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Abstract

The Erdős-Pósa theorem (1965) states that in each graph G which
contains at most k disjoint cycles, there is a ‘blocking’ set B of at most
f(k) vertices such that the graph G − B is acyclic. Robertson and
Seymour (1986) give an extension concerning any minor-closed class
A of graphs, as long as A does not contain all planar graphs: in each
graph G which contains at most k disjoint excluded minors for A, there
is a set B of at most g(k) vertices such that G−B is in A.

In an earlier paper [?], we showed that, amongst all graphs on
vertex set [n] = {1, . . . , n} which contain at most k disjoint cycles, all
but an exponentially small proportion contain a blocking set of just k
vertices.

In the present paper we build on the previous work, and give an
extension concerning any minor-closed graph class A with 2-connected
excluded minors, as long as A does not contain all fans (here a ‘fan’ is a
graph consisting of a path together with a vertex joined to each vertex
on the path). We show that amongst all graphs G on [n] which contain
at most k disjoint excluded minors for A, all but an exponentially
small proportion contain a set B of k vertices such that G − B is in
A. (This is not the case when A contains all fans.) For a random
graph Rn sampled uniformly from the graphs on [n] with at most k
disjoint excluded minors for A, we consider also vertex degrees and the
uniqueness of small blockers, the clique number and chromatic number,
and the probability of being connected.
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1 Introduction

The classical theorem of Erdős and Pósa from 1965 [?] states that for each
positive integer k there is a value f(k) such that the following holds: for
each graph G which contains at most k disjoint cycles, there is a set B of
at most f(k) vertices such that the graph G − B obtained by deleting the
vertices in B is acyclic. (In this paper, ‘disjoint’ always means pairwise
vertex-disjoint.) It is also shown in [?] that the least value we may take for
f(k) is of order k ln k.

For a class A of graphs (always taken to be closed under isomorphism),
let An denote the set of graphs in A on the vertex set [n] and let apex kA
denote the class of all graphs such that by deleting at most k vertices we
may obtain a graph in A. Given a class B of graphs we let ExB denote the
class of graphs with no minor in B. Also, given a positive integer j, we let
jB denote the class of graphs consisting of j vertex disjoint copies of graphs
in B (with repetitions allowed). For notational convenience, we write C for
C3, and we omit brackets where the meaning stays clear. Thus ExC and
ExC3 both denote the class F of forests, and Ex jC is the class of graphs
which do not have j disjoint cycles.

In our notation, the Erdős-Pósa theorem says that

Ex (k + 1)C ⊆ apex f(k)F .

Also, clearly
Ex (k + 1)C ⊇ apex k F , (1)

since if G − B is a forest then G can have at most |B| disjoint cycles. The
inclusion (??) is ‘nearly an equality’. To be more precise, it was shown in [?]
that as n→∞

|(Ex (k+1)C)n| =
(

1 + e−Ω(n)
)
|(apex k F)n|. (2)

Thus Ex (k+1)C consists of apex k F together with an exponentially smaller
class of ‘exceptional’ graphs. A similar result holds for unlabelled graphs [?];
we consider only labelled graphs in this paper.

The Erdős-Pósa theorem was generalised in 1986 by Robertson and
Seymour [?]. Let A be a minor-closed class of graphs; that is, if G ∈ A
and H is a minor of G then H ∈ A. Then A may be written as ExB, where
B consists of the minor-minimal graphs not in A, the excluded minors of A;
and B is finite by the fundamental result in 2004 by the same authors [?].
A B-minor-blocker for a graph G is a set B of vertices such that G−B is in
ExB.
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The generalisation of the Erdős-Pósa theorem is as follows. Let A be
any minor-closed class of graphs which does not include some planar graph,
and let B be its set of excluded minors, so that A is ExB. Then for each
positive integer k there is a value g(k) such that the following holds: each
graph G which does not have as a minor a graph formed from k + 1 vertex
disjoint members of B contains a set B of at most g(k) vertices such that
G−B is in A (that is, B is a B-minor-blocker)1. In symbols we have

Ex (k + 1)B ⊆ apex g(k)A.

The assumption that some excluded minor is planar cannot be dropped [?].
Of course, there is an obvious containment result corresponding to (??),

namely
Ex (k + 1)B ⊇ apex kA. (3)

How much bigger is the left hand side than the right in this case? For which
classes B is there an ‘almost equality’ result corresponding to (??)? Our
main result provides a sufficient and essentially best possible condition for
the class Ex (k + 1)B to be ‘almost apex’.

A class of graphs is proper if it is not the class of all graphs. Following [?]
we call a minor-closed class A addable if each excluded minor is 2-connected.
(Thus each such class contains all forests.) The fan Fj is the graph consisting
of a path Pj−1 of j − 1 vertices together with a vertex joined to each vertex
on this path. Observe that the addable class F = ExC of forests does not
contain the fan F3: in contrast, the addable class ExK4 of series-parallel
graphs contains all fans. The following theorem is our central result.

Theorem 1.1 Let A be a proper minor-closed class of graphs, with set B
of excluded minors. If A is addable and does not contain all fans, then for
each positive integer k, as n→∞

|(Ex (k+1)B)n| = (1 + e−Θ(n))|(apex kA)n|. (4)

On the other hand, if A contains all fans then this result fails; and indeed
there is a constant c such that for all positive integers k and n

|(Ex (k+1)B)n| ≥ 2(k−c)n |(apex kA)n|.

Let us consider a few examples illustrating this result. Recall that the
number f(k) in the Erdős-Pósa theorem [?] must be of order k ln k. From
(??) and Theorem ?? it follows that by removing just k vertices we can
obtain:

1Only the case of a single excluded minor is considered in [?] but the extension is
straightforward, see also Proposition ?? below.
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• a forest from almost every graph with at most k disjoint cycles [?];

• more generally, a graph without any cycles of length at least ` from
almost every graph with at most k disjoint cycles of length at least `
(see also [?]);

• a collection of cacti (that is, a graph with each edge in at most one
cycle) from almost every graph with at most k disjoint subdivisions of
the diamond graph D = K4−e.

In contrast, by Remark ?? below, almost none of the graphs in Ex 2K4 can
be turned into a series-parallel graph by removing one vertex.

A natural partner for this theorem is an asymptotic estimate for sizes of
apex classes. Recall that a class A of graphs has growth constant γ > 0 if

|An| = (γ + o(1))nn! as n→∞.

It is easy to see that if A has growth constant γ then apex j A has growth
constant 2jγ, see for example [?, ?], but we want a more precise result.
Every proper addable minor-closed class of graphs has a growth constant
γ > 0, see [?, ?]. For two sequences of reals (an) and (bn) which are positive
for n sufficiently large, we write an ∼ bn if limn→∞

an
bn

= 1. The next result
extends Theorem 1.2 of [?] on forests.

Theorem 1.2 Let A be a proper addable minor-closed class of graphs, with
growth constant γ; and let k be a fixed positive integer. Then as n→∞

|(apex kA)n| ∼ ck2
kn |An|

where ck =
(

2(k+1
2 )γkk!

)−1
.

The above results yield asymptotic properties of typical graphs with at
most k disjoint excluded minors. We state three theorems. First we note
that with high probability k vertices really stand out – they each have degree
about n/2 whereas each other vertex has much smaller degree – and they
form the only minimal blocker of sublinear size. We write Rn ∈u A to mean
that the random graph Rn is sampled uniformly from the graphs in An.
Thus for Rn ∈u Ex (k+ 1)B, equation (??) in Theorem ?? says that Rn has
a blocker of size k with probability 1− e−Θ(n): the next theorem refines this
result.
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Theorem 1.3 Let A be an addable minor-closed class of graphs which does
not contain all fans, and let B be the set of excluded minors for A. There
is a constant δ > 0 such that the following holds. Let k be a positive integer
and let 0 < ε < 1

2 . For n = 1, 2, . . . let Rn ∈u Ex (k+ 1)B, and let Sn be the

set of vertices in Rn with degree > εn. Then with probability 1− e−Ω(n) we
have:

(i) |Sn| = k and Sn is a B-minor-blocker in Rn;

(ii) each vertex in Sn has degree between (1
2 − ε)n and (1

2 + ε)n; and

(iii) each B-minor-blocker in Rn not containing Sn has size > δn.

Our second theorem on random graphsRn concerns the clique number ω(Rn)
and the chromatic number χ(Rn). Given a class A of graphs let

ω(A) = sup{ω(G) : G ∈ A} and χ(A) = sup{χ(G) : G ∈ A}.

If A is a proper minor-closed class then these quantities are finite, since the
average degree of the graphs in A is bounded, by a result of Mader [?], see
also Theorem 7.22 and Corollary 5.23 in [?]. For example, if A is ExC4

then ω(A) = χ(A) = 3 (since each block of each graph in A is an edge or
a triangle). If also A is addable then we may use the ‘pendant appearances
theorem’ of [?], restated as Lemma ?? below, to show that for Rn ∈u A

ω(Rn) = ω(A) and χ(Rn) = χ(A) with probability 1− e−Ω(n).

Recall that the total variation distance dTV (X,Y ) between two random
variables X and Y is the supremum over all (measurable) sets A of |P(X ∈
A)−P(Y ∈ A)|. The next result shows that for Rn ∈u Ex (k+1)B as defined
below, the random pair consisting of ω(Rn) and χ(Rn) is very close in total
variation distance to a certain simply defined pair of random variables.

Theorem 1.4 Let A be an addable minor-closed class of graphs which does
not contain all fans, and let B be the set of excluded minors for A. Let k be
a positive integer; let the random graph R be picked uniformly from the set
of all graphs on {1, . . . , k}; and let X = ω(R)+ω(A) and Y = χ(R)+χ(A).
For each n let Rn ∈u Ex (k + 1)B. Then

dTV ((ω(Rn), χ(Rn)), (X,Y )) = e−Ω(n).
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For example, for Rn ∈u Ex 3C4, both P(χ(Rn) = 4) and P(χ(Rn) = 5)
are 1

2 +e−Ω(n). Since there is only a finite range of relevant values, the result
above is saying essentially that

P (ω(Rn) = i and χ(Rn) = j) = P (X = i and Y = j) + e−Ω(n)

for each 1 + ω(A) ≤ i ≤ j ≤ k + χ(A), and the probability that the pair
(ω(Rn), χ(Rn)) does not take values in this range is e−Ω(n).

