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Abstract

We consider sparse random intersection graphs with the property that the clustering
coefficient does not vanish as the number of nodes tends to infinity. We find explicit
asymptotic expressions for the correlation coefficient of degrees of adjacent nodes
(called the assortativity coefficient), the expected number of common neighbours of
adjacent nodes, and the expected degree of a neighbour of a node of a given de-
gree k. These expressions are written in terms of the asymptotic degree distribution
and, alternatively, in terms of the parameters defining the underlying random graph
model.
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1 Introduction

Assortativity and clustering coefficients are commonly used characteristics describ-
ing statistical dependency of adjacency relations in real networks ([18], [2], [20]). The
assortativity coefficient of a simple graph is the Pearson correlation coefficient between
degrees of the endpoints of a randomly chosen edge. The clustering coefficient is the
conditional probability that three randomly chosen vertices make up a triangle, given
that the first two are neighbours of the third one.

It is known that many real networks have non-negligible assortativity and cluster-
ing coefficients, and a social network typically has a positive assortativity coefficient
([18], [21]). Furthermore, Newman et al. [21] remark that the clustering property (the
property that the clustering coefficient attains a non-negligible value) of some social
networks could be explained by the presence of a bipartite graph structure. For ex-
ample, in the actor network two actors are adjacent whenever they have acted in the
same film. Similarly, in the collaboration network authors are declared adjacent when-
ever they have coauthored a paper. These networks exploit the underlying bipartite
graph structure: actors are linked to films, and authors to papers. Such networks are
sometimes called affiliation networks.
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In this paper we study assortativity coefficient and its relation to the clustering coef-
ficient in a theoretical model of an affiliation network, the so called random intersection
graph. In a random intersection graph nodes are prescribed attributes and two nodes
are declared adjacent whenever they share a certain number of attributes ([11], [15],
see also [1], [13]). An attractive property of random intersection graphs is that they
include power law degree distributions and have tunable clustering coefficient see [5],
[6], [8], [12]. In the present paper we show that the assortativity coefficient of a random
intersection graph is non-negative. It is positive in the case where the vertex degree
distribution has a finite third moment and the clustering coefficient is positive. In this
case we show explicit asymptotic expressions for the assortativity coefficient in terms
of moments of the degree distribution as well as in terms of the parameters defining the
random graph. Furthermore, we evaluate the average degree of a neighbour of a vertex
of degree k, k = 1,2,..., (called neighbour connectivity, see [16], [23]), and express it
in terms of a related clustering characteristic, see (1.3) below.

Let us rigorously define the network characteristics studied in this paper. Let G =
(V,€) be a finite graph on the vertex set V and with the edge set £. The number of
neighbours of a vertex v is denoted d(v). The number of common neighbours of vertices
v; and v, is denoted d(v;, v;). We are interested in the correlation between degrees d(v;)
and d(v;) and the average value of d(v;,v;) for adjacent pairs v; ~ v; (here and below
‘~’ denotes the adjacency relation of G). We are also interested in the average values of
d(v;) and d(v;, v;) under the additional condition that the vertex v; has degree d(v;) = k.

In order to rigorously define the averaging operation we introduce the random pair
of vertices (v],v3) drawn uniformly at random from the set of ordered pairs of dis-
tinct vertices. By Ef(vi,v3) = m >izj [(vi,vj) we denote the average value of
measurements f(v;,v;) evaluated at each ordered pair (v;,v;), ¢ # j. Here N = |V| de-
notes the total number of vertices. By E* f(v,v5) = p,' E (f(v],v5)I{yr~v3}) We denote
the average value over ordered pairs of adjacent vertices. Here p.. = P(vf ~ v3)
denotes the edge probability and Iy,,~,;; = 1, for v; ~ v;, and 0 otherwise. Fur-
thermore, E** f(v},v3) = p; 'E (f(vF,v3) 5o w31 lga(us) =k} ), denotes the average value
over ordered pairs of adjacent vertices, where the second vertex is of degree k. Here
pre = P(uf ~ 03, d(v3) = k).

The average values of d(v;)d(v;) and d(v;,v;) on adjacent pairs v; ~ v; are now
defined as follows

9(G) = E*d(v})d(v3),  h(G) =E"d(vi,v3),  hi(G) = E*d(v],v3).
We also define the average values
b(G) =E*d(v]),  V(G) =E'd*(v{),  b(G) =E"d(v])

and the correlation coefficient

9(9) - ¥*(9)
v (G) —02(G)’

called the assortativity coefficient of G, see [18], [19].

In the present paper we assume that our graph is an instance of a random graph. We
consider two random intersection graph models: active intersection graph and passive
intersection graph introduced in [10] (we refer to Sections 2 and 3 below for a detailed
description). Let G denote an instance of a random intersection graph on N vertices.
Here and below the number of vertices is non random. An argument bearing on the
law of large numbers suggests that, for large N, we may approximate the character-
istics b(G), V'(Q), bp(G), 9(G), h(G) and hi(G) defined for a given instance G, by the

r(9) =
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corresponding conditional expectations

b=E"d(v}), UV =Ed*w}), b.=E"*d®x}), (1.1)
g=E"d(v{)d(v;),  h=FE"d(vi,v3), hp=E"d(v],03),

where now the expected values are taken with respect to the random instance G and
the random pair (v}, v3). We assume that (v}, v3) is independent of G. Similarly, we may
approximate r(G) by r = bg/__l;;.

The main results of this paper are explicit asymptotic expressions as N — +oo
for the correlation coefficient r, the neighbour connectivity b, and expected number
of common neighbours h; defined in (1.1). As a corollary we obtain that the random
intersection graphs have tunable assortativity coefficient » > 0. Another interesting

property is expressed by the identity

b —hpy =b—h+o(1) as N — 400 (1.2)

saying that the average value of the difference d(v;) — d(v;,v;) of adjacent vertices v; ~
v; is not sensitive to the conditioning on the neighbour degree d(v;) = k. That is, a
neigbour v; of v; may affect the average degree d(v;) only by increasing/decreasing
the average number of common neighbours d(v;,v;). It is relevant to mention that
he = (k — 1)al*l, where olFl = P(vi ~ wvilvr ~ v, v5 ~ v}, d(vi) = k) measures the
probability of an edge between two neighbours of a vertex of degree k. In particular,
we have

bp=(k—-1a®+b—h+0o(1) as N — 4oo. (1.3)

The remaining part of the paper is organized as follows. In Section 2 we introduce
the active random graph and present results for this model. The passive model is con-
sidered in Section 3. Section 4 contains proofs.

2 Active intersection graph

Let s > 0. Vertices vy,...,v, of an active intersection graph are represented by
subsets Dy, ..., D, of a given ground set W = {wy, ..., w,,}. Elements of W are called
attributes or keys. Vertices v; and v; are declared adjacent if they share at least s
common attributes, i.e., we have |D; N D;| > s.

In the active random intersection graph G4(n,m, P) every vertexv; € V = {vy,...,v,}
selects its attribute set D; independently at random ([11]) and all attributes have equal
chances to belong to D;, foreach ¢ = 1,...,n. We assume, in addition, that independent
random sets D1, ..., D, have the same probability distribution such that

my—1
P(D; =A4)= (%) P(AD, 2.1)

for each A C W, where P is the common probability distribution of the sizes X; = |D,|,
1 < i < n of selected sets. We remark that X;, 1 < ¢ < n are independent random
variables.

We are interested in the asymptotics of the assortativity coefficient » and moments
(1.1) in the case where G,(n,m, P) is sparse and n, m are large. We address this
question by considering a sequence of random graphs {G(n, m, P)},,, where the integer
s is fixed and where m = m,, and P = P,, depend on n. We remark that subsets of W of
size s plays a special role, we call them joints: two vertices are adjacent if their attribute

sets share at least one joint. Our conditions on P are formulated in terms of the number
X1
S

of joints ()g’) available to the typical vertex v;. We denote a = E( ) . It is convenient

to assume that as n — oo the rescaled number of joints Z; = (T)_l/in/Q (**) converges
in distribution. We also introduce the k-th moment condition
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(i) Z, converges in distribution to some random variable Z;

(ii-k) 0 < EZ* < o0 and lim,, ., EZF = EZ*.

