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Abstract

Given a set of vertices V and a set of attributes W let each vertex
v ∈ V include an attribute w ∈W into a set S−(v) with probability p−
and let it include w into a set S+(v) with probability p+ independently
for each w ∈ W . The random binomial intersection digraph on the
vertex set V is defined as follows: for each u, v ∈ V the arc uv is
present if S−(u) and S+(v) are not disjoint. For any h = 2, 3, . . . we
determine the birth threshold of the complete digraph on h vertices
and describe the configurations of intersecting sets that realise the
threshold.

Keywords: digraph, clique, threshold, random intersection graph.

1 Introduction

In the random intersection graph introduced by Karoński, Scheinerman and
Singer-Cohen [13] (see also Godehardt and Jaworski [10]) we have a set of
vertices V of size n and an additional set W of attributes (also sometimes
called properties or keys) of size m. Each vertex v of V chooses a random
subset of attributes in W and an edge uv is added to the graph if and only
if the subsets of u and v intersect.

∗The work was supported in part by the Research Council of Lithuania grant MIP-
52/2010.
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We consider a directed random intersection graph D on the vertex set V
defined as follows (see [4]). Let each vertex v choose not one, but two random
subsets: an “in”-subset, S+(v), and an “out”-subset, S−(v). An arc from
vertex u to v is inserted in D whenever S−(u) intersects S+(v). Assuming,
in addition, that each attribute w ∈W is included in the subset S−(v) with
probability p− and in the subset S+(v) with probability p+ independently
and independently of all other inclusions, we obtain a random binomial
intersection digraph denoted D = D(n,m, p−, p+).

In [18] a network of co-authors of mathematical papers is mentioned as an
illustration for random intersection graphs. One might alternatively define
a citation digraph where V is a set of mathematicians and we draw an arc
from u to v if and only if u has cited v. The underlying set W here would be
the set of all mathematical papers; and S−(u) (respectively, S+(u)) would
correspond to the set of papers u has cited (respectively, co-authored).

The random intersection graph model has received a lot of attention
recently due to several different applications [8, 10, 13]. Properties such
as thresholds for small graphs [13], degree distribution [3, 6, 18], formation
of the giant component [1, 5], connectivity [2, 15] and clustering [6] have
been studied, see also [17, 9, 14]. In some applications considering directed
intersection graphs makes sense and might lead to more precise/adequate
models. In particular, one may obtain a digraph with power law indegree
distribution and bounded outdegree distribution. In addition these digraphs
have a clustering property when m is of order n [4].

In the problem of determining the birth threshold of small subgraphs
one is interested in the question of how dense a graph should be to have
a desired subgraph with certainty. There is a rich literature devoted to
birth thresholds in random graphs with independent edges where each edge
appears with the same probability, see, e.g., Chapter 3 of [11]. The threshold
for a random (binomial) intersection graph to contain a fixed subgraph has
been studied in [13].

Here we consider a similar problem for random intersection digraphs.

Let
−→
Kh be the complete digraph on vertex set [h] = {1, . . . , h} containing

arcs xy and yx for each pair of distinct vertices x, y ∈ [h]. We aim to
determine critical values of the parameters for D(n,m, p−, p+) to have with

a high probability a subgraph isomorphic to
−→
Kh.

Given two finite sets C− and C+ we consider the ordered pair C =
(C−;C+) and the digraph D(C) on the vertex set C− ∪ C+ with the set of
arcs {uv : u ∈ C−, v ∈ C+}. We call the pair C a diclique. We say that C
is proper if C−, C+ are non-empty, otherwise say that it is improper. We
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Figure 1: The diclique ({a, b, c}; {b, c, d, e}).

remark that if the digraph D(C) is non-empty then C must be proper and
D(C) 6= D(C ′) for C 6= C ′. Therefore we will identify a proper diclique C
with the corresponding digraph D(C), see Figure 1.

To our knowledge, the diclique digraphs were first studied by Haralick
[12], but in a different context.

In the random digraph D with vertex set V and attribute set W each
attribute w ∈ W defines a diclique C(w) = (C−(w);C+(w)) given by
C−(w) = {v ∈ V : w ∈ S−(v)} and C+(w) = {v ∈ V : w ∈ S+(v)}.
It is convenient to interpret each attribute w ∈ W as a distinct colour.
Then all the attributes in W give rise to a family of dicliques of different
colours which covers all arcs of D.

The paper is organised as follows. In the next section we present our
main results. In Section 3 we give a general lemma for the birth threshold
of a fixed directed graph H. In Section 4 we study a few special diclique

covers of
−→
Kh and prove our main results Theorem 2.1 and Theorem 2.2.

We remind some standard notation used in the paper. For functions
f, g : N→ R+ we write f ∼ g if limk→∞ f(k)/g(k) = 1. We write f = O(g)
if lim supk→∞ f(k)/g(k) < ∞, f = Ω(g) if g = O(f) and f = Θ(g) if both
f = O(g) and g = O(f). We write f = o(g) if f(k)/g(k)→ 0.

Finally, thanks to an anonymous reviewer the author became aware of a
related and very relevant result on the Poisson approximation of the number
of cliques in sparse random intersection graphs by Rybarczyk and Stark [16].

2 Results

Before stating our main results we need to introduce some definitions related
to dicliques. Without loss of generality we will assume that the set of vertices
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of the random digraph D is V = [n].
For any diclique C, we call V (C) = C− ∪ C+ the vertex set of C. Let

C = {C1, C2, . . . , Cs} be a family of dicliques, (we allow C to be a multiset
and in this paper we consider only finite families C). Let us denote by V (C)
the union of all vertices of the dicliques, V (C) =

⋃
V (Ci). We say that

D contains C if there are distinct attributes w1, . . . , ws ∈ W , such that
Ci ⊆ C(wi) for each i = 1, . . . , s (the set operations for dicliques are defined
componentwise). Also, let us call a diclique family proper if all its dicliques
are proper.

Let C be any diclique family with V (C) = {v1, . . . , vr} ⊆ [n] and assume
that v1 < · · · < vr. For any set S = {x1, . . . , xr} ⊆ [n] with x1 < · · · < xr,
let us denote by M(C, S) the diclique family which is an image of C obtained
by renaming vi to xi for each i = 1, . . . , r. We call M(C, S) a copy of C.

Each family of dicliques C defines a digraph H = H(C) with vertex set
V (C): an arc is present in H whenever it is present in some D(C), C ∈ C.
We say that the family C is a diclique cover of H.

The digraph
−→
Kh can be covered by dicliques in many different ways.

Consider the following important symmetric diclique covers of
−→
Kh:

• CM = {([h]; [h])}, the monochromatic diclique cover;

• CR = E(
−→
Kh), the rainbow diclique cover, where E(

−→
Kh) is the set of

arcs of
−→
Kh and we identify each arc uv with the diclique ({u}; {v});

• Cin = {([h] \ {i}; {i}) : i ∈ [h]}, the cover by in-stars;

• Cout = {({i}; [h] \ {i}) : i ∈ [h]}, the cover by out-stars.

The motivation for the names “monochromatic” and “rainbow” is that
a single attribute (or colour) w ∈W may generate a copy of CM in D, while
h(h− 1) attributes are needed for a copy of CR.

