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Introduction

Formal introduction
This dissertation consists of two parts. The object of the first part of the disser-
tation is random intersection graphs and random intersection digraphs. The goal
of the work was to determine certain asymptotic properties of such graphs (or di-
graphs). They include (a) the birth threshold for fixed-size complete subgraphs in
the random intersection digraph; (b) the clique number of sparse random intersec-
tion graphs; (c) the chromatic number of random uniform intersection graphs. An
additional goal was to better understand the connection of random intersection
graphs and large real-world networks.

Random intersection graphs have been actively studied in the last decade. It
has been shown that this model can produce instances with positive clustering
coefficient and other commonly observed properties of real-world networks (such
as the Internet, social and biological networks). The applications of such models
include wireless networking, classification and epidemiology, see [21,22,46,53]. The
work is also relevant from the computer science point of view: we consider classical
NP-hard problems, but we restrict attention to a particular, rather general and
practically important family of distributions of graphs.

The object of the second part of the dissertation is minor-closed classes of
graphs without k + 1 disjoint minors in B, where a set B consists of 2-connected
graphs. The problem of this part is to enumerate such classes asymptotically and
prove properties of typical graphs in them. We study two general types of B. As
part of the work, we aim to answer a question of Bernardi, Noy and Welsh in this
case.

The results in Part II build on the work of McDiarmid on addable minor-closed
classes. The theory of graph minors has many applications in theoretical com-
puter science and “has made a fundamental impact both outside the graph theory
and within” [38]. Asymptotic enumeration of minor-closed classes was originally
motivated by a particular case relevant both theoretically and practically, the
planar graphs. Results of this kind can usually be directly applied to average-case
complexity analysis of graph algorithms where the input is a uniformly random
graph with some natural restrictions [12,40,48]. Another algorithmic application
highlighted in the literature is as follows. The ability to count often gives knowl-
edge how to construct large instances [52,85]. This can be used for system testing.
The proofs in the second part are mostly based on combinatorial and probabilistic
arguments (as opposed to the approach that uses mainly analysis of generating
functions), and the results often hold with rather general conditions.

11



Introduction

In the next two sections we specify the models and review the propositions
that we prove in the thesis, this is done for each part separately.

Random intersection graphs
Let S1, S2, . . . , Sn be finite sets. The pairs uv where u 6= v and Su ∩ Sv 6= ∅
define edges of a graph on the vertex set [n] = {1, . . . , n}. This graph is called
the intersection graph of S1, . . . , Sn, see Figure 1.

Russian
Chinese

English

German

French

S
1

S
2

S
3

S
4

1 2

4 3

Figure 1: An intersection graph representing all communicating pairs, when, for example, Sv is
the set of languages spoken by person v.

If the sets S1, . . . , Sn are random subsets of some (finite) ground set W of
m attributes (or keys), we obtain a random intersection graph. The first au-
thors to consider such random graphs were Karoński, Scheinerman and Singer-
Cohen (1999, [58]). They studied the binomial random intersection graph model
G(n,m, p), where an attribute w is added to the set Sv independently at random
with probability p, for each pair (w, v), w ∈ W and v ∈ [n].

Godehardt and Jaworski [53] introduced a more general “active” random inter-
section graph G(n,m, P ), where each set Sv is generated independently at random
in two stages: first the size Xv is drawn according to the probability distribution
P , then a uniformly random subset Sv of size Xv is drawn (without replacement)
from W . We give a more detailed description of this and related models in Sec-
tion 1.1.

Studying random intersection graphs is motivated by a belief that they share
some properties with large empirical networks. Large empirical networks are often
observed to be sparse (the average number of neighbours of a vertex is bounded)
and have a non-negligible clustering coefficient (which is the conditional probabil-
ity that three randomly chosen vertices make up a triangle, given that the first two
are neighbours of the third one). Unlike in many other models, the parameters
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Introduction

of random intersection graphs can be chosen in a way that the resulting random
instances have these two properties simultaneously.

For any collection {S1, S2, . . . , Sn} of subsets ofW there is a unique dual collec-
tion {Tw}w∈W of subsets of [n], where Tw = {v : w ∈ Sv}. In terms of intersection
graphs, it can be understood as follows: each attribute w ∈ W corresponds to a
clique on the vertex set Tw; edges of all the cliques Tw define the set of edges of
the intersection graph. We call cliques Tw monochromatic.

In their paper Karoński, Scheinerman and Singer-Cohen determined for which
choices of p, the binomial random intersection graph G(n,m, p) contains a clique
on h vertices with high probability (when n and m are large). They solved the
problem for any fixed h by showing that it is enough to consider a finite number of
configurations of pairwise intersecting sets. Figure 2 shows two such configurations
in the case h = 4.

Formalisms. Statements such as “G(n,m, p) has a clique of size h with high probabil-
ity” should be rigorously interpreted as follows. We consider a sequence of random graphs
{G(n), n = 1, 2, . . . }, where G(n) = G(n,m, p) and m = m(n), p = p(n). For n = 1, 2, . . .

we let A = A(n) be the event that G(n) has a clique of size h. Then a statement like “A
holds with high probability” means that P(A(n)) → 1 as n → ∞. Informal statements
about D(n,m, p−, p+) and G(n,m, P ) should be interpreted similarly. For example, when
we talk about the parameter P , we actually have in mind a sequence of probability measures
{P (n), n = 1, 2, ..}.

For a sequence {Xn, n = 1, 2, . . . } of random variables (for example Xn may be the
size of a maximum clique in G(n,m, p)), we informally write that Xn is “asymptotically”
f(n) if for any ε > 0 P(|Xn − f(n)| > εf(n)) → 0 as n → ∞. A standard notation
Xn = f(n)(1 + oP (1)) will be used in the subsequent chapters.

Small subgraphs in random intersection digraphs

In Chapter 2 we ask a similar question for a related binomial random inter-
section digraph model D(n,m, p−, p+). In this model, proposed by Bloznelis [16],
each vertex v ∈ [n] is assigned not one, but two random subsets, S−

v and S+
v .

Each attribute w ∈ W is included into S−
v with probability p− and into S+

v with
probability p+ independently. Then the random binomial intersection digraph is
a directed graph on the vertex set [n] with arcs {uv : S−

u ∩ S+
v 6= ∅}. Such a

digraph makes sense if we interpret S−
v and S+

v as sets of attributes (qualities)
that v “likes” and “possesses” respectively.

We determine ranges of parameters for which D(n,m, p−, p+) contains a copy
of the complete directed graph on h vertices with a high probability. Depend-
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Figure 2: Two different configurations of intersecting sets that yield a clique on four vertices.

ing on the relationship between parameters p−, p+ and m (all of them can vary
with n), four different patterns of intersecting sets can be most likely to realise
the complete digraph on h vertices, and two of these patterns do not have an
undirected counterpart.

Largest clique

But what can we say about the size of a maximum clique (the clique number)
of a random intersection graph? In general, the problem is difficult due to two
reasons. Firstly, the local clustering property causes a lot of dependence between
the edges of the random graph. Secondly, the clique number can grow with n,
and so it no longer suffices to consider only a finite number of patterns of sets. In
Chapter 3 a solution for sparse uniform random intersection graphs G(n,m, P ) is
presented. Here “sparse” means that m and P are such that the expected number
of edges is linear in n.

Let D(n) be the degree of a random vertex (or, equivalently, of vertex 1) in
G(n,m, P ). We find that the clique number of G(n,m, P ) depends on the tail of
the distribution of D(n). If D(n) is “asymptotically” power-law distributed with
index α ∈ (1, 2) (for example, a Pareto distributed random variableX with P(X >

t) = t−α is power-law with index α) then the largest clique is “asymptotically”
of polynomial size. The order of the clique number in this case is the same as in
a much simpler model without clustering studied by Janson,  Luczak and Norros
(2010, [55]).

Meanwhile, if the degree variance is bounded (supn V arD(n) < ∞), then the
largest clique is with high probability ”almost“ monochromatic (generated by a
single attribute, as in Figure 2, right) and its size is “asymptotically” logarithmic.
This phenomenon is specific to random intersection graphs, and the clique num-
ber here is closely related to the maximum load problem: if N balls are thrown
randomly tom bins, what is the maximum number of balls a bin receives? Both in
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the “power-law” and the “bounded variance” regimes our results are optimal up to
the first-order asymptotic term. These two regimes cover most of the interesting
choices of the parameters for sparse G(n,m, P ).

Furthermore, for each of the two main regimes there is a simple algorithm for
finding large cliques. We prove that with high probability G(n,m, P ) is such, that
the corresponding algorithm outputs a clique of asymptotically optimal size and
terminates in polynomial time. These algorithms have a potential to be used and
studied with large scale real-world graphs. A reader interested to see the simple
pseudocode is welcome to jump directly to Section 3.4.

Chromatic index of random uniform hypergraphs

A hypergraph H is a pair (V,E), where V is a set and E is a collection of subsets
of V called hyperedges, or simply edges. Intersection graphs are hypergraphs,
where we put emphasis on pairwise intersections of edges. The chromatic number
of a graph is the least number of colours needed to colour its vertices, so that no
two neighbours receive the same colour. The chromatic index of a hypergraph is
the least number of colours needed to colour its edges so that no pair of intersecting
edges receives the same colour.

In Chapter 4 we study the chromatic index of H(k)(m,n), the random hyper-
graph on the vertex set [m] and with n edges drawn independently with replace-
ment from all subsets of [m] of size k. The problem is equivalent to the problem of
determining the chromatic number of G(n,m, k), the uniform random intersection
graph with n vertices, m attributes and all subsets of size k. In the case when
k is constant and n is much larger than m, a result by Pippenger and Spencer
(1989, [82]) implies the answer. That result holds for arbitrary ‘almost regular’
hypergraphs, not just the random ones. For random hypergraphs we extend their
result slightly and allow k to grow slowly with n. To do this, we exhibit a simple
greedy algorithm (different from Pippenger and Spencer’s one) and prove that it
colours the edges with an (asymptotically) optimal number of colours.

Empirical aspects

In Section 1.2 we plot certain statistics for large real-world networks (such
as, for example, the actor affiliation networks, where two actors are declared
adjacent if they had a role in the same movie) and random intersection graphs
with corresponding parameters. The statistics include assortativity and counts of
pairs with given number of common neighbours.

15



Introduction

Figure 3: The Lithuanian actor affiliation network (data from IMDB: http://www.imdb.com).
The ‘union of cliques’ structure, where each clique consists of actors participating in the same
film, can clearly be seen here.

Minor-closed classes of graphs
The second part of this thesis is concerned with graphs that do not contain certain
subgraphs.

Connected graphs that do not have any cycle are trees. Acyclic, but not
necessarily connected graphs are called forests. Given a class of labelled graphs A
(for example, the class of trees), we denote by An the restriction of A to graphs
on the vertex set [n] = {1, .., n}. We study

(*) the asymptotic number of graphs in An;

(**) the structure of a typical graphs in A; more precisely, properties of a uni-
formly random graph from An.

For example, the classic result of Cayley (1868) states that there are nn−2 trees
on the vertex set [n]. Rényi (1959) proved that the number of forests on the same
vertex set is

√
enn−2(1 + o(1)) as n tends to infinity.

Part II starts with investigation of the class of graphs that do not have k + 1

vertex-disjoint cycles. Erdős and Pósa (1965, [45]) showed that there is a constant
ck such that each graph that does not contain k+ 1 disjoint cycles has a set of at
most ck vertices, whose removal results in an acyclic graph (a forest). It is known
that the smallest possible ck is of order k ln k [38]. (The important thing here is

16
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that no matter how large a graph is, if it has at most k disjoint cycles then we
can “destroy” all of its cycles by removing just a few vertices.)

In Chapter 6 we present a proof that only k vertices are enough for typical
graphs without k+1 disjoint cycles. A uniformly random such graph on the vertex
set [n] for large n is shown to be very close in distribution to the following simple
construction a) pick a uniformly random set S ⊂ [n] of size k; b) put a uniformly
random forest on the remaining vertices [n] \ S; c) for each pair {x, y} ⊂ [n]

with at least one element in S, add the edge xy independently at random with
probability 1/2.

Given a graph G, the contraction of an edge e = xy ∈ E(G) is the following
operation: merge the endpoints x and y of e into a new vertex vxy, so that vxy
becomes adjacent to all of the former neighbours of x and y. A graph H is called
a minor of G if it can be obtained from G by applying a series of edge deletions,
vertex deletions and edge contractions, see Figure 4.

G H

Figure 4: A sequence of vertex deletions and edge contractions showing that H is a minor of G.

A class of graphs A is minor-closed if for any G ∈ A every minor of G also
belongs to A. Minor-closed classes of graphs is the subject of the theory of graph
minors developed by Robertson and Seymour in a series of more than twenty
papers (1983-2004). One of the results is the following: each minor-closed class
A can be characterised by a finite list B of minimal excluded minors. That is, to
test whether a graph G is not in the class A, it suffices to check whether any of
the finitely many graphs in B is a minor of G. We denote this by A = ExB. For
example, by an earlier work of Kuratowski (1930) and Wagner (1937) the class of
planar graphs (graphs drawable on the plane so that edges can intersect only at
their endpoints) can be characterised by two minimal non-planar excluded minors:
K3,3 and K5 (here Kt,t is the complete bipartite graph with both parts of size t
and Kt is the complete graph on t vertices). Counting and studying properties of
random planar graphs and other minor-closed classes of graphs has received a lot
of attention in the last decade, we review the work most relevant to this thesis in
Chapter 5. Some other examples of minor-closed classes are forests, series-parallel
graphs, outerplanar graphs, graphs embeddable in a fixed surface (for example,
the torus), graphs with a bounded treewidth, graphs knotlessly embeddable in

17
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(a)

(c)

(b)

Ex H

(d)

Figure 5: Illustration of a class of graphs handled in Chapter 7: (a) the graph H; (b) the
forbidden minor: 3 disjoint copies of H; (c) a graph with three disjoint forbidden minors; (d) a
typical graph without three disjoint minors H.

Euclidean 3-space, etc.
The class of graphs containing at most k+1 disjoint cycles is also minor-closed;

the forbidden minor is k+1 disjoint copies of K3. Chapter 7 generalizes results of
Chapter 6 to classes with at most k disjoint excluded minors from a given fixed
set B (with repetitions allowed). For the generalisation to work, the excluded
minors in B have to necessarily satisfy a certain restriction: the class of graphs
ExB must not contain arbitrarily large fans (a fan is a graph consisting of a path
together with a vertex joined to each vertex on the path).

We postpone the formal statements of our theorems until Chapter 7; now
we will just discuss one example, a straightforward application of our results with
k = 2 and a set B0 = {H}, consisting of a particular graphH on six vertices shown
in Figure 5 (a). Our result concerns the class A of graphs with the excluded minor
shown in Figure 5 (b). Graphs that violate the requirement are, for instance, as
in Figure 5 (c) (two of the subgraphs are subdivisions of H, the third can be seen
to have H as a minor by contracting two edges incident to vertices marked with
the smaller circles).

Our result implies that a uniformly random graph in An essentially consists of
a random graph in ExB on n−2 vertices, two “apex vertices”, and edges incident
to each of the apex vertices which appear independently with probability 1/2.

18
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(a)

(b)
{g}

{r, b}

{r, g}

{r, b} {r, g} {g}

{g}
{r}

{b}

{r, g, b}{g, b}

{g, b}

{r}
{r}

{g}

{b}

{b}

{b}

{r, g}

{g, b}

(c)

Figure 6: (a) A forbidden minor: two disjoint K4; (b) a series-parallel network; (c) the “core” of
a typical graph without two disjoint minors K4. To complete the graph, add three new “apex”
vertices x, y, z and join them to each node coloured r[ed], g[reen] and b[lue] respectively; replace
leaf-like shapes by (non-series) series-parallel networks, and attach more series-parallel graphs
at each vertex arbitrarily. Neither of x, y, z is allowed to create a K4 minor alone.

With very high probability these two apex vertices are the only vertices that have
linearly many neighbours, see Figure 5 (d).

The last two chapters are devoted to the next layer of disjoint forbidden minors.
In Chapter 8 we prove results for general classes B, such that ExB contains all fans,
but B is “good enough”. We show that a different general construction dictates
the asymptotic number of graphs without k + 1 disjoint excluded minors in B.
The motivating case behind quite general results of Chapter 8 was a particular set
B = {K4}. The graphs without a minor K4 are known as series-parallel graphs.
This class is important in computer science, and has been used to study algorithms
for problems that are hard for general graphs.

In Chapter 9 we obtain precise first-order asymptotics for the number of graphs
without k+1 disjoint minors K4. We prove that for large n, a typical such graph
G on {1, . . . , n} has a unique set S with the following properties:

(i) S is of size 2k + 1;

(ii) for any x ∈ S, the removal of S \ {x} from G results in a series-parallel
graph;

(iii) each vertex in S has linearly many neighbours.

A rather complete picture of typical graphs from this class is developed. Figure 6
illustrates some of the basic features.
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Overview of the methods
Many different methods are used throughout the dissertation. The most important
of them are discussed in more detail in the background chapters, Chapter 1 and
Chapter 5.

Inequalities from probability theory and probabilistic method. We
use various classic probabilistic methods such as the first and second moment
method, Chebyshev’s inequality quite intensively in Part I of the thesis. In ad-
dition, we use some less standard results from Ramsey theory and the theory of
random graphs.

Concentration inequalities. In both parts an indispensable tool is Cher-
noff bounds for sums of independent random variables. Most of the applications
require only that the bounds are exponential, the constant in the exponent is not
important. In Chapter 4 we use more sophisticated concentration inequalities for
martingales, from McDiarmid (1998) [72].

Differential equations method. This method is based on concentration
inequalities for martingales. It was developed by Wormald [101] in the context of
random graph processes, though Karp and Sipser had applied similar techniques
in their earlier work [59]. The main idea is to show that a trajectory of a parameter
of a random process is highly concentrated around its mean at all time steps. The
curve for the mean is a solution of a system of differential equations. We apply
this method for the random hypergraph edge colouring problem.

Theory of graph minors. Several major results in the theory of graph
minors by Robertson and Seymour, see [89], are the starting point in the proofs
of Part II. One of the key facts is that graphs with a planar excluded minor have
a bounded tree-width.

Singularity analysis. Methods based on generating functions play an im-
portant role in Part II. While in Chapters 6, 7 and 8 we only make use of very
simple results, such as the “exponential formula”, Chapter 9 contains a full appli-
cation of the singularity analysis method: we obtain decompositions of relevant
classes, convert them to exponential generating functions and use either general
theorems or our own observations in complex analysis to extract the asymptotic
coefficients. Most of the tools of this kind can be found in the book “Analytic
Combinatorics” by Flajolet and Sedgewick [48]. For counting tree-like structures
we also find the work of Meir and Moon (1989, [79]) very general and useful.
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Computational tools. We used computer to aid some of our work. Numeri-
cal estimates presented in Part II were carried out with the symbolic computation
system Maple. Empirical analysis of real networks in Section 1.2 required larger
scale computation, this was implemented using Python with its packages numpy
and matplotlib and executed in the cluster of the Digital Science and Computing
Centre of the Faculty of Mathematics and Informatics, Vilnius University. Some
programming with C++ and Python was used to explicitly construct all possible
graphs related to classes with few disjoint minors K4. Most of the illustrations
in this thesis were created using Xfig and Inkscape. The dissertation itself was
prepared and compiled with XeLaTeX.

The methods and proofs presented in this thesis are mathematically rigorous.
The empirical parameters of large real networks were only evaluated for partic-
ular graphs and served mainly for illustratory purposes. Statistical inference or
hypothesis testing using random intersection graph models can be seen as a po-
tential future work in the area.

Content, originality and novelty
The content presented in this thesis has been created and prepared by the author
of the thesis together with his co-authors.

The results obtained in the dissertation are original and all of them can be
considered as new. Most of the problems of Part I had been considered by other
authors with related but different models. In our work we propose several meth-
ods not used in this context before (applications of the balls and bins problem,
extremal combinatorics and differential equations). The important phenomenon
of largest clique being generated by a single attribute has been earlier also dis-
covered by two other groups of researchers in related but more restricted models.
Part II explores an entirely new type of minor-closed classes and similar results
were unknown before. Some of the intermediate lemmas extend previously known
ones.

Each of the results chapters is based on an article that has either been pub-
lished or submitted for publication.

Section 1.2 – on paper [20] with M. Bloznelis and J. Jaworski and paper [24]
with M. Bloznelis1.

Chapter 2 – on paper [62];
1In these two works I essentially carried out only the empirical analysis.
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Chapter 3 – on paper [25] with M. Bloznelis;
Chapter 4 – on paper [66] with K. Rybarczyk.
Chapter 6 – on paper [64] with C. McDiarmid;
Chapter 7 – on paper [65] with C. McDiarmid,
Chapter 8 and Chapter 9 – on paper [63].

The papers [24,62,64,65] have been published, the remaining papers have been
submitted for publication.
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Random intersection graphs
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Chapter 1

Background

1.1 Random intersection graphs
In this section we briefly review some of the literature on random intersection
graphs. For a more complete overview see upcoming survey papers [21, 22].

1.1.1 Models

Given positive integers n and m, and a probability measure P on {0, 1, . . . ,m},
the random intersection graph (also called the active random intersection graph)
G(n,m, P ) on vertex set V = {1, 2, . . . , n} and with the setW = {w1, w2, . . . , wm}
of attributes is defined as follows. Let S1, S2, . . . , Sn be independent random
subsets of W such that for any v ∈ V and any S ⊆ W we have P(Sv = S) =

P (|S|)/
(
m
|S|

)
. The edge set of G(n,m, P ) consists of those pairs {u, v} ⊆ V for

which Su ∩ Sv 6= ∅.
The model G(n,m, P ) is rather general. If the distribution P is the binomial

distribution with parameters p andm, we obtain the binomial random intersection
graph G(n, p) studied in [58] and later by many other authors, including [37, 81,
92,97]. If P is a degenerate distribution such that P (k) = 1 for a constant k, then
we obtain the uniform random intersection graph G(n,m, k) as, e.g., in [14] and
many other papers, see [21]. Random uniform hypergraphs are closely related to
the last model.

Several further natural extensions and modifications have been considered. An
intersection threshold s ≥ 1, may be required to create an edge [18] (i.e., vw is
an edge if and only if |Sv ∩ Sw| ≥ s). A model dual to G(n,m, P ) and denoted
G∗(n,m, P ) is called the passive random intersection graph. It has the vertex set
W and for a pair {w′, w′′} of distinct elements from W , w′w′′ is an edge if and
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only if there is at least 1 (or, more generally, at least s) sets containing both w′

and w′′. More recent research, i.e., [19, 23, 27], focused on inhomogeneous ran-
dom intersection graphs where both attributes and vertices are assigned random
weights and an attribute w is added to the set Sv with probability proportional
to the product of the weights of w and v.

The model of Chapter 2 is an adaptation of the binomial random intersec-
tion G(n,m, p) that yields random directed graphs. The model of Chapter 3 is
G(n,m, P ), and the model we will meet in Chapter 4 is G(n,m, k).

1.1.2 Degrees, clustering and sparseness

A notable fact about these models is that they can be used to obtain sparse
graphs with a power-law asymptotic degree distribution and a positive clustering
coefficient.

Consider a sequence {G(n), n = 1, 2, . . . } of random intersection graphs where
G(n) = G(n,m, P ), m = m(n) and P = P (n). Let X(n) (the size of a random
set) be distributed according to P (n), and write Y (n) = n1/2m−1/2X(n). We will
consider the following conditions

Y (n) converges weakly to a random variable Y ∗ with mean µ; (1.1)

lim
n→∞

EY (n) = EY ∗. (1.2)

The limiting degree distribution for active random intersection graphs was de-
termined in increasing generality by Stark [97], Deijfen and Kets [37], Bloznelis
[15, 16, 18] and Rybarczyk [93].

Theorem 1.1.1 (Bloznelis, [15,18]) Let {G(n), n = 1, 2, . . . } be a sequence of
random intersection graphs, such that (1.1) and (1.2) hold. Write µ = EY ∗.

Then the degree D(n) of vertex 1 in G(n) converges weakly to a random variable
D∗, which has a Poisson distribution with random intensity µY ∗: P(D∗ = k) =

(k!)−1E (µY ∗)ke−µY ∗
.

Thus, if the random variable Y ∗ is power-law distributed and the conditions of
the last theorem hold, then so is D∗ [15]. If, additionally, µ = EY (n) = O(1),
then the limiting degree is bounded (the graph is sparse). Let us remark that [18]
considers more general intersection thresholds s ≥ 1, and both the active and
the passive random intersection graphs. Here and below for simplicity we present
simplified results for the case s = 1 and the active random intersection graph only.
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The clustering coefficient α(G) of a graph G with minimum degree at least
two is defined as follows. Let (v∗1, v∗2, v∗3) be a uniformly random triple of distinct
vertices from G. Then

α(G) = P(v∗1v∗2 ∈ E(G) | v∗1v∗3, v∗2v∗3 ∈ E(G)).

The fact that G(n,m, P ) admits a clustering property (the clustering coefficient
remains bounded away from zero as n,m → +∞) was observed by Deijfen and
Kets [37]. The asymptotic properties of α(G) were later studied in [18].

Their results show that the parameters of G(n,m, P ) can be chosen so that
its limiting clustering coefficient is an arbitrary positive number in the interval
[0, 1), and the limiting degree distribution is power-law. These two properties
are reported to be present in many large scale real networks (complex networks).
Other properties studied in random intersection graphs include formation of the
giant component [5, 17, 27], connectivity [14] and diameter, see [22].

1.2 Relation to empirical networks
An interesting link between sparse1 random intersection graphs and empirical
networks was discovered by Bloznelis [18]. Given a graph G with |V (G)| ≥ 3 and
a random triple of vertices (v∗1, v∗2, v∗3) as before, define the conditional clustering
coefficient

α[k](G) = P(v∗1v∗2 ∈ E(G) | v∗1v∗3, v∗2v∗3 ∈ E(G), d(v∗3) = k)

for each k = 2, 3, . . . such that P(d(v∗3) = k) > 0.
Bloznelis obtained a simple expression for α[k](G(n,m, P )) and pointed out

that for sparse random intersection graphs G(n,m, P ) with a power-law asymp-
totic degree distribution we have limn→∞ α[k](G(n,m, P )) ∼ ck−1 as k →∞ where
c > 0 is a constant. Remarkably, the shape of α[k] obtained rigorously agrees with
its shape for a wide variety of social networks observed earlier by other authors,
see [18].

This result encouraged studying other measures commonly used in empirical
networks. The correlation coefficient of the degrees of neighbouring nodes of a
graph is called the assortativity coefficient. A very similar quantity, for a graph

1In this section sparse refers to sequences satisfying (1.1).
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G and a uniformly random pair (v∗1, v∗2) of its vertices, is

r(G) =
E d(v∗1)d(v∗2)− (E d(v∗1))2

E d(v∗1)2 − (E d(v∗1))2
.

Theorem 1.2.1 ( [20]) Suppose {G(n), n = 1, 2, . . . } is a sequence of random
intersection graphs satisfying (1.1),

m

n
→ β ∈ (0,∞) and (1.3)

EY (n)3 → E (Y ∗)3. (1.4)

Then
r(G(n)) =

EX√
β(EXEX3 − (EX2)2) + EX2

+ o(1).

For large n, r(G(n)) is positive, which tends to also be the case in social networks,
see [20].

Another quantity, related to both r(G) and α[k](G) is

bk(G) = E (d(v∗1) | v∗1v∗2 ∈ E(G), d(v∗2) = k).

Let {G(n), n = 1, 2, . . . } be as in Theorem 1.2.1. The asymptotics of bk(G(n))
were determined in [20]. For a graph G and a pair {u, v} ⊆ V (G), we let d(u, v)
denote the number of common neighbours (also known as codegree) of u and v.
Define

dk(G) = E (d(v∗1)− d(v∗1, v∗2) | v∗1v∗2 ∈ E(G), d(v∗2) = k).

Surprisingly, see [20], for any k = 1, 2, . . . , dk(G(n)) is asymptotically a constant:

dk(G(n)) = E d(v∗1)− E d(v∗1, v∗2) + o(1) as n→∞.

That is, given that v∗1 is adjacent to v∗2, the number of neighbours of v∗1 which
are at distance 2 from v∗2 is (asymptotically) not affected by the degree of v∗2.
Thus there is only “one step” dependence between degrees of vertices in a random
intersection graph. Meanwhile, there seems to be a longer range dependence in
social networks, see Figure 1.1. The shape of the function in the simulated random
intersection graph is close to a constant as in the theoretical estimate above. For
empirical networks, however, dk seems to increase with k, at least for moderately
large k.

Yet another measure was introduced in [25]. Given a graph G and a uniformly
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Figure 1.1: Decomposition of the conditional assortativity coefficient bk. Left: IMDB actors
affiliation network from all French language drama films (n = 43204 actors and m = 5629 films,
data from http://www.imdb.com). Right: a random intersection graph with the same n and m
and the same set sizes, where each actor reselects the subset of films of the same size as in the
real data, but now independently and uniformly at random.

random pair (v∗1, v∗2) of its distinct vertices, the clustering function is defined as

r 7→ clG(r) = P(v∗1v∗2 ∈ E(G) | d(v∗1, v∗2) = r),

for each r where P(d(v∗1, v∗2) = r) > 0. That is, clG(r) is the probability that
two random vertices of a graph are adjacent, given that they have r common
neighbours. Let {G(n), n = 1, 2, . . . } be a sequence of random intersection graphs,
such that (1.1), (1.3) hold and

EY (n)2 → E (Y ∗)2.

Then, using Theorem 1.1.1, the degree distribution converges weakly to some
random variable D∗. For a constant r, it was shown that we have convergence to
a step function:

clG(n)(R)→


0, for r = 0;

α
α+(1−α)eΛ

, for r = 1;

1, for r ≥ 2.

Here α is the limit of the clustering coefficient of G(n) and Λ = (ED∗/β)1/2.
[25] also looked at clG in several large empirical networks, including, IMDB

actor affiliation networks and Facebook networks. In empirical data, this function
was invariably found to be increasing with r, though the jump from 0 to 1 was
less sharp. This was argued to be due to slow convergence of the error terms and
the heavy tail of the degree distribution, see Figure 1.2.
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Figure 1.2: Clustering function clG for empirical graphs (illustrations from [25]). Left: three
Facebook university networks. Right: The French drama actors affiliation network (green stars)
and a corresponding random inhomogeneous intersection graph (blue circles).

1.3 Cliques and chromatic number
The clustering coefficient can be expressed as a ratio of the number of paths of
length two and the number of triangles in the graph. Naturally, the clustering
property of random intersection graphs propagates to larger local structures, such
as cliques of size more than three.

Birth thresholds for cliques of size h, where h is fixed were determined already
in the introductory paper of Karoński, Scheinerman and Singer-Cohen:

Theorem 1.3.1 ( [58] ) Fix α > 0 and consider a sequence of binomial random
intersection graphs {G(n,m, p), n = 1, 2, . . . } where m = m(n) = bnαc and p =

p(n). Define

τ = τ(Kh, n) =

n−1m−1/h for α < 2h/(h− 1);

n−1/(h−1)m−1/2 for α ≥ 2h/(h− 1).