The third and final theorem on random graphs Rn presented here con-
cerns connectivity. We let frag(G) denote |V (G)| minus the maximum num-
ber of vertices in a component of G.

Theorem 1.5 Let A be an addable minor-closed class of graphs which does
not contain all fans; let B be the set of excluded minors for A; and let
C(z) =

∑
n≥1 |Cn|zn/n! be the exponential generating function for the class

C of connected graphs in A, with radius of convergence ρ. Given a positive
integer k, for Rn ∈u Ex (k + 1)B we have as n→∞

P(Rn is connected)→ e−C(ρ/2k)

and
E [frag(Rn)]→ (ρ/2k) C ′(ρ/2k) <∞.

See [?] for numerical values for these limiting probabilities in the case when
A is the class of forests. We shall actually prove a detailed extension of
this result, Theorem ?? below, concerning the limiting distribution of the
unlabelled ‘fragment’ graph formed from the vertices not in the ‘giant’ com-
ponent.

We now state two key intermediate results needed to prove our main the-
orem, Theorem ??. The first one extends a case of the Robertson-Seymour
generalisation of the Erdős-Pósa theorem. Our extension asserts that, under
suitable conditions, in graphs with few disjoint excluded minors there are
small blockers with an additional ‘redundancy’ property. We write R ∪ v
and R \ v to denote R ∪ {v} and R \ {v} respectively.

Lemma 1.6 Let B be a set of 2-connected graphs containing at least one
planar graph. Then for each integer k ≥ 1 there is an integer f(k) (depend-
ing on B) such that the following holds. Each graph G in Ex (k+ 1)B has a
B-minor-blocker R with |R| ≤ f(k) such that for all but at most k vertices
v in R, the set R \ v is still a B-minor-blocker.
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The second result concerns the existence of vertex degrees of linear order.
A class A of graphs has the no-linear-degrees property if, with Rn ∈u A as
usual, for each δ > 0 and each α we have P[∆(Rn) ≥ δn] = O(e−αn).
(Here ∆(G) denotes the maximum vertex degree in G.) Observe that if
|An| = O(γnn!) for some finite γ (as holds for every proper minor-closed
class of graphs [?, ?]), and if A contains all fans, then A does not have this
property: for there are 1

2(n − 1)! fans on [n] with vertex 1 as the centre
vertex (for n ≥ 3), and so

P(vertex 1 has degree n− 1 in Rn) ≥
1
2(n− 1)!

|An|
= Ω(n−1γ−n).

The next lemma shows that, as long as A is not too small, the absence of
some fan yields the no-linear-degrees property.

Lemma 1.7 Let the class A of graphs satisfy lim inf
(
|An|
n!

)1/n
> 0, and

suppose that for some positive integer j, no graph in A contains the fan
Fj+2 as a minor. Then A has the no-linear-degrees property.

The plan of the rest of the paper is as follows. In Section ?? we count
apex graphs and prove Theorem ??: this work needs no preliminaries.

Section ?? concerns redundant blockers. First we introduce a useful
theorem of Kloks which relates normal trees and tree decompositions (and
we provide a proof). Then we give two structural lemmas on normal trees
and small ‘splitting sets’. We use those lemmas to prove a result related to
the Robertson-Seymour generalisation of the Erdős-Pósa theorem and then
we prove Lemma ??.

In the next section, Section ??, we consider the no-linear-degrees prop-
erty and prove Lemma ??. Following that, in Section ??, we complete the
proof of Theorem ??. In Section ?? we use our main results to prove the
theorems on properties of the random graph Rn ∈u Ex (k+ 1)B. Finally, we
make some concluding remarks.

2 Counting apex classes

We shall use the ‘pendant appearances theorem’, Theorem 4.1 from [?],
several times, so for convenience we state here a suitable special case as a
lemma.

Let H be a connected graph on the vertex set {1, . . . , h} which we con-
sider to be rooted at vertex 1, and let G be a graph on the vertex set
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{1, . . . , n}, where n > h. Then an induced subgraph H̃ of G is a pendant
appearance of H if (a) the increasing bijection from {1, . . . , h} to V (H̃) gives
an isomorphism between H and H̃; and (b) there is exactly one edge in G
between V (H̃) and the rest of G, and this edge is incident with the vertex
of H̃ with smallest label.

Lemma 2.1 ([?]) Let A be a proper addable minor-closed class of graphs,
and let H be a connected graph in A. There is a constant a > 0 such that
the following holds. For Rn ∈u A, with probability 1−e−Ω(n) Rn has at least
a · n disjoint pendant appearances of H.

Proof of Theorem ?? Since A is proper minor-closed and addable, by
Theorem 1.2 of [?] A is smooth with some growth constant γ > 0, that is
|An|/ (n|An−1|)→ γ as n→∞. Hence

|An| ∼ (n)k γ
k |An−k|.

Let n > k, let V = {1, . . . , n}, and consider the following constructions of
graphs on V :

(1) Choose a k-set S ⊆ V , and put any graph on S (
(
n
k

)
2(k2) choices).

(2) Put any graph F ∈ A on V \ S ( |An−k| choices).

(3) Add the edges of any bipartite graph B with parts S and V \S (2k(n−k)

choices).

Clearly each graph constructed is in (apex kA)n, and each graph in (apex kA)n
is constructed at least once. The number of constructions is(

n

k

)
2(k2)2k(n−k)|An−k| ∼ ck2kn|An|

so |(apex kA)n| is at most this number.
Let us bound |(apex kA)n| from below by showing that almost all of the

constructions yield distinct graphs. Observe that G ∈ (apex kA)n appears
just once if and only if G has a unique k-set S of vertices such that G − S
is in A.

Let B be the set of excluded minors for A and fix a graph H ∈ B
(which must be 2-connected). Let h = |V (H)|. Fix a vertex v in H,
and let H− be the connected graph H − v. Let us say that a graph
G ∈ (apex kA)n is good if for some k-set S0 it satisfies the following: (a)
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G− S0 ∈ A; and (b) for each vertex s ∈ S0 there are k+ 1 pairwise disjoint
sets X1(s), X2(s), . . . , Xk+1(s) ⊆ V (G)\S0 such that each induced subgraph
G[Xi(s) ∪ s] has a minor H. If G is good then S0 must be the unique k-set
S such that G − S is in A. For if S′ is another set such that G − S′ is in
A, and w ∈ S0 \ S′, then S′ must contain a vertex from each of the sets
X1(w), X2(w), . . . , Xk+1(w), and so |S′| ≥ k + 1.

Now by Lemma ?? (the ‘pendant appearances theorem’) there exist con-
stants a > 0 and b > 0 such that the following holds for a random graph
Rn ∈u A: Rn contains at least a · n pairwise vertex-disjoint copies of H−

with probability at least 1 − e−bn for n sufficiently large. If F has at least
a(n− k) such copies of H− then there are at most

2k(n−k)k P
(

Bin(da(n− k)e, 2−h+1) ≤ k
)

ways to choose the bipartite graph B with parts S and V \ S so that the
resulting graph is not good. So the number of ways to choose the graphs F
and B so that the resulting graph is constructed just once is at least

2k(n−k)|An−k|
(

1− e−b(n−k) − kP
(

Bin(da(n− k)e, 2−h+1) ≤ k
))

= 2k(n−k)|An−k|
(

1− e−Ω(n)
)
,

by a Chernoff bound. Summing over all sets S and all graphs on S we obtain

|apex k (A)n| ≥ ck2kn|An|
(

1− e−Ω(n)
)
,

as required. 2

3 Redundant blockers

In this section, after some preliminary results we prove the ‘redundant block-
ers lemma’, Lemma ??.

3.1 Treewidth and normal trees

We start with a theorem by Kloks stated in [?]. We give a proof here, as we
were unable to find a proof elsewhere.

Let G be a graph, and let T be a rooted tree on the same vertex set
V (G), with root vertex r. (We do not insist that T is a subgraph of G.)
The tree T induces a tree-ordering ≤T on V (G), where u ≤T v if and only
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if u is on the path from r to v in T . T is a normal tree for G if u and v are
comparable for every edge uv of G.

We think of the tree T as hanging down from its root. We will say that
u is above v (and v is below u) in T if u <T v. Think of the graph G as
fixed. Given a normal tree T for G, for each vertex v of G we define its set
AAT (v) of active ancestors by

AAT (v) = {u <T v : ∃z ≥T v with uz ∈ E(G)} .

For brevity we write aT (v) = |AAT (v)|.

Theorem 3.1 (Kloks) The treewidth tw(G) of a graph G satisfies

tw(G) = min
T∈T

max
v∈V (G)

aT (v) (5)

where T is the set of all normal trees for G.

We refer to [?] for the definition of treewidth and basics of tree decomposi-
tions (though note that in that book a normal tree in a graph is required to
be a subgraph).

Proof (≥) Let G have treewidth k. We shall prove that for any given vertex
s0 ∈ V (G) there is a normal tree T for G, rooted at s0, such that

max
v∈V (G)

aT (v) ≤ k. (6)

Let (T0, (Vt : t ∈ T0)) be a tree decomposition for G with |Vt| = k + 1 for
each node t in T0, and with |Vs \ Vt| = 1 for each edge st in T0 (it is easy to
see that such a tree decomposition always exists, see for example [?]). We
call Vt the bag for t.

For convenience we shall consider the following small modification of T0.
Pick a node u of T0 with s0 ∈ Vu. Suppose that Vu = {s0, s1, . . . , sk}. Let
u0, u1, . . . , uk be a path on k + 1 new nodes, and identify uk with u. Let
Vuj = {s0, . . . , sj} for each j = 0, 1, . . . , k. Let T1 be the tree we have formed
from T0 by adjoining the path, and note that (T1, (Vt : t ∈ T1)) is also a tree
decomposition for G. Root T1 at u0.