We will consider a sequence of random digraphs {D(k), k = 1, 2, . . . }
where D(k) = D(n,m, p−, p+), n = n(k) (we always assume that n(k) is
increasing), m = m(k), p− = p−(k) and p+ = p+(k) all depend on k. If not
stated otherwise all limits below are as k →∞.

Let us now define what a birth threshold function for
−→
Kh is. We would

like to have a function that, for a sequence of random digraphs {D(k)},
indicates whether a copy of

−→
Kh is present whp. Since the sequence {D(k)}

depends on several parameters which are themselves sequences, such a func-
tion has to take into account all of them.
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Let X be either a fixed digraph or a diclique family. Let X ∈ D denote
the event that the random digraph D contains a copy of X. Given a sequence
of random digraphs {D(k)} we call a function τ : N2 × [0; 1]2 → R+ a birth
threshold function for X if both of the following implications hold:

τ(n,m, p−, p+)→ 0 =⇒ P (X ∈ D(k))→ 0;

τ(n,m, p−, p+)→∞ =⇒ P (X ∈ D(k))→ 1.

Given a sequence of random digraphs {D(k)} and a birth threshold function

τ for
−→
Kh we call a collection L of diclique covers of

−→
Kh the leading set if τ

is a birth threshold function for each C ∈ L and the following implications
hold:

1) τ(n,m, p−, p+) = O(1) =⇒ P (C′ ∈ D(k)) → 0 for each proper diclique

cover C′ of
−→
Kh such that C′ 6∈ L;

2) τ(n,m, p−, p+) = Θ(1) =⇒ P (C ∈ D(k)) = Ω(1) for each C ∈ L.

In the case where L consists just of a single diclique family C, we call C the
leading cover.

We will consider the following birth threshold functions:

τ1 = nm1/hp−p+; τ2 = n1/(h−1)mp−p+;

τ3 = nmph−1− p+; τ4 = nmp−p
h−1
+ .

We are now ready to state our main result (see Figure 2 for an illustration).

Theorem 2.1 Let h ≥ 3 be a fixed integer. Write α0 = 1 − 1
(h−1)2 . Let

{D(k)} be a sequence of random binomial intersection digraphs such that n
is increasing, m = Θ(nα) for some α > 0, p− → 0 and p+ → 0.

(i) If α < α0 and

(a) m
h−1

h(h−2) p− →∞ then τ3 is a birth threshold function for
−→
Kh with

the leading cover Cin;

(b) m
h−1

h(h−2) p− → 0 and m
h−1

h(h−2) p+ → 0 then τ1 is a birth threshold

function for
−→
Kh with the leading cover CM ;

(c) m
h−1

h(h−2) p+ →∞ then τ4 is a birth threshold function for
−→
Kh with

the leading cover Cout.

(ii) If α ≥ α0 and
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(a) mp+ → 0 then τ3 is a birth threshold function for
−→
Kh with the

leading cover Cin;

(b) α 6= α0, mp− → ∞ and mp+ → ∞ then τ2 is a birth threshold

function for
−→
Kh with the leading cover CR;

(c) mp− → 0 then τ4 is a birth threshold function for
−→
Kh with the

leading cover Cout.

Let us introduce the following two collections of diclique covers. Let Sin
be the collection of all proper diclique covers of

−→
Kh such that each C ∈ Sin

is a set of arc-disjoint in-stars, that is, for each C ∈ C we have |C+| = 1
and for each Ci, Cj ∈ C with i 6= j and C+

i = C+
j we have C−i ∩ C

−
j = ∅.

Similarly, let Sout be the collection of all proper diclique covers C of
−→
Kh

such that for each C ∈ C we have |C−| = 1 and for each Ci, Cj ∈ C with
i 6= j and C−i = C−j we have C+

i ∩ C
+
j = ∅. Observe that CR, Cin ∈ Sin and

CR, Cout ∈ Sout.
For the “boundary” cases of the parameters in Theorem 2.1 we have:

Theorem 2.2 Let h, {D(k)}, n, α0,m be as in Theorem 2.1. Suppose p− →
0 and p+ → 0. If

(a) α < α0 and m
h−1

h(h−2) p− = Θ(1) then τ1, τ3 are birth threshold functions

for
−→
Kh with the leading set {CM , Cin}.

(b) α < α0 and m
h−1

h(h−2) p+ = Θ(1) then τ1, τ4 are birth threshold functions

for
−→
Kh with the leading set {CM , Cout}.

(c) α = α0, mp− → ∞ and mp+ → ∞ then τ1, τ2 are birth threshold

functions for
−→
Kh with the leading set {CM , CR}.

(d) α > α0 and mp+ = Θ(1) then τ2, τ3 are birth threshold functions for
−→
Kh with the leading set Sin.

(e) α > α0 and mp− = Θ(1) then τ2, τ4 are birth threshold functions for
−→
Kh with the leading set Sout.

(f) α = α0 and mp+ = Θ(1) then τ1, τ2, τ3 are birth threshold functions for
−→
Kh with the leading set {CM} ∪ Sin.

(g) α = α0 and mp− = Θ(1) then τ1, τ2, τ4 are birth threshold functions for
−→
Kh with the leading set {CM} ∪ Sout.
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We note that the argument used in the proof of Theorem 2.1 can also
be extended to the case where p− or p+ are bounded away from zero. In
this case the birth threshold function remains the same, but the leading sets
have to be slightly modified.

Finally, for the case h = 2 we have

Remark 2.3 Let {D(k)}, n,m be as in Theorem 2.1. Suppose h = 2, p− →
0 and p+ → 0. Then τ2 is a birth threshold function for

−→
K2 with the leading

cover CR.

3 Diclique covers: a general lemma

In this section we present some important estimates and Lemma 3.2 that
relates the birth threshold of a fixed digraph with presence of its diclique
covers. This is very similar to results for undirected random intersection
graphs, see Theorem 3 of [13]. We postpone the proofs of the estimates (1)
- (8) of this section till Appendix A.

Let {D(k)} be a sequence of random binomial intersection digraphs and
write D = D(k). Recall that we denote the vertex set of D by V and the
attribute set by W . Suppose m = Θ(nα) for some α > 0. In (1) - (5) we
will assume that

p− → 0, p+ → 0 and mp−p+ → 0.

Note that in this case mp−p+ is asymptotically equivalent to the probability
that a fixed directed edge exists.

Given a diclique C = (C−;C+) and a set S the restriction of C to S is
the diclique C[S] = (C− ∩ S;C+ ∩ S). The restriction for a diclique family
is defined by C[S] = {C[S] : C ∈ C, V (C) ∩ S 6= ∅}.

Let S ⊆ V and let C be a diclique with V (C) ⊆ S. We will say that a
monochromatic C occurs on S if in the realization of D there is at least one
attribute w ∈W such that C = C(w)[S] (we say that w generates C on S).
We denote the probability of the event that a monochromatic C occurs on
S by P (C).

