be Lipschitzian, i.e.  

yxLyfxf −≤− )()(  , Xx∈∀ , Xy∈∀ , 

where L is a constant called Lipschitz constant, ⋅  denotes the Euclidean norm. 

 

Lipschitz optimization is one of the most deeply investigated subjects of global 

optimization. The advantages and disadvantages of this approach are discussed, e.g. in 

[31], [61]. In this chapter the possibilities of enhancing of efficiency of Lipschitz 

global optimization branch and bound algorithms is considered introducing new 

irregular simplex-based branching and bounding techniques. 

 

In Section 2.2 a partitioning method of irregular simplices is proposed. In Section 2.3 

the calculations of bounds for Lipshitzian functions are discussed. In Section 2.4 the 

test results of the proposed simplex-based branch and bound algorithm are given. The 

proposed algorithm is compared with other branch and bound algorithms according to 

the criterion of the number of function evaluations. In Section 2.5 implementation and 

evaluation of parallel algorithms is discussed. 

2.2 Simplex-based branching 

Simplex is the convex hull of n+1 points in n-dimensional Euclidean space (n is a 

positive integer). In one-dimensional space a simplex is a segment of line, in two-

dimensional space it is a triangle, in three-dimensional space it is a tetrahedron. A 
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simplex is a polyhedron in n-dimensional space, which has the minimal number of 

vertices. 

 

Usually, a feasible region in Lipschitz optimization is defined as a hyper-rectangle. 

There are two main covering strategies of a hyper-rectangle by simplices: over-

covering and face to face vertex triangulation. 

 

Using the first strategy a hyper-rectangle is covered by one simplex. One version is to 

fit a hyper-rectangle into a simplex matching a vertex. One vertex of the hyper-

rectangle and one vertex of the simplex are matched, edges of the simplex from this 

vertex include edges of the hyper-rectangle from this vertex, and the opposite vertex 

of the hyper-rectangle is placed on the opposite face of the simplex. The one- and 

two-dimensional examples are shown in Figure 3. Covering is not unique. When 

implementing, it is aimed to minimize the over-covering. 

 

a. b.  

Figure 3. Covering by matching a vertex. 

 

The other version is to fit a hyper-rectangle into a simplex placing a face of the hyper-

rectangle on a face of the simplex. The examples of such covering are shown in 

Figure 4. In this case covering using a regular simplex is possible. 

 

An n-dimensional hyper-rectangle is face-to-face vertex triangulated if it is partitioned 

into finitely many n-simplices, where the vertices of n-simplices are also the vertices 

of the hyper-rectangle. The examples of such partition are shown in Figure 5. 
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a. b.  

Figure 4. Covering by placing a face of the hyper-rectangle on a face of the 

simplex. 

 

a.

b.  

Figure 5. Face to face vertex triangulation of a hyper-rectangle. 

 

Branching is carried out by means of partitioning a simplex into sub-simplices. It is 

known that tight bounds for function values can not be constructed for a perverted 

simplex. An irregular triangle (two-dimensional simplex) may be divided into 4 
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similar triangles, a right equilateral triangle may be divided into 2 similar triangles, 

see Figure 6. If other branching strategies are used, the perversion of simplices must 

be prevented. One way of prevention is to divide simplices by a hyper-plane passing 

through the middle point of the longest edge and the vertices not belonging to the 

longest edge. This ensures that the longest edge of sub-simplices is not more than two 

times longer than other edges. The examples of such division are shown in Figure 7. 

 

a. b.  

Figure 6. Partition of a triangle into similar triangles. 

 

a. b.  

Figure 7. Partition of a simplex into two simplices using the midpoint of the 

longest edge. 

2.3 Bounds for Lipschitz function values on a polyhedron 

The efficiency of the branch and bound technique depends on the bound calculation. 

The algorithm stops faster in case of tight bounds of the minimum value of f over 
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polyhedron I. However, calculation of tight bounds usually is time consuming. The 

general algorithm for calculation of upper and lower bounds of the minimum value of 

f over polyhedron I is presented in Algorithm 2. First, the points in a polyhedron are 

chosen and the function values at these points are calculated. The upper bound is the 

minimum of these values. The lower bound is calculated using these values and the 

Lipschitz condition. 

 

Algorithm 2. General algorithm for calculating bounds of the minimum value of 

a function on a polyhedron. 

Choose a finite set D of points in I. 

)(min)( xfIUB
Dx∈= . 

Build a lower bounding function F on I. 

Compute )(min)( xFILB
Ix∈= . 

 

The lower bounding function is the upper envelope of a set of circular cones with 

parallel symmetry axes. If ( )nRIn ⊆> ,1  and more than one point in D is used, the 

minimization of lower bounding function is time consuming. The finite set of local 

optimum points of such function could be computed by solving systems of quadratic 

equations [31]. 

 

Usually, one point in the interior of a polyhedron or some/all of extreme points 

(vertices of a polyhedron) are chosen for evaluation of the function. If one point is 

used, the lower bound is simple to calculate: 

o
Ix

o xxLxfILB −−= ∈max)()( . 

The lower bound would be more tight if  ( )t
IxIx

o xxx
t

−= ∈∈ maxminarg . 

If the polyhedron is simplex and the center point of covering hyper-sphere is in the 

interior of the simplex, xo is the center point of covering hyper-sphere. This point is an 

intersection of hyper-planes passing through the midpoints of and perpendicular to the 

edges. It can be found by solving a system of linear equations. 

 



 36 

The function values at vertices of a polyhedron can be used also when calculating 

bounds for neighboring and descendant polyhedrons. However, if n>1 and more than 

one vertex is used, the minimization of lower bounding function is time consuming. 

The calculations are simpler when one vertex is used. The lower bound is calculated 

using the function value at this vertex and the length of the longest edge from this 

vertex. The lower bound is underestimated. The tighter lower bound is the highest 

lower bound calculated using each vertex: ( )v
Ix

v
x

xxLxfILB
v

−−= ∈max)(max)( . 

The algorithm for calculation of such bounds is shown as Algorithm 3. 

 

Algorithm 3. Algorithm for simple calculation of bounds of the minimum value 

of a function on a polyhedron. 

LB=∞ 

For all vertices i 

 maxl=0 

 For all vertices j 

  maxl=max( maxl, ||xi – xj|| ) 

 LB=max( LB, f(xi) – L × maxl ) 

 

2.4 Numerical results 

Thorough theoretical investigation of the proposed version of branch and bound 

algorithm is difficult, although their convergence is obvious. Therefore, a numerical 

modeling method was used for the investigation. 

 

The C++ program for simplex-based branch and bound was implemented with three 

strategies of selection. The latest implementation is available for noncommercial use 

at [88]. The best first strategy was implemented as priority queue, the depth first 

strategy as FILO, the breadth first strategy as FIFO. 

 

Three ways of initial covering were implemented: over-coverings as illustrated in 

Figure 3 and Figure 4 and face to face vertex triangulation as illustrated in Figure 5. 

Two ways of branching were implemented: through the midpoint of the longest edge 
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as illustrated in Figure 6b and Figure 7 and through the midpoints of all edges as 

illustrated in Figure 6a. 

 

The bounds of the minimum of the objective function are calculated in one of the two 

ways described in the Section 2.3: using function value at center point of covering 

hyper-sphere xo or function values at one or more vertices xv. 

 

The number of calls of the objective function is used as a criterion of efficiency. A set 

of two-dimensional test functions from [31] was used for testing and evaluation. 

 

The test results have shown superiority of calculation of bounds using function values 

at vertices over using function value at center point of covering hyper-sphere. The 

disadvantage of the later is non-reusability of the function value at this point for 

calculation bounds for other simplices. Contrary the function values at vertices are 

used when calculating bounds for neighboring and descendant simplices. 

 

The experiments have confirmed that it is unlikely worth to evaluate function at all 

vertices of a simplex. The best efficiency has been reached when bounds are 

calculated as follows. If function values at vertices have not been evaluated before, 

then a function value is evaluated at vertex not belonging to the longest edge. It is 

used to calculate bounds. In other case all earlier evaluated function values at vertices 

of the simplex are used to calculate lower bound. 

 

The best first strategy is more efficient than the others, although efficiency of the 

breadth first strategy is similar. The efficiency is worst for the depth first strategy. The 

experiments have shown that it is better to branch simplices through the middle point 

of the longest edge, but not through the midpoints of all edges. The way of covering 

does not have much influence, although superiority of vertex triangulation is more 

frequent than that of over-coverings. 

 

Typical results of minimization one of the test functions from [31] using different 

versions of the proposed algorithm are given in Table 1. The bounds are calculated 

using function values at vertices. Similar results are obtained for other test functions. 
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Table 1. Results of minimization one of the test functions from [31] using 

different versions of the proposed algorithm. 

Initial covering Branching Selection Number of 
function calls 

Best first 244 
Breadth first 244 

Two descendents as 
in Figure 6b and 
Figure 7 Depth first 259 

Best first 371 
Breadth first 384 

A face to face vertex 
triangulation 

Four descendents as 
in Figure 6a 

Depth first 658 
Best first 263 
Breadth first 262 

Two descendents as 
in Figure 6b and 
Figure 7 Depth first 427 

Best first 328 
Breadth first 328 

Regular over-
covering, as in Figure 
4 

Four descendents as 
in Figure 6a 

Depth first 321 
Best first 257 
Breadth first 260 

Two descendents as 
in Figure 6b and 
Figure 7 Depth first 275 

Best first 363 
Breadth first 383 

Over-covering, as in 
Figure 3 

Four descendents as 
in Figure 6a 

Depth first 401 
 

The testing results suggest the following version of the n-dimensional simplex-based 

branch and bound algorithm to be used: 

• To cover a feasible region by simplices using face to face vertex 

triangulation.  

• To partition the simplices by a hyper-plane passing through the midpoint 

of the longest edge and the vertices whose do not belong to the longest 

edge.  

• To estimate the bounds of the minimum of the function over the simplex 

using function values at one or more vertices. 

• To use the best first strategy of selection. 

The final sequential algorithm is shown as Algorithm 4. 

 

Algorithm 4. Sequential algorithm. 