The set Vu0 consists of the single vertex s0: define v(u0) = s0. For each
node t in T1 other than u0 denote its parent in T1 by t′; and let v(t) be the
unique vertex in Vt \ Vt′ . It is a property of tree decompositions that the
nodes corresponding to the bags that contain w ∈ V (G) form a subtree of
T1, which we call the tree for w. It follows that v(s) 6= v(t) for distinct nodes
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s and t in T1, since v(s) = v(t) would imply that both Vs and Vt contain
v(s) but there is a node on the path from s to t in T1 whose bag does not
contain v(s). Also, for each vertex v in G there is a node t in T1 such that
v(t) = v (the node t with v ∈ Vt which is nearest to the root). Thus the
map t → v(t) gives a bijection between the nodes of T1 and the vertices of
G. Let T be the tree on V (G) which corresponds to T1 under this map; that
is, let T be the tree on V (G) with an edge v(t)v(t′) for each edge tt′ in T1,
rooted at s0. We claim that T is a normal tree for G and (??) holds.

To see that T is a normal tree for G, consider two vertices x and y which
are incomparable in T . Let tx and ty be the nodes of T1 with v(tx) = x and
v(ty) = y respectively. Then tx and ty are incomparable in T1, so the trees
for x and y do not meet in T1 and thus x and y are not adjacent in G.

It remains to prove (??). Fix a vertex x in G, and let tx be the node
of T1 with v(tx) = x. If y ∈ AAT (x) then y ∈ Vx \ x; and so aT (x) =
|AAT (x)| ≤ |Vx| − 1 ≤ k, as required.

(≤) Let T be a normal tree for G, and let maxv∈V aT (v) = k. For each
vertex x define the bag Vx as AAT (x)∪x. We claim that (T, (Vx : x ∈ V (T ))
is a tree decomposition of G, of width at most k. Certainly each bag Vx
satisfies |Vx| ≤ k + 1.

Let uv be an edge of G. Then u and v are comparable in T : without loss
of generality suppose that u <T v. So u ∈ AAT (v), and thus both u and v
are in the bag Vv. It remains to check that for each vertex w of G the nodes
t of T whose bag Vt contains w form a subtree of T . But if w ∈ AAT (v) then
w ∈ AAT (u) for each vertex u (other than w) on the path in T between w
and v. This completes the proof. 2

Note that the above proof yields a normal tree with the property (??)
rooted at an arbitrary vertex in V (G). Hence we can take the set T in
(??) to be the set of all normal trees on V (G) rooted at any chosen vertex
r ∈ V (G).

Note also that Theorem ?? fails if we additionally require the normal
trees in T to be subgraphs of G. For example, consider a complete bipartite
graph Kn,n with n ≥ 3. The treewidth of Kn,n is n, but each normal tree
T for Kn,n which is its subgraph must be a path where the vertex w at
distance 2n− 2 from the root has aT (w) = 2(n− 1) > n.

3.2 Disjoint subgraphs, splitting sets, treewidth and blockers

In this part we work with classes H of graphs which are closed under iso-
morphism but not necessarily minor-closed. Given a class H of graphs,
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denote by Forb (H) the class A of all graphs G such that no subgraph of
G is in H. Also, call a set B of vertices such that G − B ∈ Forb (H) an
H-subgraph-blocker.

Let T be a normal tree and let H be a connected graph on a subset of
V (T ). For a set A of vertices we say that A splits H in T if there is a vertex
v ∈ A such that either v ∈ V (H) or H contains vertices above v and below
v in T .

We state and prove two general lemmas regarding graphs without k
disjoint subgraphs belonging to some class H of connected graphs. Their
proofs have a similar structure and the proof of the former is a good warm-
up for the proof of the latter. At the end of this section we also present an
application of Lemma ??.

Lemma 3.2 Let H be a non-empty class of connected graphs, let k ≥ 0 be
an integer, let G ∈ Forb (k + 1)H, and let T be a normal tree for G. Then
there is a set A of at most k vertices such that, for each subgraph H ∈ H of
G, the set A splits H in T .

Proof We will use induction on k. The statement is trivially true for the
case k = 0, with A = ∅. Let j ≥ 1 and suppose that the statement holds for
k = j− 1. Let G ∈ Forb (j+ 1)H, and let T be a normal tree for G. Denote
the subtree of T rooted at v by Tv. Let

B := {v ∈ V (G) : G[V (Tv)] has a subgraph in H}.

If B = ∅ then G ∈ Forb (H) so we may take A = ∅: thus we may assume
that B 6= ∅. Consider a vertex u ∈ B at maximum distance in T from the
root r. If u = r then B = {r} so every subgraph of G in H must contain r.
In this case we may take A = {r}: thus we may assume that u 6= r.

Let G′ = G − V (Tu) and let T ′ = T − V (Tu). Since G[V (Tu)] has a
subgraph in H, we have G′ ∈ Forb jH. Clearly, T ′ is a normal tree for
G′. Apply induction for G′ and T ′ to obtain a set of at most j − 1 vertices
A′ ⊆ V (G′) such that A′ splits in T ′ each subgraph H of G′ such that
H ∈ H.

Now let A = A′ ∪ u. We will show that A has the required property for
G and T . Suppose H is a subgraph of G and H ∈ H. If V (H) ∩ V (Tu) is
empty then H is a subgraph of G′, so there is a vertex v ∈ A′ ⊆ A such
that H either contains v or contains vertices both above and below v in T ′

and so in T . Thus it suffices to consider the case when V (H)∩V (Tu) is not
empty.
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H ∩ Tw

Figure 1: If V (H) ∩ [V (Tu) \ u] 6= ∅ then H must have an edge between this set
and some vertex y ∈ AAT (u). In this illustration H consists of a subgraph strictly
below u together with the bold edges. In our terminology, {u} splits H in T .

We may assume that H does not contain u, as otherwise we are done.
Let w be a child of u in T such that Tw contains a vertex in H. Then since
w 6∈ B, Tw does not contain all of V (H). Since H is connected, there must
be an edge between a vertex x of H in Tw and a vertex y of H not in Tw;
and since T is normal, y must be in AAT (u). But now x is below u and y
is above u in T , and the proof is complete. 2

We now assume that the class H consists of 2-connected graphs. The
following lemma will be crucial in the proof of Lemma ??, and thus in
the proof of Lemma ??. It asserts that any H-subgraph-blocker can be
transformed into one with a specific ‘redundant’ structure by adding a few
extra vertices.

Lemma 3.3 Let H be a non-empty set of 2-connected graphs. Let k ≥ 0,
let G ∈ Forb (k + 1)H, let Q ⊆ V (G) be an H-subgraph-blocker in G, and
let T be a normal tree for G − Q. Then there are sets S ⊆ Q with |S| ≤ k
and A ⊆ V (G − Q) with |A| ≤ k, such that for each vertex x ∈ Q \ S and
each subgraph H of G− (Q \ x) in H the set A splits H − x in T .

To read the last sentence, it may help to observe that, given x ∈ Q \ S and
a subgraph H of G− (Q \ x) in H, we must have V (H) ∩Q = {x}.

13



Proof The proof is similar to the proof of Lemma ??, except that in this
case we use induction on k to obtain the set S together with the set A.

Clearly the case k = 0 holds, as we may take A = S = ∅. Let j ≥ 1 and
suppose that the result holds for the case k = j− 1. Let G ∈ Forb (j+ 1)H,
let Q ⊂ V (G) be an H-subgraph-blocker in G, and let T be a normal tree
for G−Q. Let

B = {v ∈ V (G) : G[V (Tv) ∪ x] 6∈ ForbH for some x ∈ Q}.

If B is empty then we are done (again take A = S = ∅, and note that there
are no relevant graphs H); so assume that B is non-empty. Choose a vertex
u ∈ B with maximum distance from the root r in T .

Consider first the case u = r. Let H ∈ H be a subgraph of G with
V (H)∩Q = {x}. Since u = r, the vertices of the connected graph H−x are
not contained in V (Tv) for any subtree Tv where v is a child of r. Also, since
T is normal, there are no edges between subtrees Tv and Tv′ for distinct
children of r. Hence H must contain r. Thus each subgraph in H of G
which meets Q in just one vertex must contain r. Hence we may take S = ∅
and A = {r}.

We may now assume that u 6= r. Let z ∈ Q be such that G[V (Tu)∪ z] 6∈
ForbH. Let G′ = G− (V (Tu) ∪ z), let Q′ = Q \ z, and let T ′ = T − V (Tu).
Then clearly G′ ∈ Forb jH, Q′ is an H-subgraph-blocker in G′, and T ′ is a
normal tree for G′. Hence we can apply the induction hypothesis to G′, Q′

and T ′. We obtain sets S′ ⊆ Q′ with |S′| ≤ j − 1 and A′ ⊆ V (G′ −Q′) with
|A′| ≤ j − 1, such that for each vertex x ∈ Q′ \ S′ if H ∈ H is a subgraph of
G′ − (Q′ \ x)) then A′ splits H − x in T ′.

Now let S = S′ ∪ z and A = A′ ∪ u. Let x ∈ Q \ S, and suppose that
the subgraph H of G− ((Q \x)∪A) is in H. Note that u ∈ A so u 6∈ V (H).
If V (H) ∩ V (Tu) = ∅ then H is a subgraph of G′ − ((Q′ \ x) ∪ A′): hence
there is a vertex v ∈ A′ ⊆ A for which H has vertices above and below v in
T ′ and so in T . This leaves the case that V (H) ∩ V (Tu) 6= ∅. Suppose that
H has no vertex above u in T : we want to find a contradiction.

Now V (H − x) cannot be contained in V (Tv) for any subtree Tv where
v is a child of u, as this would imply that v ∈ B which would contradict
our choice of u. But as in the case u = r, since T is normal the connected
graph H − x cannot have vertices in subtrees Tv and Tv′ of Tu where v and
v′ are distinct children of u. Thus we have a contradiction, and the proof is
complete. 2

A variant of the following lemma was first proved by Robertson and
Seymour [?] in order to prove the generalised Erdős-Pósa theorem. We
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state it in a more general form (proved by Thomassen [?]) and give a simple
proof using Theorem ?? and Lemma ??.

Lemma 3.4 Let H be a class of connected graphs and let k and w be non-
negative integers. If G ∈ Forb (k + 1)H and tw(G) ≤ w then G has an
H-subgraph-blocker of size at most k(w + 1).

Proof of Lemma ?? Suppose G ∈ Forb (k + 1)H and tw(G) ≤ w. By
Theorem ??, there is a normal tree T for G such that maxv∈V aT (v) ≤ w.
Let A be a set of at most k vertices as in Lemma ??, and let

B = A ∪ (∪v∈AAAT (v)) .