We say that a diclique family C = {C1, . . . , Cs} is induced in D if there
are distinct attributes w1, . . . , ws ∈ W such that Ci = C(wi)[V (C)], for
each i = 1, . . . , s and for any attribute w ∈ W \ {w1, . . . , ws} the diclique
C(w)[V (C)] is improper. Thus if C is induced in D then D contains C (see
Section 2). We denote the probability of the event that C is induced in D
by P (C). Let S1, S2, . . . , SN be all the subsets of V of size r = |V (C)|, where
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Figure 2: Schematic illustration of Theorems 2.1 and 2.2. Top: α < α0, bot-
tom: α > α0. The coloured area is the region where D contains a copy of the
special diclique cover whp (IN = “in-stars” cover Cin, OUT=“out-stars” cover Cout,
MO=monochromatic cover CM , RB = “rainbow” cover CR), the remaining area
is where D does not contain that diclique cover whp. The white area is where

D does not have a copy of
−→
Kh whp. On the contour between the white and the

coloured area we know that D does not contain any other proper diclique cover
whp (excluding the black points that correspond to the collections Sin and Sout).
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N =
(
n
r

)
. Let Ii = IM(C,Si) be the indicator of the event that the copy

M(C, Si) is induced in D. Then the number of induced copies of C in D is
defined by

X(C) =

N∑
i=1

Ii.

Let S ⊆ V and suppose C = (C−;C+) is a proper diclique such that
V (C) ⊆ S. Then the probability that a monochromatic C occurs on S is

P (C) ∼ P̃ (C) := mp
|C−|
− p

|C+|
+ . (1)

Following [13], for a diclique family C = {Ci} we write
∑
C+ =

∑
|C+
i | and∑

C− =
∑
|C−i |, and we denote by |C| the cardinality of C.

For a diclique family C let C1, . . . , Ct be all its distinct dicliques and let
a1, . . . , at be their multiplicities in C. Let us denote aC = (a1!a2! . . . at!)

−1.
Fix a diclique family C with V (C) ⊆ V . If C is proper then the probability

that C is induced in D is

P (C) ∼ P̃ (C) := aC
∏
C∈C

P̃ (C) = aCm
|C|p

∑
C−

− p
∑
C+

+ . (2)

Write

µ(C) = µ(C, n,m, p−, p+) :=
n|V (C)|

|V (C)|!
P̃ (C) =

aC
|V (C)|!

n|V (C)|m|C|p
∑
C−

− p
∑
C+

+ .

If C is proper then the number X(C) of induced copies of C in D satisfies

EX(C) ∼ µ(C). (3)

More generally, suppose C is not necessarily proper. Suppose that, in addi-
tion, the following technical assumption is satisfied: for each j = 0, . . . , |V (C)|

mpj− → aj and mpj+ → bj (4)

for some aj , bj ∈ [0;∞]. Let Ĉ be the diclique family obtained from C by

taking only those dicliques C ∈ C that satisfy mp
|C−|
− p

|C+|
+ → 0 (for proper

C we always have Ĉ = C). Define

µ̃(C) = µ̃(C, n,m, p−, p+) := n|V (C)|m|Ĉ|p
∑
Ĉ−

− p
∑
Ĉ+

+ .

Then
EX(C) = Θ (µ̃(C)) . (5)
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Observe that the event “C is induced in D” allows any number of extra
improper dicliques on V (C).

For a proper diclique family C and any sequence of random graphs
{D(k)} (without any assumptions on p−, p+,m) we have

P (D(k) contains C) ≤ P̃ (C); (6)

P (C ∈ D(k)) ≤ µ(C); (7)

(recall that the first event concerns a fixed diclique cover while the second
one asks for any copy of C in D(k)) and, if (4) holds then for any diclique
family C

P (C ∈ D(k)) ≤ µ̃(C). (8)

We will use the following simple technical lemma several times below.

Lemma 3.1 For a positive integer t let f1, . . . , ft, g : N → R be any func-
tions. Suppose that for any increasing sequence of positive integers (nk),
k = 1, 2 . . . such that

lim
k→∞

fi(nk) exists or is in {−∞,∞} for each i = 1, . . . , t (9)

we have limk→∞ g(nk) = b ∈ [−∞;∞]. Then limn→∞ g(n) = b.

Proof Write ḡ = lim supn→∞ g(n). Then there is an increasing sequence of
integers (nj), j = 1, 2, . . . such that g(nj)→ ḡ. By the Weierstrass theorem
this sequence has a subsequence (nk), k = 1, 2, . . . such that (9) holds. So
b = limk→∞ g(nk) = ḡ. Similarly b = lim infn→∞ g(n) and the claim follows.

2

Let us call a diclique family C simple if it is proper and has no repetitive
elements. The following result allows to find a birth threshold of a fixed
digraph by considering just a constant number (which depends on h) of
diclique covers.

Lemma 3.2 Let {D(k)} be a sequence of random binomial intersection di-
graphs such that n is increasing. Let h ≥ 2 be an integer, and let H be a
digraph with V (H) = [h] and without isolated vertices. Suppose that p− → 0,
p+ → 0 and mp−p+ → 0. Then

(a) if for each simple diclique cover C of H there is a non-empty set S ⊆
V (C) such that EX(C[S]) → 0 then whp D(k) does not contain a copy
of H;
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(b) if there is a simple diclique cover C of H such that EX(C[S])→∞ for
each non-empty set S ⊆ V (C) then whp D(k) contains an induced copy
of C (and therefore also a copy of H as an induced subgraph).

Proof The part (a) is easy. Suppose the sequence {D(k)} satisfies the

conditions of (a), but lim supP (
−→
Kh ∈ D) > 0, where D = D(k). Since the

event
−→
Kh ∈ D implies C ∈ D for some simple diclique cover C of

−→
Kh and the

number of such diclique covers is finite we have lim supP (C0 ∈ D) > 0 for
one of such covers C0. By Lemma 3.1 we may assume that (4) holds. Take
a set S ⊆ [h] such that E (X(C0[S]))→ 0. By (5) and (8) we have

P (C0 ∈ D) ≤ P (C0[S] ∈ D) ≤ µ̃(C0[S]) = Θ(EX(C0[S])) = o(1)

which is a contradiction.
Now let us prove (b). Let C be a simple diclique cover of H that satisfies

the condition in (b). Note that |V (C)| = h since H has no isolated vertices.
Recall that the number of induced copies of C in D is X = X(C) =

∑N
i=1 Ii

where Ii = 1 if and only if the diclique cover M(C, Si) is induced in D and
by (3)

EX ∼ µ(C) ∼ nh

h!
P̃ (C)→∞.

So the claim will follow by the method of second moments if we show that
V ar(X)/(EX)2 → 0. We have

EX2 = EX +
∑
i 6=j

IiIj .

If the sets Si and Sj do not intersect, we have that Ii and Ij are independent

and E IiIj = E IiE Ij . There are in total
(
n
h

)(
n−h
h

)
(ordered) pairs of sets that

do not intersect. So

V ar(X) = EX2 − (EX)2 ∼ EX +
n2h

(h!)2
(1 + o(1))P (C)2

− n2h

(h!)2
(1 + o(1))P (C)2 +

∑
Si∩Sj 6=∅

E IiIj

= o
(
(EX)2

)
+

∑
Si∩Sj 6=∅

E IiIj ;

and we have that∑
Si∩Sj 6=∅ E IiIj

(EX)2
≤
∑h

s=1

(
n
h

)(
h
s

)(
n−h
h−s
)

max|Si∩Sj |=s E IiIj
(EX)2

≤ C
h∑
s=1

Ts
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for some constant C where

Ts =
max|Si∩Sj |=s E IiIj

nsP (C)2
. (10)

To show that V ar(X)/(EX)2 → 0 it is enough to prove that Ts → 0 for
s = 1, . . . , h.