We remark that the distribution of Z, denoted Pz, determines the asymptotic degree
distribution of the sequence {Gs(n,m, P)}, (see [5], [6], [8], [25]). We have, under
conditions (i), (ii-1) that

lim P (dvi) =k)=pe, pe=E)TE((z12)fe %), k=0,1,.... (2.2)
Here we denote z;, = EZ*. Let d, be a random variable with the probability distribution
P(d. = k) = px, kK = 0,1,.... We call d. the asymptotic degree. It follows from (2.2)
that the asymptotic degree distribution is a Poisson mixture, i.e., the Poisson distribu-
tion with a random (intensity) parameter z;Z. For example, in the case where Py is
degenerate, i.e., P(Z = z1) = 1, we obtain the Poisson asymptotic degree distribution.
Furthermore, the asymptotic degree has a power law when P, does. We denote

6; =Ed., §;=E(d,);, where (z);=x(x—1)---(z—i+1). (2.3)

Another important characteristic of the sequence {G,(n,m, P)}, is the asymptotic
ratio # = lim,, o () /n. Together with Py it determines the first order asymptotics of
the clustering coefficient o = P(vy ~ va|vy ~ v3,v3 ~ v3), see [6], [8]. Under conditions
(i), (ii-2), and

(T)n~" = B € (0,+00) (2.4)
we have
- aq - 1 5f/2

Furthermore, we have o = o(1) in the case where (")n~! — +oo. We remark that
a = o(1) also in the case where the second moment condition (ii-2) fails and we have
EZ? = 400, see [6].

To summarize, the clustering coefficient o does not vanish as n,m — co whenever
the asymptotic degree distribution (equivalently P~) has finite second moment and 0 <
B < .

Our Theorem 2.1, see also Remark 1, establishes similar properties of the assorta-
tivity coefficient r: it remains bounded away from zero whenever the asymptotic degree
distribution (equivalently P;) has finite third moment and 0 < 8 < cc.

Theorem 2.1. Let s > 0 be an integer. Let m,n — oo. Assume that (i) and (2.4) are

satisfied. In the case where (ii-3) holds we have
a1
r = + o(1 (2.6)
B~1(araz — a3) + as @
5/

1
VB 538, — 3a + 820,

+o(1). (2.7)

In the case where (ii-2) holds and EZ3 = oo we have r = o(1).

We note that the inequality a;az > a3, which follows from Holder’s inequality, implies
that the ratio in the right hand side of (2.6) is positive.

Remark 1. In the case where (i), (ii-2) hold and (7")n~! — +oo we have r = o(1).

Our next result Theorem 2.2 shows a first order asymptotics of the neighbour con-
nectivity b; and the expected number of common neighbours hy.
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Theorem 2.2. Let s > 1 and k > 0 be integers. Let m,n — oco. Assume that (i), (ii-2)
and (2.4) hold. We have

b=1+p8"tag+o0(1), h=p"ta+o(1) (2.8)
and
ar k  p
h _ o(1), (2.9)
HS B ipe oW
bryr = 1+ B ag —ay) + hpyt +o(1). (2.10)

Here a; = (861)"/? + o(1) and ay = Bd2/81 + o(1).

We remark that the distribution of the random graph Gs(n, m, P) is invariant under
permutation of its vertices (we refer to this property as the symmetry property in what
follows). Therefore, we have b = E(d(v1)|v1 ~ v2) and by = E(d(v1)|v1 ~ ve,d(ve) = k+
1). In particular, the increment by, 1 — b shows how the degree of v, affects the average

degree of its neighbour v;. By (2.8), (2.10), we have by — b= % (k%pfil _ 1) +o(1).

In Examples 1 and 2 below we evaluate this quantity for a power law asymptotic degree
distribution and the Poisson asymptotic degree distribution.

Example 1. Assume that the asymptotic degree distribution has a power law, i.e., for
some ¢ > 0 and v > 3 we have p;, = (¢ + o(1))k~7 as k — +oc0. Then
k pr y—1

L L S
k+1prsa k olk™)

Hence, for large k, we obtain as n,m — +oo that byy1 — b k=1 (y — 1)(61/8)"/2.

Example 2. Assume that the asymptotic degree distribution is Poisson with mean
A>0,ie., pr =e *\¥/k!. Then

k
LY _126_1
k+1pki

>

and, for large k, we obtain as n,m — 4oo that
b1 — b~ (A8) "2k, (2.11)

Our interpretation of (2.11) is as follows. We assume, for simplicity, that s = 1. We say
that an attribute w € W realises the link v; ~ v;, whenever w € D; N D;. We note that in
a sparse intersection graph G;(n,m, P) each link is realised by a single attribute with
a high probability. We also remark that in the case of the Poisson asymptotic degree
distribution, the sizes of the random sets, defining intersection graph, are strongly
concentrated about their mean value a;. Now, by the symmetry property, every element
of the attribute set D, of vertex vs realises about k/|Ds| & k/aq links to some neighbours
of v, other than v;. In particular, the attribute responsible for the link v; ~ v, attracts
to v; some k/a; neighbours of vo. Hence, b1 — b~ a] 'k ~ (3\)"'/2k.
Finally, we remark that (2.8), (2.9), and (2.10) imply (1.2).

3 Passive intersection graph

A collection Dy, ..., D, of subsets of a finite set W = {wy,...,w,,} defines the pas-
sive adjacency relation between elements of W: w; and w; are declared adjacent if
w;, w; € Dy for some Dy. In this way we obtain a graph on the vertex set W, which
we call the passive intersection graph, see [11]. We assume that Dq, D-,..., D, are
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independent random subsets of W having the same probability distribution (2.1). In
particular, their sizes X; = |D;|, 1 < i < n are independent random variables with the
common distribution P. The passive random intersection graph defined by the collec-
tion Dy, ..., D, is denoted G5 (n,m, P).

We shall consider a sequence of passive graphs {G7(n,m, P)},, where P = P,, and
m = m, depend on n = 1,2,.... We remark that, in the case where 3, = mn~! is
bounded and it is bounded away from zero as n, m — 400, the vertex degree distribution
can be approximated by a compound Poisson distribution ([6], [14]). More precisely,
assuming that 8, — 8 € (0, +00);

(iii) Xy converges in distribution to a random variable Z;

(iv) EZ*/3 < 0o and lim,_, EX}/® = EZ4/3

it is shown in [6] that d(w) converges in distribution to the compound Poisson ran-
dom variable d,. := Z;\:l Zj. Here Zl, Zg,. ..are independent random variables with
the distribution

P(Zi=j))=0G(+1)P(Z=j+1)/EZ, j=0,1,...,

in the case where EZ > 0. In the case where EZ = 0 we put P(Z; = 0) = 1. The random
variable A is independent of the sequence Zl, Zg,. ..and has Poisson distribution with
mean EA = 37 'EZ.

We note that the asymptotic degree d,, has a power law whenever Z has a power
law. Furthermore, we have Ed’, < co & EZ"T! < 00,1 =1,2,....

In Theorems 3.1, 3.2 below we express the moments b, h, b, hix and the assortativity
coefficient r = % of the random graph Gj(n, m, P) in terms of the moments

yi=E(X1); and 6,=Ed, i=12,....

Theorem 3.1. Letn, m — oco. Assume that (iii) holds and
V) P(Z>2)>0, EZ* < 0o and lim,, .., EX{ = EZ*,
In the case where 3,, — ( € (0,4+00) we have

3 — 12
S Y24 + Y2Ys — Y3 +o(1) (3.1)

Yoys + y2yz — y3 + Bn '3 (Y2 + y3)

6*2521 - 541
56,0 =02, W (3:2)

= 1—

In the case where 3, — 400 we have r = 1 — o(1). In the case where 3, — 0 and
nB3 — +oo we have r = o(1).

Remark 2. We note that y, := yays + y2y3 — ¥3 is always non-negative. Hence, for
large n, m we have r > 0. To show that y,. > 0 we combine the identity 2y. = Ey(X;, X32),
where

y(i,5) = y'(i,5) +y' (5,9, ¥'(6,5) = (D)2(5)a + (1)2(5)s — (1)3(4)3,

with the simple inequality
y(i,§) = (0)2(1)2 ((1-2)° + (1 —2)* = 2(i = 2)(j — 2)) > 0.