CoverRegion( FeasibleRegion ); 
While( WorkPool.IsNotEmpty() ) 
 Branch( WorkPool.Best() ); 
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The best branch and bound algorithm from [31] denoted as GHJ and the two-

dimensional branch and bound algorithm with regular simplex-based covering from 

[12] denoted as CZ were used for comparison. The results of optimization the test 

functions using GHJ, CZ and proposed algorithms are presented in Table 2. 

 

Table 2. Numbers of function calls minimizing test functions using different 

algorithms. 

Test function from [31] GHJ [31] CZ [12] proposed 
1 643 489 611 
2 167 37 132 
3 3531 2618 2185 
3.1 3953 3245 1559 
3.2 3035 2665 1225 
3.3 3689 3387 1429 
4 45 41 70 
5 73 53 80 
6 969 629 838 
7 7969 6370 3117 
8 301 255 244 
9 13953 8759 3773 
9.1 14559 9531 3890 
9.2 13281 9002 3729 
9.3 12295 8917 3610 
10 1123 820 848 
11 2677 2222 1566 
12 12643 10851 4001 
13 15695 10643 4084 

 

The numbers of function calls of minimization most of test functions is smallest for 

the proposed algorithm. The numbers of function calls of other test functions are 

similar. The results of experimental testing show that the proposed algorithm 

performs better than other branch and bound algorithms for Lipschitz optimization. 

2.5 Parallel algorithms 

The rules of covering, branching, bounding and selection by parallel algorithms are 

the same as by the sequential algorithm: 

• A feasible region is covered by simplices using face to face vertex triangulation.  

• The simplices are branched by a hyper-plane passing through the midpoint of the 

longest edge and the vertices whose do not belong to the longest edge. 
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• The lower and upper bounds of the minimum of the function over the simplex are 

estimated using function values at vertices. 

• The best first selection strategy is used. 

 

Three parallel branch-and-bound algorithms are considered, each of them uses one of 

the load balancing strategy: 

• Algorithm with static load balancing, 

• Master-slave algorithm with centralized load balancing, 

• Algorithm with distributed dynamic load balancing. 

2.5.1 Algorithm with static load balancing 

By the static load balancing, the tasks are initially distributed and then the processors 

work independently and do not exchange any later generated tasks. Each parallel 

processor runs the same algorithm, which is shown as Algorithm 5. The algorithm is 

very similar to the Sequential Algorithm 4. The differences are: 

• Each processor covers one part of the feasible region. This is shown symbolically 

using division by the number of processors, m. 

• After completion the results of optimization are collected. 

• Processors interchange the best currently found values of the objective function 

when they are found. 

 

Algorithm 5. Parallel algorithm with static load balancing. 

CoverRegion( FeasibleRegion / m ); 
While( WorkPool.IsNotEmpty() ) 
 Branch( WorkPool.Best() ); 
CollectResults(); 
 

The algorithm is easy to implement. However the load balance may be poor since the 

processors may finish their work at different times. 

2.5.2 Master-slave algorithm 

In the parallel master-slave system there is one master processor, which controls the 

optimization process. The slave processors receive tasks from the master, perform 

computations on them and send the results to the master. Slaves perform computations 

on promising subproblems. The master controls load balancing and termination.  
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The algorithm is shown as Algorithm 6. The master processor holds the work pool – 

the collection of subproblems. When the slave processor has no work it requests a task 

from the master processor. The master processor sends out the best subproblem it has. 

When the slave finishes the task it sends the results to the master processor. 

 

Algorithm 6. Parallel master slave algorithm. 

If( Rank == Master ) 
 CoverRegion( FeasibleRegion ); 
 While( WorkPool.IsNotEmpty() or NotAllRequested() ) 
  Receive( Request, fromAny ); 
  If( WorkPool.IsNotEmpty() and SomeRequested() ) 
   Send( WorkPool.Best(), toRequested ); 
  While( Receive( Task, fromAny ) 
   WorkPool.Add( Task ); 
 Send( Stop, toAll ); 
Else 
 Send( Request, toMaster ); 
 While( not Receive( Stop, fromMaster ) ) 
  If( Receive( Task, fromMaster ) ) 
   Branch( Task ); 
   While( WorkPool.IsNotEmpty() ) 
    Send( WorkPool.Best(), toMaster ); 
   Send( Request, toMaster ); 
CollectResults(); 
 

The master processor manages the termination. The termination conditions are: 

• The work pool is empty. 

• Every slave processor requested for a task. This means that all slaves have 

finished their tasks and have sent the results to master. If any slave processor is 

running it is possible that it will generate new tasks. 

 

The slaves terminate when they receive the termination message from the master. 

After completion the results of optimization are collected. All processors interchange 

the better values of the objective function when they are found. 

 

The disadvantage of this scheme is that master can become a bottleneck especially 

when the system is large and the communications are frequent and heavy. The slaves 

can become idle when waiting for new tasks. 
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2.5.3 Algorithm with distributed dynamic load balancing 

The distributed parallelization means a cooperative work of a set of equal 

communicating processors. Dynamic load balancing aims to share the work load 

uniformly. The main problems of the distributed dynamic load balancing are the load 

balancing and the termination detection.  

 

The algorithm is shown as Algorithm 7. The distributed termination method is based 

on request and acknowledgement messages. Each processor is in one of the states – 

active or inactive. Initially a processor has no tasks and is inactive. It becomes active 

when it gets a task from another processor. The activating processor becomes the 

parent. In this way a tree of active processors is created. Each active processor has the 

unique parent, which is defined by the variable Parent in the Algorithm 7. For 

inactive processors Parent = Rank. 

 

The active processor may receive tasks from other processors. The received tasks 

from non-parent processors are acknowledged by the acknowledgement message. The 

processor sends acknowledgement message to its parent when it becomes inactive. It 

becomes inactive when: 

• It has finished all its tasks. Local termination condition. 

• It has sent all its acknowledgement messages for tasks it has received. 

• It has received all the acknowledgment messages for tasks it has sent. 

The process becomes inactive before its parent process. When the root process 

becomes inactive the algorithm terminates. 

 

Two initialization strategies are used: distributed and centralized. The distributed 

strategy is similar to the case with static load balancing. Each processor covers one 

part of the feasible region. This is shown symbolically using division by the number 

of processors m. The root processor after initialization becomes a parent of all 

processors. 

 

The centralized initialization strategy is similar to the case with centralized load 

balancing. The root processor covers the feasible region. Other processors are inactive 

at the beginning and have no parents. 
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Algorithm 7. Parallel algorithm with distributed dynamic load balancing. 

Sons[0..m-1] = 0; 
If( Init0 ) 
 CoverRegion( FeasibleRegion / m ); 
 Parent = Root; 
 If( Rank == Root ) 
  Sons[1..m-1] = 1; 
Else 
 If( Rank == Root ) 
  CoverRegion( FeasibleRegion ); 
 Parent = Rank; 
While( not Received( Stop, fromRoot ) ) 
 If( WorkPool.IsNotEmpty() ) 
  MyTask = WorkPool.Best(); 
 Else 
  MyTask = NULL; 
  Send( Request, toRoundRobin() ); 
 While( Receive( Anything, fromAny ) ) 
  If( Received( Request, fromAny ) ) 
   If( WorkPool.IsNotEmpty() ) 
    Send( WorkPool.Best(), toSource ); 
    Sons[ Source ]++; 
   Else 
    Send( Rejection, toSource ); 
  If( Received( Acknowledgement, fromAny ) 
   Sons[ Source ]--; 
  If( Received( Task, fromAny ) ) 
   If( NoParent() ) 
    Parent == Source; 
   Else 
    Send( Acknowledgement, toSource ); 
   If( MyTask == NULL ) 
    MyTask = Task; 
   Else 
    WorkPool.Add( Task ); 
 If( MyTask != NULL ) 
  Branch( MyTask ); 
 If( WorkPool.IsEmpty() and NoSons() ) 
  If( Rank == Root ) 
   Send( Stop, toAll ); 
  Else If( Parent() ) 
   Send( Acknowledgement, toParent ); 
   Parent = Rank; 
CollectResults(); 
 

Receiver initiated, or “on demand”, load balancing strategy is used. When the 

processor has no tasks it requests a task from the other processor. The general 
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structure is used – all processors are equal candidates and any processor could be 

selected for communications. The round robin algorithm is used to select the 

candidate processor in sequential order coming back to the first processor after the last 

one. 

 

Using the distributed dynamic load balancing the work could be distributed 

uniformly. However communications between processors cause an overhead during 

execution, because some time is spent on communications. Sometimes there could not 

be enough tasks to share. 

 

The Algorithm 7 with distributed dynamic load balancing is much more complicated 

than Algorithm 5 with static load balancing and master-slave Algorithm 6. The 

implementation of this algorithm is much more difficult and sometimes could be not 

worth the time spent on implementation. 

2.5.4 Results of experiments with parallel algorithms 

All three parallel algorithms have been implemented in C++ and MPI (Message-

Passing Interface – a standard specification for message-passing libraries). The latest 

implementation is available for noncommercial use at [88]. The algorithms have been 

tested on the Sun HPC 6500 UltraSPARC-II based system with Sun MPI at 

Edinburgh Parallel Computing Center. Up till 24 parallel processors have been used. 

 

The same test functions were used in testing and evaluation of criteria as in the 

sequential case. The total times of optimization of every test function for the different 

number of processors are shown in Figure 8. In this and following figures there are 

four diagrams: 

• The left upper diagram represents results of algorithm with the static load 

balancing. 

• The right upper diagram represents results of master-slave algorithm. There must 

be not less than two processors: one master and one slave. 

• The left lower diagram represents results of the algorithm with the distributed 

dynamic load balancing and the distributed initialization. 

• The right lower diagram represents results of the algorithm with the distributed 

dynamic load balancing and the centralized initialization. 
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Every curve in the diagrams represents the results of optimization of the different test 

function from [31]. 

 

  

distributed algorithm  

with static load balancing 

master-slave algorithm 

  

distributed algorithm with dynamic load 

balancing and distributed initialization 

distributed algorithm with dynamic load 

balancing and centralized initialization 

Figure 8. Times of optimization of the test functions. 

 

The times of optimization show that the master-slaver paradigm is not proper in our 

case. The times of optimization decrease slowly and only up to 4 processors, then the 

times increase slightly. The time of computations on one task is not big comparing 

with the time of communications needed to send the task and to receive the results. 