Fix a positive integer s, s ≤ h and two sets Si, Sj ⊆ V of size h such
that |Si ∩ Sj | = s. Let Ci = M(C, Si) = {Ci1, . . . , Cit} and Cj = M(C, Sj) =

{Cj1 , . . . , C
j
t } be two copies of the diclique family C (here t = |C|). Let

M be a matching (not necessarily perfect) in a bipartite graph with parts
X = {x1, . . . , xt} and Y = {y1, . . . , yt}. Let L = X \ {xl : xlyr ∈ M} and
R = Y \ {yr : xlyr ∈M}. Define a diclique family1

CM = {Cil ∪ Cjr : xlyr ∈M} ∪ {Cil : xl ∈ L} ∪ {Cjr : yr ∈ R}.

Here the union of diclique families is ‘multiset union’ so that CM contains
exactly |M |+ |R|+ |L| elements.

Let us call M good if CM [Si] \ Ci and CM [Sj ] \ Cj consist of improper
dicliques only.

Proposition 3.3 If both Ci and Cj are induced in D then there is a good
matching M such that D contains CM .

Proof By definition, if both Ci and Cj are induced in D then there are two
lists wi = (wi1, . . . , w

i
t) and wj = (wj1, . . . , w

j
t ) of attributes from W such

that
C(wis)[S

i] = Cis and C(wjs)[S
j ] = Cjs for s = 1, . . . , t.

Also, there are no edges in D[Si] (respectively, D[Sj ]) generated by at-
tributes not in wi (respectively, wj). Notice also, that by definition the
elements in each of the lists wi, wj must be distinct (although there can
be some elements that belong to both lists). Thus all pairs xlyr where
wil = wjr and l, r ∈ {1, . . . , t} define some matching M0. Clearly for each
diclique C ∈ CM0 it is possible to assign a unique element w ∈W such that
C ⊆ C(w)[Si ∪ Sj ]. The fact that M0 is good follows by definition since
both Ci and Cj are induced in D. 2

Let P ∗∗(C) denote the probability of the event that D contains C. It
follows by Proposition 3.3 that

E IiIj ≤
∑
M

P ∗∗(CM ). (11)

1The notation should not be confused with the monochromatic cover CM .
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where the sum is over all good matchings M . The number of all good
matchings M is at most (t + 1)t, which is constant. By (10) and (11) it
suffices to show that

P ∗∗(CM )

nsP (C)2
→ 0

for each good matching M . Write S = Si ∩Sj . We have P ∗∗(CM ) ≤ P̃ (CM )
by (6) and P (Ci) = P (Cj) ∼ P̃ (C) by (2). For xlyr ∈M we have

P̃ (Cil ∪ C
j
r )

P̃ (Cil )P̃ (Cjr )
=

1

mp
|Ci−l ∩C

j−
r |

− p
|Ci+l ∩C

j+
r |

+

≤ 1

mp
|S∩Cj−r |
− p

|S∩Cj+r |
+

.

Therefore we get that there is a constant c such that:

P ∗∗(CM )

nsP (C)2
=

P ∗∗(CM )

nsP (Ci)P (Cj)

≤ c

ns

∏
xlyr∈M

P̃ (Cil ∪ C
j
r )

P̃ (Cil )P̃ (Cjr )

∏
xl∈L

P̃ (Cil )

P̃ (Cil )

∏
yr∈R

P̃ (Cjr )

P̃ (Cjr )

=
c

ns

∏
xlyr∈M

1

mp
|Ci−l ∩C

j−
r |

− p
|Ci+l ∩C

j+
r |

+

≤ c

ns

∏
yr 6∈R

1

mp
|S∩Cj−r |
− p

|S∩Cj+r |
+

= O

(
1

EX(Cj [S])

)
= o(1).

Here we get the bound in the last line as follows. If all dicliques in Cj [S]
are proper, we use (3). If Cj [S] has some improper dicliques, by Lemma 3.1
it is sufficient to consider the case where the assumption (4) holds. In this
case we use (5) with the family Ĉj [S]. This completes the proof. 2

The following fact follows easily from the estimates above.

Lemma 3.4 Fix an integer h ≥ 2. Let H be a digraph with V (H) = [h] and
at least one arc. Let {D(k)} be a sequence of random binomial intersection
digraphs such that mp−p+ → 0. Let S be a collection of simple diclique
covers of H. Suppose that µ(C) = O(1) for each C ∈ S and for each simple
cover C of H, such that C 6∈ S we have µ(C) → 0. Let C be any proper
diclique cover of H such that C 6∈ S. Then P (C ∈ D(k))→ 0.

Proof Suppose, the claim is false, i.e. there is a proper diclique cover C0
of H such that lim supP (C0 ∈ D(k)) > 0 and C0 6∈ S. By assumption and

13



(7) C0 cannot be simple. We may assume that C0 consists of some simple
cover C1 of H and a proper diclique C. By (7) and the definition of µ:
P (C0 ∈ D(k)) ≤ µ(C0) ≤ µ(C1)P̃ (C)→ 0 which is a contradiction. 2

4 Main proofs

The four special (see Section 2) diclique covers of the digraph
−→
Kh have the

following birth thresholds:

Lemma 4.1 Fix an integer h ≥ 2. Let {D(k)} be a sequence of random
binomial intersection digraphs such that n is increasing, p− → 0, p+ → 0

and mp−p+ → 0. Then the diclique covers CM , CR, Cin, Cout of
−→
Kh have

birth threshold functions τ1, τ2, τ3, τ4, respectively.

Proof Let C be one of the four special covers. To prove that τ is a birth
threshold function for C we may use Lemma 3.2. By that lemma it is enough
to show that whenever p− → 0, p+ → 0 and mp−p+ → 0 we have

τ → 0 =⇒ EX(C)→ 0; (12)

τ →∞ =⇒ for each non-empty set S ⊆ [h] : EX(C[S])→∞. (13)

Here τ = τ(k) = τ(n(k),m(k), p−(k), p+(k)).
By Lemma 3.1 we may assume that (4) holds.
For the monochromatic cover CM we see that for any non-empty set

S ⊆ V (CM ) of size s ≤ h, the restriction CM [S] has the same form as the
cover CM defined for h = s so:

µ(CM [S]) = nsm(p−p+)s = m1− s
h τ s1 .

So (12) and (13) follow by (3).
Consider now the diclique cover CR. Let S ⊆ V (CR) be non-empty and

write s = |S|. When s < h the restriction C = CR[S] is not a proper diclique
family as for each v ∈ S it contains (h − s) dicliques ({v}; ∅) and (h − s)
dicliques (∅; {v}). Therefore we need to use (5) with the family Ĉ.