Remark 3. Assuming that y; > 0 and y2 = o(mf3,) as m,n — +oo, Godehardt et al.
[12] showed the following expression for the clustering coefficient of G; (n, m, P)

—Qm—l 3_|_
_ Bn Ys Y3 +O(1)

— (3.3)
Bn ly% + Y3

«
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Now, assuming that conditions (iii) and (v) hold we compare « and r using (3.1) and
(3.3). For 8, — € (0,400) we have r < 1and o = (1+43/(8ys)) " +o(1) < 1. In the
case where 3, - +oo we have r = 1 — o(1) and & = 1 — o(1). In the case where 5, — 0
and n32 — +o0o we have r = o(1) and o = o(1).

Our last result Theorem 3.2 shows a first order asymptotics of the neighbour con-
nectivity by and the expected number of common neighbours h; in the passive random
intersection graph.

Theorem 3.2. Let m,n — co. Assume that 3, — 8 € (0, +00) and (iii), (v) hold. Then
b=1+ ﬁ;lyg + y;lyg +0(n ) = (5*25*_11 +o(1), (3.4)
h=yyys +O(n') = 8,00 — 1 — 6.1 +0(1). (3.5)

Assuming, in addition, that P(d.. = k) > 0, where k > 0 is an integer, we have
hi = k™ E(da|dus = k) 4 0(1), (3.6)
b =14 B Yy + hi + 0(1) = 14 6,1 + hy + 0(1). (3.7)

Here ds, = ZlSiSA(Zi)Q.

We remark that (3.4), (3.5), (3.6), (3.7) imply (1.2).

4 Proofs

Proofs for active and passive graphs are given in Section 4.1 and Section 4.2 re-
spectively. We note that the probability distributions of G4(n, m, P) and G5 (n, m, P) are
invariant under permutations of the vertex sets. Therefore, for either of these models
we have

b = E12d(w1), h = E12d(bd1,bd2), (41)
bk = Elg(d(w2)|d(w1) = k‘), h,k = Elg(d(wl,w2)|d(w1) = k)
Here w; # wy are arbitrary fixed vertices and E;> denotes tye cond}tional expectation
given the event w; ~ ws. In the proof P and E (respectively, P, and E,) denote the con-
ditional probability and expectation given X;,..., X,, (respectively, D1, Do, X1,..., X},).

Limits are taken as n and m = m, tend to infinity. We use the shorthand notation
fr(\) = e=*\¥ /! for the Poisson probability.

4.1 Active graph

Before the proof we introduce some more notation. Then we state and prove auxil-
iary lemmas. Afterwards we prove Theorem 2.1, Remark 1 and Theorem 2.2.

The conditional expectation given Dy, D> is denoted E,. The conditional expectation
given the event v; ~ vy is denoted E;,. We denote

Y = (%), di = d(vi), di=d; =1,  dij =d(vi,vy),

S

]Ii :]I{Xi<m1/4}? Eizl—ﬂi, Nij = 1—ﬁl—ﬁ] —(m1/2—1)71 (42)
and introduce events
&;={IDinD;l=s},  &;={IDinD;j|>s+1},  &;={|D;NDj| > s}.

Observe that &;; is the event that v; and v; are adjacent in G;(n, m, P). We denote

pe=P(;), a;=EY!, z,=EX{, z=EZ', m= ("), B,=

S

JE!

(4.3)
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We remark that the distributions of X; = X,,;, V; = Y,; and Z; = Z,; = (n/m)Y?Y,;
depend on n.

The following inequality is referred to as LeCam’s lemma, see e.g., [26].

Lemma 4.1. Let S =1 +1,+---+1,, be the sum of independent random indicators with
probabilities P(I; = 1) = p;. Let A be Poisson random variable with mean p; + - - - + py,.
The total variation distance between the distributions Ps and P, of S and A

sup [P(S€eA)-PAecA)< 22}9?. (4.4)
Ac{0,1,2... } P

Lemma 4.2. ([6]) Given integers 1 < s < ky < ko < m, let D1, D5 be independent
random subsets of the set W = {1,...,m} such that D, (respectively D) is uniformly
distributed in the class of subsets of W of size k, (respectively k,). The probabilities
p' :=P(|D1 N D3| = s) and p” :=P(|D1 N D3| > s) satisfy

(1 _ (k1 —s)(k2 — 5)

* / // *
mil ok )pkl,k2,s O L N (4.5)

Here we denote py, ;. . = (kl) (kz) (T)il'

S S

Lemma 4.3. Let s > 0 be an integer. Let m,n — oco. Assume that conditions (i) and
(ii-3) hold. Denote X,; = m~1/?nY/ 29X, Ik > . We have

ALHJIFlOO sup EZ\ 1z, >4 =0, (4.6)
supEXn1 < 00, LHEOOSHPEX“H{X >ay = 0. (4.7)

For any 0 < u < 3 and any sequence A, — +0o as n — oo we have
EZ;,‘J]I{ZTLQAH} =o(1), EX“S]I{X7 AL} = o(1). (4.8)

Proof of Lemma 4.3. The uniform integrability property (4.6) of the sequence {Z3,},, is
a simple consequence of (i) and (ii-3), see, e.g., Remark 1 in [5]. The first and second
identity of (4.7) follows from (ii-3) and (4.6) respectively. Finally, (4.8) follows from (4.6)
and (4.7). O

Lemma 4.4. In G,(n,m, P) the probabilities of events &; = {v; ~ v;}, £15, £15, see
(4.2), and B; = {|D, N (D1 U Dy)| > s + 1} satisfy the inequalities

V1Yo 'nia < P(E]y) < P(E12) < Yo, (4.9)
YiYym~li; < Pu(€y) = P( &) <YiYym~',  for  {i,j} #{1,2}, (4.10)
P(E],) < V1Y Xy Xo(am) ™! (4.11)
P, (By) <2° ((s + Dlum) ™" Xt(XS“ + X5, (4.12)

We recall that Y; and n;; are defined in (4.2).

Proof of Lemma 4.4. The right hand side of (4.9), (4.10) and inequality (4.11) are im-
mediate consequences of (4.5). In order to show the left hand side inequality of (4.9)
and (4.10) we apply the left hand side inequality of (4.5). We only prove (4.9). We have,
see (4.2),

P(&]y) = Elgy, > Elg IiT, > i ' V1Yol Tp (1- X1 Xo(m—X1) 1) > i 'Y1Yamo. (4.13)
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In order to show (4.12) we apply the right-hand side inequality of (4.5) and write

P.(B) < (P97 (2D () < (U G ) (4.14)

Invoking the inequalities (}*)) (5T1)71 = }:;L((ﬁf:)) < X% and
(X1 + Xo)op1 < (X4 Xo)*F < 29X 4 X511
we obtain (4.12). O

Lemma 4.5. Assume that conditions of Theorem 2.2 are satisfied. Let k > 0 be an
integer. For di =Y, ,., I¢,, and A = P.(d} = k) — fx(6~'a1Y1) we have

E.|A| < Ry + R5 + R; + R}, (4.15)
where R} = nin 'E.Y1Y4|1 — 14| and
R; = nl/zm_laé/th R} = a1 Yi|(n —3)m~ ' — B, R} = 2nm 2a Y.
We recall that fi(\) = e 2\ /k.

Proof of Lemma 4.5. We denote S = E.d} = D a<i<n P.(&;) and S = m~! Daci<n Yt
and write

A=A+ Ay, Ay =P (d] =k) = fr(S), A= fi(S)— frlB a1 11).