The communications are frequent. The master becomes a bottleneck, the slaves 

become idle when waiting for new tasks. Another reason may be the shortage of tasks. 

 

The performance of all distributed algorithms is better. The times of optimization 

decrease fast. The time diagrams do not show the differences between distributed 

algorithms. 
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The diagrams of criteria of parallelization: speedup sm and efficiency em diagrams for 

the different number of processors are shown in Figure 9 and in Figure 10. 

 

  

distributed algorithm 

with static load balancing 

master-slave algorithm 

  

distributed algorithm with dynamic load 

balancing and distributed initialization 

distributed algorithm with dynamic load 

balancing and centralized initialization 

Figure 9. Speedups of parallel algorithms. 

 

The diagrams show that the deceleration anomaly 
21 mm ss > , for m1<m2, exists for the 

master-slave algorithm. This is because the master-slave paradigm is not proper in our 

case because the master becomes a bottleneck. 

 

The acceleration anomaly sm>m exists for distributed algorithms. It gives large steps 

in diagrams in the left. These diagrams represent algorithms with the static load 

balancing and with the distributed dynamic load balancing and the distributed 

initialization. The initialization for both these algorithms is similar. Each processor 

covers one part of the feasible region. The initial partitioning depends on the number 
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of processors and the total number of expanded subdomains is different. This is 

because the progress of search is different, the better values of the objective function 

f are found at different times. 

 

  

distributed algorithm  

with static load balancing 

master-slave algorithm 

  

distributed algorithm with dynamic load 

balancing and distributed initialization 

distributed algorithm with dynamic load 

balancing and centralized initialization 

Figure 10. Efficiencies of parallel algorithms. 

 

The speedup and the efficiency are not appropriated criteria when anomalies exist. 

The pseudo efficiency criterion pem is less sensitive to anomalies. The good measure 

of amount of work must be chosen when the pseudo efficiency criterion is used. As a 

measure of the amount of work the total number of calls of the objective function is 

used. The total numbers of calls of the objective function during optimization of the 

test functions for the different number of processors are shown in Figure 11. 
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distributed algorithm  

with static load balancing 

master-slave algorithm 

  

distributed algorithm with dynamic load 

balancing and distributed initialization 

distributed algorithm with dynamic load 

balancing and centralized initialization 

Figure 11. Total numbers of calls of the objective function during optimization. 

 

The diagrams confirm the reason of acceleration anomaly for algorithms with the 

distributed initialization. The initial partitioning depends on the number of processors 

and the total number of expanded subdomains is different. The changes in the 

diagrams in the left are similar to diagrams of efficiencies in Figure 10. 

 

The total numbers of calls of the objective functions during optimization using the 

master-slave algorithm is constant. For the distributed algorithm with dynamic load 

balancing and centralized initialization the amount of work changes very slightly. 

 

The pseudo efficiency diagrams for the different number of processors are shown in 

Figure 12. Although the influence of different amount of work is overcome using the 

pseudo efficiency criterion, acceleration still exist in the performance of all the 

distributed algorithms. The possible reason of this may be the wrong choice of the 
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amount of work. Another reason may be the non-homogeneity of the system, for 

example the different speeds of the processors and communications. 

 

  

distributed algorithm  

with static load balancing 

master-slave algorithm 

  

distributed algorithm with dynamic load 

balancing and distributed initialization 

distributed algorithm with dynamic load 

balancing and centralized initialization 

Figure 12. Pseudo efficiencies of parallel algorithms. 

 

Because of anomalies the shown diagrams of criteria of parallel algorithms are not 

well suited for the comparison of the parallel algorithms. The diagrams do not show 

clear superiority of any of the distributed algorithms. More information could be 

extracted from the proportion of time spent on calculation or processor utilization. It 

gives some indication on whether the given implementation suffers from problems 

with workload distribution and communication bottlenecks. The diagrams of the 

proportions of time spent on calculation are shown in Figure 13. 
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distributed algorithm  

with static load balancing 

master-slave algorithm 

  

distributed algorithm with dynamic load 

balancing and distributed initialization 

distributed algorithm with dynamic load 

balancing and centralized initialization 

Figure 13. Proportions of time spent on calculation. 

 

The diagrams show that the processor utilization of the master-slave algorithm is very 

bad. Less than one tenth of time is spent on calculations. Other time is spent on 

communications or being idle. 

 

When 15 processors are used the average processor utilization of the algorithm with 

static load balancing is 0.6. This means that when 15 processors are used the 

algorithm makes 15×0.6=9 times more calculations than when 1 processor is used. 

When 15 processors are used the distributed algorithm with dynamic load balancing 

and distributed initialization makes on average 15×0.5=7.5 times more calculations 

than when 1 processor is used. When 15 processors are used the distributed algorithm 

with dynamic load balancing and centralized initialization makes on average 

15×0.3=4.5 times more calculations than when 1 processor is used. 
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Except of some changes for the worse of processor utilization when the number of 

processors is 18-21, the algorithms with distributed initialization are utilized better. 

This is possibly because of the shortage of tasks when the centralized initialization is 

used. Only the root processor has tasks after the initialization while others are idle 

waiting for them. Besides the search tree is narrower than in the case of distributed 

initialization. However the search progress almost does not depend on the number of 

processors when the centralized initialization is used and the evaluation of criteria of 

parallel algorithms is more correct. 

 

Although the worst case of processor utilization of the algorithms with static load 

balancing and with dynamic distributed load balancing with distributed initialization 

are similar, the average processor utilization of the algorithm with static load 

balancing is better. This shows that there are not enough tasks to share and the load 

balance is not good. The communications cause an additional overhead and the load 

balance is improved away. 

2.6 Conclusions  

The general simplex-based branch and bound algorithm for Lipschitz optimization has 

been proposed. The rules of selection, covering, branching and bounding have been 

justified by results of experimental investigations. The efficiency of the algorithm, 

using the number of function evaluations required to solve the problem, has been 

evaluated and compared with other branch and bound algorithms for Lipschitz 

optimization.  

 

The parallel master-slave and distributed algorithms with static and dynamic load 

balancing have been implemented using C++ and MPI. The criteria of parallel 

algorithms have been evaluated and discussed. The superiority of distributed 

algorithms has been shown. 
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3 Black box global optimization inspired by interval methods 

In this chapter a new black box global optimization method inspired by interval 

arithmetic is presented. Sequential algorithm is implemented and investigated. The 

results of experimental testing are compared with the results of interval global 

optimization algorithm [43]. Parallel version of the algorithm is implemented. 

3.1 Introduction 

Theoretically a solution to a global minimization problem may be found with a 

prescribed accuracy in case of bounded rate of change of the function values, e.g. 

Lipschitz continuous functions, with a priori known Lipschitz constant. However, 

such methods lose their theoretical advantages in a black box situation, the 

dimensionality of their successful practical applications is rather modest [31]. Interval 

analytic methods have guaranteed convergence to the set of global minimizers, and 

they are efficient for a large class of problems (see e.g. [30], [33]). However, the 

interval methods can not always be applied automatically, e.g. for a problem given by 

a code not aimed specially for interval arithmetic. This is discussed for instance in 

[46] where a non-deterministic version of the branch and bound strategy used by 

interval methods is presented.  

 

The proposed black box optimization method is inspired by the interval methods but 

the interval arithmetic based procedures are substituted by the heuristic procedures. 

The method can be interpreted as a strategy for managing local searches in search for 

global minimizers. Once a local minimizer z has been found, a domain around z is left 

out from further search, thus we avoid several descents to the same local minimizer. 

We do not intend to guarantee that the solution will be found with prescribed 

accuracy, thus the user should specify limits of storage and computer time rather than 

some accuracy tolerance as required by many traditional approaches. 

3.2 A Method 

In this section, an algorithm inspired by the interval branch and bound algorithm is 

presented, for the earlier versions see [45], [46]. 
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The algorithm uses values of the objective function f calculated at a number of points 

in the box B. Information on f’  normally is obtained via finite differences. It is 

supposed that a sufficiently efficient algorithm to find local minimizers of f is 

available. Our method intends to coordinate local searches in a proper way. When a 

local minimizer z has been found in B, a ball { }clusterz zxBxball ε≤−∈=  is left out 

from further consideration, where εcluster is a user provided parameter. Thus the 

candidate set consists of boxes where balls with known local minimizers have been 

left out. For ease of notation we still refer to such a sub-domain as a box. 

 

Since the solution may be lost the algorithm is embedded into a loop which restarts 

the calculation. We keep an outer candidate set G, in addition to C. When the model 

algorithm has finished, then the elements of G cover D except of the balls around the 

known local minimizers. In the outer iteration G forms the basis for a re-generation of 

the inner candidate set C.  For a box B in G the available information about the local 

minimizers of B is recorded to control the split of B into several boxes later. B is 

added to C. The recorded parameters determining the number of points used during 

the tests of the reduction phase in may be updated in order to increase the reliability of 

the method. 

 

The structure of the new algorithm is shown as Algorithm 8. The heuristic 

counterparts of lower bounds and monotonicity test are introduced. The lower bound 

reduction is embedded into the Newton-reduction of the reduce-or-subdivide 

procedure. The boolean inner-stop is true when C contains no boxes (i.e. only points). 

The outer stopping condition is a time limit set by the user. Other stopping conditions 

might be adopted in case of additional information on the problem. The variable 

SolSet is intended to converge towards the set of global minimizers, X*. The positive 

number µ is intended to distinguish X* from other local minimizers. In theory µ might 

be 0, but in practice (i.e. when rounding errors are present) µ has to be positive in 

order that SolSet eventually will contain X*. 
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Algorithm 8. Black box global optimization algorithm inspired by interval 

arithmetic. 

initialize: C, f , G 
while not time-limit exceeded do 
  while not inner-stop do 
   remove-best (C)→B 
   generate sample points 

   reduce-or-subdivide (B) →result, f , garbage 

   C∪{ result}→C 
   G∪{ garbage}→G 
  end 

  { } SolSetSolSetfpfCp →∪+≤∈ µ)(  

  while G ≠ ∅ do  
  remove-one (G)→B 
   subdivide (B)→result 
   C∪{ result}→C 
  end 
  perhaps adjust reduction parameters 
end 
 

The details of the algorithm are now explained. 