If mp− → 0 and mp+ → 0 or S = [h] then Ĉ = C and

µ̃(C) = nsms(s−1)+2s(h−s)(p−p+)s(s−1)+s(h−s) = ms(h−s)τ
s(h−1)
2

and (12) follows by (3). If mp− → a1 > 0 and mp+ → 0 then Ĉ = C \
{({v}; ∅) : v ∈ S}.

µ̃(C) = nsms(s−1)+2s(h−s)(p−p+)s(s−1)+s(h−s)(mp−)−s(h−s)

= (p−)−s(h−s)τ
s(h−1)
2 .

14



The expression µ̃(C) for the case mp+ → b1 > 0 and mp− → 0 is similar
(replace p− with p+).

If mp− → a1 > 0 and mp+ → b1 > 0 by (5) the family Ĉ is exactly the
cover CR defined for h = s and

µ̃(C) = n
s(h−s)
h−1 τ

s(s−1)
2 .

In each case (13) holds by (5).
For the “in-stars” cover Cin we have

µ(Cin) = nhmhp
h(h−1)
− ph+ = τh3

so the implication (12) holds by (3). Now let S ⊂ V (Cin) be non-nempty
and write s = |S|. Suppose s ≥ 2. Then the diclique family C = Cin[S] is
not proper as it contains h− s copies of the diclique (S; ∅). If mps− → 0, we

use (5) with Ĉ = C:

µ̃(C) = nsms+(h−s)p
s(s−1)+s(h−s)
− ps+ = mh−sτ s3 .

If mps− → as > 0 then we have Ĉ = {(S \ {v}; {v}) : v ∈ S} so

µ̃(C) = nsms+(h−s)p
s(s−1)+s(h−s)
− ps+(mps−)−(h−s) = p

−s(h−s)
− τ s3 .

Now, if s = 1, in each of the cases a1 > 0, b1 > 0 and a1 = b1 = 0, see (4),
by (5) we have that EX(C) = Ω(τ3). Therefore by (5) we see that

EX(C)→∞ (14)

when τ3 → ∞ and S ⊆ V (Cin) is non-empty and so (13) holds for Cin.
Finally, the case of Cout is symmetric to that of Cin. 2

Remark 4.2 Let {D(k)} be as in Lemma 4.1. Let C be one of the four

special diclique covers of
−→
Kh and let τ be its birth threshold function given

in Lemma 4.1. If τ = Θ(1) then P (a copy of C is induced in D(k)) = Ω(1).

Proof From the proof of Lemma 4.1 we have that µ(C) = Θ(τh) for C ∈
{Cin, CM , Cout} and µ(CR) = Θ(τ

h(h−1)
2 ). So in each case, we have µ(C) =

Θ(1).
By (3) the number X = X(C) of induced copies of C satisfies

EX = Θ(µ(C)) = Θ(1).

15



The proof of Lemma 4.1 also shows that in each case µ(C[S]) = Ω(1) for each
S ⊆ V (C). Following the lines of the second part of the proof of Lemma 3.2
we see that

V ar(X)

(EX)2
= O(1).

Using the Cauchy-Schwartz inequality we get

P (X > 0) ≥ (EX)2

EX2
= Ω(1).

2

The next lemma says that if p− is sufficiently large then it is always
‘better’ to replace any diclique cover by a ‘star’ cover C′:

Lemma 4.3 Let h ≥ 3 be an integer and let {D(k)} be a sequence of ran-
dom binomial intersection digraphs such that n is increasing, p− → 0 and

m
h−1

h(h−2) p− = Ω(1). Let C be a diclique family consisting of a single proper di-
clique C = (C−;C+) with V (C) ⊆ [h]. Suppose |C+| ≥ 2 or |C− ∩C+| = 1.
Let C′ be a diclique family defined by

C′ =
{

(C− \ {v}; {v}) : v ∈ C+
}
.

Then P̃ (C′) = Ω(P̃ (C)). More precisely,

(a) If C 6= CM or m
h−1

h(h−2) p− →∞ then P̃ (C) = o(P̃ (C′));

(b) If C = CM and m
h−1

h(h−2) p− = Θ(1) then P̃ (C′) = Θ(P̃ (C)).

We note that C and C′ are both diclique covers of the diclique C.
Proof If |C+| = 1 and |C− ∩ C+| = 1 then

P̃ (C′)
P̃ (C)

= p−1− →∞

so we may assume that |C+| > 1. Let c− = |C−| and c+ = |C+|. Then

P̃ (C′)
P̃ (C)

=
mc+p

∑
C′−

− p
c+
+

mp
c−
− p

c+
+

= mc+−1p
∑
C′−−c−

−

≥ mc+−1p
(c+−1)(h−1)−1
− =

(
mp

h−1− 1
c+−1

−

)c+−1
(15)

≥
(
mp

h−1− 1
h−1

−

)c+−1
. (16)
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Here the inequality in the second line follows from:∑
C′− − c− ≤ (c+ − 1)(h− 1)− 1. (17)

To see (17) consider three possible cases:
If c− ∈ {1, 2, . . . , h− 2} then∑
C′− − c− ≤ c−c+ − c− = c−(c+ − 1) ≤ (h− 1)(c+ − 1)− (c+ − 1).

If c− = h − 1 then there is at most one diclique C ′ in C′ with C ′+ = {v}
such that v ∈ |C+ \ C−| so∑

C′− − c− ≤ (c− − 1)(c+ − 1) + c− − c− = (h− 1)(c+ − 1)− (c+ − 1),

and if c− = h,∑
C′− − c− ≤ c+(c− − 1)− c− = (h− 1)(c+ − 1)− 1.

Note that in the inequality (16) the right hand side can be of the same order
only for c+ = h. But if c+ = h and c− < h, we get∑

C′− − c− = (h− 2)c− < h(h− 2) = c+(h− 1)− 1,

so in that case the right hand side of the inequality (15) of a smaller order
than the left hand side. Now note that

mp
h−1− 1

h−1
− = Ω(1)

since p− = Ω
(
m
− h−1
h(h−2)

)
and m

1− h−1
h(h−2)(h−1−

1
h−1) = 1. Thus we have shown

that P̃ (C) = O(P̃ (C′)) and the claim (a) holds. To complete the proof, note
that for C = CM (17) and (16) become equalities. 2

The next lemma shows that if we have a diclique family consisting of
many “in-stars” centred at one vertex, we may merge all of them into a
single diclique.

Lemma 4.4 Let h ≥ 2 be an integer and let H be a digraph obtained from
the complete bipartite graph K1,h−1 by orienting each edge towards the centre
vertex v. Let C be any proper diclique cover of the digraph H of the form

C =
{

(C−i ; {v}), i = 1, . . . , t
}

17



where t ≥ 2 and
⋃
iC
−
i = V (H) \ {v}.

Let C∗ = {(V (H) \ {v}; {v})} be a cover of H and let {D(k)} be a se-
quence of random binomial intersection digraphs such that n is increasing,
p− → 0 and mp+ = O(1). Then

P̃ (C∗) = Ω(P̃ (C)).

More precisely,

(a) If mp+ = o(1) or
∑
C− > h− 1 then P̃ (C) = o(P̃ (C∗));

(b) If mp+ = Θ(1) and
∑
C− = h− 1 then P̃ (C∗) = Θ(P̃ (C)).