Observe that |B| ≤ k(w + 1). We claim that B is an H-subgraph-blocker
in G. For suppose it is not, and let H ∈ H be a subgraph of G − B. By
Lemma ?? there is a vertex v ∈ A such that H contains vertices both above
v and below v in T (note that v 6∈ V (H) since A ∩ V (H) = ∅). Since H
is connected, it has an edge xy with x above v and y below v. But then
x ∈ AAT (v) ⊆ B, a contradiction. 2

3.3 Treewidth and blockers: a more general case

Lemma ?? is what we need in this paper, to prove Lemma ??; but it does
not apply to disconnected excluded subgraphs. We include for completeness
a treatment of this case, and give a more general version of Lemma ??.

We give two preliminary lemmas. The proof of the first one uses induc-
tion much as in [?], but as in the proof of Lemma ?? we use normal trees.
For any graph H we let 0H denote the graph with no vertices: thus for any
graph H we have G ∪ 0H = G.

Lemma 3.5 For t ≥ 1 let H1, H2, . . . ,Ht be connected graphs. Let
k1, k2, . . . , kt be nonnegative integers, not all zero. If

G ∈ Ex (k1H1 ∪ k2H2 ∪ · · · ∪ ktHt)

and T is a normal tree for G, then there is a set A ⊆ V (G) and an integer
j with kj ≥ 1, such that |A| ≤ (

∑
i ki)− 1 and A splits in T each connected

subgraph of G with a minor Hj.

Proof We use induction on
∑

i ki. If
∑

i ki = 1, then G ∈ ExHj for some
j: so we may take A = ∅ and we are done.
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Let s ≥ 2, suppose we have proved the hypothesis for each sequence
k′1, k

′
2, . . . , k

′
t with

∑
i k
′
i < s, and let

∑
i ki = s. We proceed as in the

proof of Lemma ??. Let B be the set of all vertices v of T such that
G[V (Tv)] 6∈ ExHi for some i with ki ≥ 1, and let u be a vertex in B with
maximum distance from the root.

Suppose first that u is the root of T . Then we may take A = {u} as u
must be in every subgraph of G with a minor in {H1, . . . ,Ht}. So we may
assume that u is not the root of T .

Let j be such that kj ≥ 1 and G[V (Tu)] 6∈ ExHj . Write T ′ = T − Tu
and let k′i = ki, for i 6= j and k′j = kj − 1. Since

G′ := G− Tu ∈ Ex
(
k′1H1 ∪ · · · ∪ k′tHt

)
,

T ′ is a normal tree for G′ and
∑

i k
′
i = s − 1, we may apply induction to

find some l with k′l ≥ 1 and a set A′ of at most s − 2 vertices that splits
in T ′ each connected subgraph H of G′ with a minor Hl. We claim that
A = A′ ∪ u splits in T every connected subgraph of G with a minor Hl. As
in the proof of Lemma ??, every connected subgraph H of G with a minor
Hl such that H is not a subgraph of G′ and u 6∈ V (H) must have vertices
both in V (Tu) and V (G′) (or otherwise we get a contradiction to the choice
of u). But then {u} splits in T each such subgraph H. 2

Lemma 3.6 Let A be a minor-closed class of graphs (perhaps the class of all
graphs), and let H consist of the graphs not in A together with an arbitrary
class of connected graphs. Let s be the sum over the disconnected excluded
minors M for A of the number κ(M) of components (so 0 ≤ s < ∞). Let
k ≥ 0 be an integer, let G ∈ Forb (k + 1)H, and let T be a normal tree for
G. Then there is a set A of at most s(k+ 1) + k vertices such that for each
subgraph H ∈ H of G the set A splits in T some component of H.

Proof Let H̃ consist of the connected graphs in H. By Lemma ??, there
is a set A0 ⊆ V (G) with |A0| ≤ k such that A0 splits in T each subgraph
H ∈ H̃ of G.

Suppose that A has j ≥ 0 disconnected excluded minors Gi, i = 1, . . . , j.
Let i ∈ {1, . . . , j}. Since G ∈ Ex (k + 1)Gi, by Lemma ??, there is a set
Ai ⊆ V (G) with |Ai| ≤ κ(Gi)(k + 1) − 1 such that Ai splits in T some
component of each subgraph G′ of G which has a minor Gi, that is, of each
G′ in the complement (ExGi)

c of ExGi.
Finally, observe that H is the union of H̃ and ∪i(ExGi)

c, and so we may
form a set A as required from the union of the j + 1 sets Ai. 2
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Now from the above lemma and Theorem ?? following the lines of the
proof of Lemma ?? we have:

Proposition 3.7 Let A be a minor-closed class of graphs and let H consist
of the graphs not in A together with an arbitrary class of connected graphs.
Then for each pair of non-negative integers k and w there is an integer
f(k,w) such that if G ∈ Forb (k + 1)H and tw(G) ≤ w then G has an
H-subgraph-blocker of size at most f(k,w).

3.4 Proof of Lemma ??

We introduce the following fundamental result, Theorem (2.1) of Robertson
and Seymour [?].

Lemma 3.8 For every planar graph H, there is a number α(H) such that
every graph with no minor H has treewidth at most α(H).

We now prove the redundant blockers lemma, Lemma ?? (see Figure 2),
quickly using the above results. We give a slightly more general version first.

Lemma 3.9 Fix a 2-connected planar graph H0. Then for each integer
k ≥ 1 there is an integer f(k) such that the following holds.

Let H be a set of 2-connected graphs such that H contains H0 and all
2-connected graphs contractible to H0. Then each graph G in Forb (k+ 1)H
has an H-subgraph-blocker R with |R| ≤ f(k) such that for all but at most
k vertices v in R, the set R \ v is still an H-subgraph-blocker.

Proof of Lemma ?? If a graph contains H0 as a minor then it contains a
2-connected subgraph contractible to H0. Thus Forb kH ⊆ Ex kH0 for each
positive integer k.

Let k ≥ 1 and let G ∈ Forb (k + 1)H. Then G ∈ Ex (k + 1)H0 and
(k + 1)H0 is planar; so by Lemma ??, G has treewidth at most w for some
constant w = w(k,H0). Therefore by Lemma ?? there is a positive integer
g(k) (depending only on k and H0) such that each graph in Forb (k + 1)H
has an H-subgraph-blocker Q of size at most g(k).

Now G − Q ∈ ForbH ⊆ ExH0. Using Lemma ?? again, we see that
G−Q has treewidth at most α for some constant α = α(H0); and so it has
a normal tree T with aT (v) ≤ α for each vertex v ∈ V (T ) by Theorem ??.
Let A and S be sets obtained in Lemma ?? for k, G, Q and T . Define
R ⊆ V (G) by

R := Q ∪A ∪

(⋃
v∈A

AAT (v)

)
.
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S
R

Figure 2: For example, it follows easily from Lemma ?? that we can always de-
compose a graph G in Ex 4D into a set R of a constant size and a collection of
cacti, where each vertex in R, except at most 3 of them, can have at most 2 edges
to each component of G−R. (Here D is the diamond graph K4 − e.)

Note that |R| ≤ f(k) := g(k)+(α+1)k. We want to show that R−u is still
an H-subgraph-blocker for G for each vertex u ∈ R \ S. This is clearly true
for u ∈ R\Q; so assume that u ∈ Q\S, and some subgraph H of G−(R\u)
is in H. But then H is a subgraph of G−((Q\u)∪A), and so by Lemma ??,
for some vertex w ∈ A, H must have vertices both above and below w in T .
Hence the connected subgraph H − u of G−R has vertices both above and
below w in T . But by the definition of normal tree, AAT (w) is a separating
set for the vertices below w and the rest of T , so H − u contains a vertex in
AAT (w) ⊂ R, a contradiction. 2

Proof of Lemma ?? Let H be the class of all 2-connected graphs
contractible to a graph in B. Then ForbH = ExB, and more generally
Forb (k + 1)H = Ex (k + 1)B for each k ≥ 0. Also, a B-minor-blocker is
the same as an H-subgraph-blocker. Now the result follows directly from
Lemma ??. 2

4 Graph classes not containing all fans

In this section, after a preliminary lemma on coloured forests, we prove
Lemma ?? on the no-linear-degrees property.
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For graphs where each vertex is coloured black or white, we define the
contraction operation as usual, but colour black each vertex resulting from
contracting a connected graph which contains a black vertex. A forest is
rooted if in each component tree a vertex is distinguished as the root: often
we will think of the edges as being oriented away from the root. Let us say
that a class A of graphs is very small (or A has growth constant 0) if(

|An|
n!

) 1
n

→ 0 as n→∞.

For example, the class of graphs with no path of length j is very small [?]:
we shall use this result in the proof of the next lemma. Recall that the path
Pj has j vertices.

Lemma 4.1 Fix an integer j ≥ 2 and 0 < α ≤ 1. Let F ′ be the class of
black/white coloured rooted forests such that no forest in F ′ has a black path
Pj as a minor, and each forest in F ′n has at least αn black vertices. Then
F ′ is very small.

Proof Call a colouring of a forest as above good, and call a good colouring
(black-) maximal if there is no vertex coloured white such that recolouring
it black gives another good colouring. Let F̂ be the set of all possible
(unrooted) forests F together with a specified maximal good colouring of F .
Since |F ′n| ≤ 4n|F̂n|, it suffices for us to prove that F̂ is very small. (For an
n-vertex forest, there are at most 2n choices for the colouring and at most
2n choices for the roots.)

Let F ∈ F̂n. Observe that trimming off a white leaf yields another
coloured forest in F̂ . The core of F is the coloured forest obtained by
repeatedly trimming off white leaves until none remain. Thus core(F ) is in
F̂n1 for some n1 ≥ αn.