• remove-best (C): The box B from C which has the smallest known function value 

is chosen. 

• Sample points. The sample points are used in the monotonicity and Newton tests. 

Two strategies are applied for choosing these points. First we use the following 

regular distribution of up to 2n+1 points: One point at m(B), the center of B, and 

two points for each coordinate direction, j
j eBwBm *)(

3

1
)( )(± , nj ,,1K=  where 

)()1( nBBB ××= L , w(B) means the width of the box B, and ej is the j-th unit 

vector. The constant 
3

1
 is chosen because it provides a good coverage of B in the 

sense of disjoint balls with centers at the regular sample points. Secondly, we may 

use random points uniformly distributed in B. The total number of sample points, 

p1=nsample, has to be provided by the user. We use random points if nsample is 

greater than 2n+1. 

• The reduce-or-subdivide procedure is summarized as Algorithm 9, which is 

explained later. 
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Algorithm 9. Reduce-or-subdivide procedure. 

if  monotone then 
  Monotone (B)→result 
  B→garbage 
else if  (case 1) or (case 2) then 
   Newton (B)→result 
   →∈ }{\ BzballB z  garbage 

  else if  (case 3) and ( fBLB >)( ) then 

    ∅→result 
    →∈ }{\ BzballB z garbage 

   else 
    subdivide (B)→B1,B2 
    →∈ }{\},{ 21 BzballBB z  result 

    ∅→garbage 

update f  
 

• G is emptied in the second inner while-loop of Algorithm 8. After B has been 

removed from G it is subdivided.  

• Subdivision. We always split B into two by a hyperplane which is orthogonal to 

one of the coordinate directions. The result consists of the two new parts. The 

subdivision is done as follows: 

Case a.No known local minimizer in B: The splitting divides B into two equal 

parts separated by a hyperplane through the center of B and perpendicular to the 

side of the maximal length. 

Case b.One known local minimizer in B: Find the coordinate for which the 

distance from this point to a side of B is maximal. The splitting plane is chosen to 

be perpendicular to this coordinate axis, and it halves the distance mentioned. 

Case c. More than one known local minimizer in B: Find the two local minimizers 

with smallest function values. Find the coordinate for which the distance between 

these two points is maximal. The splitting is made with the plane which is 

perpendicular to this coordinate direction and has the same distance to the two 

local minimizers. 

 

The details of the reduce-or-subdivide procedure: 

• The monotonicity test is based on the gradient information at the sample points 

(explicitly calculated if possible, by means of finite differences otherwise). If a 



 56 

local minimizer has previously been found in B, however, then f cannot be strictly 

monotonous in B, and hence the test is skipped. Otherwise we examine the 

gradients. If there exists at least one coordinate xi for which ixxf ∂∂ /)( has 

constant sign at all sample points then we decide that no local minimizer exists in 

B. →∂∩ )(DB i result where )(Di∂  denotes the facet of D (box of lower 

dimensionality), which is orthogonal to xi axis, and towards which f decreases. 

The variable garbage is set to B. 

• Newton test is performed if the monotonicity test has not reduced B. Local 

searches for finding local minimizers of f in B are started from each sample point. 

The local technique used in our tests is a version of Powell's Dog-Leg Method 

[64]. The gradients are estimated using forward differences. Notice that balls, 

ballz, around the local minimizer z, which are known at the beginning of the 

current Newton test, are considered "outside of B". 

• We distinguish the following four cases: 

Case 1. Every iteration sequence has an iterate which is outside of B. In this case 

we decide that no local minimizer exists in B, and we let →∂∩ )(DB result 

where )(D∂  denotes the border of D. 

Case 2.All iteration sequences provide convergence to the same point Bz∈ . 

Then {z}→result. (In practice a Newton iteration is stopped by one of the usual 

stopping rules for local searches (to prevent infinite iterations), and two stopping 

points are considered equal if their distance is less than εcluster). 

Case 3.Several local minimizers have been found in B. In this case the lower 

bound reduction may take place. The lower bound LB(B) is estimated using the 

maximum gradient norm maxgrad obtained during the local searches in B. Let 

f(xmin) be the smallest known function value in B, then  

{ }BxxxgradxfBLB ∈−−= minmin *max)(min)( . 

If fBLB >)(  then ∅→result otherwise subdivision takes place. (We decided 

only to use the lower bound reduction in Case 3 because our experiments indicate 

that this is more efficient). 

Case 4.None of the first 3 cases has occurred and subdivision takes place. 

 



 57 

Notice that if the local search has the following property: "If there is no local 

minimizer in B then eventually an iterate outside of B will be generated", then boxes 

without local minimizers will always lead to Case 1. Thus the number of boxes in C 

with full dimensionality and without known local minimizers must be very limited. 

Hence the monotonicity test is most often skipped. Furthermore, the distance between 

known local minimizers is at least εcluster. 

 

Assuming some regularity conditions, the convergence of the method to the set of 

global minimizers is proved in [45]. The key observation in the proof is that no box 

can remain large during the iteration, i.e. all the boxes in the candidate set will be 

small when the algorithm has been running for long enough time. 

3.3 Testing 

Although testing is very important for assessment of new optimization algorithms, a 

well justified testing methodology is not developed for all classes of optimization 

methods. For example, detailed theory approves the structure and features of local 

descent algorithms for smooth objective functions. Specific difficulties of application 

of such algorithms are well known, and collections of test problems representing 

important features of practical problems as well as specific difficulties are available 

[21], [67]. Therefore, a new algorithm of smooth local optimization may be approved 

by competitive testing [34] using a standard methodology. A similar development 

level is achieved and similar testing methodology is accepted only for some 

subclasses of global optimization problems, e.g. concave quadratic programming [21]. 

In case the methods are similar in basic ideas, structure, and intended application 

fields, competitive testing of such algorithms may be desirable. For example, 

competitive testing of interval methods [33], or of different implementations of 

evolution strategies [84] may be very informative. However, it would be hardly 

possible to design rational competitive testing experiment for algorithms from 

different classes. 

 

A crucial obstacle for competitive testing of global optimization algorithms is the 

non-compatibility of different stopping conditions defining trade-off of two important 

criteria: fast finding of a good approximation and reliability. Only the algorithms with 

similar stopping conditions may be put into fair competing positions and tested for the 
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collections of specified and randomly generated test functions. An example of 

competitive testing of different one-dimensional global optimization algorithms, but 

with compatible stopping conditions, is presented in [80]. However, definition of 

stopping conditions adequate to real world situations seems even more difficult than 

the development of a rational search algorithm. A common approach is to attack a 

problem using all available computing resources. The development of our algorithm 

was motivated by a quite frequent real life situation when an optimization problem 

should be solved using a customer's software for calculation of objective function 

values. Of course, the user would like to get global minimum precisely and with 

guarantee. However, normally he is not able to supply any information supporting 

such a claim. Using only the code, without a model of an objective function, the 

accuracy/reliability of a candidate solution can not be estimated. Definition of rational 

stopping condition in such a situation is hardly possible. 

 

Algorithms for a general (not always precisely defined) class of smooth global 

optimization problems are based on different ideas [80]. The trade-off between fast 

finding of a good approximation and reliability is frequently based on heuristics, 

experience etc. If a new algorithm oriented to such a broad class of global 

optimization problems has no close prototypes, then competitive testing seems to be 

not realistic and a bit premature. The goal of scientific testing [34]: to show why and 

under what conditions the application of the proposed algorithm may be promising, 

what direction of development of the algorithm seems prospective. 

 

The main criteria of efficiency of global optimization algorithms are the numbers of 

calls of the objective function and perhaps its gradient, and the calculation time of the 

optimization. The number of calls is useful when the objective function is expected to 

be "expensive", i.e. its calculation requires more time than the auxiliary calculations 

by the optimization algorithm. In case of the contrary relation, the calculation time is 

an important criterion. We use the numbers of function calls as efficiency criterion of 

sequential algorithms. 

 

Criteria of efficiency of our algorithm are the number of objective function calls (Nrf) 

and the number of gradient calls (Nrg). If the gradient is expressed analytically, then a 

gradient call may cost the same as the objective function in some cases, in other cases 
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up to n times a call of the objective function. If the gradient is evaluated using 

automatic differentiation then a gradient call usually costs about 3 times an objective 

function call. If the gradient is evaluated using finite difference approximations, then 

a call of the gradient function costs approximately n+1 calls of the objective function. 

In our experiments most gradients expressed analytically, otherwise (for instance in 

the two practical problems) they are found using finite difference approximations. 

 

Interval methods are the closest prototypes of our algorithm, which may be considered 

as an extension of the former to the cases when interval arithmetic is not applicable. 

The results of a minimization of the same test functions by an available 

implementation, [43], of the interval method of [40] are presented for comparison. 

The method of [40] combines interval methods with real searches. The number of real 

function calls (Nrf) and the number of interval function calls (Nif) are the efficiency 

criteria of this algorithm. The authors of this algorithm state that the average cost of 

an interval function is twice the cost of a corresponding real function [40]. 

 

Comparison of two algorithms with respect to function calls of the overall 

optimization is well grounded when the stopping conditions are the same. Because the 

stopping conditions are different, we chose to use the numbers of calls needed to find 

the first and the last global minimizer, respectively, as the criterion of efficiency for 

both algorithms. 

 

During the experimentation test functions defined by means of analytical formulas 

were used. An oracle for gradients was modeled by a subroutine approximating 

derivatives by forward differences. The testing methodology discussed in [79] 

requests to use test functions of different complexity (difficulty). Test functions with 

different dimensions and different numbers of local and global minimizers were used 

in the experiments. The dimensions and numbers of minimizers of the test functions 

are shown in Table 3. There the problems are divided into the categories: 1 local 

minimizer; 1 global minimizer and a few local; 1 global minimizer and many local; 

practical problems where the number of local minimizers is unknown; a few global 

minimizers. 
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Table 3. The dimensions and the numbers of local and global minimizers of test 

functions. 

Function n  Number of local 
min. 

Number of global 
min. 

