ON THE NUMBER OF GRAPHS WITH FEW DISJOINT EXCLUDED MINORS

Valentas Kurauskas (Vilnius University)

The problem

\[A: \] a class of labelled graphs, closed under isomorphism.

- What is the size of \(A_n \) = the set of graphs in \(A \) on the vertex set \(\{1, \ldots, n\} \)?
- What is the structure of a typical graph in \(A_n \)?

Note: in general, lots of dependence in the edges of a graph drawn uniformly at random from \(A \).

\[B = \text{fixed finite set of graphs. A graph is bad if it has a minor (\(\uparrow \)) in } B. \text{ Ex: } B = \text{graphs that are not bad (no minor in } B). \text{ We study cases } \text{Ex}(k+1)B \text{ of graphs that do not have } k+1 \text{ vertex-disjoint bad subgraphs (} k \text{ fixed).}

\textbf{Example.}\hspace{1em} \text{Ex}(k+1)\{K_4\} \text{ is the class of all graphs that do not have } k+1 \text{ vertex disjoint cycles. This and similar classes were studied before (\(\downarrow \)).}

Classes in the current work include the case \(B = \{K_4\} \), the graphs which do not contain \(\begin{array}{ccc} & & \\
\circ & \circ & \circ \\
\circ & \circ & \circ \\
\circ & \circ & \circ
\end{array} \) k +1 times as a minor.

\textbf{Small blockers}

\(B \)-blocker \(Q \) of \(G \) = every bad subgraph of \(G \) meets \(Q \) in at least one point = \(G - Q \) is not bad.

\textbf{Fans} = graphs consisting of a path and an apex vertex connected to each vertex on the path.

\textbf{Theorem. (V.K. and C. McDiarmid, 2011).} If the graphs in \(B \) are 2-connected and \(A = \text{Ex} B \) does not contain all fans, then all but an exponentially small proportion of graphs without \(k+1 \) disjoint bad subgraphs have a \(B \)-blocker of size \(k \).

The number of such graphs on the vertex set \(\{1, \ldots, n\} \) is \(c(k, B)2^{kn}A_n(1 - e^{-Bn(n)}) \).

\textbf{Graph minors}

\(H \) is a minor of \(G \) if it can be obtained from \(G \) by a series of edge contractions/deletions.

\textbf{Small blockers}

\begin{itemize}
 \item A morphism.
 \item \(\text{if it has a minor (\(\uparrow \)) in } B \).
 \item \(\text{Ex}(k+1)B \text{ is the class of all graphs without } k+1 \text{ vertex-disjoint bad subgraphs (} k \text{ fixed).}
\end{itemize}

\textbf{Example.}\hspace{1em} \text{Ex}(k+1)\{K_4\} \text{ is the class of all graphs that do not have } k+1 \text{ vertex disjoint cycles. This and similar classes were studied before (\(\downarrow \)).}

\textbf{Classes in the current work include the case } B = \{K_4\}, \text{ the graphs which do not contain } \begin{array}{ccc} & & \\
\circ & \circ & \circ \\
\circ & \circ & \circ \\
\circ & \circ & \circ
\end{array} \text{ k +1 times as a minor.}

\textbf{Growth constants}

\(A \) has a growth constant \(\gamma \) if

\[\left(\frac{|A_n|}{n!}\right)^{1/n} \rightarrow \gamma. \]

\(\tau(A) = \text{upper limit of the above} = \rho(A)^{-1} \text{ is the inverse radius of convergence of the EGF of } A. \)

\textbf{Conjecture (Bernardi, Noy and Welsh, 2010).} Every minor-closed class of graphs has a growth constant. Redundant \(B \)-blocker \(Q \) of \(G \) = every bad subgraph of \(G \) meets \(Q \) in at least two points. \(rd_kB = \text{the class of graphs that have a redundant } B \)-blocker of size at most \(k \).

\[rd_{k+1}B \subseteq \text{Ex}(k+1)B \text{ each bad subgraph in } G \text{ uses at least two vertices from the blocker, so we can form more than } k \text{ disjoint such subgraphs.}
\]

\textbf{Theorem 1.} \text{If } ExB \text{ contains all fans and condition A holds then there is a constant } k_0 = k_0(B) \text{ such that for all } k \geq k_0

\[\tau(Ex(k+1)B) = \tau(rd_{k+1}B). \]