The key observation is that in core(F ) each white vertex has degree 2.
For suppose that vertex v is white and has degree at least 3. Let us change
the colour of v to black. By the maximality of the colouring, core(F ) now
has a black Pj minor. There must be a vertex w of the minor to which v
is contracted; and if Tv denotes the tree in core(F ) containing v which is
contracted to w, then with the original colour of v each vertex in Tv is white
(for otherwise the colour change would not have mattered). Thus there
are at least 3 edges between Tv and subtrees of the rest of core(F ), which
each contain a black vertex. At least one of these subtrees must be entirely
deleted when the minor is formed (since the minor has maximum degree
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2): but if instead we added such a subtree to Tv and contracted all these
vertices to form w then w would be black even without the colour change.
Thus core(F ) has a black minor Pj with the original colouring, and this
contradiction shows that indeed each white vertex in core(F ) has degree 2.

We have now seen that each coloured forest F ∈ F̂ may be obtained
from an all black forest with no path Pj by subdividing edges using white
vertices, and then attaching pendant trees using more white vertices (to
reverse the initial operation of repeatedly trimming off white leaves). Thus
the following constructions yield each member of F̂n at least once.

1. Choose a set V1 ⊆ V = [n] of n1 ≥ αn vertices; colour each of these
vertices black; and choose a forest F ′ on V1 which does not contain a
path Pj .

2. Choose a set V2 ⊆ V \ V1 of n2 ≥ 0 vertices; colour each of these
vertices white; and use them to subdivide edges in F ′.

3. Take the remaining set V3 = V \ (V1 ∪ V2) of vertices; colour each of
these vertices white; and use them to form n1 + n2 trees Tx rooted at
the vertices in V1 ∪ V2.

4. The edges of the coloured forest F are those of the subdivided forest
F ′ together with those of the trees Tx.

Let us bound the number of constructions. For step 1, let f̃n1 denote the
number of forests on [n1] which do not contain a path Pj . Now consider step
2, after we have chosen the set V2. List the t ≤ n1 − 1 edges of F ′ in some
fixed order, with a fixed orientation: then we see that the number of ways to
use the n2 vertices in V2 to subdivide the edges of F ′ is (n2 +t−1)!/(t−1)! =
(n2 + t − 1)n2 ≤ nn2 . For step 3, recall that the number of forests on the
vertex set V containing exactly n1 + n2 rooted trees with given roots is
(n1 + n2)nn−n1−n2−1 ≤ nn−n1−n2 .

From the above we see that in total the number of constructions is at
most

n∑
n1=dαne

(
n

n1

)
f̃n1

n−n1∑
n2=0

(
n− n1

n2

)
nn2nn−n1−n2

= (2n)n
n∑

n1=dαne

(
n

n1

)
f̃n1(2n)−n1 .
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Now let ε > 0, and suppose that ε ≤ 1
e so that

∑
m≥0(eε/2)m ≤ 2. From [?],

there is a m0 such that for each m ≥ m0 we have f̃m ≤ (εm)m. Hence for
all n sufficiently large that αn ≥ m0, the number of constructions is at most

(2n)n
n∑

n1=dαne

(
n

n1

)
(εn1)n1(2n)−n1

≤ (2n)n
n∑

n1=dαne

(
ne

n1
· εn1

2n

)n1

≤ (2n)n
∑

m≥dαne

(eε/2)m ≤ 2 · (21−α(eε)αn)n.

This completes the proof, since we may make 21−α(eε)α arbitrarily small by
choice of ε. 2

We have already seen that each proper minor-closed class of graphs that
contains arbitrarily large fans fails to have the no-linear-degrees property.
We now use Lemma ?? to prove Lemma ??, which says that excluding some
fan ensures that a suitable class has the no-linear-degrees property.

Proof of Lemma ?? For a class A and a random graph Rn ∈u A the
no-linear-degrees property is equivalent to the requirement that

P(d(v0) ≥ cn) = o(e−an) for every c, a > 0

where v0 is vertex 1 and d(v0) is its degree in the graph Rn.
Let j be a positive integer, and suppose that no graph in A contains as

a minor the fan Fj+2. Fix c ∈ (0, 1]. We are going to bound the number of
graphs in An such that d(v0) ≥ cn.

Consider a graph G ∈ An. Let the least vertex in each component be
the root vertex of that component (so v0 is a root). Perform a depth-first
search starting from each root vertex in G. Recall that the DFS procedure
produces a spanning forest F of G where we consider each tree as rooted as
above; also each tree is a normal subtree of its component.

Let Tr be a tree component of F , with root r; let v be any vertex in Tr;
and let Tv be the subtree of T rooted at v. Observe that such a subtree Tv
can have edges (in G) to at most j ancestors of v (from Tr), since otherwise
we could form a minor Fj+2 by contracting Tv into a single vertex and
considering the path from v to the root of the tree. (Note also that by
Theorem ?? this establishes that A has treewidth at most j, though we will
not use this fact.)
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Now colour black each vertex of F which is adjacent in G to v0, and
colour each other vertex (including v0) white. We have described G as
a forest of rooted trees on n vertices coloured black or white, with some
additional edges (the ‘back edges’ from the DFS).

Consider the rooted forest F̄ = F − v0 (set the nodes that were adjacent
to v0 in F as roots of the newly created trees). Note that F̄ can have no
black path Pj+1 as a minor, and if d(v0) ≥ cn then there are at least cn black
vertices in F̄ . Thus by Lemma ?? the number of all possible rooted forests
F̄ is o(εnnn) for every ε > 0. But since there are at most 2n−1 ways to add
the node v0 back to the forest F̄ to obtain a valid forest F , the number of
different forests F we can get is also o(εnnn) for all ε > 0.

From the rooted forests F on [n] we can construct the graphs in An by
adding some DFS back edges. Let us show that there are not too many
ways to do that. We shall see that, given G ∈ An and a DFS spanning
forest F for G, we can record a small amount of information at the vertices
and edges of F such that from F and this information we can reconstruct
G. The total amount of information recorded is at most (2j + 1)n bits.

Assuming that we are able to do that, then the number of constructions
on n vertices which yield a graph with d(v0) ≥ cn is at most |F ′n| · 2n ·
2(2j+1)n = o(εnn!) for any ε > 0. But |An| = Ω (γnn!) for some γ > 0.
Therefore, for any ε > 0

P(d(v0) ≥ cn) ≤ εn

for n sufficiently large. Thus the following lemma will complete the proof of
Lemma ??. 2

Lemma 4.2 Let j be a positive integer and suppose that no graph in A
contains as a minor the fan Fj+2. Given a graph G ∈ A and a DFS spanning
forest F for G, we can uniquely describe G using F together with j bits for
each vertex of F other than a root, and j + 1 bits for each arc of F other
than those leaving a root.

Proof of Lemma ?? Consider a rooted tree T in F . For each vertex x
other than the root, let Lx be the list of the ancestors of x (in F ) other than
the parent of x which have an edge (in G) to Tx, listed in order of increasing
distance from the root. Thus Lx has length between 0 and j. Let Bx be the
binary j-tuple bx(1), . . . , bx(j), where bx(i) = 1 if the list Lx has length at
least i and its ith member is adjacent to x, and otherwise bx(i) = 0.

Also, for each edge xy of T oriented away from the root where x is not
the root, let Cxy be the binary (j + 1)-tuple cxy(1), . . . , cxy(j + 1) defined
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as follows. Let L be the list Lx with the parent of x appended at the end;
and for i = 1, . . . , j + 1 let cxy(i) = 1 if the list L has length at least i and
its ith member has a non-tree edge to Ty, and otherwise let cxy(i) = 0.

Given G and F we can of course construct all the lists Lx and the tuples
Bx and Cxy. But conversely, given F and the tuples Cxy we can construct
the lists Lx and then we can use the tuples Bx to recover G.

We do this as follows. For each tree T in F , we construct the lists Lx by
moving one step at a time away from the root. If x is a child of the root then
Lx is empty. Now let xy be an edge in T oriented away from the root where
x is not the root, and suppose that we know Lx. We form Ly as follows. Let
L be Lx with the parent of x appended at the end. For i = 1, . . . , j + 1, if
cxy(i) = 1 we keep the ith member of L, otherwise we delete it, maintaining
the same order: this gives Ly.

Thus we can determine each list Lx for x not the root; and now we can
use F to determine the parent of x, and Lx and Bx to determine all its other
ancestors to which it is adjacent. Thus we can determine G. 2

5 Proof of Theorem ??

In the last two sections we proved Lemma ?? and Lemma ??. In this section,
after a further few preliminary lemmas we use the earlier results to prove
Theorem ??.

5.1 Minors, paths and pendant subgraphs

The following lemma is ‘nearly obvious’ but we spell out a proof.

Lemma 5.1 Let the graph G have H as a minor. Then G has a subgraph
H̃ which contracts to a graph isomorphic to H, and a family (Q(xy) : xy ∈
E(H)) of paths in H̃, which partition the edges of H̃ and have no internal
vertices in common.

Proof Since G has H as a minor, there is a family (T 0
x : x ∈ V (H)) of

disjoint (that is, pairwise vertex-disjoint) subtrees of G, such that for each
edge xy ∈ E(H) there is at least one edge uv in G between the vertices of
T 0
x and T 0

y . Form a set D ⊆ E(G) by picking exactly one such edge uv for
each edge xy ∈ E(H). Call these the ‘cross edges’.

Let x ∈ V (H) and consider the tree T 0
x . Repeatedly remove leaves that

are not incident with any cross edge, until no such leaves are left or the tree
has just one vertex. The resulting tree Tx has the property that if it has
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at least two vertices then each leaf of Tx is incident with a cross edge. Do
this for each vertex x ∈ V (H), and let the subgraph H̃ of G be the graph
consisting of all the trees Tx together with the edges in D. If we contract
each of these trees Tx to a single vertex we obtain a copy of H. Thus it will
suffice to show that there is an appropriate family of paths for H̃; and so
the following claim will complete the proof.

Claim There is a family (Q(uv) : uv ∈ D) of pairwise internally vertex-
disjoint paths such that (a) for each edge uv in D, Q(uv) contains the edge
uv and if uv has one end vertex in Tx and one in Ty then so does Q(uv);
and (b) each edge in the trees Tx is contained in one of the paths.

We will prove the claim by induction on |D|. It is trivial if |D| = 0, so
suppose that |D| ≥ 1 and we know the result for smaller values. Let uv ∈ D
and suppose that u is in Tx and v is in Ty (and so x 6= y). We form the path
Q(uv) as follows.