Rosenbrock 2 1 1 
McCormic 2 1 1 
Box and Betts 3 1 1 
Paviani 10 1 1 
Generalized Rosenbrock 30 1 1 
Goldstein and Price 2 4 1 
Shekel 5 4 5 1 
Shekel 7 4 7 1 
Shekel 10 4 10 1 
Levy 4 4 71000 1 
Levy 5 5 105 1 
Levy 6 6 106 1 
Levy 7 7 108 1 
Griewank 10 103 1 
Cola 17 Unknown 1 
Bone Growth 12 Unknown Unknown 
Six Hump Camel Back 2 6 2 
Branin 2 23 5 
Shubert 2 400 9 
Hansen 2 760 9 
 

Representatives of easy and moderately difficult test problems were chosen among 

well known and widely used functions. A detailed description of the functions can be 

found in [47], [48], C codes are available in [47]. Two practical problems were used 

as difficult test problems. The first practical problem, denoted by Cola, is the MDS 

problem which is discussed in [53]; the data used in this test correspond to the 

classical "Cola testing" problem. The number of variables is 17, the best currently 

known value of the objective function being 11.7464. There are many local 

minimizers with function values close to the global minimum [53]. The second 

practical problem denoted by Bone Growth is given in [2]. It is related to a linear 

growth model of the human mandible (the lower jaw). The dimension of this problem 

is 12, the best known function value being 205.104 and there are many local 

minimizers. 

 

The default values of the parameters of the algorithms, which are typical for many 

applications, were used. In the proposed algorithm the local search is stopped when 
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the gradient norm is less than 10-4. Of course, for the analytically defined test 

functions much smaller tolerance may be fixed, but we wanted to model a real life 

situation with modest precision of input data; it seems not rational to request the 

precision of solution be higher than the precision of the data. For the parameter 

preventing multiple determination of the same local minimizer, εcluster, the two values 

0.1 and 0.01 were chosen for all test examples. The tolerance µ of detecting whether a 

(known) global minimizer is considered to be global is 10-4. The number of sample 

points was fixed equal to the empirically justified value nsample=2n+1; such a choice 

has an advantage to perform testing in deterministic setting thus guaranteeing easy 

reproduction of testing results. 

 

Table 4. The numbers of the objective (Nrf) and gradient (Nrg) functions calls 

needed to find the first and all minimizers with default parameters. εcluster=0.1. 

The two blocks of the table indicate whether there is one or several global 

minimizers. 

all minimizers Function 
Nrf Nrg 

Rosenbrock 27 23 
McCormic 11 10 
Box and Betts 6 6 
Paviani 14 11 
Generalized Rosenbrock 359 346 
Goldstein and price 75 51 
Shekel 5 66 37 
Shekel 7 24 13 
Shekel 10 22 12 
Levy 4 30502 23798 
Levy 5 2786 2147 
Levy 6 5292 4154 
Levy 7 35 30 
Griewank 124 81 
Cola 8995 7226 
Bone Growth 529 414 

first minimizer all minimizers Function 
Nrf Nrg Nrf Nrg 

Six Hump Camel Back 37 33 49 45 
Branin 21 10 666 527 
Shubert 26 15 6825 4412 
Hansen 218 129 7655 5037 
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The numbers of the objective and gradient functions calls needed to find the first and 

all global minimizers with different values of εcluster are given in Table 4 and Table 5. 

All global minimizers were found for all test problems. (For the BoneGrowth problem 

this means that the smallest known function value f*=205.104 and the corresponding 

minimizer was found.)  

 

Table 5. As Table 4 except that εcluster=0.01. 

all minimizers Function 
Nrf Nrg 

Rosenbrock 27 23 
McCormic 11 10 
Box and Betts 6 6 
Paviani 14 11 
Generalized Rosenbrock 359 346 
Goldstein and Price 81 56 
Shekel 5 66 37 
Shekel 7 24 13 
Shekel 10 22 12 
Levy 4 44316 33438 
Levy 5 2823 2184 
Levy 6 5389 4241 
Levy 7 35 30 
Griewank 124 81 
Cola 9229 7413 
Bone Growth 529 414 

first minimizer all minimizers Function 
Nrf Nrg Nrf Nrg 

Six Hump Camel Back 37 33 49 45 
Branin 21 10 733 580 
Shubert 26 15 8810 5380 
Hansen 218 129 10296 6409 
 

For many test functions the two choices of εcluster give the same performance. For the 

8 problems with differences, εcluster=0.1 is always the best, however the differences are 

not very large (except for the Levy 4 function). In general we conclude that the 

experiments indicate some independence of the choice of εcluster. 

 

The algorithm has difficulties with functions having very many oscillations and local 

minima, like the Levy, Shubert and Hansen functions. For such functions the 

performance seems to be a bit chaotic.  For Levy 4, which is the "easiest" of the four 
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Levy functions, the solution requires many function evaluations, whereas the most 

difficult one, Levy 7, is solved rather quickly because the algorithm accidentally finds 

the global minimizer at the beginning of the optimization. The performance in such 

cases may depend on how close the starting points of the local searches are to a global 

optimizer. Thus the performance may change if the boxes D of feasible regions are 

shifted. For other difficult functions with many local minimizers, like the Griewank, 

Cola and BoneGrowth functions, the algorithm works rather well. 

 

Table 6. Results of interval algorithm [43]. The number of subdivisions per 

iteration, nd, is 2 for all problems. Nrf is the number of real function calls, Nif is 

the number of interval function calls. The two blocks of the table indicate 

whether there is one or several global minimizers. 

All minimizers Function 
Nrf Nif 

Rosenbrock 170 13 
McCormic 97 9 
Box and Betts 97 21 
Paviani 366 41 
Generalized Rosenbrock 6513 125 
Goldstein and Price 129 9 
Shekel 5 172 17 
Shekel 7 166 17 
Shekel 10 211 17 
Levy 4 614 6839 
Levy 5 555 202 
Levy 6 527 330 
Levy 7 543 506 
Griewank fails 
Cola fails 
Bone Growth fails 

first minimizer all minimizers Function 
Nrf Nif Nrf Nif 

Six Hump Camel Back 225 554 321 819 
Branin 324 119 fails 
Shubert 524 1543 fails 
Hansen 89 17 862 1421 
 

The interval algorithm [43] used for comparison is based on a combination of local 

searches, branch-and-bound technique and interval arithmetic. We have used different 

values of the parameter nd which determines how many subboxes a box is split into at 
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each iteration: nd = 2 (which is the default value used for the corresponding parameter 

of our method), nd = n+1 and nd = a value tuned for each individual test problem. The 

numbers of real and interval function calculations needed to find the first and all 

minimizers are shown in Table 6, Table 7 and Table 8. 

 

Table 7. As Table 6 except that nd is n+1. 

all minimizers Function 
Nrf Nif 

Rosenbrock 104 19 
McCormic 96 13 
Box and Betts 103 33 
Paviani 524 221 
Generalized Rosenbrock 14260 1921 
Goldstein and Price 243 226 
Shekel 5 98 41 
Shekel 7 101 41 
Shekel 10 101 41 
Levy 4 111 41 
Levy 5 127 61 
Levy 6 235 85 
Levy 7 235 113 
Griewank 186 221 
Cola fails 
Bone Growth fails 

first minimizer all minimizers Function 
Nrf Nif Nrf Nif 

Six Hump Camel Back 268 4532 342 5411 
Branin 506 453 803 687 
Shubert 940 3802 1550 4776 
Hansen 193 200 892 1686 
 

The tables demonstrate some dependence of the choice of nd. Table 8 shows that 

sometimes quite a lot may be gained by tuning this parameter. In the Generalized 

Rosenbrock, for instance, the number of the real function calls varies from 2698 to 

14260. 

 

The algorithm failed to minimize the two practical problems Cola and Bone Growth. 

To be more specific the computation broke down because of overflow of memory. For 

the Cola problem the number of unexplored boxes generated by the algorithm was 
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more than 131072 at the stopping time, and the number of interval function calls was 

greater than 393213. Similar results were seen for the Bone Growth problem. 

 

Table 8. As Table 6 except that nd is tuned for each individual problem. 

All minimizers Function nd 
Nrf Nif 

Rosenbrock 3 104 19 
McCormic 2 97 9 
Box and Betts 1 93 11 
Paviani 2 366 41 
Generalized Rosenbrock 7 2698 431 
Goldstein and Price 1 120 5 
Shekel 5 4 94 33 
Shekel 7 4 85 33 
Shekel 10 4 85 33 
Levy 4 5 111 41 
Levy 5 6 127 61 
Levy 6 4 178 49 
Levy 7 4 233 57 
Griewank 8 186 221 
Cola any fails 
Bone Growth any fails 

first minimizer all minimizers Function dn  
Nrf Nif Nrf Nif 

Six Hump Camel Back 1 273 352 365 443 
Branin 3 506 453 803 687 
Shubert 4 357 1008 1060 3472 
Hansen 2 89 17 862 1421 
 

The numbers of calls needed to minimize the mathematical test problems are 

relatively small, i.e. the method performs well for these problems. 

 

The comparison of performance of both algorithms is summarized in Table 9. For our 

algorithm εcluster=0.1 was chosen. For the interval algorithm the number of 

subdivisions in each iteration was chosen equal to n+1, which is generally the most 

efficient default value for the problems we tested. The numbers of the functions calls 

before all global minimizers are detected is used as criteria. In most cases all the 

global minimizers (or the best currently known values) were found by our algorithm 

in the first inner loop of the algorithm, i.e. the garbage set G was not necessary in 

these tests. The interval method "fails" for both practical problems. 
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Table 9. Numbers of function and gradient or interval calls needed to find all 

global minimizers. The columns with “Black box” correspond to the proposed 

method, the column "Interval" corresponds to [43]. The notations: Nrf – number 

of real function calls, Nrg – number of real gradient calls, Nif – number of 

interval function calls. 