We have, by Lemma 4.1, [Aq] <23, ., P2(£1,). Invoking (4.10) we obtain E,|A;| <
R;. Next, we apply the mean value theorem |f;(\) — fr(A")] < |N — N\’| and write

|Ao] < IS = B arYi| <} + 75 + RS, (4.16)
where r; = |S — Y1 S;| and 75 = Y1|S; — (n — 3)7 a1 |. Note that by (4.10),

1P < Y PL(E) — T Y < > mT YL -
4<t<n 4<t<n

and, by symmetry, E.r] < Rj. Finally, we have

- - - . 1/2
E.r5 = ViE.|S - E.51| <71 (B.(8 - B.$1)?) < B3,

O
Lemma 4.6. Let m,n — oco. Assume (i), (ii-3) and (2.4) hold. Then
Eod,dy = ni " tay +n*m a3 + o(1), (4.17)
Eiod; = nintay + o(1), (4.18)
Ei2(d})? = E12d; +n*m 2aras + o(1), (4.19)
Eiodis = nim tay + o(1). (4.20)
Proof of Lemma 4.6. Proof of (4.17). In order to prove (4.17) we write
Epdidy =p, 'Esx,  sx:=1g,didy,  pe:=P(E) (4.21)
and invoke the identities
Ex = nmn2ad +n*n3a2dl +o(m™1), (4.22)
pe = m tai(l+o(1)). (4.23)
EJP 18 (2013), paper 38. ejp.ejpecp.org
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Note that (4.23) follows from (4.10) and (4.8). Let us prove (4.22). To this aim we write
Ex=E (]Igle*(d’ld’z)) = E(3 + i),

where 3 = ]Ig{zE*dll dy and 5z = g1y E.d!d}, and show that

-3

Eir = nim 2d8 + n?m3aldi +o(m™),  Eimn =o(m ). (4.24)

Let us prove (4.24). Assuming that ;2 holds we can write d; = 2?23 Ig,, ¢ =1,2, and

E*d/ldlz =51 + 59, S = Z 15*(51,5 n 52t)7 Sy =2 Z f)*(glt N SQU) (4.25)

3<t<n 3<t<un

To show the first identity of (4.24) we write Ei; = E]Ig{ZSl + EHS{ZSQ =: I + I, and
evaluate

2

I =nm2a} +o(nmn™2), I, =n*m3aa3 + o(n*m3). (4.26)

We first evaluate I;. Given t > 3, consider events
Ay = {|(D1 N D) N Dy| = s} and By ={|D; N (D1 UDs)| > s+1}. 4.27)

Assuming that &], holds we have that A; implies &; N &y and & N &y implies A; U B;.

Hence, P.(A;) < 15*(5115 N&y) < P*(At U B;). Now, we invoke the identity P.(A;) =
m~1Y; and write

ey, Yi = Tep, Pu(Ar) < Tep, Pu(€1 N Ea) < Ty, (Pu(A) +Pu(B)) . (4.28)
From (4.28) and (4.12) we obtain, by the symmetry property,
n—2 n—2 n—2_ .~
P(ELEY; <} < —=P(&,))EY; + ——EP(&],)R 4.29
= (E12)EYs < I < = (E12)EY3 + o (E12) R, ( )

where R; = V3 X3(X;T! 4+ X511). Next, we evaluate P(&},) and P(&],) = EP(E],) using
(4.9):
mP(E1,)EYs = a3 +0o(1), mEP(E],)R = O(1).

Combining these relations with (4.29) we obtain the first relation of (4.26).
Let us we evaluate I,. We write

Ele, P (£ N &) = Eley P (E10) Po(E2u) = P(E],)P (1) P(E2u) (4.30)
and apply (4.9) to each probability in the right-hand side. We obtain
M3 (YEY2Y,Yy — Ruw) < P(E1o)P(E10) P(Eau) < M 3YEYEYLY,, (4.31)

where Ry, = Y?2Y2Y;Y,(1 — nian1m0,) satisfies ER;, = o(1), see (4.8). Now, by the
symmetry property, we obtain from (4.31) the second relation of (4.26)

I = (n — 2)2.EP(E]5)P(E1y) P(Eay) = nm3a%a2 + o(n*m~3).

To prove the second bound of (4.24) we write, see (4.25), 5 = g/, (S1 + S2) and
show that

I3 := Elgr, S1 < maga@sq1zen/(mPm), Iy :=Elgy Sy < a3, a2n?/(m’m).  (4.32)
Here x9411,2541,2s = O(1), by (4.7). Let us prove (4.32). We have, see (4.9),

Si< Y Pufw) < ) ViYen (4.33)

3<t<n 3<t<n

EJP 18 (2013), paper 38. ejp.ejpecp.org
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Furthermore, by the symmetry property and (4.11), we obtain
Iy = E(Elgy, S1) = E(P(£]5)51) < (n— 2)(m*m) ' EY?Y2Y3 X1 X,

Since the expected value in the right hand side does not exceed x3541254+175, We obtain
the first bound of (4.32). In order to prove the second bound we write, cf. (4.30),

Ele; P.(E1¢ N Exu) = P(E)P(E1) P(E2u) < 1 *m ' VEVZY Y, X1 Xo.
In the last step we used (4.9) and (4.11). Now, by the symmetry property, we obtain
I4 = E(Elgy S2) < (n— 2)om *m 'EYPYRY3Y, X1 Xp < ninPm~'ad, 22,
Proof of (4.18). We write, by the symmetry property,

E12dl1 = pe_lE Z e, de,, = (n — 2)p€_1E]I513]I512 (4.34)

3<t<n
and evaluate using (4.9), (4.10)
Elg,,Ig,, = EP(£12)P(E13) = m 2EY2Y2Ys + o(m~2) = i 2a2ag + o(m~?).

Invoking this relation and (4.23) in (4.34) we obtain (4.18).
Proof of (4.19). Assuming that the event £, holds we write

(d/1)2 = ( Z ]I51t)2 = dll +2 Z ]Iglt]Igl'u,

3<t<n 3<t<u<n
and evaluate the expected value
Eio(d))? = Ead) +p.t(n — 2)as". (4.35)
Here »* = El¢,,I¢,.I¢,,. We have
32 = EP(£12)P(E13)P(E14) = mPEY Y, Y3Y) + o(m ™). (4.36)

In the last step we used (4.9), (4.10). Now (4.23), (4.35) and (4.36) imply (4.19).
Proof of (4.20). We note that di» = 2399 I¢, Ig,, and Elg,,di2 = Elg,, S, see
(4.25). Next, we write

Ei2di2 = pglE]Igusl = pgl(Il + [3).

and evaluate the quantity in the right hand side using (4.23) and (4.26), (4.32).

Proof of Theorem 2.1. It is convenient to write r in the form
r = T]/g, where n= Elgdlldé — (Elgdll)z, E = E12(d/1)2 — (Elzdll)Z. (437)

In the case where (ii-3) holds we obtain (2.6) from (2.4), (4.17), (4.18), (4.19) and (4.37).
Then we derive (2.7) from (2.6) using the identities

ai = 7%z +0(1), 8 =zzt, i=1,2,3. (4.38)

We recall that a; and z; are defined in (4.3).
Now we consider the case where (ii-2) holds and EZ3 = ~o. It suffices to show that

n=0(1) and liminf & = +o0. (4.39)

EJP 18 (2013), paper 38. ejp.ejpecp.org
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Before the proof of (4.39) we remark that (4.23) holds under condition (ii-2). In order
to prove the first bound of (4.39) we show that E 2d}d, = O(1) and E;2d} = O(1). To
show the first bound we write E12d|d) = p_ 'Elg,,d;d) and evaluate

Elg,didy, =Elg, Y T, +EL, > Ig,le, (4.40)

3<t<n 3<t,un, t#u
= (n—2)3q] + (n — 2)2553,

where

wf = Elg,lg Ie,, <Elg, I, <m 2asa3 = O(n"?), (4.41)
sy = Elg,lg Tg, <m 3a3a? = O0(n™3). (4.42)

In the last step we used (4.9) and (4.10). We note that (4.23), (4.40) and (4.41), (4.42)
imply Ej2d}d, = O(1). Similarly, the bound E;2d; = O(1) follows from (4.23) and the
simple bound, cf. (4.34),

Eiod) = pot(n — 2)Elg,,I¢,, < p. 'nm 2azai. (4.43)

In order to prove the second relation of (4.39) we show that lim inf Eq5(d})? = +oo.
In view of (4.23) and (4.35) it suffices to show that liminf n3s* = +oo. It follows from
the left-hand side inequality of (4.5) that

n3s* > P EN L IsITe ,Te, Te,, > B30, 25 2y Z5Z4(1 — O(m~1/2))3, (4.44)

where, by the independence of Z1, ..., Zs, we have EL 1,131, 23 Z, Z3 Z, = (ELL Z3) (El,Z5)°.
Finally, (i) combined with (ii-2) imply EI;Z; = 27 +0(1), and (i) combined with EZ3 = oo
imply lim inf EI, Z = +o0. O