If Tx consists just of u, or u is not a leaf of Tx, or u is incident with
another edge in D, then let P (u) be the trivial path consisting just of u.
Otherwise u is a leaf of Tx and Tx has at least two vertices, and u is not
incident with any edge in D \ uv: in this case we let the path P (u) be
the shortest path in Tx between u and a vertex u′ such that either u′ is
incident with an edge in D \ uv or u′ has degree > 2 in Tx. Similarly we
form a corresponding path P (v) in Ty. Let Q(uv) be the path formed by
concatenating P (u), uv and P (v).

Now we remove uv from D, and from Tx and Ty we remove the edges
and internal vertices of Q(uv). It is easy to see that may use the induction
hypothesis to obtain a family of paths for the new configuration, and then
add the path Q(uv) to complete the proof of the claim, and thus of the
lemma. 2

The next lemma follows quickly from the last one.

Lemma 5.2 Let the graph G have H as a minor and let W ⊆ V (G). Then
G has a subgraph H̃ which contracts to a graph isomorphic to H, and a
family F of paths in H̃ such that

(a) the paths in F partition the edges of H̃,

(b) no path in F has an internal vertex in W , and

(c) |F| ≤ |E(H)|+ |W |.
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Proof By the last lemma, G has a subgraph H̃ which contracts to a graph
isomorphic to H, and a family (Q(xy) : xy ∈ E(H)) of paths in H̃, which
partition the edges of H̃ and have no internal vertices in common.

If a vertex w ∈ W is internal for a path P in this family then P is the
only such path for w, and we form two new paths P ′ and P ′′ by ‘cutting’
P at w (so that both of the new paths have w as an endpoint and not as
an internal vertex). We do this for each vertex w ∈ W , and thus obtain a
family F of paths as required. 2

We call a connected subgraph H of G a pendant subgraph if there is
exactly one edge of G between V (H) and V (G) \ V (H). From the last
lemma we deduce:

Lemma 5.3 Let G = (V,E) be a graph, let W ⊂ V , let G′ = G−W and
let P be a collection of pairwise vertex-disjoint pendant subgraphs of G′.
Suppose the graph H has no isolated vertices, and let G have H as a minor.
Then G has a subgraph H̃ which contracts to a graph isomorphic to H, and
which has vertices in at most 2(|E(H)|+ |W |) of the subgraphs in P.

Proof Invoke Lemma ?? to obtain a family F of at most |E(H)| + |W |
paths where no path has an internal vertex in W and

⋃
P∈F P yields a graph

which contracts to a graph isomorphic to H.
We claim that any path P ∈ F can touch at most 2 distinct pendant

subgraphs in P. Clearly the lemma will follow from this claim.
To establish the claim, assume for a contradiction that some path P in

F shares vertices with each of 3 distinct subgraphs C1, C2 and C3 in P.
Since P does not have internal vertices in W , we may assume it is entirely
contained in G′ (otherwise consider P less any vertices in W ). Travel along
P and without loss of generality suppose that C1 is visited first and C2 is
visited second. But in order to visit C2 after C1 we must cross the bridge e
connecting C2 to the rest of G′, and there is no path in G′ − e from V (C2)
to V (C3), so P cannot reach C3. 2

5.2 Completing the proof of Theorem ??

Lemma 5.4 Let A be an addable minor-closed class of graphs such that its
family B of excluded minors includes at least one planar graph. Assume that
A has the no-linear-degrees property. Then for each positive integer k, we
have

|(Ex (k+1)B)n| = (1 + e−Ω(n))|(apex kA)n|.
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The idea of the proof is similar to that of the proof of Theorem 1.1 in [?]. We
first describe constructions which yield every graph in (Ex (k+1)B)n at least
once (as well as other graphs); we then show that there are few ‘unrealistic’
constructions; and finally we show that few ‘realistic’ constructions yield a
graph not in apex kA.

Proof of Lemma ?? Fix a positive integer k. By Lemma ??, there
is a positive integer r such that the following holds. For each graph G in
Ex (k + 1)B with at least r vertices, there is a B-minor-blocker R of size r
and a subset S of R of size k such that R \ v is still a B-minor-blocker for
each vertex v ∈ R \ S.

Let n > r. By the above, the following constructions yield every graph
in (Ex (k + 1)B)n at least once (as well as other graphs).

(i) Choose an r-subset R ⊆ V , put any graph on R, and choose a k-subset

S ⊆ R (
(
n
r

)
2(r2)

(
r
k

)
= O(nr) choices)

(ii) Add the edges of any bipartite graph H(S, V \ R) with parts S and
V \R ( 2k(n−r) choices)

(iii) Put any graph F in A on V \R ( |An−r| choices)

(iv) Add the edges of any bipartite graph H(R \S, V \R) with parts R \S
and V \R, subject to the restriction that for each v ∈ R\S the induced
subgraph on V \ (R \ v) is in A.

By the graph minors theorem of Robertson and Seymour [?], B is a finite
set of j ≥ 1 graphs H1, . . . ,Hj ; and by assumption each Hi is 2-connected.
Let m be the maximum number of edges in these graphs Hi.

Pick distinct vertices v1 and r1 in H1, and consider the connected graph
H1− v1 in A. Write h1 = |V (H1)|. From this graph, form the graph H̃ ∈ A
by attaching a path of length h1 to r1; let vertex r the other end of the
path; and let H̃ be rooted at r. Call the part corresponding to H1 − v1 in
a pendant appearance of H̃ a spike (following the terminology in [?]). Our
construction ensures that spikes must be disjoint.

By Lemma ?? (the ‘pendant appearances’ theorem of [?]), there exist
constants a > 0 and b > 0 such that (assuming n is sufficiently large) the
number of graphs F ∈ An−r with less than an spikes is at most e−bn|An−r|.
We define further constants in terms of a and b. By a Chernoff bound, there
is a constant c > 0 such that

P
(

Bin(dane, 2−h1+1) < 2m+ 2r
)

= O(e−cn).
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Let η, 0 < η < 1
2 be sufficiently small that(

e

η

)ηr
< emin{b,c}.

Let α be sufficiently large that eα > 2r, and let t = t(n) = dηne.
Call a construction realistic if there are at most t edges between each

vertex v ∈ R \ S and the vertices in V \ R; and unrealistic otherwise. Let
C(n) denote the set of graphs in An−r+1 such that vertex n−r+1 has degree
> t. Since A has the no-linear-degrees property,

|C(n)| = O(e−αn) |An|.

For a given choice of R and S, the number of graphs F̃ on V \ S such that
the induced subgraph F̃ [R\S] is some fixed graph, and some vertex in R\S
has > t edges to the vertices in V \R is at most

(r − k) |C(n)| 2(r−k−1)(n−r).

Hence the number of unrealistic constructions is at most

O(nr) · 2k(n−r) 2(r−k−1)(n−r)|C(n)| ≤ O(nr) · 2rn|An| e−αn = |An| e−Ω(n).

Thus there are few unrealistic constructions so that we may ignore them
further. Note that in realistic constructions, the number of choices for the
bipartite graph H(R \ S, V \R) in step (iv) is(

t∑
i=0

(
n− r
i

))r−k
≤
(
n

(
n

t

))r
≤ nr

(ne
t

)tr
≤ nr

(
e

η

)(ηn+1)r

.

Let us bound the number of realistic constructions which yield a graph
G in Ex (k+ 1) B \apex kA. For each such construction, the graph G[V \S]
must contain a minimal subgraph K which contracts to an excluded minor
Hi for some i ∈ {1, . . . , j}; and by Lemma ??, such a subgraph K can touch
at most 2(m+ r − k) spikes.

Now suppose that each vertex v in S is adjacent to all h1 − 1 vertices of
each spike in a set Av of at least 2m+2r−k spikes. Since the graph K does
not touch at least 2m+2r−k−2(m+r−k) = k spikes in Av for each vertex
v ∈ S, we can pick a spike in Av (for example, greedily) for each v ∈ S to
form k disjoint subgraphs isomorphic to H1 with none of them touching the
graph K.
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But now there are at least k + 1 disjoint excluded minors in G, contra-
dicting G being in Ex (k+1)B. Hence, for at least one vertex v in S, v must
be adjacent to all h1 − 1 vertices of at most 2m + 2r − k − 1 < 2m + 2r
spikes.

Therefore, given any choices at steps (i),(iii) and (iv), if F has z spikes
then the number of choices at step (ii) to obtain a graph in Ex (k + 1)B \
apex kA is at most

2k(n−r) k P
(

Bin(z, 2−h1+1) < 2m+ 2r
)
.

Hence, by considering separately the realistic constructions which yield a
graph in Ex (k+ 1)B \ apex kA such that F has < an spikes and those ones
where F has ≥ an spikes, we see that the number of such constructions is
at most

O(n2r) 2kn
(
e

η

)ηrn
|An−r|

(
e−bn + e−cn

)
= e−Ω(n) 2kn |An−k| = e−Ω(n) |(apex kA)n|.

since |(apex kA)n| ≥ 2k(n−k)|An−k|. This completes the proof of the lemma.
2

The following two simple facts will be useful.

Lemma 5.5 Let A be a proper minor-closed class of graphs, with set B of
excluded minors, such that no graph in B has a component which is a path.
Let k be a positive integer. Then there is a positive integer t such that for
all n ≥ t

(Ex (k + 1)B \ apex kA)n ≥ n!/(2 · t!).

Proof We need only show that for some t ≥ 3, the graph Kt is in Ex (k +
1)B\apex kA, since then the graphs formed from Kt together with a disjoint
path would also be in this class.

Let h be the least number of vertices in a graph in B, so h ≥ 3. Let
t = h+k, and note that t < (k+1)h, since (k+1)h− (h+k) = k(h−1) > 0.
Then Kt is not in apex kA because removing k vertices from Kt leaves a
copy of Kh; and Kt cannot contain a minor in (k + 1)B since t < (k + 1)h.

2

Lemma 5.6 Let A be a proper minor-closed class of graphs with set B of
excluded minors, and suppose that A ⊇ apex l C for some class C of graphs
and some positive integer l. Then Ex (k + 1)B ⊇ apex (k+1)(l+1)−1 C.
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Proof Let G ∈ apex (k+1)(l+1)−1 C; and suppose for a contradiction that
G has k + 1 disjoint subgraphs H1, . . . ,Hk+1 each with a minor in B. Let
S ⊆ V (G) be a set of size at most (k+1)(l+1)−1 such that G−S ∈ C. Since
apex l C ⊆ ExB, each graphHi must have at least l+1 vertices in S; and since
the graphs Hi are pairwise disjoint we must have that |S| ≥ (k + 1)(l + 1),
contradicting our choice of S. 2

Now Theorem ?? will follow easily.