Black box Interval Function  
Nrf Nrg Nrf Nif 

Rosenbrock 27 23 104 19 
McCormic 11 10 96 13 
Box and Betts 6 6 103 33 
Paviani 14 11 524 221 
Generalized Rosenbrock 359 346 14260 1921 
Goldstein and Price 75 51 243 226 
Shekel 5 66 37 98 41 
Shekel 7 24 13 101 41 
Shekel 10 22 12 101 41 
Levy4 30502 23798 111 41 
Levy5 2786 2147 127 61 
Levy6 5292 4154 235 85 
Levy7 35 30 235 113 
Griewank 124 81 186 221 
Cola 8995 7226 fails 
Bone Growth 529 414 fails 
Six Hump Camel back 49 45 342 5411 
Branin 666 527 803 687 
Shubert 6825 4412 1550 4776 
Hansen 7655 5037 892 1686 
 

The test results indicate that the proposed algorithm is stable in the sense that it has 

solved all the problems we have tried. The use of two values of the parameter for 

preventing multiple determination of the same local minimizer, εcluster indicates a 

relative robustness with respect to this parameter. Although our algorithm is rather 

efficient for many problems, we occasionally see slow convergence for problems with 

very many local minimizers, e.g. the Levy problems. 

 

It is important to notice that interval methods are very efficient for test functions 

composed by not too large number of trigonometric functions (like the Shubert and 

Levy problems). This may be explained by availability of efficient methods for 

calculating interval inclusion functions in such cases, thus making the threshold test 
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(4) efficient. The heuristic lower bounds found by our method, however, are often 

much more pessimistic since we cannot utilize inequalities such as 1)sin( ≤x . 

 

In conclusion, the new method has been solving all the problems we have tried. It is 

sometimes even faster than the interval method, but for some problems it is much 

slower. On the other hand it seems to be generally more applicable. The proposed 

method can not guarantee evaluation of global minimum with prescribed accuracy, 

but it seems a good candidate to substitute the interval methods when the latter are not 

applicable, e.g. in a "black box" situation. 

3.4 Comparison with Lipschitz algorithm 

Comparison of two different algorithms with different stopping conditions is difficult. 

The test functions for unconstrained global optimization (whose global minimizers are 

not on the edge of the feasible region) from [31] were optimized using black box 

global optimization algorithm and Lipschitz global optimization algorithm with 

simplicial partitioning. The results are given in Table 10. The gradients of functions 

were not provided for the black box algorithm, they were estimated using finite 

differences. The numbers of objective function calls needed to find the first and the 

last global minimizers are given as results of the black box global optimization 

algorithm. The numbers of objective function calls of overall optimization are given 

as results of the Lipschitz global optimization algorithm with simplicial partitioning. 

 

Table 10. Comparison of black box and Lipschitz global optimization algorithms. 

Test function Black box Lipschitz 
3 32    1287 2185 
3.1 38    1607 1559 
3.2 57    1307 1225 
3.3 32    1644 1429 
4 413 70 
7 110 3117 
9 228 3773 
9.1 297 3890 
9.2 259 3729 
10 64 848 
11 20 1566 
12 28 4001 
13 131034 4084 
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The table does not help to compare algorithms because the stopping conditions, input 

and results of algorithms are different. The black box global optimization algorithm 

stops after defined duration of time. The numbers of objective function calls needed to 

find the first and the last global minimizer is the criterion of efficiency of algorithm. 

All found global minimizers are outputted. Minimizers are found during local 

searches whose are stopped when the gradient norm is less than 10-4. 

 

Lipschitz global optimization algorithm with simplicial partitioning guarantees that 

the global minimum with predefined accuracy is found. The Lipschtiz constants of 

objective functions should be provided. The number of objective function calls of 

overall optimization is the criterion of efficiency of algorithm. Only one point is 

outputted – the point of the best value of the objective function. The dimensionality of 

successful Lipschitz optimization applications is modest. 

 

The black box global optimization is generally more applicable. The algorithm can 

not guarantee evaluation of global minimum with prescribed accuracy, but Lipschitz 

constants of functions are not needed. 

3.5 Parallel algorithm 

The most straightforward implementation of a parallel algorithm of the method is 

using geometric parallelization. In this case the domain of the problem is initially 

divided into sub-problems whose are distributed to parallel processors. Then 

processors work independently running Algorithm 8 and do not exchange any latter 

generated sub-problems. The currently known best value of the objective function f  

can be exchanging between processors. Such an algorithm corresponds to the 

distributed paradigm of parallel programming with the static load balance strategy. 

The termination of the algorithm is the same as the stopping condition in the 

sequential case – time limit. The existence of the outer loop in the Algorithm 8 

ensures that all processors always have work to do, but it is difficult to know do 

processors perform computations on equally promising sub-problems. 

 

The portable parallel algorithm has been implemented in C++ and MPI (Message-

Passing Interface – a standard specification for message-passing libraries). Portability 
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problems of incompatible C++ translators and MPI implementations had to be 

overcome. The latest implementation is available for noncommercial use at [88]. The 

algorithm has been tested on the available parallel systems at Edinburgh Parallel 

Computing Center: 

• Sun HPC 6500 UltraSPARC-II based system with Sun MPI, 

• Beowulf-type PC cluster with MPICH 1.2.0, 

• Cray T3E, 

and IBM RS/6000 SP at Vilnius Gediminas Technical University. 

 

The usually used criteria of efficiency of parallel algorithms – the speedup sm and the 

efficiency em, are not suitable for evaluation of parallel implementations of the 

proposed method, because the stopping condition is time limit and sm=1 and 
m

em

1
= . 

 

The pseudo efficiency pem and the proportion of time spent on calculations (other time 

is spent on communications or being idle) are also not well suitable in our case. They 

are maximal when there are no communications at all and therefore they suggest not 

exchange the currently known best value of the objective function f , what is not 

desirable practically. 

 

When the stopping condition is time limit, the evaluation of criteria of parallel 

algorithm is difficult. The stopping condition must be changed to enable evaluation of 

criteria. The stopping condition could be the predefined number of outer iterations. 

The experiments with the sequential version have shown that all the global 

minimizers were found in the first inner loop of the algorithm. 

 

Typical efficiency criteria as functions of the number of processors are shown in 

Figure 14. These figures are obtained running the parallel algorithm of the method on 

the Beowulf-type PC cluster when the stopping condition is one outer iteration. 

Initially, the domain of the problem is subdivided into sub-problems so that each 

processor gets one sub-problem. Then processors exchange the currently known best 

value of the objective function, but do not exchange any latter generated sub-

problems.  
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Figure 14. Speedup, efficiency, pseudo efficiency and proportion of time spent on 

calculations as functions of the number of processors. 

 

We use as a measure of the amount of work the total number of calls of the objective 

function. This measure is good when the objective function is expected to be 

“expensive”, i.e. its calculation requires more time than the auxiliary calculations by 

the optimization algorithm, or when the amount of the auxiliary calculations is 

proportional to the number of calls of the objective function. 

 

Figures show that anomalies take place, and therefore the speedup and the efficiency 

are not appropriate criteria. The pseudo efficiency and the proportion of time spent on 

calculations show similar results. The pseudo efficiency is always less than 1. This 

shows that the measure of amount of work is chosen properly. 

 

The worst case pseudo efficiency and processor utilization are low. However the 

average pseudo efficiency and processor utilization are not very bad. The work load is 

not always balanced good. Possibly the load balancing could be improved using 

dynamic load balancing, but it is not always the case as it was shown in section 2.5.4. 
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Moreover these results are gotten when the stopping condition is one outer iteration 

and do not represent the method when the stopping condition is time limit. 

3.6 Conclusions 

The black box global optimization algorithm inspired by interval methods has been 

proposed. The sequential algorithm of the method has been implemented in C++, and 

the numerical experiments with some well-known test problems as well as with two 

practical problems have been performed. The experimental testing shows that the 

method is applicable and performs well not only for the standard test functions but 

also for practical problems. 

 

The portable parallel algorithm of the method has been implemented in C++ and MPI. 

The algorithm has been tested on the various parallel systems. The criteria of the 

parallel algorithm have been discussed. 
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4 Application of black box global optimization algorithm for 

practical problems 

In this chapter application of the presented black box global optimization method is 

presented. The method is applied to practical problems: multidimensional scaling, 

growth model of the human mandible and many body problems. The results of 

optimization are discussed. 

 

The application of the presented black box global optimization algorithm depends on 

the following properties of the algorithm: 

• It is multidimensional global optimization algorithm. 

• Feasible region is box constrained. The algorithm can be applied for 

unconstrained global optimization problems. 

• The algorithm is applicable in a “black box” situation. It does not depend on how 

the objective function is expressed. 

• The trust region local search algorithm with BFGS is used, gradients are 

calculated using provided function or estimated using forward differences. 

4.1 Multidimensional scaling 

Experimental sciences collect large amounts of data supposed for analysis by different 

techniques. Frequently researcher’s experience and intuition should be combined with 

mathematical methods to elicit the desired knowledge from the data. However, human 

heuristic abilities are mostly developed and oriented to patterns in three (or two) 

dimensional space. A mapping of multidimensional data into the patterns of two- or 

three- dimensional space may be greatly aid the heuristic analysis and enhance the 

validity of the conclusions. Multidimensional scaling is a widely used technique to 

analyze structure and inherent dimensionality of sets of multidimensional data a well 

as visualization of data by means of their mapping into spaces of low dimensionality 

[16], [6], [25]. 

 

Multidimensional scaling addresses the problem how N objects represented by 

proximity data can be faithfully visualized as points in a low-dimensional Euclidean 

space [42]. Proximity data are represented as pairwise dissimilarity values. The 

dissimilarity of i th object to j th object is defined as a real number δij. A spatial 
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representation of the objects should be determined. Objects are represented as points 

in m-dimensional space. The distance between two points xi and xj is usually 

measured by the Euclidean distance dij=||xi-xj||. Sometimes the raw dissimilarity data 

are not suitable for Euclidean embedding and dissimilarities are transformed to 

disparities Dij=D(δij). 

 

The quality of visualization is measured by a stress function aggregating the 

differences between the proximity values and the distances between the respective 

points. Multidimensional scaling problem could be solved optimizing the stress 

function. The coordinates of the N points in m-dimensional space should be found 

such that the stress function would be minimal. The most frequently used stress 

function is 

∑∑ −=

i j
ijijij DdwXf 2)()( , 

where wij are nonnegative weights. They may be used to normalize the values of the 

disparities. A local, global or intermediate normalization is defined as follows in [42]: 
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The different choices correspond to a minimization of relative, absolute or 

intermediate error. The weightings might also be used to discount disparities with a 

high degree of experimental uncertainty. 