Proof of Remark 1. Before the proof we introduce some notation and collect auxiliary
inequalities. We denote

h = hy, = m/2n~1/(9) =, = (h)ﬁ—1/2

S n

and observe that, under the assumption of Remark 1, Bn,hn,ﬁn — +o0 and h,, =
o(m'/?). We further denote

Lin =i x,<ny L;p, =1 — 1L, nijn =1 — Ly, — Ljp —ep,

where ¢, = h?(m — h)~!, and remark that I, = Iy .7y andey, = o(1). We observe that
conditions (i), (ii-k) imply, for any given u € (0, k], that

EZY = 2, +o(1), EZ'Lj, =z +o0(1), EZ', = o(1). (4.45)
Now from (4.5) we derive the inequalities
EZ\ Zomon < BZ1 Zolhplop (1 — ep) < nElg Iyl < nElg, <EZ)Zs. (4.46)

Then invoking in (4.46) relations EZ; = z; + o(1) and EZ; Zania, = 27 + o(1), which
follow from (4.45) for ©w = 1, we obtain the relation

npe = nEl¢,, = 22 + o(1). (4.47)

Similarly, under conditions (i), (ii-2), we obtain the relations

n?Elg,lg,, = ziz +0(1), (4.48)
n3Elg,,I¢, I¢,, = 2322 4+ o(1), (4.49)
EJP 18 (2013), paper 38. ejp.ejpecp.org
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and, under conditions (i), (ii-3), we obtain
n3Elg,,Te, Te,, = 2323 4+ o(1). (4.50)

Let us prove the bound r = o(1) in the case where (i), (ii-2) hold and EZ3 = 4+00. In
order to prove r = o(1) we show (4.39). Proceeding as in (4.40), (4.41), (4.42), (4.43)
and using (4.47) we show the bounds E»d}d, = O(1) and E;2d} = O(1), which imply the
first bound of (4.39). Next we show the second relation of (4.39). In view of (4.35) and
(4.47) it suffices to prove that lim sup n3s* = +oo. In the proof we proceed similarly as
in (4.44) above, but now we use the product Iy, 15,1314 instead of I;I,13I,. We obtain

nds* > (B, Z3) (Bl Z)” (1 —3)°.

Here El, Z5 = z1 + o(1), see (4.45). Furthermore, under conditions (i) and EZ? = +00
we have EI,;, Z} — +oo. Hence, nsx* — +oc0.

Now we prove the bound r = o(1) in the case where (i), (ii-3) hold. We shall show
that
n=o(l) and liminf € > 0. (4.51)

Let us prove the second inequality of (4.51). Combining the first identity of (4.43) with
(4.47) and (4.48) we obtain
Elgdll = 2o + 0(1) (452)

Next, combining (4.35) with (4.47) and (4.50) we obtain
Eio(d)? = Epad) 4 2123 + o(1). (4.53)

It follows from (4.52), (4.53) and the inequality z; 23 > z% which follows from Hoelder’s
inequality, that & = 2542123 — 23 +0(1) > 2z2+0(1). We have proved the second inequality
of (4.51).

Let us prove the first bound of (4.51). In view of (4.40) and (4.52) it suffices to show
that

peinsy =25 +o(1),  p

We note that the first relation of (4.54) follows from (4.47), (4.49). To prove the second
bound of (4.54) we need to show that s} = o(n~2). We split

Yns = o(1). (4.54)

%ik = E]Ig{z]lgmﬂg23 + E]Ig{g]lgls]lg%
and estimate, using (4.10) and (4.11),
~ — — 73_1
Eley e, Ie,, < Eleyle, <m m 'EYPY2 X1 XoYVs =0(n™ 7% ).

In the last step we combined the inequality V;* < X[/Iy,>, and (4.7). Furthermore,
using the right-hand side inequality of (4.28) we write

Elg, I¢,,Ie,, < Elg i 'Ys + Elg P.(Bs)
and estimate, by (4.9) and (4.12),

Elg, i~ 'Y; < m *EY1Y2Ys = O(n 258, 1/?),
Elg; P.(B3) < i *m 'EViY2V3 X3 (X + X5H) = 0(n 27°7).  (4.55)

O
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Proof of Theorem 2.2. Relations (2.8) follow from (4.1) and (4.18), (4.20).

Before the proof of (2.9) and (2.10) we introduce some notation. Given two se-
quences of real numbers {A,} and {B,} we write A, ~ B, (respectively 4, ~ 0)
to denote the fact that A, — B, = o(n~2) (respectively 4, = o(n~2)). We denote
px = P(v; ~ v, d| = k) and introduce random variables, see (4.2), I* = I; 15, ' =1-T1,
and

ke * *
T =le,7, T=lepT, T3 =lg e e Liarogy, Ta=lg 7T, 75 =Igy T

Here 7 = Ig, Ig,—¢y and 7* = Ig, Ie, Iigr g1y, and di = >, le,,. We remark that
the identity I¢,, = I + Iy, in combination with 1 = I¢,, + L¢,, implies

T1 = T2 + T3 + T4. (4.56)
Proof of (2.9), (2.10). In view of (4.1) we can write

heyr = Eio(dio]d) =k) = p*_lEHElz]I{d/l:k}dm, (4.57)
bpy1—1 = E12(d/2‘d/1 = k‘) = p;lE]Igu]I{dII:k}d/Q.

Furthermore, by the symmetry property, we have
Elg,, Ijg —rydiz = (n — 2)Elg,, 7", Elg,,[{g —kydy = (n — 2)Emy. (4.58)
We note that (4.57), (4.58) combined with the identities I¢,,7* = 74+ 75 and (4.56) imply
hipr = (n=2)p ' B(ra +75),  begr — 1= (n—2)p; 'B(ra + 73 + ), (4.59)

and observe that (2.9), (2.10) follow from (4.59) and the relations

pe = n Hk+Dppyr +o(n™t), (4.60)
Ers = n 287 Yk +1)(az — a1)pry1 +o(n™?), (4.61)
Ers = n 28 Ykaipr + 0(71_2)7 (4.62)
Er;, = o(n™?), i=2,5 (4.63)

It remains to prove (4.60), (4.61), (4.62), (4.63).
In order to show (4.63) we combine the inequalities

T < ]Ig{/z]lg23 = ]Ig{/z]lg% (I + E*) < ]Igilz]lg%]l* + ]Igm]IgQSE*
with the inequalities, which follow from (4.10) and (4.11),

Elg;, Ie,, I* < EP(£5)P.(E23)T° < (mm) 'EY1Y7Y3 X1 XI" = O(n~2m ™ /84,64)
Elg,lg, T < EP(E12)P.( )T < 2EV,Y2Y3I = o(n™2). (4.65)
In the last step of (4.64) we use the inequality X; XoI* < m1/2, In the last step of (4.65)
we use the bound EY1Y22YJ* = 0(1), which holds under conditions (i), (ii-2). Indeed

Y1Y5Y3 is uniformly integrable as n — +o00 and Y; YQQYJ* = o(1) almost surely.
Proof of (4.62). We have

Ery = Elg P, (23N E13)P.(df =k —1). (4.66)

We first replace in (4.66) the probability P*(Sgg N &13) by 15*(./43) = Y3/m using (4.27),
(4.28). Then we replace P, (d} = k — 1) by fx_1(87'a1Y7) using Lemma 4.5. Finally, we

EJP 18 (2013), paper 38. ejp.ejpecp.org
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replace Ig;, by m 1YY, using (4.9). We obtain

Ery ~ m 'Elg Y3P.(dj =k—1) (4.67)
~ m ' Elg, Vs fe1(8 arYr) (4.68)

~ M 2EY1Y2Yafro1(8 taiYy) (4.69)
n2B, 2iEY1 fi_1 (B aiYh). (4.70)

Here (4.67) follows from the bound E]Igbp* (B3) = o(n~=2). We remark that this bound
follows from (4.55), but under stronger moment condition (ii-3). To show this bound
under moment condition (ii-2) of the present theorem we write

T, Po(Bs) = Tgy Pu(Bs)(I* + 1) < gy P(B3)I" + gy P (BT,
where B} = {D3 N (D1 U D3)| > s}, and estimate, see (4.9), (4.12), (4.14),

Elg, P.(B)I" < *m 'EYIY2YaXy(X 4 X5+

< mPmTEY Y, Y X (XS + X3)
= O(n2m™3/%),

Elg P(BYT < m EViYaVs(X; + X5
< o(n7?).