G(n,m, p) contains (respectively, does not contain) a copy of Kh whp if p/τ →∞
(respectively, p/τ → 0).

It turns out, that in the first case the small cliques indeed are “born” at much
smaller edge densities in G(n,m, p) than, for example, in the Erdős-Rényi random
graph G(n, p).

Karoński, Scheinerman and Singer-Cohen also gave a more general result for
arbitrary fixed size subgraphs H: they showed that one always needs to consider
a finite number of “minimal” configurations of intersecting sets that “create” H,
equivalently, the minimal covers of the edges of H by cliques. For H = Kh, one of
the following two structures realises the birth threshold: (a) h sets that contain
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the same attribute or (b) h sets and
(
h
2

)
attributes, where each of the attributes

lies in one of the possible pairwise intersections.
Rybarczyk and Stark [92] used Stein’s method and a nice idea to estimate and

compare probabilities of different clique covers of Kh to show that the number of
copies of Kh in G(n,m, p) is approximately Poisson, when p is near the threshold
τ(Kh, n).

The studies of clique number and the chromatic number of Erdős-Rényi ran-
dom graph G(n, p) have a long history and solid results. The work on these
subjects continues from at least 1970s, when Bollobas, Erdős, Grimmett, Matula
and McDiarmid made major early contributions. A remarkable technique devel-
oped to tackle these problems was the application of martingales in the theory
of random graphs. In 1991  Luczak settled the chromatic number problem for
the remaining case of sparse random graphs. However, there still are some open
questions even for G(n, p). We refer to [34, 56] for the main results.

The clique number of the binomial random intersection graph G(n,m, p),
where m = bnαc, 0 < α < 1 and mp2 = O(1) was considered by Nikoletseas,
Raptopoulos and Spirakis in [81]. They showed, that in this regime the largest
clique is formed by a single attribute whp.

Motivated by a seemingly very different subject (the Erdős-Ko-Rado theo-
rem), Balogh, Bohman and Mubayi [4] considered a random k-uniform hyper-
graph Gk(n, p) where each of the

(
n
k

)
hyperedges is included with probability p.

They asked when Gk(n, p) has the property that its maximum intersecting fam-
ily is trivial, so that all sets in this family have a common element. They gave
the answer for all p and a surprisingly wide range of k (3 ≤ k ≤ n1/2−ε for any
ε > 0). Indeed, Gk(n, p) was shown to have this property exactly, if k = o(n1/4),
and “approximately”, if k = o(n1/3); for larger k the property holds whp if and
only if p is sufficiently large. This result is essentially equivalent to determining
the clique number in the random uniform intersection graph G(n,m, k) for a very
wide range of parameters.

The chromatic number for G(n,m, p) in the range of parameters yielding very
sparse graphs was considered in [6]; some further bounds were obtained in [80];
see also Chapter 4 for more references.
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Chapter 2

Small complete graphs in a
random intersection digraph

2.1 Introduction
We consider the random binomial intersection digraph D(n,m, p−, p+) defined in
the Introduction. In [97] a network of co-authors of mathematical papers is men-
tioned as an illustration for random intersection graphs. One might alternatively
define a citation digraph where V is a set of mathematicians and we draw an arc
from u to v if and only if u has cited v. The underlying set W here would be the
set of all mathematical papers; and S−(u) (respectively, S+(u)) would correspond
to the set of papers u has cited (respectively, co-authored).

We reviewed the practical importance of random intersection graphs in Chap-
ter 1. In some applications considering directed intersection graphs makes sense
and might lead to more precise/adequate models. In particular, one may obtain a
digraph with power law indegree distribution and bounded outdegree distribution.
In addition these digraphs have a clustering property when m is of order n [16].

In the problem of determining the birth threshold of small subgraphs one
is interested in the question of how dense a graph should be to have a desired
subgraph with certainty. There is a rich literature devoted to birth thresholds in
random graphs with independent edges where each edge appears with the same
probability, see, e.g., Chapter 3 of [56]. The threshold for a random (binomial)
intersection graph to contain a fixed subgraph has been studied in [58].

Here we consider a similar problem for random intersection digraphs. Let −→Kh

be the complete digraph on vertex set [h] = {1, . . . , h} containing arcs xy and yx
for each pair of distinct vertices x, y ∈ [h]. We aim to determine critical values
of the parameters for D(n,m, p−, p+) to have with a high probability a subgraph
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Figure 2.1: The diclique ({a, b, c}; {b, c, d, e}).

isomorphic to −→Kh.
Given two finite sets C− and C+ we consider the ordered pair C = (C−;C+)

and the digraph D(C) on the vertex set C− ∪ C+ with the set of arcs {uv : u ∈
C−, v ∈ C+}. We call the pair C a diclique. We say that C is proper if C−, C+ are
non-empty, otherwise say that it is improper. We remark that if the digraph D(C)

is non-empty then C must be proper and D(C) 6= D(C ′) for C 6= C ′. Therefore
we will identify a proper diclique C with the corresponding digraph D(C), see
Figure 2.1.

To our knowledge, the diclique digraphs were first studied by Haralick [54],
but in a different context.

In the random digraph D with vertex set V and attribute setW each attribute
w ∈ W defines a diclique C(w) = (C−(w);C+(w)) given by C−(w) = {v ∈ V :

w ∈ S−(v)} and C+(w) = {v ∈ V : w ∈ S+(v)}. It is convenient to interpret each
attribute w ∈ W as a distinct colour. Then all the attributes in W give rise to a
family of dicliques of different colours which covers all arcs of D.

The paper is organised as follows. In the next section we present our main
results. In Section 2.3 we give a general lemma for the birth threshold of a fixed
directed graph H. In Section 2.4 we study a few special diclique covers of −→Kh and
prove our main results Theorem 2.2.1 and Theorem 2.2.2.

We remind some standard notation used in the paper. For functions f, g :

N → R+ we write f ∼ g if limk→∞ f(k)/g(k) = 1. We write f = O(g) if
lim supk→∞ f(k)/g(k) <∞, f = Ω(g) if g = O(f) and f = Θ(g) if both f = O(g)

and g = O(f). We write f = o(g) if f(k)/g(k)→ 0.
Finally, thanks to an anonymous reviewer the author became aware of a related

and very relevant result on the Poisson approximation of the number of cliques in
sparse random intersection graphs by Rybarczyk and Stark [92].
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2.2. Results

2.2 Results
Before stating our main results we need to introduce some definitions related to
dicliques. Without loss of generality we will assume that the set of vertices of the
random digraph D is V = [n].

For any diclique C, we call V (C) = C− ∪ C+ the vertex set of C. Let C =

{C1, C2, . . . , Cs} be a family of dicliques, (we allow C to be a multiset and in this
paper we consider only finite families C). Let us denote by V (C) the union of all
vertices of the dicliques, V (C) =

∪
V (Ci). We say that D contains C if there are

distinct attributes w1, . . . , ws ∈ W , such that Ci ⊆ C(wi) for each i = 1, . . . , s

(the set operations for dicliques are defined componentwise). Also, let us call a
diclique family proper if all its dicliques are proper.

Let C be any diclique family with V (C) = {v1, . . . , vr} ⊆ [n] and assume that
v1 < · · · < vr. For any set S = {x1, . . . , xr} ⊆ [n] with x1 < · · · < xr, let us denote
by M(C, S) the diclique family which is an image of C obtained by renaming vi to
xi for each i = 1, . . . , r. We call M(C, S) a copy of C.

Each family of dicliques C defines a digraph H = H(C) with vertex set V (C):
an arc is present in H whenever it is present in some D(C), C ∈ C. We say that
the family C is a diclique cover of H.

The digraph −→Kh can be covered by dicliques in many different ways. Consider
the following important symmetric diclique covers of −→Kh:

• CM = {([h]; [h])}, the monochromatic diclique cover;

• CR = E(
−→
Kh), the rainbow diclique cover, where E(−→Kh) is the set of arcs of

−→
Kh and we identify each arc uv with the diclique ({u}; {v});

• Cin = {([h] \ {i}; {i}) : i ∈ [h]}, the cover by in-stars;

• Cout = {({i}; [h] \ {i}) : i ∈ [h]}, the cover by out-stars.

The motivation for the names “monochromatic” and “rainbow” is that a single
attribute (or colour) w ∈ W may generate a copy of CM in D, while h(h − 1)

attributes are needed for a copy of CR.
We will consider a sequence of random digraphs {D(k), k = 1, 2, . . . } where

D(k) = D(n,m, p−, p+), n = n(k) (we always assume that n(k) is increasing),
m = m(k), p− = p−(k) and p+ = p+(k) all depend on k. If not stated otherwise
all limits below are as k →∞.

Let us now define what a birth threshold function for −→Kh is. We would like
to have a function that, for a sequence of random digraphs {D(k)}, indicates
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whether a copy of −→Kh is present whp. Since the sequence {D(k)} depends on
several parameters which are themselves sequences, such a function has to take
into account all of them.

Let X be either a fixed digraph or a diclique family. Let X ∈ D denote the
event that the random digraph D contains a copy of X. Given a sequence of
random digraphs {D(k)} we call a function τ : N2× [0; 1]2 → R+ a birth threshold
function for X if both of the following implications hold:

τ(n,m, p−, p+)→ 0 =⇒ P (X ∈ D(k))→ 0;

τ(n,m, p−, p+)→∞ =⇒ P (X ∈ D(k))→ 1.

Given a sequence of random digraphs {D(k)} and a birth threshold function τ for
−→
Kh we call a collection L of diclique covers of −→Kh the leading set if τ is a birth
threshold function for each C ∈ L and the following implications hold:

1) τ(n,m, p−, p+) = O(1) =⇒ P (C ′ ∈ D(k))→ 0 for each proper diclique cover
C ′ of −→Kh such that C ′ 6∈ L;

2) τ(n,m, p−, p+) = Θ(1) =⇒ P (C ∈ D(k)) = Ω(1) for each C ∈ L.

In the case where L consists just of a single diclique family C, we call C the leading
cover.

We will consider the following birth threshold functions:

τ1 = nm1/hp−p+; τ2 = n1/(h−1)mp−p+;

τ3 = nmph−1
− p+; τ4 = nmp−p

h−1
+ .

We are now ready to state our main result (see Figure 2.2 for an illustration).

Theorem 2.2.1 Let h ≥ 3 be a fixed integer. Write α0 = 1− 1
(h−1)2

. Let {D(k)}
be a sequence of random binomial intersection digraphs such that n is increasing,
m = Θ(nα) for some α > 0, p− → 0 and p+ → 0.

(i) If α < α0 and

(a) m
h−1

h(h−2)p− → ∞ then τ3 is a birth threshold function for −→Kh with the
leading cover Cin;

(b) m
h−1

h(h−2)p− → 0 and m
h−1

h(h−2)p+ → 0 then τ1 is a birth threshold function
for −→Kh with the leading cover CM ;

(c) m
h−1

h(h−2)p+ → ∞ then τ4 is a birth threshold function for −→Kh with the
leading cover Cout.
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(ii) If α ≥ α0 and

(a) mp+ → 0 then τ3 is a birth threshold function for −→Kh with the leading
cover Cin;

(b) α 6= α0, mp− →∞ and mp+ →∞ then τ2 is a birth threshold function
for −→Kh with the leading cover CR;

(c) mp− → 0 then τ4 is a birth threshold function for −→Kh with the leading
cover Cout.

Let us introduce the following two collections of diclique covers. Let Sin be
the collection of all proper diclique covers of −→Kh such that each C ∈ Sin is a set
of arc-disjoint in-stars, that is, for each C ∈ C we have |C+| = 1 and for each
Ci, Cj ∈ C with i 6= j and C+

i = C+
j we have C−

i ∩ C−
j = ∅. Similarly, let Sout

be the collection of all proper diclique covers C of −→Kh such that for each C ∈ C
we have |C−| = 1 and for each Ci, Cj ∈ C with i 6= j and C−

i = C−
j we have

C+
i ∩ C+

j = ∅. Observe that CR, Cin ∈ Sin and CR, Cout ∈ Sout.
For the “boundary” cases of the parameters in Theorem 2.2.1 we have:

Theorem 2.2.2 Let h, {D(k)}, n, α0,m be as in Theorem 2.2.1. Suppose p− → 0

and p+ → 0. If

(a) α < α0 and m
h−1

h(h−2)p− = Θ(1) then τ1, τ3 are birth threshold functions for −→Kh

with the leading set {CM , Cin}.

(b) α < α0 and m
h−1

h(h−2)p+ = Θ(1) then τ1, τ4 are birth threshold functions for −→Kh

with the leading set {CM , Cout}.

(c) α = α0, mp− → ∞ and mp+ → ∞ then τ1, τ2 are birth threshold functions
for −→Kh with the leading set {CM , CR}.

(d) α > α0 and mp+ = Θ(1) then τ2, τ3 are birth threshold functions for −→Kh with
the leading set Sin.

(e) α > α0 and mp− = Θ(1) then τ2, τ4 are birth threshold functions for −→Kh with
the leading set Sout.

(f) α = α0 and mp+ = Θ(1) then τ1, τ2, τ3 are birth threshold functions for −→Kh

with the leading set {CM} ∪ Sin.

(g) α = α0 and mp− = Θ(1) then τ1, τ2, τ4 are birth threshold functions for −→Kh

with the leading set {CM} ∪ Sout.
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Chapter 2. Small complete graphs in a random intersection digraph

We note that the argument used in the proof of Theorem 2.2.1 can also be
extended to the case where p− or p+ are bounded away from zero. In this case
the birth threshold function remains the same, but the leading sets have to be
slightly modified.

Finally, for the case h = 2 we have

Remark 2.2.3 Let {D(k)}, n,m be as in Theorem 2.2.1. Suppose h = 2, p− → 0

and p+ → 0. Then τ2 is a birth threshold function for −→K 2 with the leading cover
CR.

2.3 Diclique covers: a general lemma
In this section we present some important estimates and Lemma 2.3.2 that relates
the birth threshold of a fixed digraph with presence of its diclique covers. This is
very similar to results for undirected random intersection graphs, see Theorem 3
of [58]. We postpone the proofs of the estimates (2.1) - (2.8) of this section till
Section 2.5.

Let {D(k)} be a sequence of random binomial intersection digraphs and write
D = D(k). Recall that we denote the vertex set of D by V and the attribute set
by W . Suppose m = Θ(nα) for some α > 0. In (2.1) - (2.5) we will assume that

p− → 0, p+ → 0 and mp−p+ → 0.

Note that in this case mp−p+ is asymptotically equivalent to the probability that
a fixed directed edge exists.

Given a diclique C = (C−;C+) and a set S the restriction of C to S is the
diclique C[S] = (C− ∩ S;C+ ∩ S). The restriction for a diclique family is defined
by C[S] = {C[S] : C ∈ C, V (C) ∩ S 6= ∅}.

Let S ⊆ V and let C be a diclique with V (C) ⊆ S. We will say that a
monochromatic C occurs on S if in the realization of D there is at least one
attribute w ∈ W such that C = C(w)[S] (we say that w generates C on S). We
denote the probability of the event that a monochromatic C occurs on S by P (C).

We say that a diclique family C = {C1, . . . , Cs} is induced in D if there are
distinct attributes w1, . . . , ws ∈ W such that Ci = C(wi)[V (C)], for each i =

1, . . . , s and for any attribute w ∈ W \ {w1, . . . , ws} the diclique C(w)[V (C)]
is improper. Thus if C is induced in D then D contains C (see Section 2.2).
We denote the probability of the event that C is induced in D by P (C). Let
S1, S2, . . . , SN be all the subsets of V of size r = |V (C)|, where N =

(
n
r

)
. Let
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2.3. Diclique covers: a general lemma

Figure 2.2: Schematic illustration of Theorems 2.2.1 and 2.2.2. Top: α < α0, bottom:
α > α0. The coloured area is the region where D contains a copy of the special diclique
cover whp (IN = “in-stars” cover Cin, OUT=“out-stars” cover Cout, MO=monochromatic
cover CM , RB = “rainbow” cover CR), the remaining area is where D does not contain
that diclique cover whp. The white area is where D does not have a copy of −→Kh whp. On
the contour between the white and the coloured area we know that D does not contain
any other proper diclique cover whp (excluding the black points that correspond to the
collections Sin and Sout).
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Chapter 2. Small complete graphs in a random intersection digraph

Ii = IM(C,Si) be the indicator of the event that the copy M(C, Si) is induced in D.
Then the number of induced copies of C in D is defined by

X(C) =
N∑
i=1

Ii.

Let S ⊆ V and suppose C = (C−;C+) is a proper diclique such that V (C) ⊆ S.
Then the probability that a monochromatic C occurs on S is

P (C) ∼ P̃ (C) := mp
|C−|
− p

|C+|
+ . (2.1)

Following [58], for a diclique family C = {Ci} we write
∑
C+ =

∑
|C+

i | and∑
C− =

∑
|C−

i |, and we denote by |C| the cardinality of C.
For a diclique family C let C1, . . . , Ct be all its distinct dicliques and let

a1, . . . , at be their multiplicities in C. Let us denote aC = (a1!a2! . . . at!)
−1.

Fix a diclique family C with V (C) ⊆ V . If C is proper then the probability
that C is induced in D is

P (C) ∼ P̃ (C) := aC
∏
C∈C

P̃ (C) = aCm
|C|p

∑
C−

− p
∑

C+

+ . (2.2)

Write

µ(C) = µ(C, n,m, p−, p+) :=
n|V (C)|

|V (C)|!
P̃ (C) = aC

|V (C)|!
n|V (C)|m|C|p

∑
C−

− p
∑

C+

+ .

If C is proper then the number X(C) of induced copies of C in D satisfies

EX(C) ∼ µ(C). (2.3)

More generally, suppose C is not necessarily proper. Suppose that, in addition,
the following technical assumption is satisfied: for each j = 0, . . . , |V (C)|

mpj− → aj and mpj+ → bj (2.4)

for some aj, bj ∈ [0;∞]. Let Ĉ be the diclique family obtained from C by taking
only those dicliques C ∈ C that satisfy mp|C

−|
− p

|C+|
+ → 0 (for proper C we always

have Ĉ = C). Define

µ̃(C) = µ̃(C, n,m, p−, p+) := n|V (C)|m|Ĉ|p
∑

Ĉ−

− p
∑

Ĉ+

+ .
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2.3. Diclique covers: a general lemma

Then
EX(C) = Θ (µ̃(C)) . (2.5)

Observe that the event “C is induced in D” allows any number of extra improper
dicliques on V (C).

For a proper diclique family C and any sequence of random graphs {D(k)}
(without any assumptions on p−, p+,m) we have

P (D(k) contains C) ≤ P̃ (C); (2.6)

P (C ∈ D(k)) ≤ µ(C); (2.7)

(recall that the first event concerns a fixed diclique cover while the second one
asks for any copy of C in D(k)) and, if (2.4) holds then for any diclique family C

P (C ∈ D(k)) ≤ µ̃(C). (2.8)

We will use the following simple technical lemma (known as the subsubse-
quence principle [56]) several times below.

Lemma 2.3.1 For a positive integer t let f1, . . . , ft, g : N→ R be any functions.
Suppose that for any increasing sequence of positive integers (nk), k = 1, 2 . . .

such that

lim
k→∞

fi(nk) exists or is in {−∞,∞} for each i = 1, . . . , t (2.9)

we have limk→∞ g(nk) = b ∈ [−∞;∞]. Then limn→∞ g(n) = b.

Proof Write ḡ = lim supn→∞ g(n). Then there is an increasing sequence of
integers (nj), j = 1, 2, . . . such that g(nj) → ḡ. By the Weierstrass theorem
this sequence has a subsequence (nk), k = 1, 2, . . . such that (2.9) holds. So
b = limk→∞ g(nk) = ḡ. Similarly b = lim infn→∞ g(n) and the claim follows. 2

Let us call a diclique family C simple if it is proper and has no repetitive
elements. The following result allows to find a birth threshold of a fixed digraph
by considering just a constant number (which depends on h) of diclique covers.

Lemma 2.3.2 Let {D(k)} be a sequence of random binomial intersection digraphs
such that n is increasing. Let h ≥ 2 be an integer, and let H be a digraph with
V (H) = [h] and without isolated vertices. Suppose that p− → 0, p+ → 0 and
mp−p+ → 0. Then
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Chapter 2. Small complete graphs in a random intersection digraph

(a) if for each simple diclique cover C of H there is a non-empty set S ⊆ V (C)
such that EX(C[S])→ 0 then whp D(k) does not contain a copy of H;

(b) if there is a simple diclique cover C of H such that EX(C[S]) → ∞ for each
non-empty set S ⊆ V (C) then whp D(k) contains an induced copy of C (and
therefore also a copy of H as an induced subgraph).

Proof The part (a) is easy. Suppose the sequence {D(k)} satisfies the conditions
of (a), but lim supP (−→Kh ∈ D) > 0, where D = D(k). Since the event −→Kh ∈ D
implies C ∈ D for some simple diclique cover C of −→Kh and the number of such
diclique covers is finite we have lim supP (C0 ∈ D) > 0 for one of such covers C0.
By Lemma 2.3.1 we may assume that (2.4) holds. Take a set S ⊆ [h] such that
E (X(C0[S]))→ 0. By (2.5) and (2.8) we have

P (C0 ∈ D) ≤ P (C0[S] ∈ D) ≤ µ̃(C0[S]) = Θ(EX(C0[S])) = o(1)

which is a contradiction.
Now let us prove (b). Let C be a simple diclique cover of H that satisfies the

condition in (b). Note that |V (C)| = h since H has no isolated vertices. Recall
that the number of induced copies of C in D is X = X(C) =

∑N
i=1 Ii where Ii = 1

if and only if the diclique cover M(C, Si) is induced in D and by (2.3)

EX ∼ µ(C) ∼ nh

h!
P̃ (C)→∞.

So the claim will follow by the method of second moments if we show that
V ar(X)/(EX)2 → 0. We have

EX2 = EX +
∑
i 6=j

IiIj.

If the sets Si and Sj do not intersect, we have that Ii and Ij are independent and
E IiIj = E IiE Ij. There are in total

(
n
h

)(
n−h
h

)
(ordered) pairs of sets that do not

intersect. So

V ar(X) = EX2 − (EX)2 ∼ EX +
n2h

(h!)2
(1 + o(1))P (C)2

− n2h

(h!)2
(1 + o(1))P (C)2 +

∑
Si∩Sj 6=∅

E IiIj

= o
(
(EX)2

)
+

∑
Si∩Sj 6=∅

E IiIj;
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2.3. Diclique covers: a general lemma

and we have that∑
Si∩Sj 6=∅ E IiIj
(EX)2

≤
∑h

s=1

(
n
h

)(
h
s

)(
n−h
h−s

)
max|Si∩Sj |=s E IiIj

(EX)2
≤ C

h∑
s=1

Ts

for some constant C where

Ts =
max|Si∩Sj |=s E IiIj

nsP (C)2
. (2.10)

To show that V ar(X)/(EX)2 → 0 it is enough to prove that Ts → 0 for s =

1, . . . , h.
Fix a positive integer s, s ≤ h and two sets Si, Sj ⊆ V of size h such that

|Si∩Sj| = s. Let Ci =M(C, Si) = {C i
1, . . . , C

i
t} and Cj =M(C, Sj) = {Cj

1 , . . . , C
j
t }

be two copies of the diclique family C (here t = |C|). Let M be a matching
(not necessarily perfect) in a bipartite graph with parts X = {x1, . . . , xt} and
Y = {y1, . . . , yt}. Let L = X \ {xl : xlyr ∈ M} and R = Y \ {yr : xlyr ∈ M}.
Define a diclique family1

CM = {C i
l ∪ Cj

r : xlyr ∈M} ∪ {Ci
l : xl ∈ L} ∪ {Cj

r : yr ∈ R}.

Here the union of diclique families is ‘multiset union’ so that CM contains exactly
|M |+ |R|+ |L| elements.

Let us call M good if CM [Si] \ Ci and CM [Sj] \ Cj consist of improper dicliques
only.

Proposition 2.3.3 If both Ci and Cj are induced in D then there is a good
matching M such that D contains CM .

Proof By definition, if both Ci and Cj are induced in D then there are two lists
wi = (wi

1, . . . , w
i
t) and wj = (wj

1, . . . , w
j
t ) of attributes from W such that

C(wi
s)[S

i] = Ci
s and C(wj

s)[S
j] = Cj

s for s = 1, . . . , t.

Also, there are no edges in D[Si] (respectively, D[Sj]) generated by attributes not
in wi (respectively, wj). Notice also, that by definition the elements in each of the
lists wi, wj must be distinct (although there can be some elements that belong to
both lists). Thus all pairs xlyr where wi

l = wj
r and l, r ∈ {1, . . . , t} define some

matching M0. Clearly for each diclique C ∈ CM0 it is possible to assign a unique
1The notation should not be confused with the monochromatic cover CM .
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Chapter 2. Small complete graphs in a random intersection digraph

element w ∈ W such that C ⊆ C(w)[Si ∪ Sj]. The fact that M0 is good follows
by definition since both Ci and Cj are induced in D. 2

Let P ∗∗(C) denote the probability of the event that D contains C. It follows
by Proposition 2.3.3 that

E IiIj ≤
∑
M

P ∗∗(CM). (2.11)

where the sum is over all good matchings M . The number of all good matchings
M is at most (t+ 1)t, which is constant. By (2.10) and (2.11) it suffices to show
that

P ∗∗(CM)

nsP (C)2
→ 0

for each good matching M . Write S = Si ∩ Sj. We have P ∗∗(CM) ≤ P̃ (CM) by
(2.6) and P (Ci) = P (Cj) ∼ P̃ (C) by (2.2). For xlyr ∈M we have

P̃ (C i
l ∪ Cj

r )

P̃ (Ci
l )P̃ (C

j
r )

=
1

mp
|Ci−

l ∩Cj−
r |

− p
|Ci+

l ∩Cj+
r |

+

≤ 1

mp
|S∩Cj−

r |
− p

|S∩Cj+
r |

+

.

Therefore we get that there is a constant c such that:

P ∗∗(CM)

nsP (C)2
=

P ∗∗(CM)

nsP (Ci)P (Cj)

≤ c

ns

∏
xlyr∈M

P̃ (Ci
l ∪ Cj

r )

P̃ (Ci
l )P̃ (C

j
r )

∏
xl∈L

P̃ (Ci
l )

P̃ (Ci
l )

∏
yr∈R

P̃ (Cj
r )

P̃ (Cj
r )

=
c

ns

∏
xlyr∈M

1

mp
|Ci−

l ∩Cj−
r |

− p
|Ci+

l ∩Cj+
r |

+

≤ c

ns

∏
yr 6∈R

1

mp
|S∩Cj−

r |
− p

|S∩Cj+
r |

+

= O

(
1

EX(Cj[S])

)
= o(1).

Here we get the bound in the last line as follows. If all dicliques in Cj[S] are
proper, we use (2.3). If Cj[S] has some improper dicliques, by Lemma 2.3.1 it is
sufficient to consider the case where the assumption (2.4) holds. In this case we
use (2.5) with the family Ĉj[S]. This completes the proof. 2

The following fact follows easily from the estimates above.

Lemma 2.3.4 Fix an integer h ≥ 2. Let H be a digraph with V (H) = [h] and at
least one arc. Let {D(k)} be a sequence of random binomial intersection digraphs
such that mp−p+ → 0. Let S be a collection of simple diclique covers of H.
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Suppose that µ(C) = O(1) for each C ∈ S and for each simple cover C of H, such
that C 6∈ S we have µ(C)→ 0. Let C be any proper diclique cover of H such that
C 6∈ S. Then P (C ∈ D(k))→ 0.

Proof Suppose, the claim is false, i.e. there is a proper diclique cover C0 of H
such that lim supP (C0 ∈ D(k)) > 0 and C0 6∈ S. By assumption and (2.7) C0
cannot be simple. We may assume that C0 consists of some simple cover C1 of
H and a proper diclique C. By (2.7) and the definition of µ: P (C0 ∈ D(k)) ≤
µ(C0) ≤ µ(C1)P̃ (C)→ 0 which is a contradiction. 2

2.4 Main proofs
The four special (see Section 2.2) diclique covers of the digraph −→Kh have the
following birth thresholds:

Lemma 2.4.1 Fix an integer h ≥ 2. Let {D(k)} be a sequence of random bi-
nomial intersection digraphs such that n is increasing, p− → 0, p+ → 0 and
mp−p+ → 0. Then the diclique covers CM , CR, Cin, Cout of −→Kh have birth thresh-
old functions τ1, τ2, τ3, τ4, respectively.

Proof Let C be one of the four special covers. To prove that τ is a birth threshold
function for C we may use Lemma 2.3.2. By that lemma it is enough to show that
whenever p− → 0, p+ → 0 and mp−p+ → 0 we have

τ → 0 =⇒ EX(C)→ 0; (2.12)

τ →∞ =⇒ for each non-empty set S ⊆ [h] : EX(C[S])→∞. (2.13)

Here τ = τ(k) = τ(n(k),m(k), p−(k), p+(k)).
By Lemma 2.3.1 we may assume that (2.4) holds.
For the monochromatic cover CM we see that for any non-empty set S ⊆ V (CM)

of size s ≤ h, the restriction CM [S] has the same form as the cover CM defined for
h = s so:

µ(CM [S]) = nsm(p−p+)
s = m1− s

h τ s1 .

So (2.12) and (2.13) follow by (2.3).
Consider now the diclique cover CR. Let S ⊆ V (CR) be non-empty and write

s = |S|. When s < h the restriction C = CR[S] is not a proper diclique family as
for each v ∈ S it contains (h− s) dicliques ({v}; ∅) and (h− s) dicliques (∅; {v}).
Therefore we need to use (2.5) with the family Ĉ.
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If mp− → 0 and mp+ → 0 or S = [h] then Ĉ = C and

µ̃(C) = nsms(s−1)+2s(h−s)(p−p+)
s(s−1)+s(h−s) = ms(h−s)τ

s(h−1)
2

and (2.12) follows by (2.3). If mp− → a1 > 0 and mp+ → 0 then Ĉ = C \
{({v}; ∅) : v ∈ S}.

µ̃(C) = nsms(s−1)+2s(h−s)(p−p+)
s(s−1)+s(h−s)(mp−)

−s(h−s)

= (p−)
−s(h−s)τ

s(h−1)
2 .

The expression µ̃(C) for the case mp+ → b1 > 0 and mp− → 0 is similar (replace
p− with p+).

If mp− → a1 > 0 and mp+ → b1 > 0 by (2.5) the family Ĉ is exactly the cover
CR defined for h = s and

µ̃(C) = n
s(h−s)
h−1 τ

s(s−1)
2 .