Proof of Theorem ?? For the first part, suppose that A is addable and
does not contain all fans. Then directly from Lemmas ?? and ??, for each
positive integer k, as n→∞

|(Ex (k+1)B)n| = (1 + e−Ω(n))|(apex kA)n|.

But now Lemma ?? allows us to replace the e−Ω(n) by e−Θ(n).
Let us prove the second part of the theorem. Suppose that A contains

all fans. Let P denote the class of all paths, so A ⊇ apexP. Then by
Lemma ?? we have Ex (k + 1)B ⊇ apex 2k+1 P. So, by counting just the
graphs where the first 2k + 1 vertices form an apex set,

|(Ex (k + 1)B)n| ≥ |(apex 2k+1 P)n|

≥ 2(2k+1)(n−2k−1) 1

2
(n− 2k − 1)!

≥ n! 2(2k+1)n−o(n).

But since A is proper minor-closed, it is small [?] (see [?] for another proof);
that is, |An| = O(γnn!) for some γ. So

|(apex kA)n| ≤
(
n

k

)
2kn|An−k| = O((2kγ)nn!).

Therefore

|(Ex (k + 1)B)n|/|(apex kA)n| ≥
(

2k+1−o(1)/γ
)n

and we have completed the proof. 2

Remark 5.7 If the class A contains an apex class larger than apexP we
can obtain a better lower bound than in the last part of the proof above.
For example, the class ExK4 of series-parallel graphs contains apexF , so
for each fixed k ≥ 1, by Lemma ??, |(Ex (k + 1)K4)n| ≥ 2(2k+1)nen−o(n)n!.
Also ExK4 has growth constant γ ≈ 9.07 [?], and 2k+1e ≥ 4e ≈ 10.87
so 2k+1e > γ; and hence the graphs on [n] in apex k (ExK4) form only an
exponentially small proportion of those in Ex (k + 1)K4.
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6 Properties of the random graphs Rn

In this section we use the ‘counting’ results Theorems ?? and ?? to prove
Theorems ?? and ??, as well as Theorem ?? which extends Theorem ??.

Let Mk be the multiset of graphs produced by the constructions in the
proof of Theorem ??. For graphs Rn ∈u Ex (k + 1)B and R′n ∈u Mk, that
proof together with Theorem ?? gives that

dTV (Rn, R
′
n) = e−Ω(n) (7)

where dTV denotes total variation distance. Therefore it is enough to prove
Theorems ?? and ?? with Rn replaced by R′n (except for the easy lower
bound in the second result). Notice that the graph R′n can be generated by
choosing the set S and the graphs G[S], F and B in the steps in the proof
of Theorem ?? uniformly at random.

Proof of Theorem ?? Suppose S = S0 was chosen for step (1). Note
that for each v ∈ S0

P
((

1

2
− ε
)
n ≤ d(v) ≤

(
1

2
+ ε

)
n

)
= 1− e−Ω(n).

Indeed, since the graph G[S] and the bipartite graph B are chosen uniformly
at random, each vertex v ∈ S0 has d(v) ∼ Bin

(
n− 1, 1

2

)
.

To show that with probability 1 − e−Ω(n) no vertex v 6∈ S0 may belong
to Sn (that is, have degree > εn) we can apply Lemma ?? to the class A
(as each proper addable minor-closed class of graphs has growth constant
at least e). Thus for the graph F picked in step (2) uniformly from An−k
we get

P
(

∆(F ) >
εn

2

)
= e−Ω(n).

Hence with probability 1 − e−Ω(n), given that S = S0 was chosen in step
(1), each vertex in V (F ) has degree not larger than εn

2 + k < εn in R′n, for
n sufficiently large. Considering now all k-subsets S0 ⊂ [n] completes the
proof of (i) and (ii).

For (iii), let a,H,H− and h be such as in the proof of Theorem ??.
We say that a construction G obtained in that proof is very good if for
each vertex s ∈ S there are at least m = 2−han pairwise disjoint subsets
X1(s), X2(s), . . . , Xm(s) ⊆ V (F ) such that each graph G[Xi(s) ∪ s] has H
as a minor.

If G is very good and S′ is another B-blocker of G such that S 6⊆ S′,
then S′ must have at least δn vertices where δ := 2−ha (to see this, let
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s ∈ S \S′ and note that S′ has to contain a vertex from each of the disjoint
sets Xi(s)). But given that S = S0 and that F has at least a(n− k) copies
of H−, the probability that a random construction R′n is not very good is
at most

k P
(

Bin
(
ba(n− k)c, 2−h+1

)
< d2−hane

)
= e−Ω(n).

2

Proof of Theorem ?? Let K,H ∈ A be (fixed) connected graphs such
that ω(K) = ω(A) and χ(H) = χ(A). Fix a k-set S0 of vertices and a graph
H0 on S0. By Lemma ?? (the pendant appearances theorem of [?]), there
exists a > 0 such that, with probability 1 − e−Ω(n), the graph F chosen in
step (2) of the construction has at least 2dane disjoint sets of vertices such
that the first dane induce copies of K, and the second dane induce copies of
H.

Standard bounds for the binomial distribution now show that with prob-
ability 1−e−Ω(n) there is a copy of K and a copy of H such that each possible
edge between S0 and these copies is present. Thus with probability 1−e−Ω(n)

we have ω(R′n) ≥ ω(H0) +ω(A) and χ(R′n) ≥ χ(H0) +χ(A). Hence, remov-
ing the conditioning on S and the graph on S, with probability 1−e−Ω(n) we
have ω(R′n) ≥ ω(R′) + ω(A) and χ(R′n) ≥ χ(R′) + χ(A), where R′ denotes
the induced subgraph R′n[S]. Also R′ ∼ R; that is, R′ and R have the same
distribution.

Of course, the reverse inequalities, ω(R′n) ≤ ω(R′) + ω(A) and χ(R′n) ≤
χ(R′) + χ(A) always hold. We have now shown that

dTV
(
(ω(R′n), χ(R′n)), (X,Y )

)
= e−Ω(n)

and thus, by the discussion at the start of this section, that

dTV ((ω(Rn), χ(Rn)), (X,Y )) = e−Ω(n).

To replace e−Ω(n) by e−Θ(n) note that P(Rn ∈ A) = e−O(n). 2

We shall deduce Theorem ?? from a more general result, Theorem ??.
For a graph G we let Big(G) denote its (lexicographically first) largest com-
ponent, and let the fragment Frag(G) be G less Big(G). Let us use v(G)
to denote |V (G)|. Thus frag(G) = v(Frag(G)). We shall investigate the
asymptotic behaviour of Frag(Rn), following the treatment in [?].

A class A of graphs is called decomposable if a graph is in A if and only if
each component is. (It is easy to see that each addable minor-closed class is
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decomposable.) For any graph class A we let UA denote the corresponding
unlabelled graph class, with members the equivalence classes of graphs in A
under isomorphism.

Now letA be any decomposable class of (labelled) graphs, and let A(x) =∑
n≥0 |An|xn/n! be its exponential generating function. Let C denote the

class of connected graphs in A, with exponential generating function C(x).
Recall the ‘exponential formula’, that A(x) = eC(x) (see for example [?]).
(By convention the empty graph ∅ is in A and not in C.) If ρ > 0 is such that
A(ρ) is finite, then we may obtain a natural ‘Boltzmann Poisson distribution’
on UA, as follows. Let

λ(H) =
ρv(H)

aut(H)
for each graph H ∈ UA (8)

where aut(H) denotes the number of automorphisms of H. Then∑
H∈UA

λ(H) = A(ρ) = eC(ρ).

The Boltzmann Poisson random graph R = R(A, ρ) takes values in UA,
with

P[R = H] =
λ(H)

A(ρ)
for each H ∈ UA. (9)

It is shown in [?] that the number of components of R isomorphic to a given
graph H ∈ UC has distribution Po(λ(H)), and numbers of components cor-
responding to distinct graphs in UC are independent; and thus the random
number κ(R) of components of R satisfies κ(R) ∼ Po(C(ρ)). Also, v(R) is
the sum of independent random variables v(H)Po(λ(H)) for H ∈ UC; and

P[v(R) = n] =
|An|ρn/n!

A(ρ)
for n = 0, 1, 2, . . . (10)

We are interested in the limiting behaviour of the random graph Frag(Rn).
It is convenient to deal with the corresponding random unlabelled graph
which we denote by UFrag(Rn).

Theorem 6.1 Let A be an addable minor-closed class of graphs which does
not contain all fans; let ρ be the radius of convergence of its exponential
generating function A(x); and let B be its set of excluded minors. Let C
be the class of connected graphs in A, with exponential generating function
C(x). Then A(ρ) <∞; and given a positive integer k, for Rn ∈u Ex (k+1)B
we have

dTV (UFrag(Rn), R)→ 0 as n→∞. (11)
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where R = R(A, ρ/2k) is the Boltzmann Poisson random graph for A and
ρ/2k as in (??) and (??) above. Further,

E [frag(Rn)]→ E [v(R)] = (ρ/2k) C ′(ρ/2k) <∞. (12)

Since P(R = ∅) = e−C(ρ/2k), Theorem ?? follows as an immediate corollary.
Also, dTV (frag(Rn), v(R))→ 0 as n→∞, where the distribution of v(R) is
given by (??) with ρ replaced by ρ/2k.

To prove (??) in Theorem ?? we use one preliminary lemma, followed
by a lemma taken from [?]. After that, to prove (??) in Theorem ?? we use
another preliminary lemma.

Lemma 6.2 Let A be a minor-closed class of graphs, with set B of excluded
minors. Let j be a positive integer, suppose that Ex jB has a positive growth
constant, and let Rn ∈u Ex jB. Then

P(Frag(Rn) ∈ A) = 1− e−Ω(n) as n→∞.