Furthermore, (4.68) follows from the bounds El¢; Y3 R} = o(n™1), 1< j <4, see (4.15).
We show these bound using (4.9). For 1 < j < 3 the proof is obvious. For j = 4 we
need to show that E]Ingng = o(1). For this purpose we write (using the inequality
I, Y; < Iym®/4)

Ie, VY3 =Tg YPY3(Iy + Th) < m¥*Tg ViYalh + YPV3I

and note that the expected values of both summands in the right hand side tend to zero
as n — +oo. Finally, (4.69) follows from (4.9) and implies directly (4.70).
Now we derive (4.62) from (4.70). We observe that

k7' 87 a1 BY, fu1 (B aYh) = Efi (B ar Y1) = Efy(212)

(here we use the fact that the weak convergence of distributions (i) implies the con-
vergence of expectations of smooth functions). Furthermore, by (2.2), Efx(212) = py.
Hence, (4.70) implies

Ery ~n 2 ka1 Efy(21Z) = n 2B kaypy.
Proof of (4.61). Introduce the event C {D3 N (D1 \ D2) = 0}, probability p =

P. (&3 NCNEs), and random variable H = 7~ 1(Y; — 1)Y3. We obtain (4.61) in several
steps. We show that

ETg ~ E]Ié'{zﬁ]l{di‘:k} (471)
~ Elg Hlg: 1y (4.72)

~ Elg Hfp(8™'a1Y1) (4.73)

M EY Yo H fr (B a Y1) (4.74)

~ m%(ay —ay)(k+1)Bpri1- (4.75)

We note that (4.71) is obtained by replacing I¢,, by the product Ig; Ic in the formula
defining 73. In order to bound the error of this replacement we apply the inequality

Ig; Ie <Ig,, <Ig Ic +1p,. (4.76)
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and invoke the bound Elg; T¢,,I5,I{a—x; < Elg P,(Bs) = o(n~2), see the proof of
(4.67) above. We remark that the left hand side inequality of (4.76) is obvious. The
right hand side inequality holds because the event &3 implies (€53 N C) U Bs.

In (4.72) we replace p by H. To prove (4.72) we show that

Eﬂgizﬁﬂ{dfzk} ~ Eﬂfizﬁﬂ{di‘:k}ﬂl ~ E]IE{ZH]I{d’l‘:k}]Il ~ E]L‘,'{zH]I{d’{:k}' (477)

We remark that the first and third relations follow from the simple bounds, see (4.9),
(4.10),

Ele; plig: ]y < Elgy Ie, T <M *EY1Y5 YL = o(n™?),
Ele; |H|Lig:—iyy < m "EV Y H[L; = o(n™?).
In order to show the second relation of (4.77) we split
P =P.(£13|E5; N C) PL(EL|C) PL(C) =: prpaps (4.78)

and observe that p; is the probability that the random subset D3 N Dy (of size s) of D,
does not match the subset D; N Dy (we note that |[D; N Dy| = s, since the event &,
holds). Hence, p; =1 — Yz_l. Furthermore, from (4.5) we obtain

ps=1—P,(DsN (D1 \ Do) #0) >1—-P,(DsND; #0)>1—m X1 X5.  (4.79)

Finally, py is the probability that the random subset D5 of W \ (D; \ D3) intersects
with Ds in exactly s elements. Taking into account that the event £;, holds we obtain
(see (4.9), (4.13))

my Yo Valols(1 — m/2/(m/ — X5)) < pp < 17 1Y, V5. (4.80)

Here we denote m; := (”;/) and m’ = |W\ (D; \ D2)| = m — (X1 — s). We remark that on
the event {X; < m!/*} we have m’ = m — O(m'/*). Hence, for large m, (4.80) implies

M Y, Yanasl < poli < T Yo YaIi(1+m~3/4(s 4 o(1))). (4.81)

Now, collecting (4.79), (4.81), and the identity p; = 1 — Y{l in (4.78) we obtain the
inequalities

ey Timps H(1 —m ™ X1 X3) < Tgr Iip < Tgy Ty H(1+ O(m™—3/*)) (4.82)

that imply the second relation of (4.77).

In the proof of (4.73), (4.74), (4.75) we apply the same argument as in (4.68), (4.69),
(4.70) above.

Proof of (4.60). We write

Px = E]Iglzls*(dll = k) = Ef’(glg)f’*(dll = k‘)
and in the integrand of the right hand side we replace P.(d, = k) by fi(7 a1 Y1) and
P(&12) by m~1Y1Y; using (4.15) and (4.9), respectively. O

4.2 Passive graph

Before the proof we introduce some more notation. Then we present auxiliary lem-
mas. Afterwards we prove Theorems 3.1, 3.2.

By E;; we denote the conditional expectation given the event &; = {w; ~ w;}.
Furthermore, we denote

pe =P(&;), Dij=D;,NDj, Xi=|Dyl, z;=EX], vi=E(X1): u =E(Z).
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For w € W, we denote I;(w) = Iy,ep,; and I;(w) = 1 — I;(w), and introduce random
variables

Lw)= Y Liw), Lw)=Lw)(X;-1),

1<i<n
Qw)= > ajw),  g;w)=Twlw)(X; - 1),
1<i<j<n
S1 = Z S, Sy = Z 5455, s = I (wy )L (w2).
1<i<n 1<i<j<n

We say that two vertices w;, w; € W are linked by Dy, if w;, w; € Dy. In particular, a set
Dy, defines ();’“) links between its elements. We note that L, = L(w;) counts the number
of links incident to w;. Similarly, @Q; = Q(w;) counts the number of different parallel
links incident to w; (a parallel link between v’ and w"” is realized by a pair of sets D;, D;
such that w’, w” € D; N D;). Furthermore, S; counts the number of links connecting w;
and ws and S; counts the number of different pairs of links connecting w; and ws. We
denote the degree d; = d(w;) and introduce event £, = {L; = d;}.

Lemma 4.7. The factorial moments 6.; = E(d..); and u; = E(Z); satisfy the identities
3*1 = ﬁ71UQ, 3*2 = 57211@% + ,Bil’LLg, 8*3 = ﬁf‘q’u% + 3&72UQU3 + 5711L4. (4.83)

Proof of Lemma 4.7. We only show the third identity of (4.83). The proof of the first and
second identities is similar, but simpler. We color z = z; + - - - + 2z, distinct balls using r
different colors so that z; balls receive i-th color. The number of triples of balls

=G+ G) X =%+ Y =un (4.84)
= i) gel (akIch]

Here the first sum counts triples of the same color, the second sum counts triples having

two different colors, etc. We apply (4.84) to the random variable (dg*), where d,, =

Z1 + -+ Zx. We obtain, by the symmetry property,
E(%) = BAE(%) + E(A)LE(2)BZ +E(}) (BZ)"

Now invoking the simple identities E(A); = (EA)’ = (u16~) and E(Z)); = uiu; * we
obtain the third identity of (4.83). O

Lemma 4.8. We have

ES; =n"'8, %y, + R}, (4.85)
EL1S1 =n '8, %(y2 +y3) +n '8, %y5 + RY, (4.86)
EL1 LSy =n" 3,2 (y2 + 3ys + ya) + 30" 8, ya(y2 + ys) + 17 B, y5 + RY4.87)
EL1LyS1 = 1" 5,2 (ya + 3ys + y2) + 20 ' B, ya(ys + v2) + n” '8, y5 + R)(4.88)

where, for some absolute constant ¢ > 0, we have |R}| < cn™28,3z5 and

| R
| R}

en2(B,% + By ),

<
< en B+ By + ag + By Pws)aa, Jj=3,4

Proof of Lemma 4.8. We only show (4.88). The proof of remaining identities is similar
or simpler. We write, for ¢t = 1,2, Ly = L(w;) = l1(w;) + L} and denote 7; = Es; =
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(m)5*(X;)2. We have, by the symmetry property,

EL1LyS, = nEsiL1Lo, (4.89)

EsiLiLy = Esili(wy)li(we) + 2Esily (wy) Ly + Esy L L,

Esi YLy, = (n— 1D)Esila(w)la(ws) + (n — 1)2Esqla(wy)lz(ws),
Esili(w1)Ly = (n—1)Esil(w)la(ws).