In each case (2.13) holds by (2.5).
For the “in-stars” cover Cin we have

µ(Cin) = nhmhp
h(h−1)
− ph+ = τh3

so the implication (2.12) holds by (2.3). Now let S ⊂ V (Cin) be non-empty and
write s = |S|. Suppose s ≥ 2. Then the diclique family C = Cin[S] is not proper
as it contains h − s copies of the diclique (S; ∅). If mps− → 0, we use (2.5) with
Ĉ = C:

µ̃(C) = nsms+(h−s)p
s(s−1)+s(h−s)
− ps+ = mh−sτ s3 .

If mps− → as > 0 then we have Ĉ = {(S \ {v}; {v}) : v ∈ S} so

µ̃(C) = nsms+(h−s)p
s(s−1)+s(h−s)
− ps+(mp

s
−)

−(h−s) = p
−s(h−s)
− τ s3 .

Now, if s = 1, in each of the cases a1 > 0, b1 > 0 and a1 = b1 = 0, see (2.4), by
(2.5) we have that EX(C) = Ω(τ3). Therefore by (2.5) we see that

EX(C)→∞ (2.14)

when τ3 → ∞ and S ⊆ V (Cin) is non-empty and so (2.13) holds for Cin. Finally,
the case of Cout is symmetric to that of Cin. 2
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Remark 2.4.2 Let {D(k)} be as in Lemma 2.4.1. Let C be one of the four
special diclique covers of −→Kh and let τ be its birth threshold function given in
Lemma 2.4.1. If τ = Θ(1) then P (a copy of C is induced in D(k)) = Ω(1).

Proof From the proof of Lemma 2.4.1 we have that µ(C) = Θ(τh) for C ∈
{Cin, CM , Cout} and µ(CR) = Θ(τ

h(h−1)
2 ). So in each case, we have µ(C) = Θ(1).

By (2.3) the number X = X(C) of induced copies of C satisfies

EX = Θ(µ(C)) = Θ(1).

The proof of Lemma 2.4.1 also shows that in each case µ(C[S]) = Ω(1) for each
S ⊆ V (C). Following the lines of the second part of the proof of Lemma 2.3.2 we
see that

V ar(X)

(EX)2
= O(1).

Using the Cauchy-Schwartz inequality we get

P (X > 0) ≥ (EX)2

EX2
= Ω(1).

2

The next lemma says that if p− is sufficiently large then it is always ‘better’
to replace any diclique cover by a ‘star’ cover C ′:

Lemma 2.4.3 Let h ≥ 3 be an integer and let {D(k)} be a sequence of random
binomial intersection digraphs such that n is increasing, p− → 0 and m

h−1
h(h−2)p− =

Ω(1). Let C be a diclique family consisting of a single proper diclique C = (C−;C+)

with V (C) ⊆ [h]. Suppose |C+| ≥ 2 or |C− ∩C+| = 1. Let C ′ be a diclique family
defined by

C ′ =
{
(C− \ {v}; {v}) : v ∈ C+

}
.

Then P̃ (C ′) = Ω(P̃ (C)). More precisely,

(a) If C 6= CM or m
h−1

h(h−2)p− →∞ then P̃ (C) = o(P̃ (C ′));

(b) If C = CM and m
h−1

h(h−2)p− = Θ(1) then P̃ (C ′) = Θ(P̃ (C)).

We note that C and C ′ are both diclique covers of the diclique C.
Proof If |C+| = 1 and |C− ∩ C+| = 1 then

P̃ (C ′)
P̃ (C)

= p−1
− →∞
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so we may assume that |C+| > 1. Let c− = |C−| and c+ = |C+|. Then

P̃ (C ′)
P̃ (C)

=
mc+p

∑
C′−

− p
c+
+

mp
c−
− p

c+
+

= mc+−1p
∑

C′−−c−
−

≥ mc+−1p
(c+−1)(h−1)−1
− =

(
mp

h−1− 1
c+−1

−

)c+−1

(2.15)

≥
(
mp

h−1− 1
h−1

−

)c+−1

. (2.16)

Here the inequality in the second line follows from:

∑
C ′− − c− ≤ (c+ − 1)(h− 1)− 1. (2.17)

To see (2.17) consider three possible cases:
If c− ∈ {1, 2, . . . , h− 2} then

∑
C ′− − c− ≤ c−c+ − c− = c−(c+ − 1) ≤ (h− 1)(c+ − 1)− (c+ − 1).

If c− = h− 1 then there is at most one diclique C ′ in C ′ with C ′+ = {v} such that
v ∈ |C+ \ C−| so

∑
C ′− − c− ≤ (c− − 1)(c+ − 1) + c− − c− = (h− 1)(c+ − 1)− (c+ − 1),

and if c− = h,

∑
C ′− − c− ≤ c+(c− − 1)− c− = (h− 1)(c+ − 1)− 1.

Note that in the inequality (2.16) the right hand side can be of the same order
only for c+ = h. But if c+ = h and c− < h, we get

∑
C ′− − c− = (h− 2)c− < h(h− 2) = c+(h− 1)− 1,

so in that case the right hand side of the inequality (2.15) of a smaller order than
the left hand side. Now note that

mp
h−1− 1

h−1

− = Ω(1)

since p− = Ω
(
m− h−1

h(h−2)

)
and m1− h−1

h(h−2)(h−1− 1
h−1) = 1. Thus we have shown that

P̃ (C) = O(P̃ (C ′)) and the claim (a) holds. To complete the proof, note that for
C = CM (2.17) and (2.16) become equalities. 2
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The next lemma shows that if we have a diclique family consisting of many
“in-stars” centred at one vertex, we may merge all of them into a single diclique.

Lemma 2.4.4 Let h ≥ 2 be an integer and let H be a digraph obtained from the
complete bipartite graph K1,h−1 by orienting each edge towards the centre vertex
v. Let C be any proper diclique cover of the digraph H of the form

C =
{
(C−

i ; {v}), i = 1, . . . , t
}

where t ≥ 2 and
∪

iC
−
i = V (H) \ {v}.

Let C∗ = {(V (H) \ {v}; {v})} be a cover of H and let {D(k)} be a sequence
of random binomial intersection digraphs such that n is increasing, p− → 0 and
mp+ = O(1). Then

P̃ (C∗) = Ω(P̃ (C)).

More precisely,

(a) If mp+ = o(1) or
∑
C− > h− 1 then P̃ (C) = o(P̃ (C∗));

(b) If mp+ = Θ(1) and
∑
C− = h− 1 then P̃ (C∗) = Θ(P̃ (C)).

Proof Using (2.2) we have

P̃ (C)
P̃ (C∗)

=
aCm

tp
∑

C−

− pt+
mph−1

− p+
= aC(mp+)

t−1p
∑

C−−(h−1)
− = O(1)

since
∑
C− ≥ |

∪
iCi| = h− 1. The claims (a) and (b) follow similarly. 2

Let us remark that we use P̃ rather than P in Lemma 2.4.3 and Lemma 2.4.4
for convenience. By (2.2) we know that P can be replaced by P̃ as long as p−, p+
and mp−p+ all tend to 0. We are now ready to prove Theorem 2.2.1.

We split the proof of our main result into a few lemmas. In the four lemmas
below we assume that h, {D(k)}, n, α0,m are as in Theorem 2.2.1 p− → 0, p+ → 0

and µ(C) = µ(C, n,m, p−, p+) is as defined in Section 2.3.

Lemma 2.4.5 Suppose α < α0 and m
h−1

h(h−2)p− = Ω(1). Then τ3 is a birth thresh-
old function for −→Kh. Furthermore, if m

h−1
h(h−2)p− → ∞ then the leading set is

L = {Cin} and if m
h−1

h(h−2)p− = Θ(1) then the leading set is L = {Cin, CM}.
In each of the cases above, if τ3 = Θ(1) then µ(C)→ 0 for any simple diclique

cover C 6∈ L and µ(C) = Θ(1) for C ∈ L.
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Lemma 2.4.6 Suppose α < α0, m
h−1

h(h−2)p− → 0 and m
h−1

h(h−2)p+ → 0. Then τ1 is
a birth threshold function for −→Kh with the leading set L = {CM}.

If τ1 = Θ(1) then µ(C) → 0 for any simple diclique cover C 6∈ L and µ(C) =
Θ(1) for C ∈ L.

Lemma 2.4.7 Suppose α ≥ α0 and mp+ = O(1). Then τ3 is a birth threshold
function for −→Kh. Furthermore, if α ≥ α0 and mp+ → 0 then the leading set is
L = {Cin}; if α > α0 and mp+ = Θ(1) then the leading set is L = Sin; if α = α0

and mp+ = Θ(1) then the leading set is L = {CM} ∪ Sin.
In each of the cases above, if τ3 = Θ(1) then µ(C)→ 0 for any simple diclique

cover C 6∈ L and µ(C) = Θ(1) for C ∈ L.

Lemma 2.4.8 Suppose α ≥ α0, mp− → ∞ and mp+ → ∞. Then τ2 is a birth
threshold function for −→Kh. Furthermore, if α > α0 then the leading set is L = {CR}
and if α = α0 then the leading set is L = {CM , CR}.

In each of the cases above, if τ2 = Θ(1) then µ(C)→ 0 for any simple diclique
cover C 6∈ L and µ(C) = Θ(1) for C ∈ L.

Proof of Theorem 2.2.1 Apply Lemmas 2.4.5-2.4.8 and notice that the cases
(i)(c) and (ii)(c) follow by symmetry. 2

Proof of Theorem 2.2.2 We note that if τ , τ ′ are birth threshold functions for
the sequence {D(k)} given by Theorem 2.2.2 then they are equivalent in the sense
that log τ = Θ(log τ ′). The cases (a), (c), (d), (f) follow by Lemmas 2.4.5-2.4.8
and the remaining cases follow by symmetry. 2

The idea of the proof of Lemmas 2.4.5-2.4.8 is to consider the birth thresh-
old functions of the four special diclique covers and the boundaries determined
by them, see Figure 2.2. We will use Lemma 2.4.3 and Lemma 2.4.4 to com-
pare the probability of complicated diclique covers of −→Kh with the probability of
appropriate special covers. In the proofs we write D = D(k).

Proof of Lemma 2.4.5 By Lemma 2.3.1 we may assume that mp−p+ → a ∈
[0;∞].

Suppose that τ3 = τ3(k) = nmph−1
− p+ → ∞ as k → ∞. If a = 0 then

by Lemma 2.4.1 the random digraph D contains a copy of Cin whp. If a > 0

consider a sequence of random digraphs {D′(k)} where D′(k) = D(n,m, p−, p
′
+),

p′+ = (ωmp−)
−1 and ω = ω(n) grows slowly, say ω(n) = lnn. We have

τ3(n,m, p−, p
′
+) = nmph−1

− p′+ = nph−2
− ω−1 = Ω

(
n1−α(h−1)

h ω−1
)
.
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So τ3(n,m, p−, p
′
+) → ∞, mp−p′+ → 0 and p′+ = o(p+). We have that D′(k)

contains a copy of Cin whp by Lemma 2.4.1 and therefore D(k) contains a copy
of Cin whp by monotonicity.

Now suppose that τ3 = Θ(1), so that µ(Cin) = τh3 = Θ(1). Notice that since
α < 1 we have

mp−p+ =
τ3

nph−2
−

= O

(
1

nm−h−1
h

)
= O

(
n−1+

α(h−1)
h

)
= o(1).

Let C be any simple diclique cover of −→Kh. We will show that

µ(C) = O(1) (2.18)

and furthermore we can replace O() with o() (respectively, Θ()) if C 6∈ L (respec-
tively, C ∈ L).

Assuming we have proved (2.18), we obtain that τ3 → 0 implies µ(C) → 0,
since both τ3 and µ(C) are increasing multinomials in m, p−, p+. Now the fact that
τ3 is a birth threshold function for −→Kh follows by (2.6) and Markov’s inequality
since the number of simple diclique covers of −→Kh is finite. Remark 2.4.2 implies
that in the case µ(Cin) = τh3 = Θ(1) we have P (Cin ∈ D) = Ω(1). If in addition
mp

h−1
h(h−2)

− = Θ(1) then we have µ(CM) = τ1(n,m, p−, p+)
h = Θ(1) and so P (CM ∈

D) > 0. So by Lemma 2.3.4 the set L is leading (for the birth threshold function
τ3 and −→Kh).

So let us prove (2.18). Suppose C = {C1, C2, . . . , Ct}. Using the definition of
µ and P̃ , see Section 2.3, we have

µ(C) = (h!)−1nhP̃ (C1)P̃ (C2) . . . P̃ (Ct)

= O
(
nhP̃ (C ′1)P̃ (C ′2) . . . P̃ (C ′t)

)
(2.19)

= O(nhP̃ (Cin)) (2.20)

= O(µ(Cin)) = O(1). (2.21)

Here in (2.19) we apply Lemma 2.4.3 so that for each i = 1, . . . , t the diclique
family C ′i is obtained from the family Ci = {Ci} by splitting it into “in-stars”. The
resulting family C ′ = C ′1 ∪ C ′2 ∪ · · · ∪ C ′t is a cover of −→Kh which consists of possibly
duplicated or overlapping “in-stars”. Next, in (2.20) we regroup the terms and
apply Lemma 2.4.4.

More precisely, note that by Lemma 2.4.3 we can replace O() with o() in (2.19)
in all cases except if
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• p−m
h−1

h(h−2) = Θ(1) and C = CM ; or

• for each C ∈ C we have |C+| = 1 and C+ ∩ C− = ∅.

We can complete the proof of (2.18) by noticing that since α < α0 we have
p+ = Θ

(
τ3/(mnp

h−1
− )

)
= o(m−1), so by Lemma 2.4.4 we can replace O() with o()

in (2.20) for the second exceptional case whenever C 6= Cin. 2

Proof of Lemma 2.4.6 First suppose that τ1 = τ1(k) = nm1/hp−p+ → ∞. By
Lemma 2.4.1, some copy of CM is induced in D whenever mp−p+ → 0. Oth-
erwise, using Lemma 2.3.1 we may assume that mp−p+ → a ∈ (0;∞]. Let
p′− = (mp+ lnn)−1 and consider a sequence of random digraphs {D′(k)} where
D′(k) = D(n,m, p′−, p+). Then mp′−p+ → 0, p′− = o(p−) and τ1(n,m, p′−, p+) →
∞. So we have that D′(k) contains an induced copy of CM whp by Lemma 2.4.1
and by monotonicity CM ∈ D whp.

Now suppose that τ1 = Θ(1). In this case we have µ(CM) = τh1 = Θ(1) and

mp−p+ = O

(
m

1

nm1/h

)
= O

(
m

h−1
h

n

)
= O

(
n−1+αh−1

h

)
→ 0.

Let us now show that for any simple diclique cover C of −→Kh, such that C 6= CM
we have µ(C) → 0. Lemma 2.4.6 will then follow by monotonicity, Lemma 2.3.4,
Lemma 2.4.1 and Remark 2.4.2.

Write t = p−p+ = Θ
(
n−1m−1/h

)
. By the definition of µ, see (2.3), we have

that for any simple diclique cover C of −→Kh

h!µ(C) = nhm|C|p
∑

C+

+ p
∑

C−

−

= nhm|C|p
∑

C+−
∑

C−

+ t
∑

C− (2.22)

= nhm|C|p
∑

C−−
∑

C+

− t
∑

C+

. (2.23)

Define p0 = m− h−1
h(h−2) . Clearly, if

∑
C− ≥

∑
C+, then by (2.23):

µ(C) = µ(C, n,m, p−, p+) = O (µ(C, n,m, p0; t/p0)) .

Since τ3(n,m, p0, t/p0) = O(1) by Lemma 2.4.6 we get µ′ = µ(C, n,m, p0, t/p0) =
O(1) and furthermore µ′ → 0 if C 6∈ {CM , Cin}.

To see why µ(Cin) → 0, note that
∑
C−in >

∑
C+in and by (2.23) we have

µ(Cin, n,m, p0; t/p0) = o (µ(Cin, n,m, p−, p+)).
The case

∑
C+ >

∑
C− is similar by symmetry: we use Lemma 2.4.5 with p−

and p+ interchanged and replace τ3 with τ4, Cin with Cout. 2
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Proof of Lemma 2.4.7 Suppose τ3 →∞. If mp−p+ → 0 then by Lemma 2.4.1,
D contains a copy of Cin whp. Otherwise let ω → ∞ not too fast so that ω =

o
(
τ
1/(h−1)
3

)
and let p′− = p−/ω. Consider a sequence of random digraphs {D′(k)}

where D′(k) = D(n,m, p′−, p+). By Lemma 2.4.1 and Lemma 2.3.1 P (Cin ∈
D′(k))→ 1 and so P (Cin ∈ D)→ 1 by monotonicity.

Now suppose τ3 = Θ(1), so that µ(Cin) = τh3 = Θ(1). In this case we have
mp−p+ = O(n−1/(h−1))→ 0. Let C be a any simple diclique cover of −→Kh. We will
show that

µ(C) = O(1) (2.24)

and furthermore we can replace O() with o() (respectively, Θ()) if C 6∈ L (respec-
tively, C ∈ L).

Assuming (2.24) holds, since both τ3 and µ(C) are monotone increasing multi-
nomials in m, p−, p+ we have that τ3 → 0 implies µ(C) → 0. Therefore using
Lemma 2.3.4, Lemma 2.4.1 and Remark 2.4.2 completes the proof of the lemma
in the case where mp− → 0. For the boundary case mp− = Θ(1), (2.24) and
Lemma 2.4.9 below shows that each cover in Sin belongs to the leading set when
α ≥ α0. If α = α0 we use the fact that µ1(CM) = τh1 = Θ(1) and Remark 2.4.2 to
show that CM also belongs to L.

Let us check (2.24). We have

p− =

(
τ3

nmp+

)1/(h−1)

= Ω
(
m

−1
α(h−1)

)
= Ω

(
m− h−1

h(h−2)

)
and m

h−1
h(h−2)p− → ∞ when α > α0. So we may apply Lemmas 2.4.3 and 2.4.4 as

in the proof of Lemma 2.4.5 to get that

µ(C) = O(µ(Cin)) = O(1) (2.25)

Furthermore, Lemma 2.4.3 and Lemma 2.4.4 also give that we may replace O()
with o() in (2.25) in all cases, except if

• C = CM and m
h−1

h(h−2)p− = Θ(1) or

• mp+ = Θ(1), |C+| = 1 for each C ∈ C and for each j = 1, . . . , h the diclique
cover Cj obtained by taking all dicliques C ∈ C that have C+ = {j} satisfies∑
C−j = h− 1.

The first exception occurs only if α = α0 and mp+ = Θ(1). The second exception
represents all diclique covers C ∈ Sin. This completes the proof of (2.24). 2
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Proof of Lemma 2.4.8 Suppose τ2 = n1/(h−1)mp−p+ → ∞. If mp−p+ → 0

the random digraph D contains a copy of CR whp by Lemma 2.4.1. Otherwise,
assume that mp−p+ → a ∈ (0;∞]. Let p′− = (mp+ lnn)−1 = o(p−). Then the
random digraph D(n,m, p′−, p+) contains a copy of CR whp by Lemma 2.4.1 since
mp′−p+ → 0 and τ2 →∞. Monotonicity and Lemma 2.3.1 imply that D contains
a copy of CR whp in all cases when τ2 →∞.

Now suppose that τ2 = Θ(1). Similarly as above, we have µ(CR) = τh−1
2 = Θ(1)

and mp−p+ = O
(
n−1/(h−1)

)
→ 0. Let C be a simple diclique cover of −→Kh. We will

show that if C 6 L then µ(C)→ 0. As in the proof of Lemma 2.4.6 we will then be
able to complete the proof using Lemma 2.4.1, Markov’s inequality, Lemma 2.3.4
and Remark 2.4.2 (for the case α = α0 notice that τ1(n,m, p−, p+) = Θ(1), so the
birth threshold functions τ1 and τ2 become equivalent).

Suppose
∑
C− ≥

∑
C+. Using (2.22) we have

µ(C) = µ(C, n,m, p−, p+) = O (µ(C, n,m, t/p0, p0))

where t = p−p+ and p0 = m−1. Also note that when C− > C+

µ(C) = o(µ(C, n,m, t/p0, p0)). (2.26)

Since τ3(n,m, t/p0, p0) = nm
(
n−1/(h−1)m−1p−1

0

)h−1
p0 = Θ(1) we can apply (2.25)

from Lemma 2.4.7 for the sequence of random digraphs {D(n,m, t/p0, p0)} to get
that µ(C, n,m, t/p0, p0) = O(1).

Lemma 2.4.7 also gives that µ(C, n,m, t/p0, p0) → 0 for all simple diclique
covers, except if C = CM in the case α = α0 or if C ∈ Sin. It remains to check
that µ(C0) → 0 for any diclique cover C0 ∈ Sin such that C0 6= CR. But any
C0 ∈ Sin \ {CR} has

∑
C−0 >

∑
C+0 , therefore µ(C0)→ 0 by (2.26).

The case
∑
C− <

∑
C+ is similar because of symmetry. 2

Lemma 2.4.9 Let h, {D(k)}, n, α0,m be as in Theorem 2.2.1. Suppose p− → 0

and p+ → 0, α ≥ α0 and mp+ = Θ(1). Consider any diclique cover C0 ∈ Sin. If
τ3 = τ3(n,m, p−, p+) = Ω(1) then P (C ∈ D(k)) = Ω(1) and if τ → ∞ then D(k)

contains C whp.

Proof Write D = D(k). By Lemma 2.4.7 we have µ(C0) = Θ(1) whenever
τ3 = Θ(1) .

Assume first that τ3 →∞. We claim that for any non-empty set S ⊆ [h]:

µ(C0[S]) = Ω(µ(Cin[S])). (2.27)

54



2.4. Main proofs

By (2.14) in the proof of Lemma 2.4.1 we have that µ(Cin[S])→∞.
By Lemma 2.3.1 we may assume that (2.4) holds. Also, since p− → 0 we have

mp−p+ → 0.
First consider the case S = {v} for some v ∈ [h]. By the definition of Sin,

C0[S] consists of exactly h−1 dicliques ({v}, ∅) and one or more dicliques (∅; {v}).
Let us apply (2.5). Since mp+ = Θ(1), the set Ĉ0[S] is equal to Ĉin[S], so (2.27)
follows by (2.14) for the case |S| = 1.

Now suppose |S| ≥ 2. Split a given diclique family C into the family of its
proper dicliques C ′ and the family of its improper dicliques C ′′ so that C = C ′∪C ′′.
Note that if V (C ′′) ⊆ V (C ′) by (2.5) we have

EX(C) = Θ(µ(C ′)P̃ (C̃ ′′)) (2.28)

where C̃ ′′ is the collection of dicliques C of C ′′ that satisfy P̃ (C)→ 0.
By Lemma 2.4.4 we have µ(C0[S]′) = Θ(µ(Cin[S]′)). If mps− → 0 then C̃in[S]′′

consists of h − s dicliques (S; ∅). Similarly, since C0 ∈ Sin, the set C̃0[S]′′ can be
partitioned into h − s families of improper dicliques C1, . . . , Ch−s so that each Ci
consists of pairwise disjoint dicliques,

∑
C−i ≤ s and

∑
C+i = 0. We have for each

i = 1, . . . , h− s: ∏
C∈Ci

P̃ (C) = m|Ci|p
∑

C−
i

− = Ω(P̃ (S; ∅)).

If mps− → as > 0 then both C̃0[S]′′ and C̃in[S]′′ are empty. So in each case

P̃ (C̃0[S]′′) = Θ

(∏
i

P̃ (Ci)

)
= Ω(P̃ (C̃in[S]′′))

and (2.27) follows by (2.28). Now (2.27) and Lemma 2.3.2 imply that D contains
a copy of C0 whp when τ3 →∞.

Finally, we need to check that P (C0 ∈ D) = Ω(1) if τ3 = Θ(1). We note that
in this case (2.27) still holds. Therefore the same argument as in the proof of
Remark 2.4.2 shows that P (C0 ∈ D) = Ω(1). 2

Proof of Remark 2.2.3 Write D = D(k). Consider two simple diclique covers
of −→K 2, namely CR = Cin = Cout and CM . Clearly, −→Kh ∈ D implies that CR ∈ D or
CM ∈ D.

Let us show that τ2 →∞ implies P (CR ∈ D)→ 1. If mp−p+ → 0 this follows
by Lemma 2.4.1. Otherwise, using Lemma 2.3.1 we may assume mp−p+ → c ∈
(0;∞]. Consider another sequence of random digraphs {D′(k)} where D′(k) =
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D(n,m, (ωmp+)
−1, p+) and ω = lnn. By Lemma 2.4.1 we have that CR ∈ D′(k)

whp, and by monotonicity CR ∈ D whp.
Now suppose τ2 = O(1). Then τ1 = m−1/2τ2 → 0 and µ(CM) = τh1 → 0.

This implies by (2.3) that any simple cover C of −→K 2 such that C 6= CR must have
µ(C)→ 0. By Lemma 2.4.1 and Lemma 2.3.4 for any proper diclique cover C 6= CR
we have P (C ∈ D) → 0. Finally Remark 2.4.2 shows that P (CR ∈ D) = Ω(1) if
τ2 = Θ(1) and so CR is indeed the leading cover. 2

2.5 Proofs of (2.1)-(2.8)
We will prove the estimates from Section 2.3.

Proof of (2.1) - (2.8) Similarly as in [58] we can represent D by two random
n by m binary matrices R− and R+ where R−

ij = 1 if and only if j ∈ S−(i) and
R+

ij = 1 if and only if j ∈ S+(i).
To prove (2.1) we will apply Lemma 2 from [58]. The probability of success p

is the probability that a fixed key generates C on a fixed set S ⊇ C− ∪ C+:

p = p
|C−|
− p

|C+|
+ (1− p−)|S|−|C−|(1− p+)|S|−|C+|.

We have that p ∼ p
|C−|
− p

|C+|
+ since |S| is fixed and p−, p+ → 0. Since C

is proper and mp−p+ → 0 we have that mp → 0. By independence and the
inclusion-exclusion principle (or by Lemma 2 of [58]) we have that P (C) ∼ mp ∼
mp

|C−|
− p

|C+|
+ . Equation (2.2) follows from analogous reasoning as in the proof of

Theorem 3 of [58]. For the random digraph D let NC count the number of different
attributes w ∈ W that generate the diclique C (on the set V (C)). Suppose
{C1, C2, . . . , Ct} are all distinct dicliques in C where Ci has multiplicity ai, i =
1 . . . t and let {Ct+1, . . . , CM} be the set of all proper dicliques on V (C) that are
not in C. Then by Lemma 1 of [58]:

P (C) = P (NC1 = a1, . . . , NCt = at, NCt+1 = 0, . . . , NCM
= 0)

∼ P (NC1 ≥ a1, . . . , NCt ≥ at, NCt+1 = 0, . . . , NCM
= 0)

∼ P (C1)
a1

a1!

P (C2)
a2

a2!
. . .

P (Ct)
at

at!
∼ aCm

|C|p
∑

C−

− p
∑

C+

+

since for j > t, P (NCj
= 0) = 1−P (Cj)→ 1. Now the equation (2.3) is immediate

since EX(C) =
(

n
|V (C)|

)
P (C).

To see (2.5), recall that by Lemmas 1 and 2 of [58] we have for any diclique
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family C:
P (C) ∼

∏
C∈C

P (C) ∼ KaC
∏
C∈Ĉ

P (C)

where K =
∏

C∈C\Ĉ P (C) is a constant.
The proof of the upper bounds (2.6) and (2.7) is much simpler: we sum the

probability that D contains a fixed copy of C realised by a fixed tuple of attributes,∏
C∈C P̃ (C), over all

(
m

a1,...,at

)
ways to pick a relevant tuple, and, for the bound

(2.7), over all
(

n
|V (C)|

)
sets of V of size |V (C)|. The estimate follows by the union

bound. The estimate (2.8) follows similarly. 2
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Chapter 3

Large cliques in sparse random
intersection graphs

3.1 Introduction
Bianconi and Marsili observed in 2006 [13] that “scale-free” real networks can have
very large cliques; they gave an argument suggesting that the rate of divergence
is polynomial if the degree variance is unbounded [13]. In a more precise analysis,
Janson,  Luczak and Norros [55] showed exact asymptotics for the clique number
in a power-law random graph model where edge probabilities are proportional to
the product of weights of their endpoints.

Another feature of a real network that may affect formation of cliques is the
clustering property: the probability of a link between two randomly chosen ver-
tices increases dramatically after we learn about the presence of their common
neighbour. An interesting question is whether and how the clustering property is
related to the clique number.

With conditionally independent edges, the random graph of [55] does not have
the clustering property and, therefore, can not explain such a relation.

Here we address this question by showing precise asymptotics for the clique
number of a related random intersection graph model that admits a tunable clus-
tering coefficient and power-law degree distribution. We find that the effect of
clustering on the clique number only shows up for the degree sequences having a
finite variance. We note that the finite variance is a necessary, but not sufficient
condition for the clustering coefficient to attain a non-trivial value, see [18] and
(3.5) below.

In the language of hypergraphs, we ask what is the largest intersecting family
in a random hypergraph on the vertex set [m], where n identically distributed

59



Chapter 3. Large cliques in sparse random intersection graphs

and independent hyperedges have random sizes distributed according to P . A
related problem for uniform hypergraphs was considered by Balogh, Bohman and
Mubayi [4]. Although the motivation and the approach of [4] are different from
ours, the result of [4] yields the clique number, for a particular class of random
intersection graphs based on the subsets having the same (deterministic) number
of elements.

We will consider a sequence {G(n)} = {G(n), n = 1, 2, . . . } of random inter-
section graphs G(n) = G(n,m, P ), where P = P (n) and m = m(n) → +∞ as
n→ +∞. Let X(n) denote a random variable distributed according to P (n) and
define Y (n) :=

√
n
m
X(n). If not explicitly stated otherwise, the limits below will

be taken as n → ∞. In this thesis we use the standard notation o(), O(), Ω(),
Θ(), oP (), OP (), see, for example, [56]. For positive sequences {an}, {bn} we write
an ∼ bn if an/bn → 1 an � bn if an/bn → 0. For a sequence of events {An}, we
say that An occurs whp, if P(An)→ 1.

We will assume in what follows that

EY (n) = O(1). (3.1)

This condition ensures that the expected number of edges in G(n) is O(n). Hence
G(n) is sparse. We remark, that if, in addition, Y (n) converges in distribution
to an integrable random variable, say Z, and EY (n) → EZ, then G(n) has
asymptotic degree distribution Poiss(λ), where λ = ZEZ, see, see Chapter 1
and [18]. In particular, if Y (n) has asymptotic square integrable distribution, then
G(n) has asymptotic square integrable degree distribution too. Furthermore, if
Y (n) has a power-law asymptotic distribution, then G(n) has asymptotic power-
law degree distribution with the same exponent.

Our first result, Theorem 3.1.1, shows that in the latter case the clique number
diverges polynomially. In fact, we do not require Y (n) to have a limiting power-
law distribution, but consider a condition that only involves the tail of Y (n).
Namely, we assume that for some α > 0 and some slowly varying function L there
is 0 < ε0 < 0.5 such that for each sequence xn with n1/2−ε0 ≤ xn ≤ n1/2+ε0 we
have

P (Y (n) ≥ xn) ∼ L(xn)x
−α
n . (3.2)

A function L : R+ → R+ is called slowly varying if limx→∞ L(tx)/L(x) = 1 for
any t > 0.

