Symmetric road interchanges

Valentas Kurauskas and Ugnė Šiurienė

Vilnius university, Lithuania

Joint Math Meetings – San Diego – 12 Jan 2018

Part I: Road interchanges and embeddings of bipartite graphs

Road junctions / interchanges

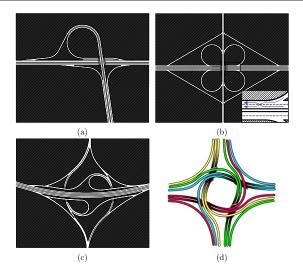
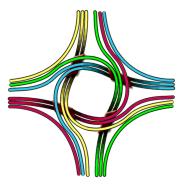


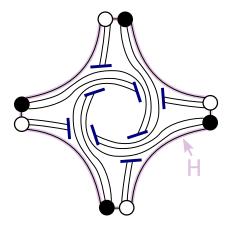
Illustration from V. K., On the genus of the complete tripartite graph $K_{n,n,1}$, Discrete Math 340 (2017).

The Pinavia interchange



4-way "Pinavia" interchange: Buteliauskas (2008); Buteliauskas, Krasauskas ir Juozapavičius (2010); **www.pinavia.com**

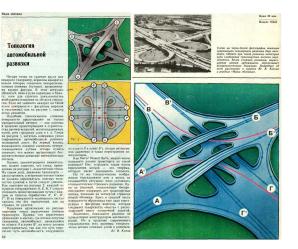
Modeling a road interchange as an embedding



Any such interchange \longleftrightarrow embedding of a bipartite graph with a Hamiltonian facial cycle.

Can go to any other direction $\longleftrightarrow K_{n,n}$

Not much prior literature



Yu. Kotov, Topology of an automobile interchange, Kvant 5 (1983) (in Russian).

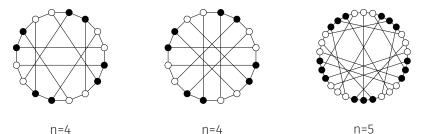
Theorem (VK, 2017)

For n even the minimum genus of an embedding of $K_{n,n}$ with a face bounded by a Hamiltonian cycle is $\lceil (n-1)(n-2)/4 \rceil$.

Corollary

For n even the genus of the complete tripartite graph $K_{n,n,1}$ is $\lceil (n-1)(n-2)/4 \rceil$.

The only (up to isomorphism) optimal genus solutions for n = 4 and n = 5.



Part II: Rotationally symmetric interchanges of minimum genus

Why symmetric interchanges?

- Unconstrained layouts too complex to be practical
- Understand and exploit the geometric structure

Why *n*-fold rotational symmetry (*C_n*)?

- Generalize Pinavia for n > 4
- For \mathbb{R}^3 , only C_k , $k \mid 2n$ unbounded order symmetry groups (use Tucker 2014)

Two types of n-fold rotational symmetry:

- 1. **Combinatorial / topological**: rotation system invariant under the cyclic shift along *H* by 2.
- 2. **Geometric**: the surface in \mathbb{R}^3 , the embedded graph and the outer face are *all* invariant under rotation by $2\pi/n$.

1: 🗸 2: 🗶

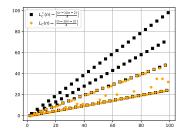
1: 🗸 2: 🗸

1: 🗸 2: 🗸

Results

We find¹ *minimum genus* for n-fold rotationally symmetric interchanges in both cases:

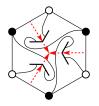
- 1. For topological/combinatorial symmetry, it depends on *n* mod 4 as well as on the *smallest prime divisor* of *n*.
- 2. For geometric (\mathbb{R}^3) symmetry, it depends *only* on *n* mod 4.



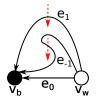
¹See VK, U. Šiurienė, *Symmetric road interchanges*, arXiv.

Symmetry in \mathbb{R}^3 , orbifolds and quotient embeddings

Represent a symmetric embedding in \mathbb{R}^3 , e.g.,

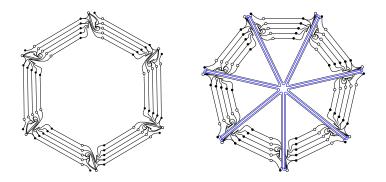


by the quotient surface and an embedded quotient graph:



Optimal symmetric constructions

"ring road" $n \mod 4 \in \{1, 2\}...$



... extra "star bridge" $n \mod 4 \in \{0,3\}, n \neq 4$.

- We can model interchanges where drivers don't need to change lanes by embeddings of bipartite graphs with a "Hamiltonian face".
- Simple road junctions unexpectedly inspire nice theoretical questions.
- Will the theory become useful in the real world?

Some details

Theorem (combinatorial symmetry)

The minimum genus for a complete interchange with n-fold combinatorial symmetry is $L_c(n)$ where

$$L_{C}(n) = \begin{cases} \frac{n(n-2)}{4}, & \text{if } n \text{ is even}; \\ \lfloor \frac{n(n-1)}{4} \rfloor + 1 - \frac{1}{2} \left(\frac{n}{p_{1}} + p_{1} \right), & \text{if } n \equiv 3 \pmod{4}, p_{1} \neq n \text{ and } p_{1}^{2} \nmid n; \\ \lfloor \frac{n(n-1)}{4} \rfloor + 1 - \frac{1}{2} \left(\frac{n}{p_{1}} + 1 \right), & \text{if } n \equiv 3 \pmod{4} \text{ and } p_{1}^{2} \mid n; \\ \frac{n(n-1)}{4} - 1, & \text{if } n \equiv 1 \pmod{4}, 3 \mid n \text{ and } 9 \nmid n; \\ \lfloor \frac{n(n-1)}{4} \rfloor, & \text{otherwise}, \end{cases}$$

where p_1 is the smallest prime divisor of n.

Theorem (geometric symmetry)

For $n \neq 4$, the minimum genus for a complete interchange with *n*-fold geometric symmetry is $L_c^*(n)$ where

$$L_{C}^{*}(n) = \begin{cases} \frac{n^{2}}{4} - 1, & \text{if } n \equiv 0 \pmod{4}; \\ \frac{n(n-1)}{4}, & \text{if } n \equiv 1 \pmod{4}; \\ \frac{n(n-2)}{4}, & \text{if } n \equiv 2 \pmod{4}; \\ \frac{n(n+1)}{4} - 1, & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

Building block for ringroad construction

