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The problem

A: a class of labelled graphs, closed under iso-
morphism.

I What is the size of An = the set of graphs
in A on the vertex set {1, . . . , n}?
I What is the structure of a typical graph

in An?

Note: in general, lots of dependence in the edges of a

graph drawn uniformly at random from An!

B = fixed finite set of graphs. A graph is bad,
if it has a minor (↗) in B. ExB = graphs that
are not bad (no minor in B). We study classes
Ex (k + 1)B of graphs that do not have k + 1
vertex-disjoint bad subgraphs (k fixed).

Example. Ex (k + 1){K3} is the class of all
graphs that do not have k + 1 vertex disjoint
cycles. This and similar classes were studied be-
fore (↓).

Classes in the current work include the case
B = {K4}, the graphs which do not contain

� � . . . �︸ ︷︷ ︸
k+1 times

as a minor.

Graph minors

H is a minor of G if it can be
obtained from G by a series of edge
contractions/deletions.

G H

Minor-closed classes are subject to fun-
damental graph theory results. For exam-
ple, Kuratowski’s theorem states that pla-
nar graphs are exactly those graphs that
do not have K3,3 or K5 as a minor. Robert-
son’s and Seymour’s theory of graph mi-
nors proves that every minor-closed class
of graphs has a finite list of forbidden mi-
nors.

For the class of planar graphs the two
main questions (↖) have been studied
quite intensively in the past decade (Ben-
der, Bernardi, Bodirsky, Drmota, Fusy, Gao,
Gimenez, Kang, McDiarmid, Noy, Steger,
Panagiotou, Welsh, Wormald. . . ). For this
class, and for classes with 2-connected ex-
cluded minors, the asymptotic growth
and the properties of random graphs are
now quite well understood.

Small blockers

B-blocker Q of G = every bad sub-
graph of G meets Q in at least one
point = G − Q is not bad.

Fans = graphs consisting of a path
and an apex vertex connected to each
vertex on the path.

Theorem. (V.K. and C. McDiarmid,
2011). If the graphs in B are 2-
connected andA = ExB does not con-
tain all fans, then all but an exponen-
tially small proportion of graphs with-
out k + 1 disjoint bad subgraphs have
a B-blocker of size k.
The number of such graphs

on the vertex set {1, . . . , n} is

c(k,B)2kn|An|
(

1− e−Ω(n)
)
.

In other words, the simplest possible
type of structures overhelmingly dom-
inates the class of all graphs without
k + 1 disjoint minors in B.

Example. A random graph on ver-
tex set {1, . . . , n} without k + 1 dis-
joint cycles is “almost” a uniformly ran-
dom forest F along with k “apex” ver-
tices, where the edges between the apex
vertices are independent and exist with
probability 1/2. A uniformly random
graph without 3 disjoint cycles:

Growth constants

A has a growth constant γ if

(|An|/n!)1/n → γ.

γ(A)=upper limit of the above = ρ(A)−1= inverse radius of conver-
gence of the EGF of A.

Conjecture (Bernardi, Noy and Welsh, 2010). Every minor-closed
class of graphs has a growth constant.

Redundant B-blocker Q of G = every bad subgraph of G meets Q in
at least two points. rd l B = the class of graphs that have a redundant
B-blocker of size at most l .

rd 2k+1B ⊆ Ex (k + 1)B: each bad subgraph in G uses at least two
vertices from the blocker, so we can form no more than k disjoint such
subgraphs.

Theorem 1. If ExB contains all fans and condition A holds then
there is a constant k0 = k0(B) such that for all k ≥ k0

γ(Ex (k + 1)B) = γ(rd 2k+1B).

Examples of suitable B: {K2,3}, {K4}, {W5} and {K3,3,P0}. W5 =
wheel on 5 vertices; P0 = arbitrary planar graph.

For B and k as in Theorem 1, there are arbitrarily large n such that in
almost all graphs on {1, . . . , n} which do not have k+1 bad subgraphs,
we need at least 2k vertices to block all bad subgraphs. This is twice
more than for B considered earlier (↙).

Theorem 2. If ExB contains all fans and conditions A and B hold
then there is a constant k0 = k0(B) such that for all k ≥ k0 the class
Ex (k + 1)B has a growth constant.

Examples of suitable B: {K4}, {W5}.

Condition A

The graphs in B are 2-connected, there is at

least one planar graph and there is a finite

number m such that if we take any tree T of

size m and add two apex vertices connected to

each vertex of T , then we obtain a bad graph.

Condition B

There are finite numbers m and l such that if

we take a 2-connected graph H of size m and

a new vertex with l neighbours in V (H), then

we obtain a bad graph.

Graphs with no k + 1 disjoint minors K4

Theorem 3. Let A = Ex (k + 1){K4}. For any k = 1, 2, · · ·
I A has a growth constant γk .

I γ1 = γ(Ex � �) = 23.5241..

I A uniformly random graph from An whp has a unique
redundant blocker Q of size 2k + 1.

I Each vertex of Q whp has a linear degree.

I There is ck > 0 such that |An| = ckn
−5/2n!γnk (1 + o(1)).

Proof elements

I Theory of graph minors.
Robertson and Seymour proved that any G ∈ Ex (k +1)B has a constant
size B-blocker, as long as B contains a planar graph.

I Earlier results on planar and other minor-closed classes.
Ideas of McDiarmid, Steger and Welsh (2005) help to avoid generating
functions in the proof of Theorem 2. A new version of a lemma of V.K.
and McDiarmid (2011): every G ∈ Ex (k + 1)B can be represented by
(a) a constant-size set Q (b) a set S ⊆ Q of size at most 2k and (c) a
graph in ExB, so that each bad sugraph that meets Q in at most two
points, must meet S .

INew structural results
If G − Q is connected, we can split (= reverse contraction) a constant
number of vertices in G and represent G as O(1) graphs in rd 2k+1B and
O(1) edges (the crucial point).

I Analytic combinatorics.
Easy by the “First principle” of Analytic Combinatorics: Ex (2k + 1)B ≈
a class of sets of graphs composed of O(1) elements from rd 2k+1B =⇒
ρ(Ex (k + 1)B) = ρ(rd 2k+1B).

IMore analytic combinatorics
Bodirsky, Gimenez, Kang and Noy (2005) obtained expressions for the
EGF of series-parallel graphs = Ex {K4}. Using these, we analyse the
structure (↓) of graphs with small redundant blockers. This includes
counting trees where leaves, internal vertices and edges are substituted
by objects of different types.

Typical graphs without two disjoint minors K4

Leaf-like shapes = arbitrary series-parallel networks, most of them small. Above is just a “core” of a graph

in Ex 2K4 (it is typically of linear size). Attach arbitrary rooted series-parallel graphs at arbitrary vertices of

this; add a redundant blocker - {x , y , z} - and connect x to each red point, y to each green point and z to

each blue point. Unlike in planar graphs, there are vertices of different types: colours can occur only at the

“joints”; only the joints of the grey blocks can have arbitrary colour. I.e., the top-right vertex cannot have

colour blue, otherwise z alone would form a minor K4, and {x , y , z} would not be redundant.