Examples of suitable \(B : \{K_4, 3\}, \{K_4, \{W_5\}\} \text{ and } \{K_3, P_6\}. \)

\[W_5 = \text{wheel on } 5 \text{ vertices; } P_6 = \text{any arbitrary planar graph.}
\]

\textbf{For } B \text{ and } k \text{ as in Theorem 1, there are arbitrarily large } n \text{ such that in almost all graphs on } \{1, \ldots, n\} \text{ which do not have } k+1 \text{ bad subgraphs, we need at least } 2k \text{ vertices to block all bad subgraphs. This is twice more than for } B \text{ considered earlier (\('\)').}

\textbf{Theorem 2.} \text{If } ExB \text{ contains all fans and conditions A and B hold then there is a constant } k_0 = k_0(B) \text{ such that for all } k \geq k_0 \text{ the class } Ex(k+1)B \text{ has a growth constant.}

\text{Examples of suitable } B : \{K_4, \{W_5\}\}. \]

\textbf{Graphs with no } k+1 \text{ disjoint minors } K_4

\textbf{Theorem 3.} \text{Let } A = \text{Ex}(k+1)\{K_4\}. \text{ For any } k = 1, 2, \cdots

\[A \text{ has a growth constant } \gamma_k \text{.}
\]

\[\gamma_1 = \gamma(\text{Ex } K_4) = 23.5241. \]

\[A \text{ is uniformly random graph from } A_n \text{ whp has a unique redundant blocker } Q \text{ of size } 2k + 1. \]

\[\text{Each vertex of } Q \text{ has a linear degree.}
\]

\[\text{There is } c_k > 0 \text{ such that } |A_n| = c_kn^{-5/2}n^{\gamma_k}(1 + o(1)).\]

\textbf{Problems}

\textbf{Theory of graph minors.}

Robertson and Seymour proved that any } G \in \text{Ex} \{k+1\}B \text{ has a constant size } B \text{-blocker, as long as } B \text{ contains a planar graph.

\textbf{Earlier results on planar and other minor-closed classes.}

Ideas of McDiarmid, Steger and Welsh (2005) help to avoid generating functions in the proof of Theorem 2. A new version of a lemma of V.K. and McDiarmid (2011): Every } G \in \text{Ex} \{k+1\}B \text{ can be represented by \((a) \) a constant-size set } Q \text{ (b) a set } S \subseteq Q \text{ of size at most } 2k \text{ and } \(c \) \text{ a graph in } ExB \text{, so that each bad subgraph that meets } Q \text{ in at most two points, must meet } S.

\textbf{New structural results}

If } G - Q \text{ is connected, we can split (= reverse contraction) a constant number of vertices in } G \text{ and represent } G \text{ as } O(1) \text{ graphs in } rd_{2k+1}B \text{ and } O(1) \text{ edges (the crucial point}).

\textbf{Analytic combinatorics.}

Easy by the “First principle” of Analytic Combinatorics: } Ex(2k+1)B \approx \text{ a class of sets of graphs composed of } O(1) \text{ elements from } rd_{2k+1}B \Rightarrow \rho(Ex(k+1)B) = \rho(rd_{2k+1}B).

\textbf{More analytic combinatorics}

Bodirsky, Gimenez, Kang and Noy (2005) obtained expressions for the EGF of series-parallel graphs = Ex \{K_4\}. Using these, we analyse the structure (\(I \)) of graphs with small redundant blockers. This includes counting trees where leaves, internal vertices and edges are substituted by objects of different types.

\textbf{Typical graphs without two disjoint minors } K_4

\[\text{Leaf-like shapes} = \text{arbitrary series-parallel networks, most of them small. Above is just a “core” of a graph in } Ex2K_4 \text{ (is typically of linear size). Attach arbitrary rooted series-parallel graphs at arbitrary vertices of this; add a redundant blocker - (} x, y, z \text{) - and connect } x \text{ to each red point, } y \text{ to each green point and } z \text{ to each blue point. Unlike in planar graphs, there are vertices of different types: colours can occur only at the “joints”; only the joints of the grey blocks can have arbitrary colour } \).

\text{the top-right vertex cannot have colour blue, otherwise } z \text{ alone would form a minor } K_3 \text{ and } (x, y, z) \text{ would not be redundant.}