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2. Local weak limit (r-ball)
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2. Local weak limit (examples)
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3. Sparse random intersection graphs (1 example)

“Passive” random intersection graph model:

• Fix a distribution µ on {0, 1, 2, . . . }.
• For each vertex v ∈ V2 generate random variables Yv ∼ µ

independently.
• Given {Yv, v ∈ V2} for each v ∈ V2 select the set of its neighbours

in H from V1 independently and uniformly at random from all
(|V1|

Yv

)
sets of size Yv.
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3. Sparse random intersection graphs (local weak limit)
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4. Why local weak limit?

• Provides a different viewpoint to analyse random graphs: 1) prove
the convergence 2) analyse the “nice” limit objects
(Aldous, Asymptotic fringe distributions for general families of
random trees, 1991).

• The limit implies general asymptotic results: (bi-)degree distribution,
local clustering coefficient, conditional clustering coefficient,
averages of bounded functionals, spectra, recurrence of random
walks, spanning tree counts, etc.

• Sampling random vertices is a natural way to study empirical
networks (“snowball sampling”).

• Any sequence of sparse graphs with uniformly integrable degree of a
random vertex has a locally weakly convergent subsequence
(Benjamini, Lyons & Schramm 2015).

• Explicitly known for many random graph models.
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5. Local and global subgraph counts

Theorem. (VK, 2015)

Suppose h ≥ 2, (Gn) has a weak local limit G∗ = (G∗, r∗),

Dn is the (random) degree of a (uniformly) random vertex in Gn.

Then Dh−1
n is uniformly integrable iff 1

n emb (H,Gn) → E emb ′(H′,G∗)

for any connected graph H on h vertices and any rooted H′ = (H, v),
v ∈ V(H).

emb (H,G): number of embeddings from H to G (number of copies).

emb ′(H′,G′): number of rooted embeddings from H′ to G′ (the root of H′ maps to
the root of G′).

If Xn ≥ 0, (Xn) is uniformly integrable if limK→∞ lim supn→∞ EXnIXn≥K = 0.
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7. How many samples are needed?

Lemma. (VK, 2022)

G: any graph |V(G)| ≥ 1.

D: degree of a uniformly random vertex in V(G).

Suppose ∃ positive ∆ and ϵ such that

EDh−1ID≥∆ ≤ ϵ.

Then the number of homomorphisms from a connected h-vertex graph H
to G that “touch” a vertex of degree ≥ ∆ in G is at most hnϵ.

Caveat: EDh−1 can be huge for social networks, even for h = 3.
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