Theorem 3.1.1 Let 1 < α < 2. Assume that {G(n)} is a sequence of random
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intersection graphs satisfying (3.1), (3.2). Suppose that for some β > max{2 −
α, α− 1} we have m = m(n) = Ω(nβ). Then the clique number of G(n) is

ω(G(n)) = (1 + oP (1)) (1− α/2)−α/2K(n) (3.3)

where
K(n) = L

(
(n lnn)1/2

)
n1−α/2(lnn)−α/2.

We remark that adjacency relations of neighbouring vertices of a random intersec-
tion graph are statistically dependent events and this dependence is not negligible
for m = O(n). Theorem 3.1.1 says that in the case where the asymptotic degree
distribution has infinite second moment (α < 2), the asymptotic order (3.3) of
a power-law random intersection graph is the same as that of the related model
of [55] which has conditionally independent edges. Let us mention that the lower
bound for the clique number ω(G(n)) is obtained using a simple and elegant argu-
ment of [55], which is not sensitive to the statistical dependence of edges of G(n).
To show the matching upper bound we developed another approach based on a
result of Alon, Jiang, Miller and Pritkin [1] in Ramsey theory.

In the case where the (asymptotic) degree distribution has a finite second
moment we not only find the asymptotic order of ω(G(n)), but also describe the
structure of a maximal clique. To this aim, it is convenient to interpret attributes
w ∈ W as colours. The set of vertices T (w) = {v ∈ V : w ∈ Sv} induces a
clique in G(n) which we denote (with some ambiguity of notation) T (w). We say
that every edge of T (w) receives colour w and call this clique monochromatic.
Note that G(n) is covered by the union of monochromatic cliques T (w), w ∈ W .
We denote the size of the largest monochromatic clique by ω′(G(n)). Clearly,
ω(G(n)) ≥ ω′(G(n)).

Denote x ∨ y = max(x, y). The next theorem shows that the largest clique is
a monochromatic clique (plus possibly a few extra vertices).

Theorem 3.1.2 Assume that {G(n)} is a sequence of random intersection graphs
satisfying (3.1). Suppose that V ar(Y (n)) = O(1). Then

ω(G(n)) = ω′(G(n)) +OP (1).

If, in addition, for some positive sequence {εn} converging to zero we have

nP(Y (n) > εnn
1/2)→ 0 (3.4)
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then, for an absolute constant C,

P (ω(G(n)) ≤ C ∨ (ω′(G(n)) + 3))→ 1.

The condition (3.4) is not very restrictive. It is satisfied by uniformly square
integrable sequences {Y (n)}. In particular, (3.4) holds if {Y (n)} converges in
distribution to a square integrable random variable, say Y∗, and EY 2(n) converges
to EY 2

∗ .
Next, we evaluate the size of the largest monochromatic clique. For this pur-

pose we relate the random intersection graph to the balls into bins model. Let
every vertex v ∈ V throw Xv := |Sv| balls into the bins w1, . . . , wm uniformly at
random, subject to the condition that every bin receives at most one ball from
each vertex. Then ω′(G(n)) counts the maximum number of balls contained in
a bin. Let M(N,m) denote the maximum number of balls contained in any of
m bins after N balls were thrown into m bins uniformly and independently at
random. Our next result says that the probability distribution of ω′(G(n)) can be
approximated by that of M(N,m), with N ≈ nEX(n) = E (X1 + · · ·+Xn). The
asymptotics of M(N,m) are well known, see, e.g., Section 6 of Kolchin et al [60].

The total variation distance dTV (X,Y ) between two random variables X and
Y is the supremum over all (measurable) sets A of |P(X ∈ A)− P(Y ∈ A)|.

Theorem 3.1.3 Assume that {G(n)} is a sequence of random intersection graphs
satisfying EY (n) = Θ(1) and V arY (n) = O(1). Then

dTV (ω
′(G(n)),M(b(mn)1/2EY (n)c,m))→ 0.

Remark 3.1.4 For n,m → +∞ the relations EY = Θ(1), V arY = O(1) imply
n = O(m). In particular, the conditions of Theorem 3.1.3 rule out the case
m = o(n).

Let us summarize our results about the clique number of a sparse random inter-
section graph G(n) with a square integrable (asymptotic) degree distribution. We
note that the conditional probability (called the clustering coefficient of G(n))

P(v1 ∼ v2|v1 ∼ v3, v2 ∼ v3) ≈ (n/m)1/2EY (n)/EY 2(n) (3.5)

only attains a non-trivial value for m = Θ(n) and EY 2(n) = Θ(1). (Here u ∼ v

is the event that u and v are adjacent in G(n), i.e., uv ∈ E(G(n)).) In the
latter case Theorems 3.1.2 and 3.1.3 together with the asymptotics for M(N,m)
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(Theorem II.6.1 of [60]), imply that

ω(G(n)) =
lnn

ln lnn (1 + oP (1)) .

In contrast, the clique number of a sparse Erdős-Rényi random graph G(n, c/n)
is at most 3, and in the model of [55], with square integrable asymptotic degree
distribution, the largest clique has at most 4 vertices.

Each of our main results, Theorem 3.1.1 and Theorem 3.1.2, have correspond-
ing simple polynomial algorithms that construct a clique of the optimal order
whp. For a power-law graph with α ∈ (1; 2), it is the greedy algorithm of [55]:
sort vertices in descending order according to their degree; traverse vertices in
that order and ‘grow’ a clique, by adding a vertex if it is connected to each vertex
in the current clique. For a graph with a finite degree variance we propose even
simpler algorithm: for each pair of adjacent vertices, take any maximal clique
formed by that pair and their common neighbours. Output the biggest maximal
clique found in this way. More details and analysis of each of the algorithms are
given in Section 3.4 below.

In practical situations a graph may be assumed to be distributed as a random
intersection graph, but information about the subset size distribution may not
be available. In such a case, instead of the condition (3.2) for the tail of the
normalised subset size Y (n), we may consider a similar condition for the tail of
the degree D1(n) of the vertex 1 ∈ V in G(n): there are constants α′ > 1, ε′ > 0

and a slowly varying function L′(x) such that for any sequence tn with n1/2−ε′ ≤
tn ≤ n1/2+ε′

P(D1(n) ≥ tn) ∼ L′(tn)t
−α′

n . (3.6)

The following lemma shows that, subject to an additional assumption, there is
equivalence between conditions (3.2) and (3.6) .

Lemma 3.1.5 Assume that {G(n)} is a sequence of random intersection graphs
such that for some ε > 0 we have

EY (n)IY (n)≥n1/2−ε → 0. (3.7)

Suppose that either (EY (n))2 or ED1(n) converges to a positive number, say, d.
Then both limits exist and are equal, limED1(n) = lim(EY (n))2 = d. Fur-

thermore, the condition (3.6) holds if and only if (3.2) holds. In that case, α′ = α

and L′(t) = dα/2L(t).

Thus, under a mild additional assumption (3.7), condition (3.2) of Theorem 3.1.1
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can be replaced by (3.6). Similarly, the condition V arY (n) = O(1) of Theo-
rem 3.1.2 can be replaced by the condition V arD1(n) = O(1).

Lemma 3.1.6 Assume that {G(n)} is a sequence of random intersection graphs
and for some positive sequence {εn} converging to zero we have

EY 2(n)IY (n)>εnn1/2 → 0. (3.8)

Suppose that either EY (n) = Θ(1) or ED1(n) = Θ(1). Then

ED1(n) = (EY (n))2 + o(1) (3.9)

V arD1(n) = (EY (n))2(V arY (n) + 1) + o(1). (3.10)

Cliques of random intersection graphs have been studied in [58], where edge
density thresholds for emergence of small (constant-sized) cliques were determined,
and in [92], where the Poisson approximation to the distribution of the number
of small cliques was established. The clique number was studied in [81], see
also [6], in the case, where m ≈ nβ, for some 0 < β < 1. We note that in the
papers [58], [92], [81] a particular random intersection graph with the binomial
distribution P ∼ Bin(p,m) was considered.

The rest of the Chapter is organized as follows. In Section 3.2 we study
sparse random power-law intersection graphs with index α ∈ (1; 2), introduce the
result on “rainbow” cliques in extremal combinatorics (Lemma 3.2.8) and prove
Theorem 3.1.1. In Section 3.3 we relate our model to the balls and bins model and
prove Theorem 3.1.2. In Section 3.4 we present and analyse algorithms for finding
large cliques in G(n,m, P ). In Section 3.5 we prove Lemmas 3.1.5 and 3.1.6.

3.2 Power-law intersection graphs

3.2.1 Proof of Theorem 3.1.1

We start with introducing some notation. Given a family of subsets {Sv, v ∈ V ′}
of an attribute set W ′, we denote G(V ′,W ′) the intersection graph on the vertex
set V ′ defined by this family: u, v ∈ V ′ are adjacent (denoted u ∼ v) whenever
Su∩Sv 6= ∅. We say that an attribute w ∈ W ′ covers the edge u ∼ v of G(V ′,W ′)

whenever w ∈ Su∩Sv. In this case we also say that the edge u ∼ v receives colour
w. In particular, an attribute w covers all edges of the (monochromatic) clique
subgraph Tw of G(V ′,W ′) induced by the vertex set Tw = {v ∈ V ′ : w ∈ Sv}.
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3.2. Power-law intersection graphs

Given a graph H, we say that G(V ′,W ′) contains a rainbow H if there is a
subgraph H ′ ⊆ G(V ′,W ′) isomorphic to H such that every edge of H ′ can be
prescribed an attribute that covers this edge so that all prescribed attributes are
different.

We denote by e(G) the size of the set E(G) of edges of a graph G. Given two
graphs G = (V (G), E(G)) and R = (V (R), E(R)) we denote by G ∨ R the graph
on vertices V (G)∪V (R) and with edges E(G)∪E(R). In what follows we assume
that V (G) = V (R) if not mentioned otherwise. Let t be a positive integer and
let R be a non-random graph on the vertex set V ′. Assuming that subsets Sv,
v ∈ V ′ are drawn at random, introduce the event Rainbow(G(V ′,W ′), R, t) that
the graph G(V ′,W ′)∨R has a clique H of size |V (H)| = t with the property that
every edge of the set E(H) \E(R) can be prescribed an attribute that covers this
edge so that all prescribed attributes are different.

In the case where every vertex v of the random intersection graph G(n,m, P )
includes attributes independently at random with probability p = p(n), the size
Xv := |Sv| of the attribute set has binomial distribution P ∼ Binom(m, p). We
denote such graph G(n,m, p) and call it a binomial random intersection graph.
We note that for mp→ +∞ the sizes Xv of random sets are concentrated around
their mean value EXv = mp. An application of Chernoff’s bound (see, e.g., [72])

P(|B −mp| > εmp) ≤ 2e−
1
3
ε2mp, (3.11)

where B is a binomial random variable B ∼ Binom(m, p) and 0 < ε < 3/2,
implies

P(∃v ∈ [n] : |Xv −mp| > y) ≤ nP(|Xv −mp| > y)→ 0 (3.12)

for any y = y(n) such that y/
√
mp lnn→∞ and y/(mp) < 3/2.

We write a ∧ b = min{a, b} and a ∨ b = max{a, b}.
Let us prove Theorem 3.1.1. For every member G(n) = G(V,W ) of a sequence

{G(n)} satisfying conditions of Theorem 3.1.1 and a number ε1 ∈ (0, ε0) define
the subgraphs Gi ⊆ G(n), i = 0, 1, 2, induced by the vertex sets

V0 = V0(n) = {v ∈ V (G(n)) : Xv < θ1};

V1 = V1(n) = {v ∈ V (G(n)) : θ1 ≤ Xv ≤ θ2};

V2 = V2(n) = {v ∈ V (G(n)) : θ2 < Xv},

respectively. Here Xv = |Sv| denotes the size of the attribute set prescribed to a
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vertex v and the numbers

θ1 = θ1(n) = m1/2n−ε1 ; θ2 = θ2(n) = ((1− α/2)m lnn+me1)
1/2 ,

with e1 = e1(n) = max(0, lnL((n lnn)1/2)). Note that e1 ≡ 0 for L(x) ≡ 1. We
have V = V0 ∪ V1 ∪ V2 and Vi ∩ Vj = ∅ for i 6= j. Theorem 3.1.1 follows from
the three lemmas below. Let K = K(n) be as in Theorem 3.1.1. The first lemma
gives a lower bound for the clique number of G(n).

Lemma 3.2.1 For any m = m(n)

ω(G2) = |V2|(1− oP (1)) = (1− oP (1)) (1− α/2)−α/2K.

The next two lemmas provide an upper bound.

Lemma 3.2.2 Suppose there is β > α − 1 such that m = Ω(nβ). If ε1 < β
6

then
there is δ > 0 such that

P
(
ω(G0) ≥ n1−α/2−δ

)
→ 0.

Lemma 3.2.3 Suppose there is β > 2 − α such that m = Ω(nβ). If ε1 < β−2+α
24

then
ω(G1) = oP (K).

Proof of Theorem 3.1.1 We choose 0 < ε1 < min{(α−1)/6, (β−2+α)/24, ε0}.
The theorem follows from the inequalities ω(G2) ≤ ω(G) ≤ ω(G0)+ω(G1)+ω(G2)

and Lemmas 3.2.1, 3.2.2 and 3.2.3. 2

3.2.2 Proof of Lemma 3.2.1

In this section we use ideas from [55] to give a lower bound on the clique number.
We first note the following auxiliary facts.

Lemma 3.2.4 Suppose a = an, b = bn are sequences of positive reals such that
0 < ln 2b+ 2a→ +∞. Let zn be the positive root of

a− ln z − bz2 = 0. (3.13)

Then zn ∼
√

2a+ln(2b)
2b

.
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Proof Changing the variables t = 2bz2 we get

t+ ln(t) = 2a+ ln(2b).

From the assumption it follows that t+ ln t ∼ t and therefore zn ∼
√

2a+ln(2b)
2b

. 2

Lemma 3.2.5 ( [51]) Let x→ +∞. For any slowly varying function L and any
0 < t1 < t2 < +∞ the convergence L(tx)/L(x) → 1 is uniform in t ∈ [t1, t2].
Furthermore, we have lnL(x) = o(lnx).

Proof of Lemma 3.2.1 Write N = |V2| and let

v(1), v(2), . . . , v(N)

be the vertices of V2 listed in an arbitrary order.
Consider a greedy algorithm for finding a clique in G proposed by Janson,

 Luczak and Norros [55] (they use descending ordering by the set sizes, see also
Section 3.4). Let A0 = ∅. In the step i = 1, 2, . . . , N let Ai = Ai−1 ∪ {v(i)} if v(i)

is incident to each of the vertices v(j), j = 1, . . . , i− 1. Otherwise, let Ai = Ai−1.
This algorithm produces a clique H on the set of vertices AN , and H demonstrates
that ω(G2) ≥ |AN |.

Write θ = θ2 and let Lθ = V2 \AN be the set of vertices that failed to be added
to AN . We will show that

|Lθ|
N ∨ 1

= oP (1)

and
N = (1− α/2)−α/2 L

(
(n lnn)1/2

)
(lnn)−α/2n1−α/2(1− oP (1)).

From (3.2) we obtain for N ∼ Binom(n, q) with q = P(Xn > θ)

EN = nq = nP
(
(m/n)1/2Yn > θ

)
∼ L

(
(n/m)1/2θ

)
n1−α/2mα/2θ−α

∼ (1− α/2)−α/2 L(
√
n lnn)(lnn)−α/2n1−α/2.

Here we used L((n/m)1/2θ) ∼ L(
√
n lnn) and lnL(

√
n lnn) = o(lnn), which

follow using Lemma 3.2.5. Furthermore, by the concentration property of the
binomial distribution, see, e.g., (3.11), we have N = (1− oP (1))EN .

The remaining bound |Lθ|/(N ∨ 1) ≤ |Lθ|/(N + 1) = oP (1) follows from the
bound E (Lθ/(N + 1)) = o(1), which is shown below.
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Let p1 be the probability that two random independent subsets of W = [m] of
size dθe do not intersect. The number of vertices in Lθ is at most the number of
pairs in x, y ∈ V2 where Sx and Sy do not intersect. Therefore by the first moment
method

E
|Lθ|
N + 1

= EE
(
|Lθ|
N + 1

∣∣∣N) ≤ EE

((
N
2

)
p1

N + 1

∣∣∣N) ≤ p1EN
2

,

where
p1 =

(
m−θ
θ

)(
m
θ

) ≤ (1− θ

m

)θ

≤ e−θ2/m.

Now it is straightforward to check that for some constant c we have p1EN ≤
c(lnn)−α/2 → 0. This completes the proof.

Let us briefly explain the intuition for the choice of θ. For simplicity as-
sume L(x) ≡ 1 so that e1 = 0. Could the same method yield a bigger clique
if θ2 is smaller? We remark that the product p1EN as well as its upper bound
n1−α/2mα/2θ−αe−θ2/m (which we used above) are decreasing functions of θ. Hence,
if we wanted this upper bound to be o(1) then θ should be at least as large as the
solution to the equation

n1−α/2mα/2θ−αe−θ2/m = 1

or, equivalently, to the equation

α−1 lnn+
1

2
ln(m/n)− ln θ − θ2

αm
= 0. (3.14)

Rewriting the latter relation in the form (3.13) where a = α−1 lnn+(1/2) ln(m/n)

and b = (αm)−1 satisfy be2a = α−1n
2
α
−1 → +∞, we obtain from Lemma 3.2.4

that the solution θ of (3.14) satisfies

θ ∼

√
(2/α) lnn− ln(n/m) + ln(2/αm)

2/αm
∼
√

(1− α/2)m lnn.

2

3.2.3 Proof of Lemma 3.2.2

Before proving Lemma 3.2.2 we collect some preliminary results.

Lemma 3.2.6 Let h be a positive integer. Let {G(n)} be a sequence of binomial
random intersection graphs G(n) = G(n,m, p), were m = m(n) and p = p(n)
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satisfy pn1/(h−1)m1/2 → a ∈ {0, 1}. Then

P(G contains a rainbow Kh)→ a.

Proof The case a = 1 follows from Claim 2 of [58]. For the case a = 0 we have,
by the first moment method,

P(G contains a rainbow Kh) ≤
(
n

h

)
(m)(h2)

p2(
h
2)

≤
(
n1/(h−1)m1/2p

)h(h−1) → 0.

2

Next is an upper bound for the size ω′(G) of the largest monochromatic clique.

Lemma 3.2.7 Let 1 < α < 2. Assume that {G(n)} is a sequence of random
intersection graphs satisfying (3.1), (3.2). Suppose that for some β > α − 1 we
have m = Ω(nβ). Then there is a constant δ > 0 such that ω′(G(n)) ≤ n1−α/2−δ

whp.

Proof Let X = X(n) and Y = Y (n) be defined as in (3.1). Since for any w ∈ W
and v ∈ V

P(w ∈ Sv) =
∞∑
k=0

k

m
P(|Sv| = k) =

EX
m

=
EY√
mn

,

and the number of elements of the set Tv = {v : w ∈ Sv} is binomially distributed

|Tw| ∼ Binom

(
n,

EY√
mn

)
, (3.15)

we have, for any positive integer k

P(|Tw| ≥ k) ≤
(
n

k

)(
EY√
mn

)k

≤
(en
k

)k ( EY√
mn

)k

≤
(
c1
k

√
n

m

)k

for c1 = e supn EY . Therefore, by the union bound,

P (ω′(G(n)) ≥ k) ≤ m

(
c1
k

√
n

m

)k

.
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Fix δ with 0 < δ < min((β − α+ 1)/4, 1− α/2, β/2). We have

P
(
ω′(G(n)) ≥ n1−α/2−δ

)
≤ m

(
c1n

α/2−1/2+δm−1/2
)dn1−α/2−δe

= m1−(δ/β)dn1−α/2−δe (c1nα/2−1/2+δm−1/2+δ/β
)dn1−α/2−δe → 0

since m→∞, n1−α/2−δ →∞ and m = Ω(nβ) implies

nα/2−1/2+δm−1/2+δ/β → 0.

2

The last and the most important fact we need relates the maximum clique
size with the maximum rainbow clique size in an intersection graph. An edge-
colouring of a graph is called t-good if each colour appears at most t times at each
vertex. We say that an edge-coloured graph contains a rainbow copy of H if it
contains a subgraph isomorphic to H with all edges receiving different colours.

Lemma 3.2.8 ( [1]) There is a constant c such that every t-good coloured com-
plete graph on more than cth3

lnh
vertices contains a rainbow copy of Kh.

Proof of Lemma 3.2.2 Fix an integer h > 1 + 1
ε1

and denote t = n1−α/2−δ and
k = d cth3

lnh
e, where positive constants δ and c are from Lemmas 3.2.7 and 3.2.8,

respectively.
We first show that

P(G0 contains a rainbow Kh) = o(1). (3.16)

We note that for the binomial intersection graph G̃ = G(n,m, p) with p = p(n) =

m−1/2n−ε1 +m−2/3 Lemma 3.2.6 implies

P(G̃ contains a rainbow Kh) = o(1). (3.17)

Let S̃v (respectively Sv), v ∈ V , denote the random subsets prescribed to vertices
of G̃ (respectively G(n)). Given the set sizes |Sv|, |S̃v|, v ∈ V , satisfying |S̃v| > θ,
for each v, we couple the random sets of G0 and G̃ so that Sv ⊆ S̃v, for all v ∈ V0.
Now G0 becomes a subgraph of G̃ and (3.16) follows from (3.17) and the fact that
minv |S̃v| > θ whp, see (3.12).

Next, we colour every edge x ∼ y of G0 by an arbitrary element of Sx∩Sy and
observe that the inequality ω′(G(n)) ≤ t (which holds with probability 1 − o(1),
by Lemma 3.2.7) implies that the colouring obtained is t-good. Furthermore,
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by Lemma 3.2.8, every k-clique of G0 contains a rainbow clique; however the
probability of the latter event is negligibly small by (3.16). We conclude that
P(ω(G0) ≥ k) = o(1) thus proving the lemma. 2

3.2.4 Proof of Lemma 3.2.3

We start with a combinatorial lemma which is of independent interest.

Lemma 3.2.9 Given positive integers a1, . . . , ak, let {A1, . . . , Ak} be a family of
subsets of [m] of sizes |Ai| = ai. Let d ≥ k and let S be a random subset of [m] of
size d. Suppose that a1 + · · ·+ ak ≤ m. Then the probability

P ({S ∩ A1, . . . , S ∩ Ak} has a system of distinct representatives) (3.18)

is maximised when {Ai} are mutually disjoint.

Proof Call any of
(
m
d

)
possible outcomes c for S a configuration. Given F =

{A1, . . . , Ak} let CDR(F) be the set of configurations c such that c ∩ F = {c ∩
A1, . . . , c ∩ Ak} has a system of distinct representatives. Write

p(F) =
∑

1≤i<j≤k

|Ai ∩ Aj|.

Suppose the claim is false. Out of all families that maximize (3.18) pick a family
F with smallest p(F). Then p(F) > 0 and we can assume that there is an element
x ∈ [m] such that x ∈ A1 ∩A2. Since

∑k
i=1 |Ai| ≤ m, there is an element y in the

complement of
∪

A∈F A.
Define A′

1 = (A1 \ {x}) ∪ {y} and consider the family F ′ = {A′
1, A2, . . . , Ak}.

Observe that the family of configurations C = CDR(F)\CDR(F ′) has the following
property: for each c ∈ C we have x ∈ c and it is not possible to find a set of
distinct representatives for c∩F where A1 is matched with an element other than x
(indeed such a set of distinct representatives, if existed, would imply c ∈ CDR(F ′)).
Consequently, there is a set of distinct representatives for sets c ∩ A2, . . . , c ∩ Ak

which does not use x. Since the latter set of distinct representatives together with
y is a set of distinct representatives for c ∩ F ′, we conclude that c 6∈ CDR(F ′)

implies y /∈ c.
Now, for c ∈ C, let cxy = (c ∪ {y}) \ {x} be the configuration with x and y

swapped. Then cxy 6∈ CDR(F) and cxy ∈ CDR(F ′), because y ∈ cxy and can be
matched with A1. Thus each configuration c ∈ C is assigned a unique configuration
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Chapter 3. Large cliques in sparse random intersection graphs

cxy ∈ CDR(F ′) \ CDR(F). This shows that |CDR(F ′)| ≥ |CDR(F)|. But p(F ′) ≤
p(F)− 1, which contradicts our assumption about the minimality of p(F). 2

The next lemma is a version of a result of Erdős and Rényi about the maximum
clique of the binomial random graph G(n, p) (see, e.g., [56]).

Lemma 3.2.10 Let n → +∞. Assume that probabilities pn → 1. Let {rn} be a
positive sequence, satisfying rn = o(K̃2), where K̃ = 2 lnn

1−pn
.

There are positive sequences {δn} and {εn} converging to zero, such that δnK̃ →
+∞ and for any sequence of non-random graphs {Rn} with V (Rn) = [n] and
e(Rn) ≤ rn the number Xn of cliques of size bK̃(1+ δn)c in G(n, pn)∨Rn satisfies

EXn ≤ εn.

Proof Write p = pn, r = rn and h = 1 − p. Pick a positive sequence δ = δn so
that δn → 0 and ln−1 n+ h+ r

K̃2 = o(δ). Let a =
⌊
K̃(1 + δ)

⌋
. We have

EXn ≤
(
n

a

)
p(

a
2)−r ≤

(en
a

)a
p

a(a−1)
2

−r = eaB, (3.19)

where, by the inequality ln p ≤ −h, for n large enough,

B ≤ ln(en/a)−
(
a− 1

2
− r

a

)
h

≤ lnn− ah

2
+
rh

a
≤ (−1 + o(1))δ lnn→ −∞.

2

Lemma 3.2.11 Let {G(n)} be a sequence of binomial random intersection graphs,
where m = mn → +∞ and p = pn → 0 as n → +∞. Let {rn} be a sequence of
positive integers. Denote K̄ = 2emp2 lnn. Assume that rn � K̄2 and

mp2 → +∞, lnn� mp, K̄p→ 0, K̄ ≤ n/2. (3.20)

There are positive sequences {εn}, {δn} converging to zero such that δnK̄ →
+∞ and for any non-random graph sequence {Rn} with V (Rn) = V (G(n)) and
e(Rn) ≤ rn

P
(
Rainbow(G(n), Rn, K̄(1 + δn))

)
≤ εn, n = 1, 2, . . . (3.21)

Here we choose {δn} such that K̄(1 + δn) were an integer.
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3.2. Power-law intersection graphs

Proof Let {xn} be a positive sequence such that

pxn → 0, xn � mp and
√
mp lnn� xn

(one can take, e.g., xn = ϕn

√
mp lnn, with ϕn ↑ +∞ satisfying ϕ2

nK̄p→ 0).
Given n, we truncate the random sets Sv, prescribed to vertices v ∈ V of the

graph G = G(n,m, p), to the size M = bmp+ xnc. Denote

S̄(v) =

Sv, if |Sv| ≤M,

M element random subset of Sv, otherwise.

We remark that for the event B = {Sv = S̄v,∀v ∈ V } Chernoff’s bound implies

P(B) = 1− o(1). (3.22)

Now, let t ∈ [K; 2K] and let T = {u1, . . . , ut} be a subset of V of size t. By RT

we denote the subgraph of Rn induced by the vertex set T . Given i ∈ {1, . . . , t},
let Ti ⊆ {u1, . . . ui−1} denote the subset of vertices which are not adjacent to vi
in Rn. Let AT (i) denote the event that sets {S̄u ∩ Sui

, u ∈ Ti} have distinct
representatives (in particular, none of the sets is empty). Furthermore, let AT

denote the event that all AT (i), 1 ≤ i ≤ t hold simultaneously

AT =
t∩

i=1

AT (i).

We shall prove below that whenever n is large enough

P(AT ) ≤
(
1− (1− p)M

)(t2)−e(RT )
. (3.23)

Next, proceeding as in Lemma 3.2.10 we find positive sequences {δ′n}, {ε′n} con-
verging to zero such that the number X ′

n of subsets T ⊆ V of size

a′ =
⌊ 2 lnn
(1− p)M

(1 + δ′n)
⌋

that satisfy the event AT has expected value EX ′
n ≤ ε′n. For this purpose, we

apply (3.19) to a′ and p′ = 1 − (1 − p)M , and use (3.23). We remark that a′ =
K̄(1 + δ′′n), where {δ′′n} converges to zero and δ′′K̄ → +∞. Indeed, we have
δ′n lnn/(1−p)M → +∞, by Lemma 3.2.10, and we have (1−p)M = e−mp2−O(px+mp3)

with px+mp3 = o(1). In particular, for large n, we have a′ ∈ [K̄, 2K̄].
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Chapter 3. Large cliques in sparse random intersection graphs

The key observation of the proof is that events B and Rainbow(G,Rn, a
′)

imply X ′
n > 0. Hence,

P(Rainbow(G,Rn, a
′) ∩B) ≤ P(X ′

n > 0) ≤ EX ′
n ≤ ε′n.

In the last step we used Markov’s inequality. Finally, invoking (3.22) we obtain
(3.21).

It remains to show (3.23). We write

P(AT ) =
t∏

i=1

P (AT (i)|AT (1), . . . , AT (i− 1))

and evaluate, for 1 ≤ i ≤ t,

P(AT (i)|AT (1), . . . , AT (i− 1)) ≤
(
1− (1− p)M

)|Ti|
. (3.24)

Now (3.23) follows from the simple identity
∑

1≤i≤t |Ti| =
(
t
2

)
− e(RT ). Let us

prove (3.24). For this purpose we apply Lemma 3.2.9. We first condition on {S̄u,
u ∈ Ti} and the size |Svi| of Svi . By Lemma 3.2.9 the conditional probability

P(AT (i)
∣∣ S̄u, u ∈ Ti, |Svi|)

is maximized when the sets S̄u, u ∈ Ti are mutually disjoint (at this step we
check the condition of Lemma 3.2.9 that

∑
u∈Ti
|S̄u| ≤ tM < m, for large n).

Secondly, we drop the conditioning on |Svi| and allow Svi to choose its element
independently at random with probability p. In this way we obtain (3.24). 2

Lemma 3.2.12 Let {G(n)} be a sequence of random binomial intersection graphs,
where m = m(n)→ +∞ and p = p(n)→ 0 as n→ +∞. Assume that

np = O(1), m(np)3 � K̄2,

where K̄ = 2emp2 lnn. Assume, in addition, that (3.20) holds.
Then there is a sequence {δn} converging to zero such that δnK̄ → +∞ and

P
(
ω(G(n)) > K̄(1 + δn)

)
→ 0.