Proof The case j = 1 is trivial, since A = ExB; so assume that j ≥ 2.
For i = 1, 2, . . . let Ai denote Ex iB, and let the exponential generating
function Ai(x) of the graphs in Ai have radius of convergence ρi. Then
ρi+1 ≤ ρi/2, since from each graph G in Ain we may construct at least 2n

graphs in Ai+1
n+1 by adding any set of edges between vertex n+ 1 and V (G).

Thus ρj ≤ 2−(j−1)ρ1 ≤ ρ1/2.
Observe that if any component of Rn is in Aj \Aj−1 then the remaining

components must be in A. Thus

P(Frag(Rn) 6∈ A) ≤ P(Rn has all components in Aj−1) (13)

+ P(Frag(Rn) has a component in Aj \ Aj−1).

The first term on the right side tends to 0, because the family D of
graphs with all components from Aj−1 has radius of convergence ρj−1 ≥
2ρj . To see this, let C(x) denote the exponential generating function of
the connected graphs in Aj−1: then, by the exponential formula, D has
exponential generating function eC(x), and this converges for 0 < x < ρj−1.

Consider the second term on the right side. Fix ε > 0 sufficiently small
that

(ρ−1
1 + ε)(ρ−1

j + ε)

(ρ−1
j − ε)2

< 1.

There are constants 0 < a ≤ b such that for all non-negative integers n

a(ρ−1
j − ε)

n ≤ |A
j
n|
n!
≤ b(ρ−1

j + ε)n
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(since Aj has growth constant ρ−1
j ) and

|An|
n!
≤ b(ρ−1

1 + ε)n.

Since each component of Frag(Rn) has at most n/2 vertices, it now follows
that the second term on the right side of (??) is at most

1

|Ajn|

bn2 c∑
t=0

(
n

t

)
|Ajt ||An−t| ≤

b2n!

an!(ρ−1
j − ε)n

bn2 c∑
t=0

(ρ−1
j + ε)t(ρ−1

1 + ε)n−t

≤ (b2/a)n

(
(ρ−1

1 + ε)(ρ−1
j + ε)

(ρ−1
j − ε)2

)n/2
= e−Ω(n).

2

We say that A is bridge-addable if given any graph G in A and vertices u
and v in distinct components of G, the graph obtained from G by adding an
edge joining u and v must be in A. It is easy to see that each addable minor-
closed class is bridge-addable. Given a graph H in A, we say that H is freely
addable to A if, given any graph G disjoint from H, the union of G and H is
inA if and only if G is inA. Recall thatA is called smooth if |An|/ (n|An−1|)
converges to some finite constant γ > 0 as n→∞. The following lemma is
a combination of Lemmas 4.4 and 4.5 from McDiarmid [?].

Lemma 6.3 Let the class A of graphs be minor-closed and bridge-addable;
let Rn ∈u A; let B denote the class of all graphs freely addable to A; and
suppose that P(Frag(Rn) ∈ B) → 1 as n → ∞. Suppose further that A is
smooth, and its exponential generating function A(x) has radius of conver-
gence ρ, with 0 < ρ <∞.

Then the exponential generating function B(x) of B satisfies 0 < B(ρ) <
∞; and dTV (UFrag(Rn), R)→ 0 where R = R(B, ρ) is the Boltzmann Pois-
son random graph for B and ρ as defined in (??) and (??) above. Further,
E [v(R)] = ρC ′(ρ) < ∞, where C(x) is the exponential generating function
of the class C of connected graphs in B.

Proof of (??) in Theorem ?? Let Ak+1 denote Ex (k + 1)B. Since A
is addable, it follows that Ak+1 is bridge-addable and the class of graphs
freely addable to Ak+1 is A. By Theorems ?? and ??, Ak+1 is smooth and
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its exponential generating function has radius of convergence ρ/2k. Thus by
Lemma ?? we may use Lemma ?? to complete the proof. 2

In order to prove (??) in Theorem ?? we need one more lemma. For a
vertex v in a graph G, we let Comp(v,G) denote the component containing v
and let comp(v,G) denote its number of vertices.

Lemma 6.4 Let A be an addable minor-closed class of graphs which does
not contain all fans; let B be its set of excluded minors; let k be a positive
integer and let Rn ∈u Ex (k + 1)B. Then for each ε > 0 there is a K ≥ 0
such that

E [|{v ∈ V (Frag(Rn)) : comp(v,Rn) ≥ K}|] < ε.

Proof By (??), it suffices to prove this result with Rn replaced by R′n.
Recall that R′n specifies a k-set S and Fn−k ∈ A. Let An be the event that
in R′n, each vertex in S has an edge to Big(Fn−k). We first show that

P(An) = 1− e−Ω(n
1
2 ). (14)

Since A is bridge-addable, by Theorem 2.2 of [?], if we let k = bn
1
2 c then

P(κ(Fn−k) ≥ k + 1) ≤ 1/k! = e−Ω(n
1
2 logn).

(Recall that κ(G) denotes the number of components of G.) Thus

P(|Big(Fn−k)| < n
1
2 ) = e−Ω(n

1
2 logn).

Hence, if vi is a vertex in S then

P(vi has no edge to Big(Fn−k)) ≤ 2−n
1
2 + P(|Big(Fn−k)| < n

1
2 ) = e−Ω(n

1
2 );

and now (??) follows.
Next observe that if An holds then S and Big(Fn−k) are contained in

Big(R′n); and thus if v ∈ V (Frag(R′n)) then v ∈ V (Frag(Fn−k)), and there
is no edge between S and Comp(v, Fn−k).

By (??) it suffices to upper bound E [|{v ∈ V (Frag(R′n)) : comp(v,R′n) ≥
K}| · 1An ]. For each v ∈ V \ S let Bn(v) be the event that there is no edge
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between S and Comp(v, Fn−k). By the above observations

E [|{v ∈ V (Frag(R′n)) : comp(v,R′n) ≥ K}| · 1An ]

≤ E [|{v ∈ V \ S : v ∈ V (Frag(Fn−k)), comp(v, Fn−k) ≥ K,Bn(v)}|]
≤

∑
v∈V \S

P (Bn(v) | comp(v, Fn−k) ≥ K, v ∈ V (Frag(Fn−k))) · P(v ∈ V (Frag(Fn−k)))

≤
∑
v∈V \S

2−kKP(v ∈ V (Frag(Fn−k)))

≤ 2−KE [frag(Fn−k)] ≤ c · 2−K .

In the last inequality here we used the result that E [frag(Fn−k)] ≤ c for a
constant c, see Lemma 2.6 of [?]. The lemma follows. 2

Proof of (??) in Theorem ?? Let ε > 0. By Lemma ??

E [v(R)] =
∑
H∈UC

v(H)λ(H) = (ρ/2k) C ′(ρ/2k) <∞.

Thus for K sufficiently large

E [v(R)]− ε ≤
∑

H∈UC,v(H)≤K

v(H)λ(H) ≤ E [v(R)].

By (??)

E [|{v ∈ V (Frag(Rn)) : comp(v,Rn) ≤ K}|]→
∑

H∈UC,v(H)≤K

v(H)λ(H),

and so

| E [|{v ∈ V (Frag(Rn)) : comp(v,Rn) ≤ K}|]− E [v(R)] | < ε+ o(1).

Hence by Lemma ?? with K sufficiently large

| E [frag(Rn)]− E [v(R)] | < 2ε+ o(1)

and we are done. 2

7 Concluding remarks

Consider an addable minor-closed class A of graphs, with set B of excluded
minors. For such a class A, we have learned much about the class of graphs
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with at most k disjoint excluded minors, and in particular about the rela-
tionship between Ex (k+1)B and apex kA. Here there are just two cases: if
A does not contain all fans then the difference class Ex (k+1)B \ (apex kA)
forms an exponentially small proportion of Ex (k+1)B; and if A contains all
fans then Ex (k+1)B is exponentially larger than apex kA (at least for large
k).

But what happens if the minors of A are not 2-connected? Consider for
example the class ExSt, where St denotes the star with t leaves (and thus
with t + 1 vertices). For each t ≥ 3 almost all graphs in Ex (k + 1)St are
in apex k ExSt, as in the case when A is addable and does not contain all
fans; and for t = 3 the difference class Ex (k + 1)St \ (apex k ExSt) forms
an exponentially small proportion of Ex (k + 1)St; but this is not the case

for t ≥ 4, where the proportion is 2−Θ(n
2t−5
2t−4 ), see [?]. There is more to be

learned about disjoint excluded minors in such classes of graphs.

A second natural question concerns the behaviour of Ex (k + 1)B when
A is minor-closed and contains all fans. We have learned little about this
case, other than the fact that apex kA is irrelevantly small in comparison
(at least for large k).

A good starting point is to consider the class A = ExK4 of series-parallel
graphs, see Remark ??. Clearly Ex 2K4 contains apex 3F , where F denotes
the class of forests, and so if Ex 2K4 has a growth constant then it must
be at least 8e. It is not hard to see that this is not the right value, but it
may give the right idea. We conjecture that almost all graphs G in Ex 2K4

contain a set S of three vertices such that any two form a K4-minor-blocker,
or equivalently every non-series-parallel subgraph of G has at least 2 vertices
in S.

More generally, consider any (fixed) planar graph H. Perhaps there is a
positive integer jH such that the following is true for every positive integer k:
almost all graphs G with at most k disjoint subgraphs contractible to H
contain a set S of (k + 1)jH − 1 vertices such that each subgraph of G
contractible to H contains at least jH vertices from S. Observe that this is
true for H = jC3, with jH = j. For if we let B = {jC3} and A = ExB, then
Ex (k+1)B = Ex (k+1)j C3 which is very close to apex (k+1)j−1F (where F
is the class of forests); and for a graph G in this class, the set S consisting
of the (k + 1)j − 1 apex vertices is such that each subgraph of G not in A
contains at least j vertices from S.
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circuits, Combinatorica 27 (2) (2007) 135 – 145.

[3] H. L. Bodlaender, A Partial k-Arboretum of Graphs with Bounded Treewidth,
Theor. Comput. Sci. 209 (1-2) (1998) 1 – 45.

[4] R. Diestel, Graph Theory, third edition, Springer, 2005.

[5] Z. Dvořak and S. Norine, Small graph classes and bounded expansion, J. Com-
bin. Theory B 100 (2010) 171–175.
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