A straightforward calculation shows that

Esili(wi)li(ws) = (X1 -1’71 = (m);" (X1)a +3(X1)s + (X1)2),
Esili(wy)la(wz) = m™ (X1 — D)Xz — X7 =m™ ' (m); " (X1)s + (X1)2) (X2)2,
Ja(wa) = (X2 — 1’7172 = (m)32(X1)2 ((X2)a + 3(X2)3 + (X2)2),
) (w2)

(
Esllg(wl lg Wo
( = m3(X2)2(X3)oT1 = m 2 (m); ' (X1)2(X2)2(Xs)o.

Esllg w1 lg w2
Invoking these expressions in the identity Esyl;(w;)l;(w,) = EEs;l;(w;)l;(w,) we obtain

expressions for the moments Esl;(w;)!l;(w,). Substituting them in (4.89) we obtain
(4.88). O

Lemma 4.9. We have

ES, <0.5n726, 12, (4.90)
EL, Sy <n 2B Yxoxs 4+ 0.5n7 26, % x5, (4.91)
EQ.S: <n 28 Yxoxs +0.5n7 28, %3, (4.92)
EL1Q2S1 = ELyQ1S1 < n 2B, *(22oxy + 1.56;, tades + 0.58, 2x5) +n 36, S22x(4.93)
EL1Q1S1 <n 2B, (23 + woxy) +2.5n 26, P33 + 0.5n 23, ° 3, (4.94)
EL 1 L1Sy <n 28,4 (23 + wowy) + 2.5 28, *wixs + 0.5n 26, 55, (4.95)
EL1LySy < n™ 28, (wowy + 23 + 283, tades + 0.56, 2x3) +n~20.543, Criry, (4.96)
EQ: I (w1)(X1 — 1)2 < 4n 28,2 ya(ys + ya + B 'yys). (4.97)

Proof of Lemma 4.9. We only prove (4.93). The proof of remaining inequalities is similar
or simpler. In the proof we use the shorthand notation /; = I;(w) and ¢;; = ¢;;(w2).
To prove (4.93) we write, by the symmetry property,

EQ:L:151 = (5)Eq2L15
Eqi2L151 = 2Eq201S1 + (n —2)Eqi2l351,
Eq2liS1 = Eqalisi +Eqialiss + (n - 2)]*3(]121153’
Eqi2l3S1 = Eqalssi + Eqialzsa + Eqialsss + (n - 3)EQ121384
and invoke the inequalities
qugllsj < m_4x2$4, quglgsj < m_5$§$37 j= 1,2,
Eqialiss <m %23zs,  Eqalsss <m Pa3zs,  Equalzsy < m %aj.

These inequalities follow from the identity Eq2l;s; = E]:]qulisj and the upper bounds
for the conditional expectations Eq;2/;s; constructed below.
Fori=1and j = 1,2, we have

Eq12118] S qugll = (X1 — 1)EQ12]I1(’LU1) < m74XfX2 (498)
In the first inequality we use s; < 1. In the second inequality we use the inequality
Eqo0; (wy) = n€ <m X} X2, (4.99)
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Here n = E (X12 — 1|]I1(w1)]Il(w2)]I2(w2) = 1) and 6 = 15 (][1(11)1)]11(102)]12(1[)2) = 1) We
note that given X;, X5, Dy, the random variable 7 evaluates the expected number of
elements of D; \ {ws} that belong to the random subset Dy \ {ws} (of size X5 — 1).
Hence, we have n = (m — 1)7!(X; — 1)(X5 — 1). Furthermore, the probability

(3) X

(3)  m

Combining obtained expressions for i and ¢ we easily obtain (4.99).
For: =1 and j = 3, we write, by the independence of D, D> and D3,

f = P(wl,wg e Dl) X IS(UJQ € Dg) =

qugllsg = (EQ12Z1)(E83) S mfGXfXng

In the last step we used Es3 = (X3)2(m); ! and Eqiol; < m~*X{X3, see (4.98).

Fori = 3 and j = 1,2, we write Eqial3s; = (Eqi21;(w1))(El3), by the independence
of Dy, Dy and Ds. Invoking the inequalities
Elg = (X3 — 1)?(’[1}1 € Dg) S 77171)(327 qugﬂl(wl) = nf S m74Xf’X22,

see (4.99), we obtain Eqal3s; < m 5X$X2X3. Similarly, Eqialsss < m X2 X3X3.
For i,j =3, we Split E(Q12l353) = (qug)(Elgsg) and write EQ12 = ’17151. Here

m=EXiz - L(w)la(ws) = 1), & = P(I (ws)la(ws) = 1).
Invoking the identities n; = (m — 1)71(X; — 1)(Xs — 1) and ¢&; = m~2X; X, we obtain
Eqiy =m& < m P XPX3. (4.100)

Combining (4.100) with the identities Elzsy = (X3 — )Es3 = (X3 — 1)(X3)2(m); " we
obtain the inequality Eqial3s3 < m 5 X2X2X3.
For i = 3 and j = 4 we write by the independence of D,, Dy, D3, D4, and (4.100)

Baalss = (Bar2) (Bly) (Bsi) < (mX3X3) (m'X3) (m~2X3) = m O XFXFXFX3.

O
Proof of Theorem 3.1. In order to show (3.1) we write
_ Eiadidy — (E12d1)2 _ PeEd1d2I£12 - (Ed1]I512)2 (4.101)
Ei2d? — (E12d)? peEdiLe,, — (EdiLe,,)? '
and invoke the expressions
p. = ES; +0(n28"), (4.102)
Edilg, = EL;Si+0n28,*(1+8,"),
Ed%]L‘:u = EL%S1 + O(TL_QB;[l(l + /6772))7
Edidylg,, = EL1LyS; +0(n 28,41+ 8,2)).
Now the identities of Lemma 4.8 complete the proof of (3.1).
Let us prove (4.102). We first write, by the inclusion-exclusion,
Sy — 8y <Ig,, < Sy, (4.103)
Ly —Q: <d; <Ly (4.104)
Then we derive from (4.104) the inequalities
0<LiLy —dids < L1Qy+LoQ, and 0<L?—d? <20,Q, (4.105)
EJP 18 (2013), paper 38. ejp.ejpecp.org
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which, in combination with (4.103) and (4.104), imply the inequalities

0< L1S1 —dileg,, < L1So+ @151, (4.106)
0 < L3S — dilg,, < LiSs +2L1Q1 51,
0 < L1LyS1 — didollg,, < L1LySy + L1Q2S51 + La@Q151.

Finally, invoking the upper bounds for the expected values of the quantities in the right
hand sides of (4.106) shown in Lemma 4.9, we obtain (4.102).

Now we derive (3.2) from (3.1). Firstly, using the fact that (iii), (v) imply the con-
vergence of moments E(X;); — E(Z);, for i = 2,3,4, we replace the moments y; by
u; = E(Z); in (3.1). Secondly, we replace w; by their expressions via d.;. For this
purpose we solve for us, us, uq from (4.83) and invoke the identities

3*1 = 6*17 5*2 = 6*2 - 6*17 5*3 = 5*3 - 3(5*2 + 2(5*1- (4.107)

For (3, — +oo relation (3.1) remains valid and it implies » = 1 + o(1).

For 3, — 0 the condition n3? — +oo on the rate of decay of 3, ensures that the
remainder terms of (4.102) and Lemma 4.8 are negligibly small. In particular, we derive
(3.1) using the same argument as above. Letting 5, — 0 in (3.1) we obtain the bound
r=o(l). O

Proof of Theorem 3.2. Before the proof we introduce some notation. We denote

H= Z ]Ii(wl)(Xi - 1)2, Pke = P(w2 ~wi,dy = k)

1<i<n

Given w;, w; € W we write d;; = d(w;, w;). A common neighbour w of w; and wj is called
black if {w,w;,w;} C D, for some 1 < r < n, otherwise it is called red. Let d;j and
d;; denote the numbers of black and red common neighbours, so that d;; + dj; = di;.
Let w, be a vertex drawn uniformly at random from the set W/ = W \ {w;}. By d}, we
denote the number of black common neighbours of w; and w,. By £, we denote the
event {w; ~ w.}. We assume that w, is independent of the collection of random sets
D1 ..., D, defining the adjacency relation of our graph.

