On local weak limit and subgraph counts for sparse random graphs

28th Nordic Congress of Mathematicians, Aalto University, Finland

Valentas Kurauskas
Vilnius University

18th of August, 2022

1. Sparse graphs.
2. Local weak limit.
3. Sparse random intersection graphs.
4. Why local weak limit?
5. Local and global subgraph counts.
6. Sidorenko theorem.
7. How many samples are needed?

2. Local weak limit (r-ball)

2. Local weak limit (examples)

Graphs
$n \times n$ grids
$n \rightarrow \infty$

$G\left(n, \frac{c}{n}\right)$

Limit

Po(c) branching
process

3. Sparse random intersection graphs (1 example)

"Passive" random intersection graph model:

- Fix a distribution μ on $\{0,1,2, \ldots\}$.
- For each vertex $v \in V_{2}$ generate random variables $Y_{v} \sim \mu$ independently.
- Given $\left\{Y_{v}, v \in V_{2}\right\}$ for each $v \in V_{2}$ select the set of its neighbours in H from V_{1} independently and uniformly at random from all $\binom{\left|V_{1}\right|}{Y_{v}}$ sets of size Y_{v}.

$\sim D_{1}$ children
$\sim D_{2}^{*}-1$ children
$\sim D_{1}^{*}-1$ children
$\sim D_{2}^{*}-1$ children

4. Why local weak limit?

- Provides a different viewpoint to analyse random graphs: 1) prove the convergence 2) analyse the "nice" limit objects (Aldous, Asymptotic fringe distributions for general families of random trees, 1991).
- The limit implies general asymptotic results: (bi-)degree distribution, local clustering coefficient, conditional clustering coefficient, averages of bounded functionals, spectra, recurrence of random walks, spanning tree counts, etc.
- Sampling random vertices is a natural way to study empirical networks ("snowball sampling").
- Any sequence of sparse graphs with uniformly integrable degree of a random vertex has a locally weakly convergent subsequence (Benjamini, Lyons \& Schramm 2015).
- Explicitly known for many random graph models.

5. Local and global subgraph counts

Theorem. (VK, 2015)
Suppose $h \geq 2,\left(G_{n}\right)$ has a weak local limit $G^{*}=\left(G^{*}, r^{*}\right)$,
D_{n} is the (random) degree of a (uniformly) random vertex in G_{n}. Then D_{n}^{h-1} is uniformly integrable iff $\frac{1}{n} \mathrm{emb}\left(H, G_{n}\right) \rightarrow \mathbb{E} \mathrm{emb}^{\prime}\left(H^{\prime}, G^{*}\right)$ for any connected graph H on h vertices and any rooted $H^{\prime}=(H, v)$, $v \in V(H)$.
emb (H, G) : number of embeddings from H to G (number of copies).
emb ${ }^{\prime}\left(H^{\prime}, G^{\prime}\right)$: number of rooted embeddings from H^{\prime} to G^{\prime} (the root of H^{\prime} maps to the root of G^{\prime}).

If $X_{n} \geq 0,\left(X_{n}\right)$ is uniformly integrable if $\lim _{K \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \mathbb{E} X_{n} \mathbb{I}_{X_{n} \geq K}=0$.

7. How many samples are needed?

Lemma. (VK, 2022)
$G:$ any graph $|V(G)| \geq 1$.
D : degree of a uniformly random vertex in $V(G)$.
Suppose \exists positive Δ and ϵ such that

$$
\mathbb{E} D^{h-1} \mathbb{I}_{D \geq \Delta} \leq \epsilon
$$

Then the number of homomorphisms from a connected h-vertex graph H to G that "touch" a vertex of degree $\geq \Delta$ in G is at most hne.

Caveat: $\mathbb{E} D^{h-1}$ can be huge for social networks, even for $h=3$.