 

Sometimes the squared Euclidean distances are used to simplify computations: 

∑∑ −−=

i j
ijjiijwXf 222 )||(||)( δxx . 

Such function is called SSTRESS. A more natural choice of stress function is 

∑∑ −−=

i j
ijjiijwXf 2)||(||)( δxx . 
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In most cases symmetric dissimilarities are used: δij= δji what allows to reduce 

computations: 

∑< −−=

ij
ijjiijwXf 2)||(||)( δxx . 

If weighting is not used the function may be further reduced: 
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where xi,1..m are the coordinates of the i th point, i=1..N, j=1..N. 

 

Minimization of stress function is difficult because of the following features: 

• the practical minimization problems normally are high dimensional, number of 

optimization variables is equal to N×m, 

• the stress function is not everywhere differentiable, 

• the problem is multimodal, 

• the stress function is invariant with respect to translation, rotation and mirroring. 

 

Some of the mentioned difficulties may be, at least partially, avoided. For example, 

the subsets of the local minimizers may be reduced to the points [42] by means of 

fixing of several coordinates: 

xi,i..m=0, for i=1..m 

and defining some to be non negative:  

xi,j-1≥0, for i=2..m+1.  

Non fixed coordinates are arguments of the problem:  

x2,1=u1,…,xp,m=un. 

The dimensionality of the problem is: 

2

)12( −−
=

mNm
n . 

 

Many authors minimize different versions of stress function by means of either local 

techniques or their modifications. Some modifications of local methods are derived to 

achieve non-local behavior of the method. Most widely known method of such a kind 

is SMACOF based on majorization of an objective function [17], [18]. Although the 
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method not necessary converges to the closest local minimizer, its search strategy is 

rather local. 

 

The tunneling method is known as one of global optimization methods [80]. It was 

adopted to the problems of multidimensional scaling and investigated in detail in the 

doctoral dissertation by P.Groenen [26]. It was very efficient while used by such an 

experienced researcher of multidimensional scaling as P.Groenen. However, the 

average user would hardly use this method because of its dependence on many 

heuristically tuned parameters. 

 

Although improved local search procedures are used for some applications of 

multidimensional scaling certain applications can be solved only with global 

optimization. Two examples of such applications are described in [52]. One of 

applications is the estimation of the GSM mobile’s position using the measured 

powers of the 6 signals received from surrounding base stations. 

 

A frequently used test problem for multidimensional scaling algorithms [52], [53], 

[25] is based on experimental results on testing of several soft drinks [25]. 38 students 

have tested ten different Cola brands. Each pair was judged on its dissimilarity on a 9 

point scale (1 – very similar, 9 – completely different). The accumulated 

dissimilarities are the data of the problem. The scaled down accumulated 

dissimilarities are given in Table 11. 

 

Table 11. Scaled accumulated dissimilarities between 10 Cola brands. 

 Pepsi Coke Classic 
Coke 

Diet 
Pepsi 

Diet 
Slice 

Diet 
7-Up 

Dr. 
Pepper 

Slice 7-Up Tab 

Pepsi …          
Coke 1.27 …         
Classic Coke 1.69 1.43 …        
Diet Pepsi 2.04 2.35 2.43 …       
Diet Slice 3.09 3.18 3.26 2.85 …      
Diet 7-Up 3.20 3.22 3.27 2.88 1.55 …     
Dr. Pepper 2.86 2.56 2.58 2.59 3.12 3.06 …    
Slice 3.17 3.18 3.18 3.12 1.31 1.64 3.00 …   
7-Up 3.21 3.18 3.18 3.17 1.70 1.36 2.95 1.32 …  
Tab 2.38 2.31 2.42 1.94 2.85 2.81 2.56 2.91 2.97 … 
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The goal of this multidimensional scaling problem is to find the configuration of 10 

objects representing each Cola brand in two-dimensional space, which would help to 

interpret the data. It is shown in [52] that there are many local minima and 

interpreting the data on the basis of the achieved configuration from local minima 

leads to different results. So it is necessary to find the global minimum and the 

corresponding configuration which explains the data best. 

 

The number of objects for this global optimization problem N=10. The configuration 

of objects in m=2 dimensional space should be find. The number of variables n=17. 

The feasible region is D=([0,4]2,[-4,4]n-2). The objective function of the problem is 
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There are many local minimizers with function values close to the global minimum. 

The best known value of the objective function f*=11.7464. The black box global 

optimization algorithm has found this global minimum after 25242 calls of the 

objective function. The found global minimizer is  

U*=(0.6519, 1.3019, 0.0992, -0.8838, -0.8796, 0.2047, -3.2841, 0.8512, -3.4625, 

2.5325, -0.8952, 1.4099, -3.0737, 1.9626, -2.9787, -0.8078, -1.6898).  

The representing solution configuration of the cola problem is shown in Figure 15. 

 

 

Figure 15. The solution of the Cola problem. 
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An available implementation [43], of the interval method [40], which was used for the 

comparison in section 3.3 has not found the global minimum of the problem and has 

broken down because of overflow of memory. 

4.2 Growth model of the human mandible 

The problem represents a growth model of the human mandible (the lower jaw). The 

data of the problem are the coordinates of 271 points of equivalent morphology from 

the 3 mandibles of the same patient at the age of 9 months, 21 month and 7 years [2]. 

The goal of the problem is to position the three mandibles in the space so that the sum 

of distances of points from the middle mandible to the lines connecting corresponding 

points from the first and third mandibles is minimal (Figure 16). The middle mandible 

is fixed and each of the two others has 6 degrees of freedom: 3 angles of rotation and 

3 directions of translation. Thus the dimension of the problem is n=12. The domain 

D=([-π, π]6, [-120,120]6). 
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Figure 16. The growth model problem. 

 

The distance of the point from the middle mandible to the line connecting 

corresponding points from the first and third mandibles is found using the expression 

of area of triangle: 

b

S
h

2
= , 
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where S is area of the triangle whose corners are the points of equivalent morphology 

from the three mandibles, b is the distance between the points from the first and third 

mandibles. Area of the triangle is: 

))()(( cpbpappS −−−= , )(
2

1
cbap ++= , 

where a is the distance between the points from the first and second mandibles and c 

is the distance between the points from the second and third mandibles. 

 

The best known function value of the problem is f*=205.104. The black box global 

optimization algorithm has found the global minimum after 13101 calls of the 

objective function. The found minimizer is  

X*=(-0.125288, -0.048084, 0.0683822, -5.28448, 13.5913, 47.4381, 0.100655, 

0.00663149, 0.0861344, 15.1711, -19.2757, -44.7489).  

The corresponding solution of the growth problem is shown in Figure 17. 

 

Data Solution 

  

f=610.342 f*=205.104 

Figure 17. The solution of the growth problem. 

 

An available implementation [43], of the interval method [40], which was used for the 

comparison in section 3.3 has not found the global minimum of the problem and has 

broken down because of overflow of memory. 

4.3 Many-Body Problem 

There are many problems in physics, chemistry and material science whose require to 

know the total energy of a system of atoms as a function of atomic positions. 
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Structural and energetic properties of complex systems could be calculated using 

empirical interatomic potentials. A new approach for constructing potentials 

incorporating the dependence of bond orders is presented in [74]. An environment 

dependent bond order is included into the potential because it depends on local 

geometry and plays the crucial role. The interatomic potential is taken to have the 

form 
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where E is the total energy of the system which is decomposed into site energies Ei 

and bond energies Vij. The indices i and j run over all atoms of the system, r ij is the 

distance between i th and j th atoms. 

 

The term fR represents a repulsive pair potential which includes the orthogonalization 

energy when atomic wave functions overlap. The term fA represents an attractive pair 

potential associated with bonding. These terms are expressed using exponential 

functions: 

)exp()( 1rArf R λ−= ,  

)exp()( 2rBrf A λ−−= . 

 

The term fC is a smooth cutoff function to limit the range of potential: 
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which goes from 1 to 0 in a small range around R. For most structures R is chosen to 

include only the first neighbor shell. 

 

The function bij represents a measure of the bond order and is assumed to be a 

monotonically decreasing function of the coordination of i th and j th atoms. It also 

includes terms whose act to limit the range of interaction to the first neighbor shell: 
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where ijkθ  is the bond angle between bonds ij  and ik. 

 

The cosine of the bond angle could be found as: 

ikij
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=θ , 

where xik is the i th coordinate of kth particle. 

 

The function aij consists of range limiting terms: 

( ) nn
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A, B, λ1, λ2, α, β, n, c, d, h, λ3, R, D are fitted parameters. Parameters for arsenic 

potential denoted by As and for two silicon potentials denoted by Si(B) and Si(C) are 

given in Table 12. These parameters are taken from [1], [74] and [75]. Parameters for 

other potentials are discussed in [5]. 

 

Table 12. The parameters of the potentials. 

 As Si(B) Si(C) 
A 10.45561332 3.2647e+3 1.8308e+3 
B 14.41961332 9.5373e+1 4.7118e+2 
λ1 6.739581257 8.7963 6.7339 
λ2 4.886847795 3.6001 4.7036 
α 0.0 0.0 0.0 
β 0.00748809 0.33675 1.0999e-6 
n 0.60879133 22.956 0.78734 
c 5.2731318 4.8381 1.0039e+5 
d 0.75102662 2.0417 16.216 
h 0.15292354 0.0000 -0.59826 
λ3 0.0 0.0 0.0 
R 1.2381 1.1048 1.0496 
D 0.0503062 0.073654 0.055240 
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The goal of the problem presented in [1] is to find the minimum energy of clusters of 

particles whose interact through well defined many-body interaction potentials. The 

energy of a particle depends on the distances and angles with respect to other 

particles, different particles have different energies. 

 

The objective function f is a function of the atomic positions of the particles. When 

minimizing the objective function, we fix the first particle at the origin, lay the second 

particle on the positive x-axis and the third particle on the xy-plane. The position of 

the third particle is defined using the distance from the origin and the polar angle. The 

positions of additional particles are defined as the coordinates in three-dimensional 

space. 