Proof Using (2) we have

P̃ (C)
P̃ (C∗)

=
aCm

tp
∑
C−

− pt+

mph−1− p+
= aC(mp+)t−1p

∑
C−−(h−1)

− = O(1)

since
∑
C− ≥ |

⋃
iCi| = h− 1. The claims (a) and (b) follow similarly. 2

Let us remark that we use P̃ rather than P in Lemma 4.3 and Lemma 4.4
for convenience. By (2) we know that P can be replaced by P̃ as long as
p−, p+ and mp−p+ all tend to 0. We are now ready to prove Theorem 2.1.

We split the proof of our main result into a few lemmas. In the four
lemmas below we assume that h, {D(k)}, n, α0,m are as in Theorem 2.1
p− → 0, p+ → 0 and µ(C) = µ(C, n,m, p−, p+) is as defined in Section 3.

Lemma 4.5 Suppose α < α0 and m
h−1

h(h−2) p− = Ω(1). Then τ3 is a birth

threshold function for
−→
Kh. Furthermore, if m

h−1
h(h−2) p− →∞ then the leading

set is L = {Cin} and if m
h−1

h(h−2) p− = Θ(1) then the leading set is L =
{Cin, CM}.

In each of the cases above, if τ3 = Θ(1) then µ(C) → 0 for any simple
diclique cover C 6∈ L and µ(C) = Θ(1) for C ∈ L.

Lemma 4.6 Suppose α < α0, m
h−1

h(h−2) p− → 0 and m
h−1

h(h−2) p+ → 0. Then

τ1 is a birth threshold function for
−→
Kh with the leading set L = {CM}.

If τ1 = Θ(1) then µ(C) → 0 for any simple diclique cover C 6∈ L and
µ(C) = Θ(1) for C ∈ L.

18



Lemma 4.7 Suppose α ≥ α0 and mp+ = O(1). Then τ3 is a birth threshold

function for
−→
Kh. Furthermore, if α ≥ α0 and mp+ → 0 then the leading set

is L = {Cin}; if α > α0 and mp+ = Θ(1) then the leading set is L = Sin; if
α = α0 and mp+ = Θ(1) then the leading set is L = {CM} ∪ Sin.

In each of the cases above, if τ3 = Θ(1) then µ(C) → 0 for any simple
diclique cover C 6∈ L and µ(C) = Θ(1) for C ∈ L.

Lemma 4.8 Suppose α ≥ α0, mp− → ∞ and mp+ → ∞. Then τ2 is a

birth threshold function for
−→
Kh. Furthermore, if α > α0 then the leading set

is L = {CR} and if α = α0 then the leading set is L = {CM , CR}.
In each of the cases above, if τ2 = Θ(1) then µ(C) → 0 for any simple

diclique cover C 6∈ L and µ(C) = Θ(1) for C ∈ L.

Proof of Theorem 2.1 Apply Lemmas 4.5-4.8 and notice that the cases
(i)(c) and (ii)(c) follow by symmetry. 2

Proof of Theorem 2.2 We note that if τ , τ ′ are birth threshold functions
for the sequence {D(k)} given by Theorem 2.2 then they are equivalent
in the sense that log τ = Θ(log τ ′). The cases (a), (c), (d), (f) follow by
Lemmas 4.5-4.8 and the remaining cases follow by symmetry. 2

The idea of the proof of Lemmas 4.5-4.8 is to consider the birth threshold
functions of the four special diclique covers and the boundaries determined
by them, see Figure 2. We will use Lemma 4.3 and Lemma 4.4 to compare

the probability of complicated diclique covers of
−→
Kh with the probability of

appropriate special covers. In the proofs we write D = D(k).

Proof of Lemma 4.5 By Lemma 3.1 we may assume that mp−p+ → a ∈
[0;∞].

Suppose that τ3 = τ3(k) = nmph−1− p+ → ∞ as k → ∞. If a = 0
then by Lemma 4.1 the random digraph D contains a copy of Cin whp.
If a > 0 consider a sequence of random digraphs {D′(k)} where D′(k) =
D(n,m, p−, p

′
+), p′+ = (ωmp−)−1 and ω = ω(n) grows slowly, say ω(n) =

lnn. We have

τ3(n,m, p−, p
′
+) = nmph−1− p′+ = nph−2− ω−1 = Ω

(
n1−

α(h−1)
h ω−1

)
.

So τ3(n,m, p−, p
′
+)→∞, mp−p

′
+ → 0 and p′+ = o(p+). We have that D′(k)

contains a copy of Cin whp by Lemma 4.1 and therefore D(k) contains a
copy of Cin whp by monotonicity.
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Now suppose that τ3 = Θ(1), so that µ(Cin) = τh3 = Θ(1). Notice that
since α < 1 we have

mp−p+ =
τ3

nph−2−
= O

(
1

nm−
h−1
h

)
= O

(
n−1+

α(h−1)
h

)
= o(1).

Let C be any simple diclique cover of
−→
Kh. We will show that

µ(C) = O(1) (18)

and furthermore we can replace O() with o() (respectively, Θ()) if C 6∈ L
(respectively, C ∈ L).

Assuming we have proved (18), we obtain that τ3 → 0 implies µ(C) →
0, since both τ3 and µ(C) are increasing multinomials in m, p−, p+. Now

the fact that τ3 is a birth threshold function for
−→
Kh follows by (6) and

Markov’s inequality since the number of simple diclique covers of
−→
Kh is

finite. Remark 4.2 implies that in the case µ(Cin) = τh3 = Θ(1) we have

P (Cin ∈ D) = Ω(1). If in addition mp
h−1

h(h−2)

− = Θ(1) then we have µ(CM ) =
τ1(n,m, p−, p+)h = Θ(1) and so P (CM ∈ D) > 0. So by Lemma 3.4 the set

L is leading (for the birth threshold function τ3 and
−→
Kh).

So let us prove (18). Suppose C = {C1, C2, . . . , Ct}. Using the definition
of µ and P̃ , see Section 3, we have

µ(C) = (h!)−1nhP̃ (C1)P̃ (C2) . . . P̃ (Ct)

= O
(
nhP̃ (C′1)P̃ (C′2) . . . P̃ (C′t)

)
(19)

= O(nhP̃ (Cin)) (20)

= O(µ(Cin)) = O(1). (21)

Here in (19) we apply Lemma 4.3 so that for each i = 1, . . . , t the diclique
family C′i is obtained from the family Ci = {Ci} by splitting it into “in-stars”.

The resulting family C′ = C′1 ∪ C′2 ∪ · · · ∪ C′t is a cover of
−→
Kh which consists

of possibly duplicated or overlapping “in-stars”. Next, in (20) we regroup
the terms and apply Lemma 4.4.