In the proof we use the identity, which follows from (4.85), (4.102),
pe=n""8%y2 + O(n?). (4.108)
We also use the identities, which follow from (4.83) and (4.107)
14 B ug +uytug = 0,:20,, B lug = 6. (4.109)

We remark that (4.109) in combination with relations y; — u; as n,m — +oo, imply
the right hand side relations of (3.4), (3.5) and (3.7).

Now we prove the left hand side relations of (3.4), (3.5) and (3.7), and the relation
(3.6).

In order to show (3.4) we write b = pe‘lEdﬂIg12 and invoke identities (4.102), (4.86)
and (4.108).

Proof of (3.5). We write h = p_ 'Ed;2l¢,, and evaluate

Ediole, = n '8, 2ys + O(n™2). (4.110)
Combining (4.108) with (4.110) we obtain (3.5). Let us show (4.110). Using the identity

dig = dio + dy = diolp, + diple, +dy (4.111)
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we write
Edolg,, = Ed’12115121151 + R1 + Ro, (4.112)

where Ry = Ed{,l¢,, and Ry, = El,d)},I¢,,. Next, we observe that El. d},l¢, =
E]I,;ld’ljllglj, for 2 < j < n, and write

El, d),le,, = Elg, d) I, = El; H(m —1)"". (4.113)

We explain the second identity of (4.113). We observe that H(m — 1)_1 is the conditional
expectation of di,I¢,, given Ds,...,D,. Indeed, any pair of sets D;, D, containing w;
intersects in the single point w;, since the event £; holds. Consequently, each D, con-
taining w; produces X; —2 black common neighbours provided that w, hits D;. Since the
probability that w, hits D; equals (X; — 1)/(m — 1), the set D, contributes (on average)
(m —1)71; (w1 )(X; — 1)2 black vertices to df,.

Now, by the symmetry property, we write the right-hand side of (4.113) in the form

n n
7E]I£1]I1(’UJ1)(X1 - 1)2 = mEﬂl(wl)(Xl - 1)2 - R3 = Y3 — R3, (4114)

"
m—1 (m)2
where, Ry = —"-El I;(w;)(X; — 1);. Finally, we observe that (4.110) follows from
(4.112), (4.113), (4.114) and the bounds R; = O(n~2), i = 1,2,3, which are proved
below.

In order to bound R;, ¢ = 1, 2, we use the inequalities

dig <dy <Ly, Xg, <51, I, =T, 24y = Lo, >13 < Q1 (4.115)

and write Ry < EQ;L;S; and R3 < n(m — 1)"*EQI;(w;)(X; — 1)2. Then we apply

(4.94) and (4.97). In order to bound R; we observe, that the number of red common
neighbours of wy, w, produced by the pair of sets D;, D; is

aij = (L (w) L (wa) L (w1 (wa) + L (w1) L (we) i (w1) I (ws)) Xij.
Hence, on the event wi,w> € D; we have df, < > ., ;, i, since elements of
D; \ {wy,ws} are black common neighbours of w;,ws. >From this inequality and the

inequality I¢,, < S; we obtain
Ry < Ed{,S1 = nEd/ys1 < n(";")Esiass. (4.116)
Furthermore, invoking in (4.116) identities
E(s1023) = EE(s1025) = E (Bs1 ) (Bas),  Bs1 = (X1)2/(m)
and inequalities

~ - - Xo X3 (Xo—1)(X5—1
Ea23 = 2E]I2(w1)]I3(w2)]13(U}l)]IQ(’LUQ)XQg S 27273( 2 )( 3 )
m m m—2

we obtain Ry = O(n=2).

Proof of (3.6). In the proof we use the fact that the random vector (H,L;) con-
verges in distribution to (dos,d..) as n — +oo. We recall that H is described after
(4.113). The proof of this fact is similar to that of the convergence in distribution of
Ly =3 cicpLi(w1)(X; —1) to the random variable d,., see Theorems 5 and 7 of [6]. We
note that the convergence in distribution of (H, L;) implies the convergence in distribu-
tion of HI{, —y) to d2.l4 , —1). Furthermore, since under condition (v) the first moment
EH is uniformly bounded as n — 400 and Eds, < co, we obtain the convergence of mo-
ments

EH]I{lek} — Edg*]l{d“:k} as n — o0. (4.117)
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In order to prove (3.6) we write
hi = E(diz|wy ~ wa,dy = k) = p, Bdiole,, Lig, -1y
and show that

Pre = km™'P(d,, = k) + o(n_l), (4.118)
Edyole, Xig, =y = m "EHI, 4y +o(n™h). (4.119)

We remark that (4.117) in combination with (4.118) and (4.119) implies (3.6).
Let us show (4.118). In view of the identities px. = P(w; ~ wy,d1 = k), 2 <i < n, we
can write
Pke = P(”LU* ~ wl,dl = k‘) = P(w* ~ ’LU1|d1 = k)P(dl = k‘)

Now, from the simple identity P(w. ~ wi|d; = k) = k(m — 1)~! and the approximation
P(dy = k) = P(dwx = k) + 0(1), see [6], we obtain (4.118).
Let us show (4.119). Using (4.111) we obtain, cf. (4.112),

Ediole,, g, —1y = Edyle,, Iig, -1y le, +O(n™?). (4.120)
Furthermore, proceeding as in (4.113), we obtain
Ed) e, Ig, =1y le, = Ed) e, g, —pylz, = (m — 1)’1EH]I{d1=k}]I£1. (4.121)
Next, we invoke identity EH 14, —1}I., = EHI 1, _;)l,, and approximate, cf. (4.114),
(m—1)""EHI, Iz, = (m —1)""EHI{, _x) + O(n™?). (4.122)

Combining (4.120), (4.121) and (4.122) we obtain (4.119).
Proof of (3.7). Let dy2 denote the number of neighbours of w;, which are not adjacent
to wy, and let hy, = E(di2|wy ~ wa, ds = k). We obtain (3.7) from the identity

b = E(di|wy ~ wo,dy = k) =1+ hy, + hy,
and the relation hy, = 3, 'y + o(1). In order to prove this relation we write
hy =ppi7,  where 7= Ediole,Iig,—1),
and combine (4.118) with the identity
T =km '8 P (ds = k) +o(n™t). (4.123)
It remains to prove (4.123). In the proof we use the shorthand notation
ni = L(w)Li(we)(Xi — 1), 5 = nile,Lamryle,, 07 = nille,,Lg,=ry-

Let us prove (4.123). Using the identity 1 = I, + I, we write

T= EEm]Ign]I{dz:k}]ILl + Ry, Ry = Ealgﬂgnﬂ{dz:k}iﬁl.

Next, assuming that the event £; holds, we invoke the identity dig = 21 <i<n i and
obtain o

Ediole,,I14,—1yIz, = E Z ) = nEn).

1<i<n

In the last step we used the symmetry property. Furthermore, from the identity

Eny =En) —Rs,  Rs =Enlg,lig,—1)]e,,
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we obtain 7 = nEn} + R4y — nRs. We note that inequalities d1» < d; < L; and (4.115)
imply

Ry <EL;51Qq, Rs; < EIL(w1)(X1 — 1)51Q1 = n 'EL1 51 Q1.
Now, from (4.94) we obtain B, = O(n~2) and R; = O(n~3). Hence, we have 7 =
nEn; + O(n~2). Finally, invoking the relation

En = km 2yoP(ds. = k) + o(n™?), (4.124)
we obtain (4.123). To show (4.124) we write
En| = Ens, k=B (Ie,, {4,211 | D1) (4.125)

and observe that on the event wy ¢ D; the quantity x evaluates the probability of the
event {w; ~ ws,ds = k} in the passive random intersection graph defined by the sets
Dy, ..., D3 (i.e., the random graph Gi(n — 1, m, P)). We then apply (4.118) to the graph
G%(n—1,m, P) and obtain xk = km~'P(d.. = k) + o(n™!). Here the remainder term does
not depend on D;. Substitution of this identity in (4.125) gives

En{ = (km™'P(duv = k) + o(n™")) Eny.
The following identities complete the proof of (4.124)

E?]l = E][l(wl)(Xl — 1) — E]Il(wl)]h(’LUQ)(Xl — 1)
= m Yy — (m)y (ys + v2)-
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