 

The physics involved in the problems imposes restrictions on the variables. The 

distances between the first-second and first-third particles are taken to lie in [0,1.30] 

for As and [0,1.16] for Si. The polar angle is taken to lie in [0,π]. The coordinate 

variables are in [-1.5,1.5], however the third coordinates of the fourth and fifth 

particles constrained to be nonnegative and nonpositive respectively. The restrictions 

on the variables of the problems are given in Table 13. 

 

Table 13. The restrictions on the variables of the many-body problems. 

Particle As Si 
2nd 0≤x1≤1.30 0≤x1≤1.16 
3rd 0≤x2≤1.30, 0≤x3≤π 0≤x2≤1.16, 0≤x3≤π 
4th -1.5≤x4,x5≤1.5, 0≤x6≤1.5 -1.5≤x4,x5≤1.5, 0≤x6≤1.5 
5th -1.5≤x7,x8≤1.5, -1.5≤x9≤0 -1.5≤x7,x8≤1.5, -1.5≤x9≤0 
6th -1.5≤xi≤1.5, i=10,11,12 -1.5≤xi≤1.5, i=10,11,12 

 

The problems are difficult because of large number of local minimizers. The authors 

of [1] extracted some characteristics of the problems performing local searches from 

10000 random points within the feasible regions. This gave the probabilities that a 

local search started from a random point would reach the global minimum. Based on 

the estimated probabilities the authors conclude that all problems with 3 and 4 

particles and Si(B) with 5 particles are easy to solve (the estimated probabilities are 

larger than 4%). The others are more difficult, Si(C) with 5 and 6 particles already 
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respectively difficult (the estimated probabilities are less than 0.01%). Problems with 

larger number of particles are increasingly difficult to solve. 

 

The results of minimization the many-body problems using the black box global 

optimization algorithm: the smallest found value of the objective function and the 

number of the objective function calls needed to find the global minimum if it is 

found, are given in Table 14. When the global minimum is the same as in [1], it is 

shown in brackets. The found global minimums for As problems are less than given in 

[1], where the details about global minimizers are not given. It is possible that the 

parameters of the As problems are wrong, so it is not recommended to use the results 

of As problems for comparison of performances of the algorithms. 

 

Table 14. The results of minimization. 

Number of particles As Si(B) Si(C) 
3 -8.07739 182 [-7.87096] 64 [-5.33194] 88 
4 -12.8546 45498 [-15.7057] 186 [-7.99786] 1631 
5 -16.6568 11808 [-20.3985] 327 -10.2009 
6 -16.816 [-26.5196] 256460 -13.9692 
 

The global minimum of Si(B) problem with 3 particles is f*=-7.87096. The found 

corresponding solution is X*=(0.852, 0.852, 1.047) which represents the particles on 

the corners of a regular triangle as in Figure 18. 

 

The global minimum of Si(B) problem with 4 particles is f*=-15.7057. The found 

corresponding solution is X*=(0.852, 0.852, 1.047, 0.426, 0.246, 0.696) which 

represents the particles on the corners of a regular tetrahedron as in Figure 18. 

 

The global minimum of Si(B) problem with 5 particles is f*=-20.3985. Two found 

corresponding symmetric solutions are X*=(0.871, 0.871, 1.047, 0.436, 0.251, 0.706, 

0.436, 0.252, -0.706) and X*=(0.867, 0.867, 1.903, 0.438, 0.615, 0.436, 0.438, 0.615,  

-0.436). The solutions represent the particles on the corners of two regular 

tetrahedrons as in Figure 18. 
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The global minimum of Si(B) problem with 6 particles is f*=-26.5196. The same 

solution was found two times with exchanged fourth and sixth particles: X*=(0.871, 

0.871, 1.57, 0.436, 0.436, 0.616, 0.436, 0.436, -0.616, 0.871, 0.871, 0.0) and 

X*=(0.871, 0.871, 1.57, 0.871, 0.871, 0.0, 0.436, 0.436, -0.616, 0.436, 0.436, 0.616). 

The solution represents the particles on the corners of a regular octahedron as in 

Figure 18. 

 

triangle tetrahedron two tetrahedrons octahedron 

    

3 particles 4 particles 5 particles 6 particles 

Figure 18. Solutions of Si(B) problems. 

 

In [1] the results of minimization the As and Si(B) problems using eight stochastic 

algorithms are given. The performances of the black box global optimization 

algorithm and these eight stochastic algorithms were compared using results of Si(B) 

problem. The results of minimization Si(B) problem using the stochastic algorithms 

(CSR2, CRS3, CRS4, CRS5, ABSA, SA, TMSL, MSL) and the black box global 

optimization algorithm (BB) are given in Table 15. 

 

Table 15. Results of stochastic algorithms [1] and black box algorithm. 

MBP CRS2 CRS3 CRS4 CRS5 ABSA SA TMSL MSL BB 
3 f*  [-7.87] [-7.87] [-7.87] [-7.87] [-7.87] [-7.87] [-7.87] [-7.87] [-7.87] 
 FE 1123 1094 755 808 13992 13978 212 210 64 
4 f*  [-15.71] [-15.71] [-15.71] [-15.71] [-15.71] [-15.71] [-15.71] [-15.71] [-15.71] 
 FE 4304 3724 2418 2967 27988 46458 2520 5312 186 
5 f*  [-20.40] -20.31 [-20.40] -15.70 -20.31 -20.31 -18.97 [-20.40] [-20.40] 
 FE 11111 18348 3971 4321 36417 112951 3594 12954 327 
6 f*  -24.51 -24.51 [-26.52] -24.51 -25.98 -23.12 -24.44 -24.51 [-26.52] 
 FE 37677 64067 44980 42134 151109 206166 4139 18666 256460 

 

All algorithms have found the global minimum of the problems with 3 and 4 particles 

and the efforts needed to find the global minimum were used for comparing as in [1]. 
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The black box global optimization algorithm is the best one, because it requires the 

smallest number of the objective function evaluations to find the global minimum.  

 

Not all stochastic algorithms have found the global minimum of the problems with 5 

and 6 particles and the reliabilities in finding the best solution were used for 

comparing as in [1]. Only one stochastic algorithm has solved Si(B) problem with 6 

particles and only three of them have solved the problem with 5 particles. Again the 

black box global optimization algorithm is one of the best, because it has solved both 

Si(B) problems with 5 and 6 particles. The algorithm is both reliable and efficient. In 

[1] the reliability rankings were roughly negatively correlated with the efficiency 

rankings for all except two algorithms whose were neither reliable nor efficient. 
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Results 

1. The general n-dimensional simplex-based branch and bound algorithm for 

Lipschitz optimization has been proposed. The rules of selection, covering, 

branching and bounding have been justified by results of experimental 

investigations. The performance of the algorithm, using the number of function 

evaluations required to solve the problem, has been evaluated and compared with 

other branch and bound algorithms for Lipschitz optimization. 

2. The parallel master-slave and distributed simplex-based branch and bound global 

optimization algorithms with static and dynamic load balancing have been 

implemented using C++ and MPI. The criteria of parallel algorithms have been 

evaluated and the superiority of distributed algorithms has been shown. 

3. The black box global optimization algorithm inspired by interval methods is 

proposed. The sequential algorithm of the method has been implemented and 

tested using the numerical experiments with some well-known test problems as 

well as with two practical problems. The experimental testing has shown that the 

method is applicable and performs well not only for the mathematical test 

functions but also for the practical problems. 

4. The portable parallel algorithm of the black box global optimization method has 

been implemented. The local garbage sets always provide the processors with 

tasks and even with static load balancing processors always perform calculations. 

The algorithm has been tested on the various parallel systems. 

5. The black box global optimization algorithm has been applied to solve three 

typical practical problems: multidimensional scaling, growth model of the human 

mandible and many-body. 



 86 

Conclusions 

The investigation of a simplex based Lipshitzian global optimization method may be 

summarized as follows:  

• The versions of the method with the Lipshitzian bounds calculated using function 

values at vertices are more efficient than using function values at inner points 

since the same function values are attributed to neighboring and descendant 

simplices. It is not reasonable to calculate tight bounds taking into account all 

vertices since the cheaper bounds imply similar ratio of discarding of not 

prospective simplices. 

• The partition of a simplex in two subsimplices defined by the middle point of the 

longest edge is more efficient than its partition in n+2 subsimplices using middle 

points of all edges. It is not reasonable to maintain regularity of the subsimplices 

while partitioning. The initial covering does not have much influence, although 

the vertex triangulation has been observed slightly better than the over-covering 

by regular simplices. 

• The proposed irregular simplex based method performs better than the other 

known branch and bound algorithms with respect to the number of function 

evaluations. 

• The master-slave paradigm is not efficient for parallel implementation of the 

proposed method since the calculation of bounds is cheap comparing with the time 

needed to send the task and the results. The communications are frequent, 

therefore master becomes a bottleneck and the slaves become idle when waiting 

for new tasks.  

• Acceleration anomaly takes place for the parallel implementations with the 

distributed initialization. The reason is the dependence of distribution of simplices 

of initial partitioning on the number of processors. 

• The proportion of time spent on calculations of the parallel implementations with 

the distributed initialization is better than that with the centralized initialization. 

This may be explained by the shortage of tasks in the latter case: only the root 

processor has tasks after the initialization while others are idle waiting for them. 

The search tree in case of central initialization is narrower than the search tree in 

case of distributed initialization.  
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• The proportion of time spent on calculations by the parallel implementation with 

static load balancing is better than by the implementation with dynamic load 

balancing since tasks are small with respect to the communication overheads. The 

communications cause an additional overhead, but the search tree is narrow and 

there are not enough tasks to share. 

 

The investigation on black box global optimization inspired by the interval methods 

may be summarized as follows:  

• The proposed method is reliable; in all testing cases the global minimum has been 

found. The method is applicable much widely than the interval methods therefore 

it is a good candidate to substitute the interval methods in a "black box" situation 

when interval methods can not be applied.  

• The proposed method has been applied to several practical problems. It favorably 

competes with the methods originally used to solve these problems with respect to 

the criterion of calls of the objective function.  

• The implementation of parallel version of the proposed black box global 

optimization method is efficient. Since the solution may be lost the algorithm is 

embedded into a loop which restarts the calculation. A local outer candidate sets 

always provide the processors with tasks, and processors always perform 

calculations even in case of static load balancing. 
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