More precisely, note that by Lemma 4.3 we can replace O() with o() in
(19) in all cases except if

• p−m
h−1

h(h−2) = Θ(1) and C = CM ; or

• for each C ∈ C we have |C+| = 1 and C+ ∩ C− = ∅.
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We can complete the proof of (18) by noticing that since α < α0 we have

p+ = Θ
(
τ3/(mnp

h−1
− )

)
= o(m−1), so by Lemma 4.4 we can replace O()

with o() in (20) for the second exceptional case whenever C 6= Cin. 2

Proof of Lemma 4.6 First suppose that τ1 = τ1(k) = nm1/hp−p+ → ∞.
By Lemma 4.1, some copy of CM is induced in D whenever mp−p+ → 0.
Otherwise, using Lemma 3.1 we may assume that mp−p+ → a ∈ (0;∞].
Let p′− = (mp+ lnn)−1 and consider a sequence of random digraphs {D′(k)}
where D′(k) = D(n,m, p′−, p+). Then mp′−p+ → 0, p′− = o(p−) and
τ1(n,m, p

′
−, p+) → ∞. So we have that D′(k) contains an induced copy

of CM whp by Lemma 4.1 and by monotonicity CM ∈ D whp.
Now suppose that τ1 = Θ(1). In this case we have µ(CM ) = τh1 = Θ(1)

and

mp−p+ = O

(
m

1

nm1/h

)
= O

(
m

h−1
h

n

)
= O

(
n−1+α

h−1
h

)
→ 0.

Let us now show that for any simple diclique cover C of
−→
Kh, such that

C 6= CM we have µ(C) → 0. Lemma 4.6 will then follow by monotonicity,
Lemma 3.4, Lemma 4.1 and Remark 4.2.

Write t = p−p+ = Θ
(
n−1m−1/h

)
. By the definition of µ, see (3), we

have that for any simple diclique cover C of
−→
Kh

h!µ(C) = nhm|C|p
∑
C+

+ p
∑
C−

−

= nhm|C|p
∑
C+−

∑
C−

+ t
∑
C− (22)

= nhm|C|p
∑
C−−

∑
C+

− t
∑
C+ . (23)

Define p0 = m
− h−1
h(h−2) . Clearly, if

∑
C− ≥

∑
C+, then by (23):

µ(C) = µ(C, n,m, p−, p+) = O (µ(C, n,m, p0; t/p0)) .

Since τ3(n,m, p0, t/p0) = O(1) by Lemma 4.6 we get µ′ = µ(C, n,m, p0, t/p0) =
O(1) and furthermore µ′ → 0 if C 6∈ {CM , Cin}.

To see why µ(Cin) → 0, note that
∑
C−in >

∑
C+in and by (23) we have

µ(Cin, n,m, p0; t/p0) = o (µ(Cin, n,m, p−, p+)).
The case

∑
C+ >

∑
C− is similar by symmetry: we use Lemma 4.5 with

p− and p+ interchanged and replace τ3 with τ4, Cin with Cout. 2

Proof of Lemma 4.7 Suppose τ3 →∞. If mp−p+ → 0 then by Lemma 4.1,
D contains a copy of Cin whp. Otherwise let ω →∞ not too fast so that ω =
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o
(
τ
1/(h−1)
3

)
and let p′− = p−/ω. Consider a sequence of random digraphs

{D′(k)} where D′(k) = D(n,m, p′−, p+). By Lemma 4.1 and Lemma 3.1
P (Cin ∈ D′(k))→ 1 and so P (Cin ∈ D)→ 1 by monotonicity.

Now suppose τ3 = Θ(1), so that µ(Cin) = τh3 = Θ(1). In this case we
have mp−p+ = O(n−1/(h−1)) → 0. Let C be a any simple diclique cover of
−→
Kh. We will show that

µ(C) = O(1) (24)

and furthermore we can replace O() with o() (respectively, Θ()) if C 6∈ L
(respectively, C ∈ L).

Assuming (24) holds, since both τ3 and µ(C) are monotone increasing
multinomials in m, p−, p+ we have that τ3 → 0 implies µ(C)→ 0. Therefore
using Lemma 3.4, Lemma 4.1 and Remark 4.2 completes the proof of the
lemma in the case where mp− → 0. For the boundary case mp− = Θ(1), (24)
and Lemma 4.9 below shows that each cover in Sin belongs to the leading
set when α ≥ α0. If α = α0 we use the fact that µ1(CM ) = τh1 = Θ(1) and
Remark 4.2 to show that CM also belongs to L.

Let us check (24). We have

p− =

(
τ3

nmp+

)1/(h−1)
= Ω

(
m

−1
α(h−1)

)
= Ω

(
m
− h−1
h(h−2)

)
and m

h−1
h(h−2) p− → ∞ when α > α0. So we may apply Lemmas 4.3 and 4.4

as in the proof of Lemma 4.5 to get that

µ(C) = O(µ(Cin)) = O(1) (25)

Furthermore, Lemma 4.3 and Lemma 4.4 also give that we may replace O()
with o() in (25) in all cases, except if

• C = CM and m
h−1

h(h−2) p− = Θ(1) or

• mp+ = Θ(1), |C+| = 1 for each C ∈ C and for each j = 1, . . . , h the
diclique cover Cj obtained by taking all dicliques C ∈ C that have
C+ = {j} satisfies

∑
C−j = h− 1.

The first exception occurs only if α = α0 and mp+ = Θ(1). The second
exception represents all diclique covers C ∈ Sin. This completes the proof
of (24). 2

Proof of Lemma 4.8 Suppose τ2 = n1/(h−1)mp−p+ →∞. If mp−p+ → 0
the random digraph D contains a copy of CR whp by Lemma 4.1. Other-
wise, assume that mp−p+ → a ∈ (0;∞]. Let p′− = (mp+ lnn)−1 = o(p−).
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Then the random digraph D(n,m, p′−, p+) contains a copy of CR whp by
Lemma 4.1 since mp′−p+ → 0 and τ2 → ∞. Monotonicity and Lemma 3.1
imply that D contains a copy of CR whp in all cases when τ2 →∞.

Now suppose that τ2 = Θ(1). Similarly as above, we have µ(CR) =
τh−12 = Θ(1) and mp−p+ = O

(
n−1/(h−1)

)
→ 0. Let C be a simple diclique

cover of
−→
Kh. We will show that if C 6 L then µ(C) → 0. As in the proof

of Lemma 4.6 we will then be able to complete the proof using Lemma 4.1,
Markov’s inequality, Lemma 3.4 and Remark 4.2 (for the case α = α0 notice
that τ1(n,m, p−, p+) = Θ(1), so the birth threshold functions τ1 and τ2
become equivalent).

Suppose
∑
C− ≥

∑
C+. Using (22) we have

µ(C) = µ(C, n,m, p−, p+) = O (µ(C, n,m, t/p0, p0))

where t = p−p+ and p0 = m−1. Also note that when C− > C+

µ(C) = o(µ(C, n,m, t/p0, p0)). (26)

Since τ3(n,m, t/p0, p0) = nm
(
n−1/(h−1)m−1p−10

)h−1
p0 = Θ(1) we can apply

(25) from Lemma 4.7 for the sequence of random digraphs {D(n,m, t/p0, p0)}
to get that µ(C, n,m, t/p0, p0) = O(1).