Proof Given n, let U be a random subset of V = V (G(n)) with binomial number
of elements |U | ∼ Bin(n, p) and such that, for any k = 0, 1, . . . , conditionally,
given the event |U | = k, the subset U is uniformly distributed over the class of
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3.2. Power-law intersection graphs

subsets of V of size k. Recall that Tw ⊆ V denotes the set of vertices that have
chosen an attribute w ∈ W . We remark that Tw, w ∈ W are iid random subsets
having the same probability distribution as U .

We call an attribute w big if |Tw| ≥ 3, otherwise w is small. Let WB and
WS denote the sets of big and small attributes. Denote by GB (respectively, GS)
the subgraph of G = G(n) consisting of edges covered by big (respectively, small)
attributes. We observe that, given GB, the random sets Tz, z ∈ WS, defining the
edges of GS are (conditionally) independent. We are going to replace them by
bigger sets, denoted T ′

z, by adding some more elements as follows. Given Tz, we
first generate independent random variables Iz and |∆z|, where Iz has Bernoulli
distribution with success probability p′ = P(|U | ≤ 2) and where P(|∆z| = k) =

P(|U | = k)/(1− p′), k = 3, 4, . . . . Secondly, for Iz = 1 we put T ′
z = Tz. Otherwise

we put T ′
z = Tz ∪ ∆z, where ∆z is a subset of V \ Tz of size |∆z| − |Tz| ≥ 1

drawn uniformly at random. We note that given GB, the random sets T ′
z, z ∈ WS

are (conditionally) independent and have the same probability distribution as U .
Next we generate independent random subsets T ′

w of V , for w ∈ WB, so that they
have the same distribution as U and were independent of GS, GB and T ′

z, z ∈ WS.
Given GB, the collection of random sets {T ′

w, w ∈ WB ∪WS} defines the binomial
random intersection graph G′ having the same distribution as G(n,m, p).

We remark that GS ⊆ G′ and every edge of GS can be assigned a unique small
attribute that covers this edge and the assigned attributes are all different. On
the other hand, the graph GB is relatively small. Indeed, since each w covers(|Tw|

2

)
edges, the expected number of edges of GB is at most

E
∑
w∈W

(
Tw
2

)
I{|Tw|≥3} = mE

(
Tw
2

)
I{|Tw|≥3} ≤ m

∑
k≥3

(
k

2

)(
n

k

)
pk.

Invoking the simple bound

∑
k≥3

(
k

2

)(
n

k

)
pk ≤ (np)2(enp − 1)/2 = O((np)3)

we obtain E e(GB) = O(m(np)3).
Now we choose an integer sequence {rn} such that m(np)3 � rn � K̄2 and

write, for an integer K ′ > 0,

P (ω(G) ≥ K ′) ≤ EP (ω(G) ≥ K ′|GB) I{e(GB)≤rn} + P (e(GB) ≥ rn) . (3.25)
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Chapter 3. Large cliques in sparse random intersection graphs

Here, by Markov’s inequality, P(e(GB) ≥ rn) ≤ r−1
n E e(GB) = o(1). Furthermore,

we observe that ω(G) ≥ K ′ implies the event Rainbow(G′, GB, K
′). Hence,

P (ω(G) ≥ K ′|GB) ≤ P (Rainbow(G′, GB, K
′)|GB) .

We choose K ′ = K̄(1 + δn) and apply Lemma 3.2.11 to the conditional prob-
ability on the right. At this point we specify {δn} and find εn ↓ 0 such that
P (Rainbow(G′, GB, K

′)|GB) ≤ εn uniformly in GB satisfying e(GB) ≤ rn. Hence,
(3.25) implies P

(
ω(G) ≥ K̄(1 + δn)

)
≤ εn + o(1) = o(1). 2

Now we are ready to prove Lemma 3.2.3.

Proof of Lemma 3.2.3 Let

0 < ε < 2−1 min{1, 1− 2−1α, β − 2 + α− 6αε1} (3.26)

and let Ḡ1 be the subgraph of G1 induced by vertices v ∈ V1 with Xv ≤ θ. Here
θ2 = (1−ε−2−1α)m lnn. Let D = |V (G1)\V (Ḡ1)| denote the number of vertices
of G1 that do not belong to Ḡ1.

To prove the lemma we write ω(G1) ≤ D+ω(Ḡ1) and show that each summand
on the right is of order oP (K) for appropriately chosen ε = ε(n)→ 0.

Using (3.2) and Lemma 3.2.5 we estimate the expected value of D for n→ +∞

ED = n (P(Xv ≥ θ)− P(Xv ≥ θ2)) ≤ (h(ε) + o(1))K. (3.27)

Here h(ε) := (1− ε− 2−1α)−α/2− (1− 2−1α)−α/2 → 0 as ε→ 0. Letting ε→ 0 we
obtain from (3.27) that D = oP (K).

We complete the proof by showing that for any ε satisfying (3.26)

P
(
ω(Ḡ1) ≥ 4n1−2−1ε−2−1α lnn

)
= o(1). (3.28)

Note that n1−2−1ε−2−1α lnn� K.
Let N̄ be a binomial random variable, N̄ ∼ Bin(n,P(Xv > θ1)), and let

n̄ = (1 + ε)n1−2−1α+αε1L(n0.5−ε1) and p̄2 = (1− 2−1ε− 2−1α)m−1 lnn.

We couple Ḡ1 with the binomial random intersection graph G′ = G(n̄,m, p̄) so
that the event that Ḡ1 is isomorphic to a subgraph of G′, denoted Ḡ1 ⊆ G′, has
probability

P(Ḡ1 ⊆ G′) = 1− o(1). (3.29)
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3.3. Finite variance

We argue that such a coupling is possible because the events A = {every vertex
of G′ is prescribed at least θ attributes} and B = {|V (Ḡ1)| ≤ n̄} have very high
probabilities. Indeed, the bound P(A) = 1−o(1) follows from Chernoff’s inequality
(3.12). To get the bound P(B) = 1−o(1) we first couple binomial random variables
|V (Ḡ1)| ∼ Bin(n,P(θ1 < Xv < θ)) and N̄ so that P(|V (Ḡ1)| ≤ N̄) = 1 and then
invoke the bound P(N̄ ≤ n̄) = 1− o(1), which follows from Chernoff’s inequality.

Next we apply Lemma 3.2.12 to G′ and obtain the bound

P
(
ω(G′) > 4n1−2−1ε−2−1α ln n̄

)
= o(1), (3.30)

which together with (3.29) implies (3.28). 2

3.3 Finite variance
In this section we prove Theorem 3.1.2. We note that the random power-law
graph studied by Janson,  Luczak and Norros [55] whp does not contain K4 as
a subgraph if the degree distribution has a finite second moment. In our case a
similar result holds for the rainbow K4. Given a sequence of random intersection
graphs {G(n)}, we show that the number of rainbow K4 subgraphs of G(n) is
stochastically bounded as n → +∞ provided that the sequence of the second
moments of the degree distributions is bounded. If, in addition, the sequence
of degree distributions is uniformly square integrable, then G(n) has no rainbow
K4 whp, see Lemma 3.3.3 below. We use these observations in the proof of
Theorem 3.1.2.

3.3.1 Large cliques and rainbow K4

Let U be a finite set and let C = {C1, . . . , Cr} be a collection of (not necessarily
distinct) subsets of U . We consider the complete graph KU on the vertex set
U and interpret subsets Ci as colours: an edge x ∼ y receives colour Ci (or
just i) whenever {x, y} ⊆ Ci. We call C a clique cover if every edge of the
clique KU receives at least one colour. The edges spanned by the vertex set
Ci form a subclique, which we call the monochromatic clique of colour i. We
say that a vertex set S ⊆ U is a witness of a rainbow clique if every edge of
the clique KS induced by S receives a non-empty collection of colours and it is
possible to assign each edge one of its colours so that all edges of KS were assigned
different colours. For example, the collection C = {A,B,C}, where A = {1, 2, 3},
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Chapter 3. Large cliques in sparse random intersection graphs

B = {1, 3, 4} and C = {2, 4, 3} is a clique cover of the set {1, 2, 3, 4}. It produces
three monochromatic triangles and four rainbow triangles.

We start with a result that relates clique covers to rainbow clique subgraphs.
For a clique cover C = {C1, . . . , Cr} denote by p(C) = maxi 6=j |Ci ∩ Cj| the size of
maximum pairwise intersection.

Lemma 3.3.1 Let k and p be positive integers. Let h = h(k) > 0 denote the
smallest integer such that

(
h
4

)
≥ k. Let C be a clique cover of a finite set U and

assume that maxC∈C |C| ≥ |U | − h and p(C) ≤ p.
If, in addition, |U | ≥ t(k, p), where t(k, p) = c h3

lnh
p
(√

2k + 5 + 2p
)

, then C
produces at least k witnesses of rainbow K4. Here c is the absolute constant of
Lemma 3.2.8.

Proof Write b = maxi |Ci|. We note that C has no rainbow Kh since otherwise
there would be at least

(
h
4

)
≥ k copies of rainbow K4. Observe, that every

monochromatic subclique ofKU has at most b vertices. Hence, each colour appears
at most b − 1 times at each vertex of KU . By Lemma 3.2.8, KU has at most
c(b − 1)h3/ lnh vertices. That is, b > a|U |, where a = lnh

ch3 and c is an absolute
constant. Fix B ∈ C with |B| = b and a subset S ⊆ U \ B of size h, say
S = {x1, . . . , xh}. Here we use the assumption |U | ≥ b + h telling that U \ B
has at least h elements, |U \ B| = |U | − b ≥ h. We remark, that at least one
pair of vertices of S, say {x1, x2}, receives at most 5 colours (it is covered by
at most 5 sets from C). Indeed, otherwise every edge of KS received at least 6

distinct colours and, thus, each S ′ ⊆ S of size |S ′| = 4 induced a rainbow K4.
This contradicts to our assumption that there are fewer than k ≤

(
h
4

)
rainbow

copies of K4.
We observe that the set of colours received by the pair {x1, x2} is non-empty

(since C is a clique cover) and fix one such colour, say Cx1,x2 ∈ C. Now, consider
the set of pairs {{x1, y}, y ∈ B} and pick a smallest family of sets from C such
that each pair were covered by a member of the family (the smallest family means
that any other family with fewer members would leave at least one uncovered
pair). Since each member of the family intersects with B in at most p vertices
(condition of the lemma) we conclude that such a family contains at least db/pe
members. Furthermore, since the family is minimal, every member covers a pair
{x1, y} which is not covered by other members. Hence, we can pick a set B1 ⊆ B

of size db/pe so that every {x1, y}, y ∈ B1 is covered by a unique member, say
Cx1,y, of the family.

Next, remove from B1 the elements y such that x2 ∈ Cx1,y (there are at most 5
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of them). Then remove those elements y which belong to the set Cx1,x2 (there are
at most p of them, since |Cx1,x2 ∩ B| ≤ p). Call the newly formed set B′. Notice
that

b′ := |B′| ≥ b

p
− 5− p > a|U |

p
− 5− p.

Let us consider the clique K̃ on the vertex set B′ ∪ {x1, x2}. For y ∈ B′, colour
each edge {x1, y} of K̃ with the colour Cx1,y. Colour the edge {x1, x2} with Cx1,x2

and for every edge {yi, yj} ∈ B′ use the colour B. Finally, for y ∈ B′, assign
{x2, y} an arbitrary colour from the set of colours received by {x2, y} from the
clique cover C.

We claim that for any y1 ∈ B′ and any y2 ∈ B′ \ Cx2,y1 , the set {x1, x2, y1, y2}
witnesses a rainbow K4. Indeed, by the construction, the colour Cx1,x2 of the edge
{x1, x2} occurs only once, because B′ ∩ Cx1,x2 = ∅. Similarly, for x1, x2 6∈ B, the
colour B of {y1, y2} occurs only once. The colours of the two other edges incident
to x1 occur only once, since we removed all candidates y such that x2 ∈ Cix1,y

,
while constructing the set B′. Finally, we have Cx2,y1 6= Cx2,y2 since we chose y2
outside Cx2,y1 .

How many such witnesses can we form? For any y1 we choose |B′| − |B′ ∩
Cx2,y1 | ≥ |B′| − p suitable y2. Repeating this for each y1 we will produce every
4-set at most twice. Therefore K̃ contains at least

b′(b′ − p)
2

≥ 1

2

(
a|U |
p
− 5− 2p

)2

(3.31)

witnesses of rainbow K4. But since the total number of witnesses of rainbow K4

produced by C is less that k, the right-hand side of (3.31) is less than k. We obtain
the inequality

|U | < p

a

(√
2k + 5 + 2p

)
= t(k, p),

which contradicts to the condition |U | ≥ t(k, p). 2

In the remaining part of the subsection 3.3.1 we interpret attributes w ∈ W
as colours assigned to edges of a random intersection graph.

Lemma 3.3.2 Let G = G(k,m, P ) be a random intersection graph and let X1, . . . ,

Xk denote the sizes of random sets defining G. For any integers x1, . . . , xk such
that the event B = {X1 = x1, . . . , Xk = xk} has positive probability, we have

P(G has a rainbow Kk|B) ≤ m− k(k−1)
2 (x1x2 . . . xk)

k−1.

Proof Our intersection graph produces a rainbow clique on its k vertices when-
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ever for some injective mapping, say f , from the set of pairs of vertices to the set
of attributes, the event Af = {every pair {x, y} is covered by f({x, y})} occurs.
By the independence, P(Af |B) =

∏
i
(xi)k−1

(m)k−1
. Since there are (m)(k2)

possibilities
to choose the map f , we obtain, by the union bound,

P(G has a rainbow Kk|B) ≤ (m)(k2)

∏
i

(xi)k−1

(m)k−1

≤ (x1x2 . . . xk)
k−1

mk(k−1)/2
.

2

Lemma 3.3.3 Let {G(n)} be a sequence of random intersection graphs such that
EY (n)2 = O(1). Then the number R = R(n) of 4-sets S ⊆ V (G(n)) that witness
a rainbow K4 in G(n) satisfies as n→ +∞

ER ≤ (EY 2)4

4!
= O(1).

Furthermore, if for some positive sequence εn → 0 we have nP(Y (n) ≥ εnn
1/2)→ 0

then G(n) does not contain a rainbow K4 whp.

Proof of Lemma 3.3.3 Denote Xv = |Sv(n)| and Y = Y (n). We write, using
symmetry and the bound of Lemma 3.3.2,

ER =
∑

S⊆V,|S|=4

P(S witnesses a rainbowK4) ≤
(
n

4

)
E
(
(X1X2X3X4)

3

m6
∧ 1

)
.

Next, we apply the simple inequality a6 ∧ 1 ≤ a4 and bound the right-hand side
from above by n4

4!
E (X1X2X3X4)2

m4 = (EY 2)4

4!
.

For the second part of the lemma, let b = b(n) = εn
√
m and let A = A(n) be

the event that maxv∈V Xv ≤ b. Let Ā denote the complement event. We write

P(R ≥ 1) ≤ P(R ≥ 1, A) + P(Ā) ≤ ERIA + P(Ā). (3.32)

By the union bound the second term is at most

nP(X > b) = nP(Y > εnn
1/2)→ 0.

The first term by Lemma 3.3.2 satisfies

ERIA ≤
(
n

4

)
m−6E (X1X2X3X4)

3IA ≤
(EX2)4n4b4

4!m6
= (εnEY 2)4 = o(1).

2
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The next result shows that the structure of random intersection graphs with
EY (n)2 = O(1) is relatively simple.

Lemma 3.3.4 Let {G(n)} be a sequence of random intersection graphs. Assume
that EY (n)2 = O(1) and m(n) → ∞ as n → +∞. Then whp each pair {w′, w′′}
of attributes is shared by at most two vertices of G(n).

The lemma says that the intersection of any two monochromatic cliques of
G(n) consists of at most one edge whp.

Proof For any pair of attributes w′, w′′ and a vertex v of G(n), we have

P(w′, w′′ ∈ Sv) =
m∑
k=0

P(|Sv| = k)
k(k − 1)

m(m− 1)
=

EX2 − EX
m(m− 1)

≤ EY 2

n(m− 1)
≤ c

nm
.

Here c > 0 does not depend on m and n. By the union bound, the probability
that there is a pair of attributes shared by k or more vertices is at most(

m

2

)(
n

k

)
P(w′, w′′ ∈ Sv)

k ≤ m2
(en
k

)k ( c

nm

)k
≤ m2

( ec
km

)k
.

This probability tends to zero for any k ≥ 3. 2

Proof of Theorem 3.1.2 Let R = R(n) denote the number of 4-sets S ⊆
V (G(n)) witnessing rainbow K4 in G(n). By Lemma 3.3.4, the intersection
of any two monochromatic cliques has at most 2 vertices whp. In that case,
by Lemma 3.3.1 (applied to the set of vertices U of the largest clique) either
ω(G(n)) < t(R + 1, 2) or ω(G) ≤ ω′(G) + h(R + 1). Thus,

ω(G(n)) ≤ ω′(G(n)) + Z(n)

where Z(n) = t(R + 1, 2) + h(R + 1) = OP (1), by Lemma 3.3.3.
If nP(Y (n) > εnn

1/2) → 0 for some εn → 0 then by Lemma 3.3.3 G(n) whp
does not contain a rainbow K4, so whp ω(G) ≤ t(1, 2) ∨ (ω′(G) + 3). 2

3.3.2 Monochromatic cliques and balls and bins

Here we prove Theorem 3.1.3. In the proof we use the fact that the maximum bin
load M(N,m) is a “smooth” function of the first argument N , see lemma below.
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Chapter 3. Large cliques in sparse random intersection graphs

Lemma 3.3.5 Let {Nn} and {mn} be sequences of positive integers such that
N = Nn →∞ and m = mn →∞. Let {δn}, {εn} be positive sequences converging
to zero such that εn = o(δn). For every n there is a coupling between random
variables M ′ = M ′

n = M(bN(1 + εn)c ,m) and M = Mn = M(N,m) such that
M ≤M ′ with probability one, and

P(M ′ − δnEM ′ ≤M)→ 1. (3.33)

If, additionally, P(M ′ > δ−1
n )→ 0, then M =M ′ whp.

Proof Given n, we label m bins by numbers 1, . . . ,m. Throw bN(1 + εn)c balls
into bins. This gives an instance of M ′. Denote by L the label of the bin with the
lowest index realising the maximum.

Now delete uniformly at random bεnNc balls. The configuration with the
remaining N balls gives an instance of M ≤ M ′. We remark that conditionally,
given M ′, the number ∆ of balls deleted from the bin L has a hypergeometric
distribution with the mean value

M ′ × bεnNc
bN(1 + εn)c

≤ εnM
′.

Now the bin L contains M ′ −∆ ≤M balls and, by Markov’s inequality,

P(M ′ −M ≥ t) ≤ P(∆ ≥ t) ≤ t−1E∆ ≤ t−1εnEM ′.

Choosing t = δnEM ′ yields (3.33). Similarly, if P(M ′ ≥ δ−1
n ) = o(1), then

P(M ′ −M ≥ 1) ≤ E∆IM ′≤δ−1
n

+ P(M ′ > δ−1
n ) ≤ εnδ

−1
n + o(1)→ 0.

2

Proof of Remark 3.1.4 Suppose m = o(n), EY = Θ(1) and EY 2 = O(1). Since
X = X(n) is a non-negative integer, we have EX2 ≥ EX. But EX2 = O(m/n)

and EX = Θ((m/n)1/2), so EX2 = o(EX), a contradiction. 2

Proof of Theorem 3.1.3 In view of Remark 3.1.4 it suffices to consider the case
m = Ω(n). Denote εn = (2 + ln2 n)−1 so that εn lnn = o(1) and nε2n → +∞.
Given n, write ε = εn and denote N̄ = nEX1 =

√
mnEY and

N̄− = bN̄(1− 4ε)c, N̄+ = dN̄(1 + 4ε)e.
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3.3. Finite variance

In order to generate an instance of G(n) we draw a random sample X1, . . . , Xn

from the distribution P (n). Then choose random subsets Svi ⊆ W of size Xi,
vi ∈ V , by throwing balls into m bins labelled w1, . . . , wm (the j-th bin has label
wj and index j) as follows. Keep throwing balls labelled i = 1 until there are
exactly Xi different bins containing a ball labelled i. Do the same for i = 2, . . . , n.
Now, for each i, the bins containing balls labelled i make up the set Svi . In this
way we obtain an instance of G(n). Let X ′

i denote the number of balls of label i
thrown so far. Clearly, X ′

1, . . . , X
′
n is a sequence of independent random variables

and X ′
i ≥ Xi, for each i. We stop throwing balls if the number of balls N ′ =

∑
iX

′
i

at least as large as N̄+. Otherwise we throw additional N̄+ −N ′ unlabelled balls
into bins.

Let us inspect the bins after j balls have been thrown. LetM(j) denote the
set of balls contained in the bin with the largest number of balls and the smallest
index. We note that the number M(j) = |M(j)| of balls in that bin has the same
distribution as M(j,m) (random variable defined before Theorem 3.1.3).

Denote, for short, ω′ = ω′(G(n)) and M̄ = M(bN̄c). We observe that the
event A1 = {all balls ofM(N ′) have different labels} implies ω′(G(n)) =M(N ′).
Furthermore, if both events A2 = {M(N̄−) = M(N̄+)} and A3 = {N̄− ≤ N ′ ≤
N̄+} hold, then M̄ =M(N ′). We shall show below that

P(Ar) = 1− o(1), for r = 1, 2, 3. (3.34)

Now, (3.34) implies P(ω′ = M̄) = 1−o(1) and, since the distributions ofM(bN̄c,m)

and M̄ coincide, we obtain

dTV

(
ω′,M(bN̄c,m)

)
= dTV

(
ω′, M̄

)
≤ P

(
ω′ 6= M̄

)
= o(1).

It remains to prove (3.34). Let us consider P(A3). We first replace Xi and X ′
i by

the truncated random variables

X̃i = XiI{Xi≤εm} and X̃ ′
i = X ′

iI{Xi≤εm}, 1 ≤ i ≤ n.

Denote Ñ ′ =
∑

i X̃
′
i and introduce events Ã3 = {N̄− ≤ Ñ ′ ≤ N̄+} and A4 =

{max1≤i≤nXi ≤ εm}. Let Ā4 denote the complement of A4. From the relation
A3 ∩ A4 = Ã3 ∩ A4 we obtain

P(A3) ≥ P(A3 ∩ A4) = P(Ã3 ∩ A4) ≥ P(Ã3)− P(Ā4).
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Furthermore, by the union bound and Markov’s inequality, we have

P(Ā4) ≤ nP(X1 > εm) ≤ n
EX2

1

ε2m2
=

EY 2

ε2m
= o(1),

since m = Ω(n) and ε2n → +∞. Hence, P(A3) ≥ P(Ã3) − o(1). Secondly, we
prove that P(Ã3) = 1− o(1). For this purpose we show that, for large n,

N̄(1− ε) ≤ E Ñ ′ ≤ N̄(1 + 2ε) and P
(
|Ñ ′ − E Ñ ′| ≥ εE Ñ ′) = o(1). (3.35)

The proof of (3.35) is routine. Notice that conditionally, given X̃i = k, we have
X̃ ′

i =
∑k

j=1 ξj, where ξ1, ξ2, . . . , ξk are independent geometric random variables
with parameters

m

m
,
m− 1

m
, . . . ,

m− k + 1

m
,

respectively. Since X̃i ≤ εm, we only consider k < εm, so

E (X̃ ′
i|X̃i = k) =

m

m
+

m

m− 1
+ · · ·+ m

m− k + 1
≤ k

1− ε
≤ k(1 + 2ε).

In the last step we used ε ≤ 1/2. We conclude that

X̃i ≤ E (X̃ ′
i|X̃i) ≤ X̃i(1 + 2ε). (3.36)

From (3.36) we obtain

nE X̃1 ≤ E Ñ ′ ≤ (1 + 2ε)nE X̃1. (3.37)

Furthermore, invoking in (3.37) the inequalities EX1 − s ≤ E X̃1 ≤ EX1, where

s = EX1I{X1>εm} ≤ (εm)−1EX2
1 = (ε n)−1EY 2

1 = o(ε),

we obtain the first part of (3.35). The second part of (3.35) follows from the
inequalities Ñ ′ ≥ N(1− ε) and

V arÑ ′ ≤ 2nEX2
1 = 2mEY 2, (3.38)

by Chebyshev’s inequality. Let us show (3.38). Proceeding as in the proof of
(3.36) we evaluate the conditional variance

V ar(X̃ ′
i|X̃i = k) =

k∑
j=1

V ar(ξj) =
k−1∑
j=0

jm

(m− j)2
≤ k2

2(1− ε)2m
≤ k2

m
,
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and obtain
EV ar(X̃ ′

i|X̃i) ≤
E X̃2

i

m
.

Furthermore, using (3.36) we write

V ar(E (X̃ ′
i|X̃i)) ≤ E (E (X̃ ′

i|X̃i))
2 ≤ E X̃2

i (1 + 2ε)2 ≤ E X̃2
i (1 + 8ε).

Collecting these estimates we obtain an upper bound for the variance

V ar(X̃ ′
i) = EV ar(X̃ ′

i|X̃i) + V ar(E (X̃ ′
i|X̃i)) ≤ E X̃2

i (1 + 8ε+m−1) ≤ 2EX2
i .

This bound implies (3.38). We have shown (3.34) for r = 2.
Let us prove (3.34) for r = 1. We start with an auxiliary inequality. Given

integers x1, . . . , xn ≥ 0 consider a collection of k = x1 + · · · + xn > 0 labelled
balls, containing xi balls of label i, 1 ≤ i ≤ n. The probability of the event that
a random subset of r balls contains a pair of equally labelled balls is

P(L ≥ 1) ≤ EL =

(
r

2

)(
k

2

)−1∑
i

(
xi
2

)
≤
( r
k

)2∑
i

x2i . (3.39)

Here L counts pairs of equally labelled balls in the random subset.
We will show that P(Ā1) = o(1). To this aim, we introduce events

A5 = {M(Ñ ′) ≤ lnn}, A6 = {
∑

1≤i≤n

(X̃ ′
i)

2 ≤ m lnn},

estimate

P(Ā1) ≤ P(Ā1 ∩ A3 ∩ A4 ∩ A5 ∩ A6) + P(Ā3) + P(Ā4) + P(Ā5) + P(Ā6),

and show that each summand on the right is o(1). For the first summand we
estimate using (3.39)

P(Ā1 ∩ A3 ∩ A4 ∩ A5 ∩ A6) = EP(Ā1|X1, . . . , Xn)IA3∩A4∩A5∩A6

≤ E

(
M(Ñ ′)2

(Ñ ′)2

∑
i

(X̃ ′
i)

2IA3∩A4∩A5∩A6 |X1, . . . , Xn

)

≤
(
lnn
N̄+

)2

m lnn = O

(
ln3 n

n

)
.
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It remains to show P(Ār) = o(1), for r = 5, 6. We write P(Ā5) = P(Ā5∩A3)+

o(1) and estimate

P(Ā5 ∩ A3) ≤ P(M(N̄+) > lnn) = P(max
j∈[m]

Zj > lnn) ≤ mP(Z1 > lnn) = o(1).

(3.40)
Here Zj denotes the number of balls in the jth bin after N̄+ balls have been
thrown. In the second inequality we applied the union bound and used the fact
that Z1, . . . , Zm are identically distributed. To get the very last bound we write
for binomially Bin(N̄+,m−1) distributed Z1 and t = blnnc,

P(Z1 ≥ t) ≤
(
N̄+

t

)
m−t ≤

(
eN̄+

tm

)t

= o
(
m−1

)
.

To estimate P(Ā6) we apply Markov’s inequality,

P(Ā6) ≤ (m lnn)−1nE (X̃ ′
1)

2 = ln−1 n(V ar(X̃ ′
1) + (E X̃ ′

1)
2) = O(ln−1 n).

Finally, we prove (3.34) for r = 2. Notice that the coupling between M(N̄+)

and M(N̄−) is equivalent to the coupling provided by Lemma 3.3.5. Choose
ε′ solving N+ = (1 + ε′)N− and note that ε′ ∼ 8ε = O(ln−2 n). The bound
P(A2) = 1−o(1) follows by Lemma 3.3.5 and the bound P(M(N̄+) > lnn) = o(1),
shown above. 2

3.4 Algorithms for finding the largest clique
Random intersection graphs provide theoretical models for real networks, such
as the affiliation (actor, scientific collaboration) networks. Although the model
assumptions about the distribution of the family of random sets defining the
intersection graph are rather stringent (independence and a particular form of the
distribution), these models yield random graphs with clustering properties similar
to those found in real networks, [18]. While observing a real network we may or
may not have information about the sets of attributes prescribed to vertices.
Therefore it is important to have algorithms suited to random intersection graphs
that do not use any data related to attribute sets prescribed to vertices. In this
section we consider two such algorithms that find cliques of order (1 + o(1))ω(G)

in a random intersection graph G.
The Greedy-Clique algorithm of [55] finds a clique of the optimal order

(1 − oP (1))ω(G) in a random intersection graph, in the case where (asymptotic)
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3.4. Algorithms for finding the largest clique

degree distribution is a power-law with exponent α ∈ (1; 2).

Greedy-Clique(G):

Let v(1), . . . , v(n) be V (G) sorted by their degrees, descending
M ← ∅
for i = 1 to n

if v(i) is adjacent to each vertex in M then
M ←M ∪ {v(i)}

return M

Here we assume that graphs are represented by the adjacency list data struc-
ture. The implicit computational model behind our running time estimates in
this section is random-access machine (RAM).

Proposition 3.4.1 Assume that conditions of Theorem 3.1.1 hold. Suppose that
EY = Θ(1) and that (3.7) holds for some ε > 0. Then on input G = G(n)

Greedy-Clique outputs a clique of size ω(G(n))(1− oP (1)) in time O(n2).

By Lemma 3.1.5, the above result remains true if the conditions (3.2) and EY (n) =

Θ(1) are replaced by the conditions (3.6) and ED1 = Θ(1). Proposition 3.4.1 is
proved in a similar way as Lemma 3.2.1, but it does not follow from Lemma 3.2.1,
since Greedy-Clique is not allowed to know the attribute subset sizes.

Proof The running time bound is obvious. We have to check that the algorithm
returns a clique of the correct size. Fix any δ ∈ (0; 1). Let C = C(n) be the
clique returned by the algorithm on input G = G(n), and write ω = ω(G(n)). Let
Aδ = Aδ(n) be the event that |C| < (1−δ)ω. To prove the lemma, we have to show
that P(Aδ) → 0. Fix positive a, b, such that a < 1/4 and b < (1− 0.1δ)−1/α − 1.
Let θ2, e1, K be as in Section 3.2.1. Set θ̃ = θ̃(n) = (1 + b)θ2 and

τ = τ(n) = ((1− α/2)EY lnn+ e1)n
1/2(1 + n−a).

We will assume that n is large enough, so that bθ̃ + 1c ≤ m. Let V2 = {v ∈ [n] :

Xv > θ2} as before, and define random sets Q = Q(n) and R = R(n)

Q = {v ∈ [n] : Dv > τ} and R = {v ∈ [n] : Xv > θ̃}.

