On local weak limit and subgraph counts for sparse random graphs

28th Nordic Congress of Mathematicians, Aalto University, Finland

Valentas Kurauskas Vilnius University

18th of August, 2022

- 1. Sparse graphs.
- 2. Local weak limit.
- 3. Sparse random intersection graphs.
- 4. Why local weak limit?
- 5. Local and global subgraph counts.
- 6. Sidorenko theorem.
- 7. How many samples are needed?

2. Local weak limit (*r*-ball)

2. Local weak limit (examples)

 $G(n, \frac{c}{n})$ Po(c) branching process

"Passive" random intersection graph model:

- Fix a distribution μ on $\{0, 1, 2, \dots\}$.
- For each vertex $v \in V_2$ generate random variables $Y_v \sim \mu$ independently.
- Given {Y_ν, v ∈ V₂} for each v ∈ V₂ select the set of its neighbours in H from V₁ independently and uniformly at random from all (^{|V₁|}) sets of size Y_ν.

. . .

 $\sim D_1$ children $\sim D_2^* - 1$ children $\sim D_1^* - 1$ children $\sim D_2^* - 1$ children

4. Why local weak limit?

- Provides a different viewpoint to analyse random graphs: 1) prove the convergence 2) analyse the "nice" limit objects (Aldous, Asymptotic fringe distributions for general families of random trees, 1991).
- The limit implies general asymptotic results: (bi-)degree distribution, local clustering coefficient, conditional clustering coefficient, averages of bounded functionals, spectra, recurrence of random walks, spanning tree counts, etc.
- Sampling random vertices is a natural way to study empirical networks ("snowball sampling").
- Any sequence of sparse graphs with uniformly integrable degree of a random vertex has a locally weakly convergent subsequence (Benjamini, Lyons & Schramm 2015).
- Explicitly known for many random graph models.

Theorem. (VK, 2015)

Suppose $h \ge 2$, (G_n) has a weak local limit $G^* = (G^*, r^*)$,

 D_n is the (random) degree of a (uniformly) random vertex in G_n .

Then D_n^{h-1} is uniformly integrable iff $\frac{1}{n}$ emb $(H, G_n) \to \mathbb{E}$ emb $'(H', G^*)$ for any connected graph H on h vertices and any rooted H' = (H, v), $v \in V(H)$.

emb(H, G): number of embeddings from H to G (number of copies).

emb'(H', G'): number of rooted embeddings from H' to G' (the root of H' maps to the root of G').

If $X_n \ge 0$, (X_n) is uniformly integrable if $\lim_{K\to\infty} \limsup_{n\to\infty} \mathbb{E} X_n \mathbb{I}_{X_n \ge K} = 0$.

Lemma. (VK, 2022)

G: any graph $|V(G)| \ge 1$.

D: degree of a uniformly random vertex in V(G).

Suppose \exists positive Δ and ϵ such that

 $\mathbb{E} D^{h-1} \mathbb{I}_{D \ge \Delta} \le \epsilon.$

Then the number of homomorphisms from a connected *h*-vertex graph *H* to *G* that "touch" a vertex of degree $\geq \Delta$ in *G* is at most $hn\epsilon$.

Caveat: $\mathbb{E} D^{h-1}$ can be huge for social networks, even for h = 3.