Lemma 4.7 also gives that µ(C, n,m, t/p0, p0)→ 0 for all simple diclique
covers, except if C = CM in the case α = α0 or if C ∈ Sin. It remains to
check that µ(C0) → 0 for any diclique cover C0 ∈ Sin such that C0 6= CR.
But any C0 ∈ Sin \ {CR} has

∑
C−0 >

∑
C+0 , therefore µ(C0)→ 0 by (26).

The case
∑
C− <

∑
C+ is similar because of symmetry. 2

Lemma 4.9 Let h, {D(k)}, n, α0,m be as in Theorem 2.1. Suppose p− → 0
and p+ → 0, α ≥ α0 and mp+ = Θ(1). Consider any diclique cover C0 ∈ Sin.
If τ3 = τ3(n,m, p−, p+) = Ω(1) then P (C ∈ D(k)) = Ω(1) and if τ → ∞
then D(k) contains C whp.

Proof Write D = D(k). By Lemma 4.7 we have µ(C0) = Θ(1) whenever
τ3 = Θ(1) .

Assume first that τ3 →∞. We claim that for any non-empty set S ⊆ [h]:

µ(C0[S]) = Ω(µ(Cin[S])). (27)

By (14) in the proof of Lemma 4.1 we have that µ(Cin[S])→∞.
By Lemma 3.1 we may assume that (4) holds. Also, since p− → 0 we

have mp−p+ → 0.
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First consider the case S = {v} for some v ∈ [h]. By the definition of Sin,
C0[S] consists of exactly h − 1 dicliques ({v}, ∅) and one or more dicliques
(∅; {v}). Let us apply (5). Since mp+ = Θ(1), the set Ĉ0[S] is equal to
Ĉin[S], so (27) follows by (14) for the case |S| = 1.

Now suppose |S| ≥ 2. Split a given diclique family C into the family of
its proper dicliques C′ and the family of its improper dicliques C′′ so that
C = C′ ∪ C′′. Note that if V (C′′) ⊆ V (C′) by (5) we have

EX(C) = Θ(µ(C′)P̃ (C̃′′)) (28)

where C̃′′ is the collection of dicliques C of C′′ that satisfy P̃ (C)→ 0.
By Lemma 4.4 we have µ(C0[S]′) = Θ(µ(Cin[S]′)). If mps− → 0 then

C̃in[S]′′ consists of h − s dicliques (S; ∅). Similarly, since C0 ∈ Sin, the set
C̃0[S]′′ can be partitioned into h−s families of improper dicliques C1, . . . , Ch−s
so that each Ci consists of pairwise disjoint dicliques,

∑
C−i ≤ s and

∑
C+i =

0. We have for each i = 1, . . . , h− s:∏
C∈Ci

P̃ (C) = m|Ci|p
∑
C−i

− = Ω(P̃ (S; ∅)).

If mps− → as > 0 then both C̃0[S]′′ and C̃in[S]′′ are empty. So in each case

P̃ (C̃0[S]′′) = Θ

(∏
i

P̃ (Ci)

)
= Ω(P̃ (C̃in[S]′′))

and (27) follows by (28). Now (27) and Lemma 3.2 imply that D contains
a copy of C0 whp when τ3 →∞.

Finally, we need to check that P (C0 ∈ D) = Ω(1) if τ3 = Θ(1). We note
that in this case (27) still holds. Therefore the same argument as in the
proof of Remark 4.2 shows that P (C0 ∈ D) = Ω(1). 2

Proof of Remark 2.3 Write D = D(k). Consider two simple diclique

covers of
−→
K2, namely CR = Cin = Cout and CM . Clearly,

−→
Kh ∈ D implies

that CR ∈ D or CM ∈ D.
Let us show that τ2 → ∞ implies P (CR ∈ D) → 1. If mp−p+ → 0

this follows by Lemma 4.1. Otherwise, using Lemma 3.1 we may assume
mp−p+ → c ∈ (0;∞]. Consider another sequence of random digraphs
{D′(k)} whereD′(k) = D(n,m, (ωmp+)−1, p+) and ω = lnn. By Lemma 4.1
we have that CR ∈ D′(k) whp, and by monotonicity CR ∈ D whp.

Now suppose τ2 = O(1). Then τ1 = m−1/2τ2 → 0 and µ(CM ) = τh1 → 0.

This implies by (3) that any simple cover C of
−→
K2 such that C 6= CR must
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have µ(C) → 0. By Lemma 4.1 and Lemma 3.4 for any proper diclique
cover C 6= CR we have P (C ∈ D) → 0. Finally Remark 4.2 shows that
P (CR ∈ D) = Ω(1) if τ2 = Θ(1) and so CR is indeed the leading cover. 2

A Proofs of (1)-(8)

We will prove the estimates from Section 3.

Proof of (1) - (8) Similarly as in [13] we can represent D by two random
n by m binary matrices R− and R+ where R−ij = 1 if and only if j ∈ S−(i)

and R+
ij = 1 if and only if j ∈ S+(i).

To prove (1) we will apply Lemma 2 from [13]. The probability of success
p is the probability that a fixed key generates C on a fixed set S ⊇ C−∪C+:

p = p
|C−|
− p

|C+|
+ (1− p−)|S|−|C

−|(1− p+)|S|−|C
+|.

We have that p ∼ p
|C−|
− p

|C+|
+ since |S| is fixed and p−, p+ → 0. Since

C is proper and mp−p+ → 0 we have that mp → 0. By independence
and the inclusion-exclusion principle (or by Lemma 2 of [13]) we have that

P (C) ∼ mp ∼ mp
|C−|
− p

|C+|
+ . Equation (2) follows from analogous reasoning

as in the proof of Theorem 3 of [13]. For the random digraph D let NC

count the number of different attributes w ∈ W that generate the diclique
C (on the set V (C)). Suppose {C1, C2, . . . , Ct} are all distinct dicliques in
C where Ci has multiplicity ai, i = 1 . . . t and let {Ct+1, . . . , CM} be the set
of all proper dicliques on V (C) that are not in C. Then by Lemma 1 of [13]:

P (C) = P (NC1 = a1, . . . , NCt = at, NCt+1 = 0, . . . , NCM = 0)

∼ P (NC1 ≥ a1, . . . , NCt ≥ at, NCt+1 = 0, . . . , NCM = 0)

∼ P (C1)
a1

a1!

P (C2)
a2

a2!
. . .

P (Ct)
at

at!
∼ aCm|C|p

∑
C−

− p
∑
C+

+

since for j > t, P (NCj = 0) = 1 − P (Cj) → 1. Now the equation (3) is
immediate since EX(C) =

(
n

|V (C)|
)
P (C).

To see (5), recall that by Lemmas 1 and 2 of [13] we have for any diclique
family C:

P (C) ∼
∏
C∈C

P (C) ∼ KaC
∏
C∈Ĉ

P (C)

where K =
∏
C∈C\Ĉ P (C) is a constant.
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The proof of the upper bounds (6) and (7) is much simpler: we sum the
probability that D contains a fixed copy of C realised by a fixed tuple of
attributes,

∏
C∈C P̃ (C), over all

(
m

a1,...,at

)
ways to pick a relevant tuple, and,

for the bound (7), over all
(

n
|V (C)|

)
sets of V of size |V (C)|. The estimate

follows by the union bound. The estimate (8) follows similarly. 2
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