Here Dv is the degree of v in G(n). Let B = B(n) be the event that R ⊆ Q ⊆ V2.
Write K̃ = K̃(n) = (1−α/2)−αK. Recall that in the proof of Lemma 3.2.1 it does
not matter in which order the vertices of V2 are considered when constructing the
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set AN , in particular, the order may be random. We will assume that the vertices
in V2∩Q are always considered first, in the order provided by the Greedy-Clique
algorithm. Let Lθ be as in Lemma 3.2.1. We claim that

P(Aδ) ≤P
(
|R| < (1− 0.1δ)K̃

)
+ P(B̄) + P

(
|V2| > (1 + 0.1δ)K̃

)
+ P (Lθ > 0.1δ|V2|) + P

(
ω > (1 + 0.5δ)K̃

)
. (3.41)

Indeed, suppose that |R| ≥ (1 − 0.1δ)K̃, Lθ ≤ 0.1δ|V2|, |V2| ≤ (1 + 0.1δ)K̃,
ω ≤ (1 + 0.5δ)K̃ and B holds. Then Aδ does not hold, since

|C| ≥ |Q| − Lθ ≥ |R| − Lθ ≥ (1− 0.1δ)K̃ − 0.1δ(1 + 0.1δ)K̃

≥ (1− 0.5δ)K̃ ≥ (1− δ)ω.

Now the last three terms on the right side of (3.41) tend to zero by the proof
of Lemma 3.2.1 and Theorem 3.1.1. Furthermore, since E |R| = nP(X > θ̃) ∼
(1 + b)−αK̃ and (1 + b)−α > 1 − 0.1δ, we get that P(|R| < (1 − 0.1δ)K̃) → 0 by
the concentration of |R| (using, for example, (3.12)).

It remains to prove that B holds whp. Let us first show that Q ⊆ V2 whp. By
the union bound

P(|Q \ V2| > 0) ≤ nP(X1 ≤ θ2, D1 > τ) ≤ nP(D1 > τ |X1 = bθ2c)

≤ nP

(
n∑

v=2

ISv∩S1 6=∅ > τ |X1 = bθ2c

)
≤ nP(Z1 > τ), (3.42)

where Z1 = Z1(n) is a random variable with distribution Binom(n, p1) and p1 =
p1(n) =

θ2EX
m

. The last inequality follows by monotonicity, since the probability
that S2 intersects an independent uniformly random subset of [m] of size bθ2c is
at most p1. We have

EZ1 = np1 = n1/2+o(1) and τ = (1 + n−a)EZ1.

Now by the Chernoff bound (3.11)

P(Z1 > τ) = P(Z1 > (1 + n−a)EZ1) ≤ exp
(
−n

1
2
−2a+o(1)

)
.

Putting this in (3.42) we get that P(|Q \ V2| > 0)→ 0.
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Similarly we will show that R ⊆ Q whp. We have

P(|R \Q| > 0) ≤ nP(D1 ≤ τ,X1 > θ̃) ≤ P(D1 ≤ τ |X1 = bθ̃ + 1c) = nP(Z2 ≤ τ),

where Z2 = Z2(n) = Binom(n − 1, p2) and p2 = p2(n) is the probability that S2

intersects an independent uniformly random subset of [m] of size bθ̃ + 1c. Now
(3.7), EY = Θ(1) and Lemma 3.2.5 imply that for ã = ã(n) = n−ε/2 we have

E θ̃X2Iθ̃X2>ãm =
(m
n

)1/2
θ̃EY IY >ãn1/2((1−α/2) lnn+e1)−1 = o(θ̃EX). (3.43)

Next, observe that the bounds (3.55), (3.56) and (3.57) apply also whenX1 andX2

are independent but with different distributions, in particular when X1 = bθ̃+1c
and X2 has distribution P (n); these inequalities together with (3.43) yield that

p2 ∼
θ̃EX
m

and EZ2 ∼ np2 ∼ (1 + b)τ.

Applying (3.11) again, we get that P(Z2 ≤ τ) = exp
(
−n1/2+o(1)

)
and P(|R \Q| >

0)→ 0. 2

For random intersection graphs with square integrable degree distribution we
suggest the following simple algorithm.

Mono-Clique(G):

for uv ∈ E(G)
D(uv)← |Γ(u) ∩ Γ(v)|

for uv ∈ E(G) in the decreasing order of D(uv)

S ← Γ(u) ∩ Γ(v)

if S is a clique then
return S ∪ {u, v}

return {1} ∩ V (G)

Here Γ(v) denotes the set of neighbours of v.

Theorem 3.4.2 Assume that {G(n)} is a sequence of random intersection graphs
such that n = O(m) and EY 2(n) = O(1). Let C = C(n) be the clique constructed
by Mono-Clique on input G(n). Then E (ω(G(n))− |C|)2 = O(1). Further-
more, if there is a sequence {ωn}, such that ωn → ∞ and ω(G(n)) ≥ ωn whp,
then |C| = ω(G(n)) whp.

89



Chapter 3. Large cliques in sparse random intersection graphs

Proof Given distinct vertices v1, v2, v3, v4 ∈ [n], let C(v1, v2, v3, v4) be the event
that G(n) contains a cycle with edges {v1v2, v2v3, v3v4, v1v4} and Sv2 ∩ Sv4 = ∅.
Let Z denote the number of tuples (v1, v2, v3, v4) of distinct vertices in [n] such
that C(v1, v2, v3, v4) hold. We will show below that

EZ = O(1). (3.44)

Let S ⊆ [n] be the (lexicographically first) largest clique of G(n). Denote
s = |S|. If s ≤ 2 or there is a pair {x, y} ⊆ S, x 6= y such that G(n)[Γ(x) ∩ Γ(y)]

is a clique, then the algorithm returns a clique of size s. Otherwise, for each such
pair {x, y} there are x′, y′ ∈ Γ(x) ∩ Γ(y), x′ 6= y′ with x′y′ 6∈ E(G(n)). That is,
C(x, x′, y, y′) holds and

(
s
2

)
≤ Z. Thus, if

(
s
2

)
> Z, the algorithm returns a clique

C of size s. Otherwise, the algorithm may fail and return a clique C of size 1. In
any case we have that

s− |C| ≤
√
2Z + 1

and using (3.44)

E (ω(G(n))− |C|)2 ≤ E (
√
2Z + 1)2 = O(1).

Also if ω(G(n)) ≥ ωn whp, then by (3.44) and Markov’s inequality

P(|C| 6= ω(G(n))) ≤ P(ω(G(n)) < ωn) + P
(
Z ≥

(
ωn

2

))
→ 0.

It remains to show (3.44). What is the probability of the event C(1, 2, 3, 4)?
Clearly, C(1, 2, 3, 4) implies at least one of the following events:

• A1 : there are distinct attributes w1, w2, w3, w4 ∈ W such that w1 ∈ S1∩S2,
w2 ∈ S2 ∩ S3, w3 ∈ S3 ∩ S4 and w4 ∈ S1 ∩ S4;

• A2 : there are distinct w1, w2, w3 ∈ W , such that w1 ∈ S1 ∩ S2 ∩ S3, w2 ∈
S3 ∩ S4 and w3 ∈ S1 ∩ S4;

• A3 : there are distinct w1, w2, w3 ∈ W , such that w1 ∈ S1 ∩S2, w2 ∈ S2 ∩S3

and w3 ∈ S1 ∩ S3 ∩ S4;

• A4 : there are distinct w1, w2 ∈ W , such that w1 ∈ S1 ∩ S2 ∩ S3 and
w2 ∈ S1 ∩ S3 ∩ S4.

Conditioning on X1, X2, X3, X4 and using the union bound and independence we
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obtain, similarly as in Lemma 3.3.2

P(A1) ≤ (m)4E
(X1)2(X2)2(X3)2(X4)2

(m)42
≤ (EY 2)4

n4
;

P(A2) = P(A3) ≤ (m)3E
(X1)2X2(X3)2(X4)2

(m)32m
≤ (EY 2)3(EY )

m0.5n3.5
;

P(A4) ≤ (m)2E
(X1)2X2(X3)2X4

(m)22m
2

≤ (EY 2)2(EY )2

mn3
.

Furthermore, by symmetry,

EX ≤ (n)4 (P(A1) + P(A2) + P(A3) + P(A4)) = O(1).

2

Proposition 3.4.3 Consider a sequence of random intersection graphs {G(n)}
as in Theorem 3.1.3. Mono-Clique can be implemented so that its expected
running time on G(n) is O(n).

Proof Let Z̃ denote the number of 4-cycles in G(n), i.e., the number of tuples
(v1, v2, v3, v4) of distinct vertices in [n], such that v1v2, v2v3, v3v4, v1v4 ∈ E(G(n)).
We will prove below that

E Z̃ = O(n). (3.45)

Consider the running time of the first loop. We can assume that the elements in
each list in the adjacency list structure are sorted in increasing order (recall that
vertices are elements of V = [n]). Otherwise, given G(n), they can be sorted using
any standard sorting algorithm in time O(n +

∑
v∈[n]D

2
v), where Dv = dG(n)(v)

is the degree of v in G(n). The intersection of two lists of lengths k1 and k2

can be found in O(k1 + k2) time, so that expected total time for finding common
neighbours is

O

n+ E
∑

uv∈E(G(n))

(Du +Dv)

 = O

n+ E
∑
v∈[n]

D2
v

 = O(n).

The last estimate follows by (3.66) in the proof of Lemma 3.1.6.
The second loop can be implemented so that the next edge uv with largest

value of D(uv) is found at each iteration (i.e., we do not sort the list of edges
in advance). In this way picking the next edge requires at most ce(G(n)) steps
c is a universal constant. We recall that the number of edges uv ∈ E(G) with
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Γ(u, v) := Γ(u) ∩ Γ(v) 6= ∅ that fail to induce a clique is at most the number Z
of cycles considered in the proof of Theorem 3.4.2 above. Therefore, the total
number of steps used in picking D(uv) in decreasing order is at most

Z e(G(n)) =
∑

(i,j,k,l)

IC(i,j,k,l)e(G(n)).

Now
e(G(n) =

∑
s<t: {s,t}∩{i,j,k,l}=∅

I{s∼t} +
∑

s<t: {s,t}∩{i,j,k,l}6=∅

I{s∼t}.

Note, that the second sum on the right is at most 4n. Also, if {s, t}∩{i, j, k, l} = ∅,
the events s ∼ t and C(i, j, k, l) are independent, therefore

E

IC(i,j,k,l)
∑

s<t: {s,t}∩{i,j,k,l}=∅

I{s∼t}

 = P(C(i, j, k, l))
∑

s<t: {s,t}∩{i,j,k,l}=∅

P(s ∼ t)

≤ P(C(i, j, k, l))E e(G(n)).

Finally, invoking the simple bound E e(G(n)) =
(
n
2

)
P(u ∼ v) = O(n), and (3.44)

we get

EZ e(G(n)) ≤ (E e(G(n))+4n)
∑

(i,j,k,l)

P(C(i, j, k, l)) = (E e(G(n))+4n)EZ = O(n).

Now let us estimate the time of the rest of the iteration of the second loop. The
total expected time to find common neighbours is again O(n), so we only consider
the time spent for checking if Γ(u, v) is a clique. This requires c s2uv steps, where
we denote suv = |Γ(u, v)|. Observe that u, v and Γ(u, v) yield at least suv(suv− 1)

4-cycles in G(n) of the form (u, x, v, y), x, y ∈ Γ(u, v). Summing over all edges uv
and noticing that each 4-tuple corresponding to 4-cycle in G(n) can be obtained
at most once, we get

Z̃ ≥
∑

uv∈E(G(n))

suv(suv − 1) ≥
∑

uv∈E(G(n))

(s2uv − 1)/2.

So using (3.45) and the fact that E e(G(n)) = O(n) we obtain

E
∑

uv∈E(G(n))

s2uv ≤ 2E Z̃ + E e(G(n)) = O(n).

Finally, let us bound E Z̃. Let Ai, 1 ≤ i ≤ 4 be as in the proof of Theorem 3.4.2.
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Let A5 be the event that there is w ∈ W such that w ∈ S1 ∩ S2 ∩ S3 ∩ S4. Using
the union bound

P(A5) ≤ mE
X1X2X3X4

m4
=

(EY )4

mn2
.

Similarly as in the proof of Theorem 3.4.2 (we have to consider three other events
similar to A2 and A4),

E Z̃ ≤ (n)4 (P(A1) + 4P(A2) + 2P(A4) + P(A5)) = O(n).

2

Combining the next lemma with Theorem 3.1.3 we can show that Mono-
Clique whp finds a clique of size at least ω′(G(n)).

Lemma 3.4.4 Let {G(n)} be as in Theorem 3.1.3 and let M = M(G(n)) be the
monochromatic clique of size ω′(G(n)) generated by the attribute with the smallest
index. Then whp G(n) has an edge uv such that {u, v} ∪ (Γ(u) ∩ Γ(v)) =M .

Before we prove the lemma, we need several definitions. A balls and bins
configuration C with parameters (N,m, n) is a pair (binC, labelC) of functions
binC : [N ] → [m] and labelC : [N ] → [n]. These functions determine the place-
ment of N distinguishable balls with labels from [n] into m bins. Recall that
f(S) and f−1(S) denote the image and preimage of a set S under a function f

respectively. Given a balls and bins configuration C, for each i ∈ [n] we define
Si(C) = binC(label

−1
C ({i})), Xi(C) = |Si(C)| and X ′

i(C) = |label−1
C ({i})|. Also de-

fine for j ∈ [m] the set Tj(C) = bin−1
C ({j}), write Zj(C) = |Tj(C)| and interpret

Tj(C) as the set of balls in the bin j. We denote by L(C) the (smallest) index
j ∈ [m] that maximizes Zj(C). Also, write ω′(C) = ZL(C), where L = L(C).

The intersection graph G(C) corresponding to C is the intersection graph on
vertex set [n] of the family of sets {Si(C) : i ∈ [n]}.

Given a function f : [N ] → [m] and x, y ∈ [N ] let exchange(f, x, y) be an
operation, the result of which is again a function g : [N ] → [m], defined as
follows.

g(w) =


f(x), if w = y

f(y), if w = x;

f(w), otherwise.

Given a balls and bins configuration C with parameters (N,m, n), define random
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variables b1, b2, b′1, b′2 taking values1 in the set

{undefined} ∪ [N ]

as follows. If ω′(C) ≤ 1 let b1 = b2 = undefined. Otherwise, let (b1, b2) be chosen
uniformly at random from all ordered pairs of distinct balls in the bin L(C). We
let b′1 = b′2 = undefined if N ≤ 1. Otherwise, we define (b′1, b

′
2) as a uniformly

random pair from all N(N − 1) ordered pairs of distinct balls in [N ].
Now if ω′(C) ≤ 1, define binC′ = binC, otherwise define

binC′ = exchange(exchange(bin, b1, b
′
1), b2, b

′
2),

that is, we exchange the bins of b1 and b′1, then exchange the bins of b2 and
b′2. Finally, let T (C) = T (C, b1, b2, b′1, b′2) be a balls and bins configuration with
parameters (N,m, n) and functions (binC′ , labelC).

Lemma 3.4.5 Let n,m be positive integers, let (x1, . . . , xn) be a sequence of
nonnegative integers and let N = x1 + · · · + xn. Let f be an arbitrary function
[N ] → [n], such that |f−1({j})| = xj for each j ∈ [n]. Let C be a random balls
and bins configuration with parameters (N,m, n) defined as follows:

• binC is chosen uniformly at random from all mN functions from [N ] to [m]

(i.e., each ball is thrown into a uniformly random bin);

• labelC = f .

Then T (C) has the same distribution as C.

Proof Let z = (z1, . . . , zm) be a vector of non-negative integers, such that∑m
i=1 zi =

∑n
j=1 xj = N and write zmax = maxi∈[n] zi. For a balls and bins

configuration C ′, write Z(C ′) = (Z1(C ′), . . . , Zm(C ′))
Define a Markov chain Mz with state space Sz consisting of all balls and bins

configurations C ′ with parameters (N,m, n), such that labelC′ = f and Z(C ′) = z,
and with transitions given by the operation T .

Suppose zmax ≥ 2. We claim, that the transition probabilities pst ofMz satisfy∑
s∈Sz

pts =
∑
s∈Sz

pst for any state t ∈ Sz. (3.46)

(Note that the above sum must be equal to 1). This follows by a standard ar-
gument: let H = H(V1, V2) be an edge-weighted bipartite graph, where V1 = Sz,

1We use a special value “undefined” to avoid the need of extra conditioning later.
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V2 = {s′ : s ∈ Sz} is a disjoint copy of V1 and for each st′ ∈ V1 × V2, let the
weight w(st′) be the number of quadruples (b1, b2, b′1, b′2) leading from s to t. By
symmetry, for any s ∈ S,

∑
t∈V2

w(st′) =
∑
t∈V1

w(ts′) =
1

|Sz|
∑
s,t

w(st′).

For any state in Sz, any valid quadruple has the same probability p = (zmax(zmax−
1)N0(N0−1))−1 to be picked by the random transition T . Therefore (3.46) follows
by multiplying both sides of the last equality by p. (By considering “inverse”
transitions one may further show that the transition matrix of this Markov chain
is actually symmetric.)

Now by (3.46), the uniform distribution over Sz is a stationary distribution for
Mz. Clearly, conditionally on Z(C) = z, C is uniformly distributed over Sz, and so
T (C) is also distributed uniformly over Sz. The last statement is also true in the
case where zmax < 2, since in this case T is the identity operation. We conclude
that T (C) has the same distribution as C. 2

Proof of Lemma 3.4.4 Using the iid random variables X1, . . . , Xn (distributed
according to P (n)), we will construct two random balls and bins configurations
C ′ and C ′′, such that

(i) C ′ and C ′′ have the same distribution;

(ii) G(C ′) and G(C ′′) are distributed as G(n).

At the same time we will construct a pair of random vertices (u∗, v∗), such that

• whp u∗, v∗ ∈ TL(C ′′), where L = L(C ′′);

• u∗, v∗ ∈ {0} ∪ [n];

• Given X1, . . . , Xn, such that N = X1 + · · ·+Xn, u∗, v∗ are iid, and for any
x ∈ [n] P(u∗ = x) = Xi

N+1
;

• Given X1, . . . , Xn, u∗, v∗ are conditionally independent of C ′.

Finally we will show that whp C ′ and C ′′ differ only by the positions of at most
four balls, so we will be able to use the simple distribution of (u∗, v∗) in G(C ′) to
finish the proof of the lemma.

Construction of C ′ and C ′′. We proceed in several steps. We start by drawing
the sequence X1, . . . , Xn. Define a random balls and bins configuration C0 with
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parameters (N,m, n), N =
∑n

i=1Xi and Xi balls labelled i as in Lemma 3.4.5.
For b ∈ [N ] let labelC0(b) = min{i ∈ [n] : X1 + · · · + Xi ≥ b} and notice that
labelC0 depends only on X1, . . . , Xn. Now let C ′0 = C0 and let C ′′0 = T (C0). Let
b1, b2, b

′
1, b

′
2 ∈ {undefined} ∪ [N ] be the corresponding random balls used in the

operation T as in Lemma 3.4.5.
In the second phase we complete the construction of C ′ and C ′′ by adding more

balls to C ′0 and C ′′0 respectively so that Xi(C ′) = Xi(C ′′) = Xi for each i ∈ [n]. We
use pairing as much as we can. Specifically, assume that C ′t and C ′′t are already
defined. If there is no index i, such that max(Xi(C ′t), Xi(C ′′t )) < Xi, we stop.
Otherwise, let i be smallest such index. Pick b∗∗t+1 independently and uniformly
at random from [m] and place N + t + 1 to the bin b∗∗t+1 in both C ′t and C ′′t , to
obtain C ′t+1 and C ′′t+1 respectively with parameters (N + t + 1,m, n) (formally,
binC′

t+1
(N + t + 1) = b∗∗t+1, labelC′

t+1
(N + t + 1) = i, and binC′

t+1
, labelC′

t+1
agree on

[N + t]; C ′′t+1 is obtained from C ′′t similarly).
Let t be the largest integer, such that C ′t and C ′′t are defined. For s = t, t+1, . . . ,

while there is an index i such that Xi(C ′s) < Xi add a ball N + s + 1 labelled i
to a uniformly random bin in C ′s to obtain C ′s+1. Call the final configuration C ′.
Similarly, but now independently, while there is an index i with Xi(C ′′s ) < Xi, add
a ball N + s+1 labelled i to a uniformly random bin from C ′′s to obtain C ′′s+1, and
call the final configuration C ′′.

Proof of (i) and (ii). By Lemma 3.4.5, C ′0 and C ′′0 are identically distributed.
The procedure to obtain C ′ from C ′0 is the same as the procedure to obtain C ′′

from C ′′0 : we may ignore the coupling of the second phase since the distribution
for each of the final configuration does not depend on the sequence of labels
used in this phase. Therefore C ′ and C ′′ are also identically distributed. Using a
similar argument as in the proof of Theorem 3.1.3, we see that G(C ′) has the same
distribution as G(n).

Properties of C ′ and C ′′. Let N ′ and N ′′ be the number of balls in C ′ and
C ′′ respectively. For i ∈ {1, 2} let l′i = labelC0(b

′
i) in the case where b′i ∈ [N ], and

let l′i = 0 in the case where b′i = undefined. Similarly let li = labelC0(bi) in the
case where bi ∈ [N ] and let li = 0 otherwise. Finally, define w′

i = binC0(b
′
i) if

b′i 6= undefined and w′
i = 0 otherwise. Also define L := L(C ′′).

We will prove that all of the following events hold whp

• A : N ′ = N ′′, labelC′ = labelC′′ , the functions binC′ , binC′′ agree on [N ′] \
{b1, b2, b′1, b′2} and for i ∈ {1, 2} binC′(b′i) = binC′′(bi), binC′(bi) = binC′′(b′i);
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• A′ : for each k ∈ [n]\{l′1, l′2} there is i ∈ {1, 2} such that Sk(C ′)∩Sl′i
(C ′) = ∅;

• B : for i ∈ {1, 2}, Xl′i
(C0) = Xl′i

;

• C : b1, b2, b
′
1, b

′
2 are distinct and belong to [N ];

• D : w′
1 6∈ SC0(l

′
2) and w′

2 6∈ SC0(l
′
1);

• E : L = L(C0), TL(C ′′0 ) = TL(C ′′) and all balls in TL(C ′′) have distinct labels;
also all balls in TL(C ′) have distinct labels;

• F1 : L(C0) 6∈ Sl′1
(C0) ∪ Sl′2

(C0);

• F2 : for j ∈ {1, 2}, bj is the unique ball in Tw′
j
(C ′′) with labelC′′(bj) = lj.

Assume that B,C,D,E, F1 and F2 occur, we will show that A occurs (this
event is not essential but helps to make the proof clearer). Since B and F1 hold,
for i ∈ {1, 2}, each ball in the set label−1

C0 ({l
′
i}) is in a distinct bin of C ′0 = C0, and

not in the bin L(C0). Using also C, each ball with label l′i is in a distinct bin of
C ′′0 . Therefore no new balls with label l′i are added in the random construction (of
both C ′ and C ′′), once C ′0 and C ′′0 are defined and

Sl′i
(C ′) \ {w′

i} = Sl′i
(C ′′) \ {L}. (3.47)

Now let j ∈ {1, 2}. C,E, F1 and F2 imply that L ∈ Slj(C ′0) and w′
j 6∈ Slj(C ′0);

meanwhile L 6∈ Slj(C ′′0 ) and w′
j ∈ Slj(C ′′0 ). By E, no new ball labelled lj is added

to the bin L in the second phase of the construction. By F2, no new ball labelled
lj is added to the bin w′

j in the second phase. This means that

Slj(C ′) \ {L} = Slj(C ′′) \ {w′
j}. (3.48)

Also, notice that the operation T does not modify the balls with labels k ∈
[n] \ {l1, l2, l′1, l′2} therefore by the pairing Sk(C ′) = Sk(C ′′) and A holds.

Now let A′′ be the event that l′1 and l′2 belong to the set M = label(TL(C ′′)),
l′1 6= l′2, |M | = ω′(G(C ′′)) and ΓG(C′′)(l

′
1) ∩ ΓG(C′′)(l

′
2) = M \ {l′1, l′2}. To prove the

lemma, it suffices to show that A′′ holds whp.
Suppose A′, B, C,D,E, F1, F2 hold, but A′′ does not. Then there is k ∈ [n] \

{l′1, l′2}, such that for both i ∈ {1, 2}, (Sl′i
(C ′′) \ {L}) ∩ Sk(C ′′) 6= ∅. Suppose

k 6∈ {l1, l2}. We have Sk(C ′) = Sk(C ′′), so if Sk(C ′′) intersects Sl′i
(C ′′) \ {L} then

Sk(C ′) intersects Sl′i
(C ′) and A′ does not hold, a contradiction. Therefore we can

assume that k ∈ {l1, l2}.
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Since w′
1, w

′
2 6∈ Sl′i

(C ′′) (by B, b′i is the unique ball b in Tw′
i
(C0) with labelC0(b) =

l′1, and so by C,D and F1, w′
1, w

′
2 6∈ Sl′i

(C ′′0 ) = Sl′i
(C ′′)) we have that for i ∈ {1, 2},

(Sl′i
(C ′′) \ {L,w′

1, w
′
2}) ∩ (Sk(C ′′) \ {L,w′

1, w
′
2}) 6= ∅.

But using (3.47) and (3.48), (Sx(C ′) \ {L,w′
1, w

′
2}) = (Sx(C ′′) \ {L,w′

1, w
′
2}) for

x ∈ {l1, l2, l′1, l′2}, therefore A′ does not occur. This is a contradiction. We conclude
that indeed the events A′, . . . , F2 imply A′′.

To complete the proof of the lemma, it suffices to show that A′, B, C, D, E,
F1, F2 all occur whp.

The event B. For a random variable Y and an event A we will write E ∗Y =

E (Y |X1, . . . , Xn) and P∗(A) = E ∗IA.
Let i ∈ {1, 2}. We have Xi(C0) = Xi if and only if each ball with label l′i falls

into a distinct bin of Ce. Given X1, . . . , Xn and l′i, the probability of this is

m− 1

m
× · · · ×

m−Xl′i
+ 1

m
≥ 1−

1 + · · ·+ (Xl′i
− 1)

m
≥ 1−

X2
l′i

2m
.

Therefore

P(B̄) = EE (IB̄|X1, . . . , Xn, l
′
i) ≤ EE ∗

(
1 ∧

X2
l′i

2m

)

≤ E

(
n∑

k=1

(
1 ∧ X

2
k

2m

)
2Xk

EN

)
+ P

(
N <

EN
2

)
.

=
2n

m1/2n1/2EY
E
(
1 ∧ X

2
1

2m

)
X1 + P

(
N <

EN
2

)
. (3.49)

We can bound the second term using Chebyshev’s inequality:

P
(
N <

EN
2

)
≤ 4V ar(N)

(EN)2
≤ 4EY 2

n(EY )2
= O(n−1). (3.50)

We have

E
(
1 ∧ X

2
1

2m

)
X1 = E

(
1 ∧ X

2
1

2m

)
X1IX1≤m1/2 + E

(
1 ∧ X

2
1

2m

)
X1IX1>m1/2

≤ m1/2EX2
1

2m
+ EX1IX1>m1/2 ≤

m1/2EY 2

2n
+m−1/2EX2

1 .
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Putting the last two bounds in (3.49) we get that

P(B̄) ≤ EY 2

n1/2EY
+

2EY 2

n1/2EY
+ o(n−1) = O(n−1/2)

The event C. First, using (3.50), we have that

P(C̄) = P(C̄, N ≥ 0.5EN) +O(n−1).

The balls b1, b2 are “undefined” if and only if all N balls fall into different bins.
For N > m this cannot happen. For N ≤ m, the probability of this is(

1− 1

m

)
. . .

(
1− N − 1

m

)
≤ e−

N(N−1)
m .

So

P({b1, b2} ∩ {undefined} 6= ∅, N ≥ 0.5EN) ≤ e−
0.5EN(0.5EN−1)

m = e−Ω(n) → 0.

Notice that b1, b2 ∈ [N ] implies that b′1, b′2 ∈ [N ]. Now recall that when b1, b2, b′1,
b′2 ∈ [N ] (see Lemma 3.4.5), b1 6= b2 and b′1 6= b′2. Finally for i, j ∈ {1, 2} using the
fact that, conditionally on N , b′i is uniformly distributed in [N ] and independent
of bj,

P(b′i = bj, N ≥ 0.5EN) ≤ 2

EN
→ 0;

and it follows by the union bound and the above estimates that P(C̄) = o(1).

The event D. We will define random vertices u∗, v∗ ∈ {0} ∪ [n]. We can
assume that b′1 and b′2 are generated, given N , as follows. Let b∗1, b∗2 be drawn
independently and uniformly at random from {undefined} ∪ [N ]. If b∗1 6= b∗2 or
N ≥ 2 and b1, b2 6∈ {undefined}, we set (b′1, b

′
2) = (b∗1, b

∗
2). Otherwise, we let

(b′1, b
′
2) = (b′′1, b

′′
2), where (b′′1, b

′′
2) is a new uniformly random pair of distinct balls

from [N ], independent from (b∗1, b
∗
2). For i ∈ {1, 2} set l∗i = labelC0(b

∗
i ) if b∗i ∈ [N ]

and l∗i = 0 otherwise and define (u∗, v∗) = (l∗1, l
∗
2).

Using (3.50) we get that (u∗, v∗) = (l′1, l
′
2) with probability O(n−1).

Conditionally on X1, . . . , Xn, u∗ and v∗ are independent (and also independent
of G(C ′)), and

P∗(u
∗ = i) = P∗(v

∗ = i) =
Xi

N + 1
for i = 1, 2, . . . , n.
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Now we have

P(D̄) ≤ P(Sl′1
(C ′) ∩ Sl′2

(C ′) 6= ∅) = P(u∗v∗ ∈ E(G(C ′))) +O(n−1) (3.51)

≤ EE ∗ (P∗(u
∗v∗ ∈ E(G(C ′)))IN≥0.5EN) + P(N < 0.5EN) +O(n−1).

The second term in the last line is O(n−1) by (3.50). The first term is at most

EE ∗

(∑
i6=j

XiXj

(N + 1)2
IN≥0.5ENP∗(ij ∈ E(G(C ′)))

)

≤ 4n2

(EN + 2)2
EX1X2P∗(12 ∈ E(G(C ′))) ≤

4n2EX2
1X

2
2

(EN + 2)2m
= O(n−1).

This yields that P(D̄) = O(n−1).

The event E. As discussed above, C ′, C ′′ and the configuration used in the
proof of Theorem 3.1.3 all have the same distribution. So P(E)→ 1 by the proof
of Theorem 3.1.3.

The event F1. Fix i ∈ {1, 2}. Let F1i be the event that the bin L in C0
does not contain a ball with label l∗i . Since l′i = l∗i whp, it is enough to show
that P(F̄1i) = o(1). Let F̃ be the event that N ≥ 0.5EN > 2,

∑
iXi = N ,∑

iX
2
i ≤ m lnn and ω′(C0) ≤ (lnn)2. Then

P(F̄1i|F̃ ) ≤ E
∑
i

Xiω
′(C0)
N

Xi

N + 1
≤ (lnn)3

EY n
= o(1).

