The problem

A: a class of labelled graphs, closed under iso-
morphism.

» What is the size of A, = the set of graphs
in A on the vertex set {1,...,n}7

» What is the structure of a typical graph
in A,?

Note: in general, lots of dependence in the edges of a

graph drawn uniformly at random from A,!

B = fixed finite set of graphs. A graph is bad,
if it has a minor () in B. ExB = graphs that
are not bad (no minor in B). We study classes
Ex (k + 1)B of graphs that do not have k + 1
vertex-disjoint bad subgraphs (k fixed).

Example. Ex(k + 1){K3} is the class of all
graphs that do not have k + 1 vertex disjoint
cycles. This and similar classes were studied be-

fore ({).

Graph minors

H is a minor of G if it can be
obtained from G by a series of edge
contractions/deletions.

Minor-closed classes are subject to fun-
damental graph theory results. For exam-
ple, Kuratowski's theorem states that pla-
nar graphs are exactly those graphs that
do not have K3 3 or K5 as a minor. Robert-
son’s and Seymour’s theory of graph mi-
nors proves that every minor-closed class
of graphs has a finite list of forbidden mi-
nors.

For the class of planar graphs the two
main questions () have been studied
quite intensively in the past decade (Ben-
der, Bernardi, Bodirsky, Drmota, Fusy, Gao,
Gimenez, Kang, McDiarmid, Noy, Steger,
Panagiotou, Welsh, Wormald. .. ). For this

Classes in the current work include the case
B = {K4}, the graphs which do not contain
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k+1 times
as a minor.

Small blockers

B-blocker @ of G = every bad sub-
graph of G meets ( in at least one
point = G — @ is not bad.

Fans = graphs consisting of a path
and an apex vertex connected to each
vertex on the path.
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Theorem. (V.K. and C. McDiarmid,
2011). If the graphs in B are 2-
connected and A = Ex B does not con-
tain all fans, then all but an exponen-
tially small proportion of graphs with-
out k 4+ 1 disjoint bad subgraphs have
a B-blocker of size k.

The number of such graphs
on the vertex set {l,...,n} s

c(k, B)2kM A, (1 — e_Q(”)).

class, and for classes with 2-connected ex-
cluded minors, the asymptotic growth
and the properties of random graphs are
now quite well understood.

In other words, the simplest possible
type of structures overhelmingly dom-
inates the class of all graphs without
k + 1 disjoint minors in 5.

Example. A random graph on ver-
tex set {1,...,n} without k + 1 dis-
joint cycles is “almost” a uniformly ran-
dom forest F along with k “apex” ver-
tices, where the edges between the apex
vertices are independent and exist with
probability 1/2. A uniformly random
graph without 3 disjoint cycles:
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ON THE NUMBER OF GRAPHS WITH FEW DISJOINT EXCLUDED MINORS

Growth constants

A has a growth constant ~ if
(14| /n) /" = 5.

7(A)=upper limit of the above = p(A)~!= inverse radius of conver-
gence of the EGF of A.

Conjecture (Bernardi, Noy and Welsh, 2010). Every minor-closed
class of graphs has a growth constant.

Redundant B-blocker @ of G = every bad subgraph of G meets @ in
at least two points. rd; B = the class of graphs that have a redundant
B-blocker of size at most /.

rdo,11 B C Ex(k + 1)B: each bad subgraph in G uses at least two
vertices from the blocker, so we can form no more than k disjoint such
subgraphs.

Theorem 1. [f ExB contains all fans and condition A holds then
there is a constant kg = ko(B) such that for all k > kg

T(Ex (k + 1)B) = 3(rd o 11 B).

Examples of suitable B: {K> 3}, {Ka}, {Ws} and {K33, Pp}. W5 =
wheel on 5 vertices; Py = arbitrary planar graph.

For B and k as in Theorem 1, there are arbitrarily large n such that in
almost all graphson {1,..., n} which do not have k+1 bad subgraphs,
we need at least 2k vertices to block all bad subgraphs. This is twice
more than for B considered earlier (/).

Theorem 2. [f ExB contains all fans and conditions A and B hold
then there is a constant kg = ko(B) such that for all k > kg the class
Ex (k + 1)B has a growth constant.

Examples of suitable B: {K3}, {Ws}.

Condition A Condition B

There are finite numbers m and / such that if
we take a 2-connected graph H of size m and

The graphs in B are 2-connected, there is at
least one planar graph and there is a finite

number m such that if we take any tree T of a new vertex with / neighbours in V(H), then

size m and add two apex vertices connected to we obtain a bad graph.

each vertex of T, then we obtain a bad graph.

Graphs with no k + 1 disjoint minors Ky

Theorem 3. Let A =Ex(k+ 1){Ky}. Forany k=1,2,---
» A has a growth constant .
» 71 = v(Ex X X) = 23.5241..

» A uniformly random graph from A, whp has a unique
redundant blocker Q) of size 2k + 1.

» Each vertex of Q whp has a linear degree.
» There is ¢, > 0 such that |A,| = ckn_5/2n!7;z(1 + 0(1)).

Valentas Kurauskas (Vilnius University)

Proof elements

» Theory of graph minors.
Robertson and Seymour proved that any G € Ex (k+1)B has a constant
size B-blocker, as long as I3 contains a planar graph.

» Earlier results on planar and other minor-closed classes.
ldeas of McDiarmid, Steger and Welsh (2005) help to avoid generating
functions in the proof of Theorem 2. A new version of a lemma of V.K.
and McDiarmid (2011): every G € Ex(k + 1)B can be represented by
(a) a constant-size set @ (b) a set S C  of size at most 2k and (c) a
graph in Ex B, so that each bad sugraph that meets @ in at most two
points, must meet S.

» New structural results
If G — Q is connected, we can split (= reverse contraction) a constant
number of vertices in G and represent G as O(1) graphs in rdy,_ 1 B and
O(1) edges (the crucial point).

» Analytic combinatorics.
Easy by the “First principle” of Analytic Combinatorics: Ex (2k +1)B ~
a class of sets of graphs composed of O(1) elements from rdy; 1 B =
p(Ex (k +1)B) = p(rd 2411 B).

» More analytic combinatorics
Bodirsky, Gimenez, Kang and Noy (2005) obtained expressions for the
EGF of series-parallel graphs = Ex{Kj}. Using these, we analyse the
structure ({) of graphs with small redundant blockers. This includes
counting trees where leaves, internal vertices and edges are substituted
by objects of different types.

Typical graphs without two disjoint minors Ky

A

A
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Leaf-like shapes = arbitrary series-parallel networks, most of them small. Above is just a “core” of a graph
in Ex 2K, (it is typically of linear size). Attach arbitrary rooted series-parallel graphs at arbitrary vertices of
this; add a redundant blocker - {x, y, z} - and connect x to each red point, y to each green point and z to
each blue point. Unlike in planar graphs, there are vertices of different types: colours can occur only at the
“joints”; only the joints of the grey blocks can have arbitrary colour. l.e., the top-right vertex cannot have
colour blue, otherwise z alone would form a minor Ky, and {x, y, z} would not be redundant.