By the inequality (3.40) shown in the proof of Theorem 3.1.3

P(ω′(C0) > (lnn)2)→ 0. (3.52)

By (3.38) and Markov’s inequality, P(
∑

iX
2
i > m lnn) = o(1). Therefore by the

union bound

P(F̃ ) ≥ 1−P(ω′(C0) > (lnn)2)−P(
∑
i

X2
i > m lnn)−P(N < 0.5EN) = 1−o(1).

So P(F̄1i) ≤ P(F̄1i|F̃ ) + o(1)→ 0.

The event F2. Fix j ∈ {1, 2}. The event C implies that bj ∈ Tw′
j
(C ′′0 ). The

event E implies that l1 6= l2. It suffices to prove that the following two events
occur whp: Ã: in the configuration C0, the bin w′

j does not contain a ball with

100



3.4. Algorithms for finding the largest clique

label lj; and B̃: in the second phase no ball with label lj is added to the bin w′
j.

Denote S̃ = Slj(C0) (in the case where bj = undefined, this set is empty). Since
P(b′j 6= b∗j) = O(n−1) we may replace b′j with b∗j . Define X0 = X0(n) = 0 and
recall that lj = 0 when bj is undefined. Using the conditional independence of b∗j
and C0,

P∗(b
∗
j ∈ bin−1

C0 (S̃)) ≤ (N + 1)−1E ∗|bin−1
C0 (S̃)|

Given X1, . . . , Xn, lj and C0, such that ω′(C0) ≤ (lnn)2 we have

bin−1
C0 (S̃) ≤ Xlj(lnn)2.

By symmetry, given X1, . . . , Xn and C0 such that ω′(C0) ≥ 2, the ball bj is uni-
formly distributed in [N ]. We have

E ∗Xlj ≤
X2

1 + · · ·+X2
n + 1

N + 1
.

Therefore, for n large enough, using (3.50), (3.52) and the above estimates

P( ¯̃A) ≤E Iω(C0)≤(lnn)2IN≥0.5NP∗(b
∗
j ∈ bin−1

C0 (S̃))

+ P(b∗j 6= b′j) + P(ω(C0) > (lnn)2) + P(N < 0.5EN)

≤4n(lnn)2EX2
1

(EN + 2)2
+ o(1) = o(1).

Now consider the event B̃. We have shown in the proof of Theorem 3.1.3 that
there is δn → 0, such that

P (N,N ′, N ′′ ∈ ((1− δn)EN, (1 + δn)EN))→ 1.

The number of balls added in the second phase depends on C0 and b1, b2, b
′
1, b

′
2,

but suppose T = 10δnEN balls are generated (independently) in advance together
with their bin numbers (chosen independently from [m]). Then whp, these T balls
are enough to complete the construction of C ′ and C ′′, and, since m = Ω(n), the
probability that at least one of these balls falls into the bin w′

j is at most

T

m
≤ 10δnn

1/2

m1/2
→ 0.

So
P( ¯̃B) ≤ T

m
+ P((N ′ −N) + (N ′′ −N) > 4δnEN)→ 0.
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The event A′. Denote by Bk the event that Sk(C ′)∩Su∗(C ′) 6= ∅ and Sk(C ′)∩
Sv∗(C ′) 6= ∅. Denote by Bk1 the event that Sk(C ′) ∩ Su∗(C ′) ∩ Sv∗(C ′) 6= ∅, and by
Bk2 the event Bk \Bk1. Since (l′1, l

′
2) = (u∗, v∗) whp, it suffices to show that

P(∃k 6∈ {u∗, v∗} : Bk) ≤ P(∃k 6∈ {u∗, v∗} : Bk1) + P(∃k 6∈ {u∗, v∗} : Bk2)→ 0.

In the proof we only need to work with the random intersection graph G(C ′).
Using (3.51) above, we have

P(∃k 6∈ {u∗, v∗} : Bk1) ≤ P(u∗v∗ ∈ E(G(C ′)))→ 0.

P(∃k 6∈ {u∗, v∗} : Bk2) ≤ P(N < 0.5EN) + P(u∗ = v∗)

+ E IN≥0.5ENIu∗ 6=v∗

∑
k∈[n]\{u∗,v∗}

P∗(Bk2)

The first and second terms on the right of the last inequality are O(n−1) using
(3.50). The last term is at most

E

∑
i 6=j

IN≥0.5EN
Xi

(N + 1)

Xj

(N + 1)

∑
k∈[n]\{i,j}

P∗(Bk2|u∗ = i, v∗ = j)


≤ 4

m2(EN + 2)2

∑
i,j,k∈[n],i6=j,i6=k,j 6=k

EX2
iX

2
jX

2
k ≤

4(EY 2)3

n(EY )2
= O(n−1)

Here in the last line we used

P∗(Bk2|u∗ = i, v∗ = j) ≤ XiXj(Xk)2
m2

,

which follows using the union bound and the observation that if Si(C ′) and Sj(C ′)
both intersect Sk(C ′), but the intersection of all three is empty, then there must be
distinct elements w1, w2, such that w1 ∈ Si(C ′)∩ Sk(C ′) and w2 ∈ Sj(C ′)∩ Sk(C ′).
By the union bound we get P(∃k 6∈ {u∗, v∗} : Bk)→ 0.

2

3.5 Equivalence between set size and degree pa-
rameters

Here we prove Lemmas 3.1.5 and 3.1.6. In the proof we write X = X(n), Y =

Y (n), and D1 = D1(n). We denote X1, X2, . . . the sizes of subsets S1, S2, · · · ⊆ W

prescribed to the vertices 1, 2, · · · ∈ V = [n] of G(n).
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Proof of Lemma 3.1.5 We start by showing that if either EY or ED1 converges
and for some positive sequence {an} converging to zero (we write a = an for short),

EY I{Y >(an)1/2} → 0 (3.53)

then
EY = (ED1)

1/2 + o(1). (3.54)

We note that ED1 = (n − 1)P(S1 ∩ S2 6= ∅). We estimate this probability
using the inequalities, see Lemma 6 in [18],

X1X2

m
≥ P(S1 ∩ S2 6= ∅|X1, X2) ≥ max

{
0,

(
X1X2

m
− X2

1X
2
2

m2

)}
=: Z. (3.55)

Notice that EY = Ω(1). This is clear if EY → y ∈ (0;∞). Otherwise, we have
ED1 → d ∈ (0;∞) and, by the first inequality of (3.55),

(n− 1)
(EY )2

n
≥ (n− 1)P(S1 ∩ S2 6= ∅) = ED1.

Furthermore, from EY = Ω(1) and (3.53) we conclude that EXI{X≥(am)1/2} =

o(EX). Using this bound we estimate EZ from below

EZ ≥ EZIX1X2≤am ≥ (1− a)m−1EX1X2IX1X2≤am

≥ (1− a)m−1EX1EX2 −m−1EX1X2IX1X2>am, (3.56)

where

EX1X2IX1X2>am ≤ EX1X2

(
IX1>(am)1/2 + IX2>(am)1/2

)
(3.57)

≤ 2EXEXIX>(am)1/2

= o((EX)2).

Hence, EZ ≥ (1− o(1))(EX)2. Combining this inequality with (3.55) we obtain

P(S1 ∩ S2 6= ∅) ∼ m−1(EX)2,

thus proving (3.54).
It remains to prove that (3.2)⇔(3.6). Since both implications are shown in

much the same way, we only prove (3.2)⇒(3.6). For this purpose we fix 0 <

ε̃ < min{ε, ε0} and show that for each 0 < δ < 1 and each sequence {tn} with
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n1/2−ε̃ ≤ tn ≤ n1/2+ε̃

lim inf
n

(
P(Y1(n) ≥ tn)/P(D1(n) ≥ tn)

)
≥ (d1/2(1 + δ))−α, (3.58)

lim sup
n

(
P(Y1(n) ≥ tn)/P(D1(n) ≥ tn)

)
≤ (d1/2(1− δ))−α. (3.59)

Here the random variable Y1(n) := (n/m)1/2X1(n) has the same distribution as
Y (n). We prove (3.58) and (3.59) by contradiction.

Proof of (3.58). Suppose there is an increasing sequence {nk} of positive
integers and a sequence {bk} with n

1/2−ε̃
k ≤ bk ≤ n

1/2+ε̃
k such that, for some

0 < δ < 1,

P(Y1(nk) ≥ bk) < (d1/2(1 + δ))−αP(D1(nk) ≥ bk), k = 1, 2, . . . . (3.60)

Define {lk} by the relation bk = d1/2(1 + δ/2)lk, k ≥ 1. Introduce events Ak =

{D1(nk) ≥ bk}, Bk = {Y1(nk) ≥ lk} and write

P(Ak) = P(Ak ∩ Bk) + P(Ak ∩ B̄k). (3.61)

In what follows we drop the subscript k and write b, l, n,m instead of bk, lk, nk,mk.
We note that (3.2) together with (3.60) imply

P(A ∩ B) ≤ P(B) ∼ dα/2(1 + δ/2)αP(Y1(n) ≥ b) ≤ c1P(A),

where the constant c1 = ((1 + δ/2)/(1 + δ))α < 1. Next we show that P(A∩B̄) =
O(n−10) thus obtaining a contradiction to (3.60), (3.61).

Denote x =
⌊
(m/n)1/2l

⌋
. Conditionally, given the event C = {X1(n) = x},

the random variable D1(n) has binomial distribution Bin(n − 1, p) with success
probability p = P(S1 ∩ S2 6= ∅

∣∣ |S1| = x) satisfying p ∼ d1/2l/n. Indeed, the first
inequality of (3.55) implies

p ≤ xEX2

m
=
x(m/n)1/2EY

m
∼ d1/2

l

n
.

Here we used EY → d1/2 > 0. The second inequality of (3.55) implies, see (3.56),

p ≥ 1− a
m

xEX2I{xX2<am} =
1− a
m

x(EX2 − r) ∼
xEX2

m
.

Here r = EX2I{xX2≥am} = o(EX2), for a = a(nk) = ln−1 nk, cf. (3.57).
Next, since b ∼ (1 + δ/2)np and np ∼ d1/2l = Ω(n1/2−ε̃) we obtain, by Cher-
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noff’s inequality, P(A|C) = O(n−10). Now, using the inequality P(A|Y1(n) = y) ≤
P(A|C), for y ≤ l, we obtain

P(A ∩ B̄) = EP(A|Y1(n))I{Y (n)≤l} ≤ P(A|C) = O(n−10). (3.62)

Proof of (3.59). Suppose there is an increasing sequence {nk} of positive
integers and a sequence {bk} with n

1/2−ε̃
k ≤ bk ≤ n

1/2+ε̃
k such that, for some

0 < δ < 1,

P(Y1(nk) ≥ bk) > (d1/2(1− δ))−αP(D1(nk) ≥ bk), k = 1, 2, . . . . (3.63)

Define {lk} by the relation bk = d1/2(1− δ/2)lk, k ≥ 1. We write

P(D1(nk) ≥ bk) = P(Y1(nk) ≥ lk)P(D1(nk) ≥ bk|Y1(nk) ≥ lk). (3.64)

We note that, by (3.2) and (3.63), the first term on the right is at least (c2+ o(1))
P(D1(nk) ≥ bk) where the constant c2 = ((1− δ/2)/(1− δ))α > 1. Finally, we
obtain a contradiction, by showing that the second term of (3.64) is 1−O(n−10).
Here we proceed as in (3.62) above. We write

P(D1(nk) < bk|Y1(nk) ≥ lk) ≤ P(D1(nk) < bk|C)

and show that binomial probability on the right-hand side is O(n−10) using Cher-
noff’s inequality.

2

Proof of Lemma 3.1.6 The identity (3.9) follows from (3.54) since

EY IY >εnn1/2 ≤ (EY 2IY >εnn1/2)1/2 → 0.

Let us show (3.10). Denote N the number of 2-stars in G = G(n) centered at
vertex 1 ∈ V = [n]. Introduce the events Aij = {i ∼ j}, i, j ∈ V . Write, for
short, A = A12 ∩ A13. Let P̃ denote the conditional probability given the sizes
X1, X2, X3 of the random subsets prescribed to vertices 1, 2, 3 ∈ V . We remark
that (3.10) follows from (3.9) combined with the simple identities

ED1(D1 − 1) = 2EN = (n− 1)(n− 2)P(A),
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and the inequalities

(EY )2EY 2 ≥ n2P(A) ≥ (1− o(1))(EY )2EY 2. (3.65)

Let us prove (3.65). For this purpose we write (using the conditional independence
of events A12 and A13, given X1, X2, X3)

P(A) = E P̃(A) = E P̃(A12)P̃(A13)

and evaluate conditional probabilities P̃(Aij) using (3.55). From the first inequal-
ity of (3.55) we obtain the first inequality of (3.65)

P(A) = E P̃(A12)P̃(A13) ≤ E (X2
1X2X3)/m

2 = (EY )2EY 2/n2.

Thus, even without the assumption (3.8) (we use this fact this in the proof of
Proposition 3.4.3), we have

ED1 ≤ EY and ED1(D1 − 1) ≤ EY 2EY. (3.66)

To show the second inequality of (3.65) we apply the second inequality of
(3.55) and use truncation. We denote Ii = I{Xi≤εnm1/2}, Īi = 1 − Ii and write, cf.
(3.56),

P(A) ≥ E P̃(A)I1I2I3 ≥ (1− ε2n)2E (X2
1X2X3/m

2)I1I2I3
≥ (1− ε2n)2E (X2

1X2X3/m
2)(1− Ī1 − Ī2 − Ī3)

= (1− o(1))(EY )2EY 2/n2.

In the last step we used the fact that EY 2 ≥ (EY )2 = Ω(1) and the bounds

EX2
1 Ī1 = (m/n)EY 2I{Y >εnn1/2} = o(EX2),

EXj Īj = (m/n)1/2EY I{Y >εnn1/2} = o(EX), j = 2, 3.

2

3.6 Concluding remarks
In this work we determined the order of the clique number in G(n,m, P ) for a
wide range of m = m(n) and P = P (n). We saw that in sparse power-law random
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intersection graphs with unbounded degree variance, the clustering property of
G(n,m, P ) has little influence in the formation of the maximum clique. This
suggests that simpler models, such as the one in [55], may be preferable in the case
of very heavy degree tails. However, when the degree variance is bounded, most
random graph models, including the Erdős-Rényi graph and the model of [55] have
only bounded size cliques whp. In contrast, we showed that in random intersection
graphs the clique number can still diverge slowly.

We have a kind of “phase transition” as the tail index α for the random subset
size (degree) varies, see (3.2). Assume, for example that m = Θ(n). When α < 2,
the random graph G(n,m, P ) whp contains cliques of only logarithmic size. When
α > 2, it whp contains a ‘giant’ clique of polynomial size. But what happens when
(3.2) is satisfied with α = 2 but the degree variance is unbounded?

We proposed a surprisingly simple algorithm for finding (almost) the largest
clique in sparse random intersection graphs with finite degree variance. The per-
formance of both Greedy-Clique and Mono-Clique algorithms can be of
further interest, since these algorithms do not use the possibly hidden random
subset structure. How well would they perform on arbitrary sparse empirical net-
works? Can we suspect a hidden intersecting sets structure for networks where
the Mono-Clique algorithm performs well?

Another direction of possible future research would be to determine the asymp-
totic clique number in dense random intersection graphs (alternatively, the order
of the largest intersecting set in dense random hypergraphs). For example, even in
the random uniform hypergraph case where m = Θ(n) and the random subset size
X(n) = Ω(n1/2) is deterministic, exact asymptotics of the clique number remain
open.
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Chapter 4

On the chromatic index of
random uniform hypergraphs

4.1 Introduction
A hypergraph is a pair H = (V,E), where V = V (H) is a set of vertices and
E = E(H) is a family of subsets of V , called edges (we will allow multiple edges).
H is k–uniform if all of its edges are of size k. The chromatic index of H, denoted
χ′(H) is the smallest number of colours needed to colour its edges so that no two
intersecting edges share the same colour. We consider the chromatic index of the
random hypergraph H(k)(n,N).

This problem is related to the generalisation of Vizing’s theorem for hyper-
graphs. Some related results and conjectures may be found in [2] and [10].
Given a hypergraph H, let degH(x) denote the degree of a vertex x, that is
degH(x) = |{e : e ∈ E(H), x ∈ e}|. Let

D(H) = max
x∈V (H)

degH(x) and d(H) = min
x∈V (H)

degH(x).

Also let C(H) = maxx 6=y |{e ∈ E(G) : x, y ∈ e}|. Vizing’s theorem states that
for any 2-uniform hypergraph without loops and multiple edges, χ′(H) is either
D(H) or D(H) + 1. Obviously, for any hypergraph

d(H) ≤ D(H) ≤ χ′(H).

In 1989 Pippenger and Spencer [82] proved that Vizing’s theorem may be ex-
tended in a certain sense to uniform hypergraphs in which degrees are concen-
trated around one value and C(H) is small comparing to D(H).
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Theorem 4.1.1 (Pippenger and Spencer [82]) For every k and every ε > 0

there exist δ > 0 and n0 such that if H is a k-uniform hypergraph on n ≥ n0

vertices satisfying d(H) ≥ (1− δ′)D(H) and C(H) ≤ δ′D(H) then

χ′(H) ≤ (1 + ε)D(H).

In this thesis we are interested in asymptotic results concerning algorithmic version
of the theorem for random hypergraphs. By

(
[n]
k

)
we will denote the family of all

k–element subsets of n. It will also be convenient for us to write a = b ± c for
a ∈ [b− c; b+ c].

Theorem 4.1.1 implies that χ′(H(k)(n,N)) = d̄(1 ± ε) when the degrees of
H(k)(n,N) are large and close to their mean d̄ = kN

n
. This happens whp (with

probability tending to 1 as n→∞) when lnn = o(d̄), however, k is assumed to be
fixed. Motivated by the problem of determining the chromatic number of random
intersection graphs (see below), we ask whether a similar result holds for random
uniform hypergraphs even when the set sizes are unbounded. Moreover, we focus
on the algorithmic aspect of the problem. The main result of the chapter is the
following theorem.

Theorem 4.1.2 For any ε > 0 there is a constant cε > 0, such that the following
holds. Let H(k)(n,N), where k, n,N ≥ 2, be a random hypergraph on vertex set
[n] with N edges of size k drawn independently with replacement from the set

(
[n]
k

)
.

Write d̄ = kN
n

. Suppose

k ≤ cε ln
( n

ln d̄

)
and k ≤ cε ln

(
d̄

lnn

)
. (4.1)

Then there is an algorithm which colours all edges of H(k)(n,N) with at most
dd̄(1 + ε)e colours with probability at least 1− 2

n
− 2

d̄
.

The algorithm of Theorem 4.1.2 is a simple polynomial algorithm which for
each edge just selects a random available colour. Its description is given in Sec-
tion 4.2. Our proof is an application of the differential equations method, which
differs from the method used in [82]. It should be pointed out that by a sim-
ple coupling argument analogous theorems follow for random hypergraphs with
independent edges and N edges chosen without replacement.

As mentioned above, the motivation for our research was studies on the chro-
matic number of uniform random intersection graphs.

Let N , n and k be positive integers. Moreover, let V = {v1, . . . , vN} and
W = [n] be disjoint sets. Recall that by a uniform random intersection graph
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G(N,n, k) we mean a graph on the vertex set V in which each vertex v ∈ V

chooses a set Sv uniformly at random from all k–element subsets of the set W .
Two vertices v, v′ ∈ V are connected by an edge in G(N,n, k) if Sv ∩ Sv′ 6= ∅.
Naturally, G(N, n, k) is an edge graph of the hypergraph H(k)(n,N). Therefore
χ′(H(k)(n,N)) = χ(G(N, n, k)), and Theorem 4.1.2 immediately applies. Results
concerning the chromatic number of other models of random intersection graphs
might be found in [6] and [80].

The chromatic number of any graph G on N vertices is related to its indepen-
dence (stability) number α(G) and to the size of the largest clique ω(G) by simple
inequalities

χ(G) ≥ N

α(G)
and χ(G) ≥ ω(G). (4.2)

In a series of papers [28, 29, 49, 69, 71] it was shown that for G = G(N, p), the
Erdős–Rényi random graph with independent edges, the first inequality of (4.2) is
nearly an equality whp when Np → ∞. The independence number of G(N, n, k)
was studied in [94], where it was shown that whp the greedy algorithm usually con-
structs an independent set of the optimal size n

k
(1± ε) when the second inequality

of (4.1) holds. Also, the main result of [4] implies that whp ω(G(N,n, k)) = n
k
(1±ε)

whenever k = o(n1/3). Our result shows that subject to the assumptions of Theo-
rem 4.1.2, both inequalities of (4.2) are nearly equalities whp whenG = G(N, n, k).

Naturally, it would be interesting to determine χ(G(N, n, k)) or, equivalently,
χ′(H(k)(n,N)) for other (all) ranges of parameters. In the light of [4,94] (see also
[25]), it seems that the first constraint of (4.1) might not be necessary. Meanwhile,
the results of [69] imply that the second constraint should be not far from best
possible.

Finally, let us make the following observation. The greedy colouring algorithms
for G(N, p) usually use about twice the chromatic number of colours (see, i.e., [50]
or Section 7.2 of [56]). Our randomised greedy algorithm (see also [6] and [80])
with high probability colours G(N, n, k) with an asymptotically optimal number
of colours. One could ask whether such an algorithm also exists for other ranges
of k and N , perhaps in all cases where the clique number of G(N,n, k) is whp
“approximately” equal to its chromatic number.

4.2 The algorithm
The edges of H(k)(n,N) can be represented as a sequence e1, . . . , eN of iid sets,
where each set is selected uniformly at random from

(
[n]
k

)
. We imagine e1, . . . , eN
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being added to the hypergraph one by one and coloured by a random valid colour.
More precisely, we fix a positive integer q, the number of possible colours. The
set e1 is coloured with a uniformly random colour from [q].

The random hypergraph obtained by adding and colouring the first i edges is
denoted by H(i). We always consider H(i) together with the (random) colouring
of its edges C(i). For any set S ⊆ [n] letMS(i) denote the set of all colours c ∈ [q]

such that colouring S with c and adding it to H(i) gives a properly edge-coloured
hypergraph (a colouring is proper if each pair of intersecting edges has different
colours). Let MS(i) = |MS(i)|. Thus, MS(i) is the number of “available” colours
for the set S after the step i.

For i ≥ 1 the edge e = ei+1 is coloured with a uniformly random colour c(e)
from the subsetMe(i) (conditionally onMe(i), the colour c(e) is independent of
H(i) and C(i)). If the setMe(i) is empty for the random edge e = ei+1, then the
colour of e remains unassigned.

For a colour c ∈ [q], let Lc(i) be the number of vertices from [n] which do not
belong to an edge coloured c in the hypergraph H(i). In the beginning we have
Me(0) = q for each k-element subset of [n] and Lc(0) = n for each c ∈ [q]. We
will prove Theorem 4.1.2 by showing that for any ε > 0 the above algorithm with
a large enough probability succeeds to colour every edge ei for i ≤ N(1− ε) when
q =

⌈
kN
n

⌉
. From this it will follow, that the same algorithm with the claimed

probability succeeds to colour all N edges when we start with q = d(1 + 2ε)d̄e.

4.3 Proofs
In the following sections we assume that the integers N ≥ 1, k ≥ 2, n ≥ 3 are
fixed.

4.3.1 One-step differences

We are going to use the differential equations method, see [30, 101]. We will
analyse the randomized colouring algorithm with q =

⌈
kN
n

⌉
colours. The final

result of one run is a random object in the probability space (Ω,F ,P), where
Ω =

(
[n]
k

)N × {0, . . . , q}N , F is the σ-field generated by the outcomes of all N
edges and their colours, and P is as described in Section 4.2. The associated
natural filter is

{∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ FN = F ,
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where Fi is the σ-field generated by the random edges e1, . . . , ei and their colours
c(e1), . . . , c(ei). Corresponding to each Fi is a natural partition of Ω into blocks
that generate Fi, that is, a block of Fi is the set of all ω ∈ Ω corresponding to a
particular sequence of the first i edges and their colours.

For i ∈ {0, . . . , N − 1}, some nonnegative µM(i), µL(i) and small nonnegative
k1(i), k2(i), we will consider the events that for each k-set e ∈

(
[n]
k

)
Me(i) = µM(i)± k1(i), (4.3)

and for each colour c ∈ [q]

Lc(i) = µL(i)± k2(i). (4.4)

The numbers µM(i) and µL(i) will be defined later, but one can think for now that
they are expected values of Me(i) and Lc(i) respectively, while k1(i) and k2(i) are
the corresponding “errors”. So we will assume that µL(i) ≤ n.

Observe that the difference Me(i + 1) −Me(i) is either −1 or 0; and Lc(i +

1)− Lc(i) is either −k or 0. If Me(i+ 1)−Me(i) < 0 or Lc(i+ 1)− Lc(i) < 0 we
will say that Me or, respectively, Lc, decreases (at step i+ 1).

Lemma 4.3.1 There is a constant D ≥ 1 such that the following holds. Suppose
i ∈ {0, 1, . . . , N − 1} and positive numbers µM(i), µL(i), k1(i), k2(i) satisfy

k2 < n/2, k1(i) < µM(i)/2 and k2 + kk2(i) < µL(i) ≤ n. (4.5)

Let Bi be a block of the partition generating Fi (an atom of Fi). Suppose (4.3)
and (4.4) are satisfied conditionally on Bi. Then for each e ∈

(
[n]
k

)
P (Me(i+ 1)−Me(i) = −1|Bi)

=
k2µL(i)

k−1

nk

(
1±D

(
k1(i)

µM(i)
+
k2 + kk2(i)

µL(i)

))

and for each c ∈ [q]

P (Lc(i+ 1)− Lc(i) = −k|Bi)

=
µL(i)

k

µM(i)nk

(
1±D

(
k1(i)

µM(i)
+
k2 + kk2(i)

µL(i)

))
.

Proof Since i is fixed, we write µL = µL(i), µM = µM(i), kj = kj(i), MS =
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MS(i), Lc = Lc(i) andMS =MS(i). Conditionally on Bi, all random variables
that are Fi-measurable are constant. This includes MS for any S ⊆ [n] and Lc

for any c ∈ [q], etc. Note that (4.3 - 4.5) imply that Me > 0 for any e ∈
(
[n]
k

)
, so

each edge of H(i) is assigned some colour on Bi.
In order for Me to decrease at step i+ 1, ei+1 has to be incident to e. So

P(Me decreases |Bi) =
∑
f :f∼e

P(ei+1 = f)P(Me decreases|ei+1 = f,Bi)

=

(
n

k

)−1 ∑
f :f∼e

P(Me decreases|ei+1 = f,Bi)

Here f ranges over all k–element subsets of [n] intersecting e (we write e ∼ f

if edges f and e share at least one vertex). Since the algorithm picks a colour
c = c(ei+1) uniformly at random from all available ones, and since Me decreases
only in the case if in the hypergraph H(i) both e and ei+1 could be coloured c,
we get

P (Me decreases | ei+1 = f,Bi) =
Mf∪e

Mf

.

We can approximate the denominator

M−1
f = (µM ± k1)−1 = µ−1

M

(
1± 2k1

µM

)
(4.6)

to get

P (Me decreases |Bi) =

(
n

k

)−1

µ−1
M

(
1± 2k1

µM

) ∑
f :f∼e

Mf∪e. (4.7)

For any set S ⊆ [n] and any c ∈ [q] let Ac,S = Ac,S(i) be the indicator of the event
that adding S coloured c toH(i) gives a properly edge-coloured hypergraph. Then

MS =
∑
c∈[q]

Ac,S.

Let Lc = Lc(i) be the set of vertices which are not contained in an edge coloured
c in H(i). Recall that |Lc| = Lc. Note that Ac,e∪f = Ac,eAc,f\e = 1 if both e and
f \e are subsets of Lc. If e ⊆ Lc then the number of k-subsets f of Lc intersecting
e is at least k

(
Lc−k
k−1

)
and at most k

(
Lc−1
k−1

)
. Using (4.4) and (4.5) we have

(
Lc − k
k − 1

)
≥ µk−1

L

(k − 1)!

(
1− kk2 + 1.5k2

µL

)
.

Also, by (4.5) we have x = k2/µL ≤ 1/k, so using simple inequalities (1+x)k−1 ≤
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1 + kx(1 + x)k−1 and (1 + x)k−1 ≤ e(
Lc − 1

k − 1

)
≤ µk−1

L

(k − 1)!

(
1 +

ekk2
µL

)
.

Thus if Ac,e = 1 then

∑
f :f∼e

Ac,f\e =
kµk−1

L

(k − 1)!

(
1± 3(k2 + kk2)

µL

)
.

Therefore

∑
f :f∼e

Mf∪e =
∑
f :f∼e

∑
c∈[q]

Ac,f∪e

=
∑
c∈[q]

∑
f :f∼e

Ac,f∪e =
∑
c∈[q]

Ac,e
kµk−1

L

(k − 1)!

(
1± 3(k2 + kk2)

µL

)

=
kµk−1

L µM

(k − 1)!

(
1± 3(k2 + kk2)

µL

)(
1± k1

µM

)
.

In the last step we used
∑

c∈[q]Ac,e = Me = µM ± k1. Putting the last estimate
into (4.7) we obtain

P (Me decreases |Bi)

=
k2µk−1

L

nk

(
1± 2k1

µM

)(
1± k2

n

)(
1± 3(k2 + kk2)

µL

)(
1± k1

µM

)
=
k2µk−1

L

nk

(
1±D′

(
k1
µM

+
k2 + kk2
µL

))
for some constant D′.

Now denote by Pc = Pc(i) the set of k–element subsets of vertices in H(i)

which do not touch an edge of colour c. We have

P(Lc decreases |Bi) =
∑
e∈Pc

P(Lc decreases |ei+1 = e,Bi)P(ei+1 = e)

=
∑
e∈Pc

1

Me

1(
n
k

) = µ−1
M

(
1± 2k1

µM

)(
Lc

k

)(
n

k

)−1

=
µk
L

µMnk

(
1± 2k1

µM

)(
1± 3(k2 + kk2)

µL

)
=

µk
L

µMnk

(
1±D′′

(
k1
µM

+
k2 + kk2
µL

))
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for some constant D′′. Here we used (4.4), (4.5), (4.6) and

µk
L

nk

(
1− kk2 + k2

µL

)
≤ (Lc)k

(n)k
≤ Lk

c

nk
≤ µk

L

nk

(
1 +

3kk2
µL

)
.

Setting D = max{D′, D′′} completes the proof (it is easy to check that we can
take, i.e., D = 30). 2

4.3.2 Differential equations

If Me and Lc were always concentrated about the functions µM and µL, respec-
tively, then by Lemma 4.3.2 we would have, informally,

µM(i+ 1)− µM(i) ≈ −k
2µL(i)

k−1

nk

and
µL(i+ 1)− µL(i) ≈ −

kµL(i)
k

nkµM(i)
.

We can rescale the “time” i and the random variables. Define new functions f
and g by t = i/N , µM(i) = qf(t) and µL(i) = ng(t), so that

q(f(t+ 1/N)− f(t)) ≈ −k
2g(t)k−1

n

n(g(t+ 1/N)− g(t)) ≈ −kg(t)
k

qf(t)

or

N(f(t+ 1/N)− f(t)) ≈ −kg(t)

N(g(t+ 1/N)− g(t)) ≈ −g(t)
k

f(t)
.

The left-hand sides above can be approximated by f ′(t) and g′(t) respectively
(assuming that f and g are differentiable).

This gives a system of differential equations:{
f ′(t) = −kg(t)k−1

g′(t) = −g(t)k

f(t)

with the initial condition f(0) = 1 and g(0) = 1.
The solution is f(t) = (1− t)k and g(t) = (1− t). This argument is not formal,

but indicates the possible expressions for µM and µL. It will be formalized below.
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4.3.3 Martingales

For the rest of this chapter we will use t = t(i) = i/N and

µM(i) = q(1− t)k µL(i) = n(1− t), (4.8)

for i = 0, 1, . . . , N . Using these functions yields a simpler estimate for the error
of our conditional expectations.

Lemma 4.3.2 There is a constant D ≥ 1 such that the following is true. Suppose
i ∈ {0, 1, . . . , N − 1}, (4.5) holds and let Bi be as in Lemma 4.3.1.

P (Me(i+ 1)−Me(i) = −1|Bi) (4.9)

=
k2(1− t)k−1

n
±D

(
(k4 + k3k2(i))(1− t)k−2

n2
+

kk1(i)

N(1− t)

)

and

P (Lc(i+ 1)− Lc(i) = −k|Bi) =
1

q
±D

(
k1(i)

q2(1− t)k
+
k + k2(i)

N(1− t)

)
.

Proof Simply use (4.8) in Lemma 4.3.1. 2

Let ω,C,K, ε be positive reals, 0 < ε < 1. Write N1 = b(1− ε)Nc and define
for i ∈ {0, . . . , N1}

E1(i) =
kq

ω
eCt and E2(i) =

n

ω

eCt

(1− t)k
.

For any i ∈ [N1] and e ∈
(
[n]
k

)
set

M−
e (i) =Me(i)− µM(i)− E1(i); (4.10)

M+
e (i) =Me(i)− µM(i) + E1(i); (4.11)

and for each colour c ∈ [q]:

L−
c (i) = Lc(i)− µL(i)− E2(i); (4.12)

L+
c (i) = Lc(i)− µL(i) + E2(i). (4.13)
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We will consider a stopping time TS given by

TS = sup
i

{
M−

e (i) ≤ Kk
√
q lnn,M+

e (i) ≥ −Kk
√
q lnn

L−
c (i) ≤ K

√
kn ln q, L+

c (i) ≥ −K
√
kn ln q

for all e ∈
(
[n]

k

)
, c ∈ [q]

}
.

Now for each e ∈
(
[n]
k

)
define processes {M̃−

e } = {M̃−
e (i), i = 0, . . . , N1} and

{M̃+
e } = {M̃+

e (i), i = 0, . . . , N1} where M̃±
e (0) = 0 and for i > 0

M̃−
e (i) =

i∑
j=1

(
M−

e (j)−M−
e (j − 1)

)
1j≤TS

;

M̃+
e (i) =

i∑
j=1

(
M+

e (j)−M+
e (j − 1)

)
1j≤TS

.

Also, for each c ∈ [q] define processes {L̃−
c } = {L̃−

c (i), i = 0, . . . , N1} and
{L̃+

c } = {L̃+
c (i), i = 0, . . . , N1} where L̃±

c (0) = 0 and for i > 0

L̃−
c (i) =

i∑
j=1

(
L−
c (j)− L−

c (j − 1)
)
1j≤TS

;

L̃+
c (i) =

i∑
j=1

(
L+
c (j)− L+

c (j − 1)
)
1j≤TS

.

Lemma 4.3.3 Suppose that 2k2/n ≤ ε < 1, K ≥ 1, (kN)/n ≥ 3, C = 8Dkε−2,
where D is the constant as in Lemma 4.3.2, and ω is such that

4keCε−(k+1) ≤ ω ≤ K−1 min
(

q

lnn,
n

k ln q

)1/2

.

Then for any e ∈
(
[n]
k

)
and any c ∈ [q] the processes {M̃−

e }, {L̃−
c } are supermartin-

gales and {M̃+
e }, {L̃+

c } are submartingales.

Proof Suppose i ≤ min(TS, N1). Then

Me(i) = µM(i)± k1(i) ∀e ∈
(
[n]

2

)
,

Lc(i) = µL(i)± k2(i) ∀c ∈ [q],
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where

k1(i) = E1(i) +Kk
√
q lnn,

k2(i) = E2(i) +K
√
kn ln q.

Write f(τ) = eCτ and g(τ) = eCτ/(1 − τ)k. We have k ≥ 2, so both f and g are
increasing for τ ∈ [0, 1). Since ω ≤ K−1

√
q/ lnn and ω ≤ K−1

√
n/(k ln q) we

have

k1(i) ≤ 2E1(i); (4.14)

k2(i) ≤ 2E2(i). (4.15)

We claim that (4.5) is satisfied for each i ∈ [0, N(1 − ε)]. Indeed, since ε ≥
2k2/n, ω ≥ 4keCε−(k+1) and g(τ), f(τ) are increasing

k1(i)

µM(i)
≤ 2E1(i)

q(1− t)k
=

2kg(t)

ω
≤ 2keC

ωεk
≤ 1

2
;

kk2(i)

µL(i)
≤ 2kE2(i)

n(1− t)
≤ 2kg(t)

ω(1− t)
≤ 2keC

ωεk+1
≤ 1

2
;

k2

µL(i)
=

k2

n(1− t)
≤ k2

εn
≤ 1

2
.

So k1(i) ≤ µM(i)/2 and k2 + kk2(i) ≤ µL(i) as required.
We will first show that {M̃+

e } a submartingale and {M̃−
e } is a supermartingale.

Since the increments are zero for i > TS, it suffices to prove that

E
(
M̃−

e (i+ 1)− M̃−
e (i)|Bi

)
≤ 0, E

(
M̃+

e (i+ 1)− M̃+
e (i)|Bi

)
≥ 0

for each block (or atom) Bi of the partition corresponding to Fi, where TS ≥ i.
On such Bi, (4.3) and (4.4) hold by the definition of TS.

Write
R1(i) = D

(
(k4 + k3k2(i))(1− t)k−2

n2
+

kk1(i)

N(1− t)

)
.

By Lemma 4.3.2

E
(
M̃+

e (i+ 1)− M̃+
e (i)|Bi

)
=

(
−k

2(1− t)k−1

n
±R1(i)

)
+ (µM(i)− µM(i+ 1)) + (E1(i+ 1)− E1(i)) .
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Some of the terms cancel out:

− k2(1− t)k−1

n
+ µM(i)− µM(i+ 1)

= −k
2

n

(
1− i

N

)k−1

+ q

((
1− i

N

)k

−
(
1− i+ 1

N

)k
)

≥ −
k2
(
1− i

N

)k−1

n
+
kN

n

(
1− i

N

)k
(
1−

(
1− 1

N − i

)k
)

≥ −
k2(1− i

N
)k−1

n
+
kN

n

(
1− i

N

)k (
k

N − i
− k2

2(N − i)2

)
≥ − k3

Nn
≥ − k

N
. (4.16)

Similarly, since q = dkN
n
e ≤ kN

n
+ 1

− k2µL(i)
k−1

nk
+ µM(i)− µM(i+ 1) ≤ k

N
.

We will also need later that since k
N
≤ k2

3n
< 1 we have

µM(i)− µM(i+ 1) <
2k2

n
. (4.17)

Therefore

E
(
M−

e (i+ 1)−M−
e (i)|Bi

)
≤ −(E1(i+ 1)− E1(i)) +

k

N
+R1(i);

E
(
M+

e (i+ 1)−M+
e (i)|Bi

)
≥ (E1(i+ 1)− E1(i))−

k

N
−R1(i).

It remains to verify that

k

N
+R1(i) ≤ E1(i+ 1)− E1(i). (4.18)

Since f ′′(t) > 0 we have

E1(i+ 1)− E1(i) =
kq

ω

(
f

(
t+

1

N

)
− f(t)

)
(4.19)

≥ qkf ′(t)

ωN
=
Cqkf(t)

ωN
≥ Ck2f(t)

ωn
.

Now, firstly,
k

N
≤ 1

4
(E1(i+ 1)− E1(i)).
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This is because by (4.19) the ratio of the left side and the right is at most

k

N

4ωN

Cqkf(t)
≤ 4ω

Cqf(0)
≤ 4

q1/2C
≤ 1.

Here we used that ω ≤ q1/2 and C > 8 from the assumption of the lemma.
Secondly, for the first term of R1(i) we have

Dk4(1− t)k−2

n2
≤ 1

4
(E1(i+ 1)− E1(i)).

To see this, note that by (4.19), the ratio of the left and the right side expressions
is at most

4Dk2(1− t)k−2ω

nCeCt
≤ 4Dk2ω

nC
≤ kω

2n
≤ 1

2K

√
k

n ln q ≤ 1.

Here we used the facts that eCτ/(1 − τ)k−2 is increasing for τ ∈ [0, 1) and the
earlier assumptions about n, q, k, C and ω.

Thirdly,
Dk3k2(i)(1− t)k−2

n2
≤ 1

4
(E1(i+ 1)− E1(i)).

Indeed, by (4.19), the ratio of the left and the right side is at most

4Dkk2(i)ω(1− t)k−2

nCeCt
≤ 8DkE2(i)ω(1− t)k−2

nCeCt
≤ 8Dk

C(1− t)2
≤ 1.

Here in the second inequality we used (4.15). Finally, for the last term of R1(i)

Dkk1(i)

N(1− t)
≤ 1

4
(E1(i+ 1)− E1(i)).

This is because the ratio of the left side and the right by (4.19) and (4.14) is at
most

4Dk1(i)ω

CqeCt(1− t)
≤ 8DkqeCt

CqeCt(1− t)
≤ ε ≤ 1.

Now (4.18) follows by combining bounds for each of the five terms of 2k/N+R1(i).
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Let us now show that {L̃−
c } is a supermartingale. Again it suffices to consider

only the blocks Bi for which i ≤ min(TS, N1). By Lemma 4.3.2

E
(
L̃−
c (i+ 1)− L̃−

c (i)|Bi

)
= E (Lc(i+ 1)− Lc(i)|Bi) + (µL(i)− µL(i+ 1)) + (E2(i)− E2(i+ 1))

= − kµL(i)
k

µM(i)nk
±R2(i) + (µL(i)− µL(i+ 1)) + (E2(i)− E2(i+ 1)) ,

where
R2(i) = D

(
kk1(i)

q2(1− t)k
+
k2 + kk2(i)

N(1− t)

)
Now

− kµL(i)
k

µM(i)nk
+ µL(i)− µL(i+ 1)

= −k
q
+ n

((
1− i

N

)
−
(
1− i+ 1

N

))
= −k

q
+
n

N
∈
[
0,

2k

q2

]
, (4.20)

since kN
n
≥ 3 and 1

q
≤ n

kN
≤ 1

q

(
1 + 2

q

)
. Therefore

E
(
L̃−

c (i+ 1)− L̃−
c (i)|Bi

)
= E2(i)− E2(i+ 1)±

(
R2(i) +

2k

q2

)
.

We need to show that the above quantity is non-positive. Since g′′(t) > 0 for
t ∈ [0, 1), we have similarly as in (4.19)

E2(i+ 1)− E2(i) ≥
g′(t)n

Nω
≥ g′(t)k

qω
≥ Cg(t)k

qω
. (4.21)

We have
Dkk1(i)

q2(1− t)k
≤ 1

4
(E2(i+ 1)− E2(i)),

since by (4.14) and (4.21) the ratio of the left and the right side is at most

4Dk

q2(1− t)k
2kqf(t)

ω

qω

Cg(t)k
= ε2 ≤ 1.

Let us now check that

k2D

N(1− t)
≤ 1

4
(E2(i+ 1)− E2(i)).
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Indeed, the ratio of the left and the right side is by (4.21) at most

4k2D

N(1− t)
qω

Cg(t)k
≤ qω

2N
≤ 1

K

√
k

n ln q ≤ 1.

The first inequality follows, among others, because (1 − τ)g(τ) is increasing for
τ ∈ [0, 1). Next,

Dkk2(i)

N(1− t)
≤ 1

4
(E2(i+ 1)− E2(i)).

Indeed, by (4.15) and (4.21) the ratio of the left and the right side is at most

4Dk

N(1− t)
2ng(t)

ω

qω

Cg(t)k
≤ ε ≤ 1.

Finally,
2k

q2
≤ 1

4
(E2(i+ 1)− E(i)) .

Here, again, the ratio of the two sides is by (4.21) at most

2k

q2
4qω

Cg(t)k
≤ ω

qDk
≤ 1

since ω ≤ q1/2.
We have shown that

R2(i) +
2k

q2
≤ E2(i+ 1)− E2(i) (4.22)

and
E
(
L̃−

c (i+ 1)− L̃−
c (i)|Bi

)
≤ 0

as required, so {L̃−
c } is a supermartingale. The proof that {L̃+

c } is a submartingale
is similar. 2

4.3.4 Applying concentration results

Let us prove the main lemma of this paper.

Lemma 4.3.4 Suppose ε ∈ (0, 1), D is the constant from Lemma 4.3.2, K =

8D1/2, C = 8Dkε−2 and

2k2eCε−(k+2) < ω < K−1 min
(

q

lnn,
n

k ln q

)1/2

.
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Then
P(TS < b(1− ε)Nc) ≤

2

q
+

2

n
. (4.23)

Proof The condition of the lemma implies that 2k2/n < εk+2n−1/2 < ε and
q > k2 ≥ 4. Therefore by Lemma 4.3.3 {M−

e }, {L−
c } are supermartingales and

{M+
e }, {L+

c } are submartingales for every e ∈
(
[n]
k

)
and c ∈ [q].

Recall that N1 = b(1−ε)Nc. We shall apply a martingale concentration result,
Theorem 3.15 of [72] to show that for any e ∈

(
[n]
k

)
and c ∈ [q]:

P(M̃−
e (N1) ≥ Kk

√
q lnn) ≤ 1

nk+1
;

P(M̃+
e (N1) ≤ −Kk

√
q lnn) ≤ 1

nk+1
;

P(L̃−
c (N1) ≥ K

√
kn ln q) ≤ 1

q2
;

P(L̃+
c (N1) ≤ −K

√
kn ln q) ≤ 1

q2
.

Notice that if TS < N1 then at least one of the above events occurs (for some e or
for some c), since all the processes remain “frozen” after the time TS. Since there
are

(
n
k

)
≤ nk sets e ∈

(
[n]
k

)
and q colours c, the above inequalities and the union

bound imply (4.23).
We will modify the submartingales and supermartingales slightly to turn them

into martingales.
Set β = 8D + 1. Then

ω > 2k2eCε−(k+2) > 2kCeCε−kβ−1.

Notice that the bounds on ω in the assumption imply(
lnn
q

)1/2

≤ 1

k2K
and

(
k ln q
n

)1/2

≤ 1

k2K
. (4.24)

For i = 0, . . . , N1 − 1 define random variables

Z−
M(i+ 1) = −E (M̃−

e (i+ 1)− M̃−
e (i)|Fi).

Since {M̃−
e } is a supermartingale, Z−

M(i) ≥ 0. Also, since {M̃+
e } is a submartingale

by Lemma 4.3.3

E (M̃−
e (i+1)−M̃−

e (i)|Fi)+2(E1(i+1)−E1(i)) = E (M̃+
e (i+1)−M̃+

e (i)|Fi) ≥ 0.
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Therefore
0 ≤ Z−

M(i+ 1) ≤ 2(E1(i+ 1)− E1(i)). (4.25)

The sequence {M̂−
e } = {M̂−

e (i), i = 0, . . . , N1} where

M̂−
e (i) = M̃−

e (i) +
i∑

j=1

Z−
M(j)

is a martingale (here and below we define the sum when j ranges from 1 to 0 to
be equal to 0) and

P
(
M̃−

e (N1) ≥ Kk
√
q lnn

)
≤ P

(
M̂−

e (N1) ≥ Kk
√
q lnn

)
.

Let us estimate the maximum positive increment and the maximum conditional
variance of {M̂−

e } (see definitions before Theorem 3.15 in [72]).
Notice that since (kN)/n ≥ 3, we have n/(kN) ≤ 3/(2q). Let f(τ), g(τ) be

as in the proof of Lemma 4.3.3. Since f ′(τ), g′(τ) are increasing, the following
inequalities hold for i = 0, . . . , N1 − 1:

E1(i+ 1)− E1(i) ≤
f ′(1− ε)kq

ωN
≤ k2

n

CeC

ω
≤ βk

n
≤ βk2

n
; (4.26)

E2(i+ 1)− E2(i) ≤
g′(1− ε)n

ωN
≤ 3k

2qω

(
CeC

εk
+
keC

εk+1

)
≤ β

q
. (4.27)

We have M̂−
e (i + 1) − M̂−

e (i) = 0 for i > TS. If i ≤ TS, using (4.17), (4.25) and
(4.26) the positive increment of {M̂−

e } is

Me(i+ 1)−Me(i) + µM(i)− µM(i+ 1)

+ E1(i)− E1(i+ 1) + Z−
M(i+ 1)

≤ 2k2

n
+
βk2

n
≤ k2(2 + β)

n
.

Let R1, R2 be as in the proof of Lemma 4.3.3. For i ∈ {0, . . . , N1 − 1}, the
conditional variance of the differences of {M̂−

e } is

V ar(M̂−
e (i+ 1)− M̂−

e (i)|Fi) ≤ max
Bi

V ar(Me(i+ 1)−Me(i)|Bi)

≤ max
Bi

P(Me(i+ 1)−Me(i) = −1|Bi)

≤ k2(1− t)k−1

n
+R1(i) ≤

k2(1 + β)

n
.
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Here Bi ranges over all blocks (atoms) of the partition corresponding to Fi; to get
the third line we used Lemma 4.3.2 and to get the fourth line we used (4.18) and
(4.26). Thus the maximum sum of conditional variances v̂ for M satisfies

v̂ ≤ Nk2(1 + β)

n
≤ kq(1 + β)

and the maximum conditional positive deviation b satisfies

b ≤ k2(2 + β)

n
≤ 2 + β.

Theorem 3.15 of [72] states that for any t ≥ 0

P(M̂−
e (N1) > t) ≤ exp

(
− t2

2v̂(1 + bt
3v̂
)

)
.

Therefore

P(M̂−
e (N1) ≥ Kk

√
q lnn) ≤ exp

(
− k2K2q lnn
2kq(1 + β) + 2

3
(2 + β)Kk

√
q lnn

)
= exp

(
− kK2 lnn
2(1 + β) + 2

3
(2 + β)k−2

)
≤ e−

kK2 ln n
3(1+β) ≤ e−(k+1) lnn

by (4.24) since k ≥ 2, D ≥ 1 and K = 8D1/2 > (9 + 36D)1/2.
Now consider the submartingale {M̃+

e } and define for i = 0, . . . , N1 − 1

Z+
M(i+ 1) = −E (M̃+

e (i+ 1)− M̃+
e (i)|Fi).

Since M̃+
e is a submartingale and M̃−

e is a supermartingale we have

E (M̃+
e (i+ 1)− M̃+

e (i)|Fi)− 2(E1(i+ 1)− E1(i)) ≤ 0

so
2(E1(i)− E1(i+ 1)) ≤ Z+

M(i+ 1) ≤ 0. (4.28)

The sequence

M̂+
e = {M̃+

e (i) +
i∑

j=1

Z+
M(j), i = 0, 1, . . . , N1}
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is a martingale and

P
(
M̃+

e (N1) ≤ −Kk
√
q lnn

)
≤ P

(
−M̂+

e (N1) ≥ Kk
√
q lnn

)
.

Using (4.17), (4.26) and (4.28) the difference −M̂−
e (i+ 1)− (−M̂−

e (i)) is

Me(i)−Me(i+ 1) + µM(i+ 1)− µM(i) + E1(i)− E1(i+ 1)− ZM(i+ 1)

≤ 1 + E1(i+ 1)− E1(i) ≤ 1 +
k2(1 + β)

n
≤ 2 + β.

Furthermore, the conditional variance of −M̂+
e (i+ 1) + M̂+

e (i) is the same as the
conditional variance of M−

e (i+ 1)−M−
e (i) so v̂ ≤ kq(1 + β). Now Theorem 3.15

of [72] yields

P
(
−M̂+

e (N1) ≤ Kk
√
q lnn

)
≤ e−(k+1) lnn

by the same calculation as in the corresponding bound for M̂+
e .

Now consider the supermartingale {L̃−
c }. Similarly as above, define a martin-

gale {L̂−
c } = {L̂−

c (i), i = 0, . . . , N1}, where

L̂−
c (i) = L̃−

c (i) +
i∑

j=1

Z−
L (j)

and Z−
L (i+ 1) = −E(L̃−

c (i+ 1)− L̃−
c (i)|Fi).

Using the fact that L+
c (i) = L−

c (i) + 2E2(i) we obtain similarly as above

0 ≤ Z−
L (i) ≤ 2(E2(i+ 1)− E2(i)).

Therefore using (4.20) and (4.27) the difference L̂−
c (i+ 1)− L̂−

c (i) is

Le(i+ 1)− Le(i) + µL(i)− µL(i+ 1) + E2(i+ 1)− E2(i)

≤ k

q
+

2k

q2
+
β

q
≤ k(1 + β)

q
.

127



Chapter 4. On the chromatic index of random uniform hypergraphs

Here we used 2k/q ≤ (k − 1)β, since k ≥ 2, q ≥ 3 and β > 8. Now using
Lemma 4.3.2 and the bounds (4.22), (4.27) for i ∈ {0, . . . , N1 − 1} we get

V ar(L̂−
c (i+ 1)− L̂−

c (i)|Fi) ≤ max
Bi

V ar(Lc(i+ 1)− Lc(i)|Bi)

≤ k2 ·max
Bi

P(Lc decreases at step i+ 1|Bi)

≤ 1

q
+ k2R2(i) ≤

k2(1 + β)

q
≤ k(1 + β).

Hence the maximum sum of conditional variances v̂ satisfies

v̂ ≤ k2(1 + β)N

q
≤ (1 + β)kn. (4.29)

So by Theorem 3.15 of [72], (4.24) and our choice of K

P
(
L̃−
c (N1) ≥ K

√
kn ln q

)
≤ P

(
L̂−
c (N1) ≥ K

√
kn ln q

)
≤ exp

(
− K2kn ln q
2(1 + β)kn+ 2

3
k(1 + β)K

√
kn ln q

)
≤ exp

(
− K2 ln q
2(1 + β) + 2

3
(1 + β)k−1

)
≤ exp

(
− K2 ln q
3(1 + β)

)
≤ e−2 ln q.

Finally, let us bound in exactly the same way the probability that {L̃+
c } ever

attains a large negative value. Define for a martingale {L̂c+} = {L̂+
c (i), i =

0, . . . , N1}, where

L̂+
c (i) = L̃+

c (i) +
i∑

j=1

Z+
L (j)

and Z+
L (i+ 1) = −E(L̃+

c (i+ 1)− L̃+
c (i)|Fi).

As before, by Lemma 4.3.3:

2(E2(i)− E2(i+ 1)) ≤ Z+
L (i+ 1) ≤ 0.

Using (4.27) we get that the difference (−L̂+
c (i+ 1)− (−L̂+

c (i)) is at most

Lc(i)− Lc(i+ 1)− µL(i) + µL(i+ 1)− E2(i) + E2(i+ 1)− Z+
L (i+ 1)

≤ k +
β

q
≤ k(1 + β).

The conditional variance of −L̂+
c (i+1)+ L̂+

c (i) is the same as the conditional
variance of L̂−

c (i+ 1)− L̂−
c (i), so the estimate (4.29) still holds.
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Once again applying Theorem 3.15 of [72]:

P(L̃+
c (N1) ≤ −K

√
kn ln q) ≤ P(−L̂+

c (N1) ≥ K
√
kn ln q) ≤ e−2 ln q,

as in the corresponding bound for {L̂−
c }. 2

Proof of Theorem 4.1.2 We may assume that ε < 1. Let ε′ be such that
1

1−ε′
= 1 + ε

2
, let D ≥ 1 be the constant from Lemma 4.3.2 and define

C(ε, k) = 16D1/2k3e8Dk/ε′2ε′−(k+2).

Let cε > 0 be a constant such that for all k ≥ 2 we have C(ε, k)2 < 1
2
ek/cε and

observe that this implies cε ≤ ε′/8. Suppose (4.1) hold. Then n ≥ 3, d̄ ≥ 4 and
k
n
≤ ε′

2
≤ ε

2
. Let

N ′ =

⌈
N

1− ε′

⌉
and q =

⌈
kN ′

n

⌉
.

Then,
d̄ ≤ q ≤ dd̄(1 + ε/2) + k/ne ≤ d(1 + ε)d̄e ≤ 3d̄ ≤ d̄2,

and using the definition of cε and (4.1)

C(ε, k)2 <
1

2
ek/cε ≤ 1

2
min

(
n

ln d̄
,
d̄

lnn

)
≤ min

(
n

ln q ,
q

lnn

)
.

Therefore Lemma 4.3.4 applies for the random colouring process described in
Section 4.3.3 with N ′ random hyperedges, q colours and n vertices. By that
lemma, the probability that the process hits the stopping time until step i =

N − 1 ≤ bN ′(1− ε′)c is at most 2
q
+ 2

n
. If TS ≥ N − 1, then, by the estimates from

the proof of Lemma 4.3.3, and the definition of the process

Me(N − 1) ≥ µM(N − 1)− (E1(N − 1) +Kk
√
q lnn) ≥ 1

2
µM(N − 1) > 0,

for any edge e ∈
(
[n]
k

)
. So the N -th edge can be coloured successfully (which

means all of the previous edges have been coloured successfully as well). The
claim follows by a trivial observation, that the random hypergraph obtained after
adding the first N out of N ′ edges has distribution exactly H(k)(n,N). 2
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Part II

Random graphs with few disjoint
excluded minors

131





Chapter 5

Background

5.1 Notation and main definitions
In this part calligraphic letters such as A,B, . . . will denote classes of objects,
mostly classes of labelled graphs or graphs where some vertices are distinguished
and/or unlabelled; these classes will always be closed under isomorphism. We
denote by An,Bn, . . . the respective classes restricted to objects (graphs) of size n
with labels [n] = {1, . . . , n}. The exponential generating function for A is defined
as

A(x) =
∞∑
n=0

|An|
n!

xn,

and we will use the notation B(x) for the exponential generating function of B,
etc. If A(x) is an infinite power series, then [xn]A(x) denotes its coefficient at xn.

Given a set of graphs B and a graph G, a set Q ⊆ V (G) is called a B-blocker
(or a B-minor-blocker) if G−Q ∈ ExB, i.e., G−Q has no minor in the set B. For
a positive integer k, we denote by kB the class of graphs consisting of k vertex
disjoint copies of graphs in B (with repetitions allowed). Thus Ex (k + 1)B is the
class of graphs that do not have k + 1 vertex disjoint subgraphs H1, . . . , Hk+1,
each with a minor in B. For a graph H, we will abbreviate Ex {H} to ExH,
“{H}-blocker” to “H-blocker”, etc.

Given a class of graphs A, apex kA denotes the class of all graphs such that
by deleting at most k vertices we may obtain a graph in A; we use apexA for
apex 1A.

Also, given a positive integer s, call a graph G an s-fan if G is a union of a
complete bipartite graph with parts A and B, so that |A| = s, and a path P with
V (P ) = B. We call 1-fans simply fans.

A class of graphs is called proper, if it is not the class of all graphs.
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Chapter 5. Background

5.2 Graph minors

5.2.1 Excluded minors and treewidth

We provide some additional definitions and results for graph minors. Many of the
definitions are from Diestel’s book “Graph Theory” [38].

Let G be a graph, T a tree, and let V = (Vt)t∈T be a family of vertex sets
Vt ⊆ V (G) indexed by the vertices t of T . The pair (T,V) is called a tree-
decomposition of G if it satisfies the following three conditions:

(1) V (G) = ∪t∈TVt;

(2) for every edge e ∈ E(G) there exists a t ∈ V (T ) such that both ends of e lie
in Vt;

(3) Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 is on the path from t1 to t3 in T .

The width of (T,V) is defined as max{|Vt| − 1 : t ∈ V (T )}. The treewidth tw(G)
of G is the least width of any decomposition of G. Treewidth measures how much
G is “tree-like”.

In the introduction we mentioned the classical result of Robertson and Sey-
mour: each minor-closed class A can be characterised as A = ExB where B is a
finite set of minimal excluded minors for A. We state two other important results
from the theory of graph minors.

Theorem 5.2.1 (Robertson and Seymour, 1986) Given a graph H, the graphs
without H as a minor have bounded treewidth if and only if H is planar.

It is well known that the class of graphs with treewidth at most 1 is the class
of forests and the class of graphs with treewidth at most 2 is ExK4. The other
result is the generalisation of Erdős and Pósa theorem. (Our version of the proof
is provided in Section 7.3.2.)

Theorem 5.2.2 (Robertson and Seymour, 1986, [88]) Let B be a set of connected
graphs and let k be a positive integer. The following statements are equivalent.

• There is a constant c = c(k,B), such that each graph G ∈ Ex (k + 1)B has
a B-blocker of size at most c.

• B contains a planar graph.
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Classes of graphs with bounded treewidth play a prominent role in computer sci-
ence. For many classical NP -complete graph problems, instances with constant
treewidth can be solved in polynomial time, typically using a dynamic program-
ming algorithm. Such problems include, for example, graph colouring and finding
the maximum independent set. Similar questions are part of the domain of the
rich area of parameterized complexity, see, e.g., [42].

5.2.2 Normal trees

A theorem of Kloks stated in [33] gives an equivalent definition of treewidth, which
we find very useful in Chapter 7 and Chapter 8.

Let G be a graph, and let T be a rooted tree on the same vertex set V (G),
with root vertex r. (We do not insist that T is a subgraph of G.) The tree T
induces a tree-ordering ≤T on V (G), where u ≤T v if and only if u is on the path
from r to v in T . T is a normal tree for G if u and v are comparable for every
edge uv of G. We think of the tree T as hanging down from its root. We will say
that u is above v (and v is below u) in T if u <T v. Think of the graph G as fixed.
Given a normal tree T for G, for each vertex v of G we define its set AAT (v) of
active ancestors by

AAT (v) = {u <T v : ∃z ≥T v with uz ∈ E(G)} .

For brevity we write aT (v) = |AAT (v)|.

Theorem 5.2.3 (Kloks) The treewidth tw(G) of a graph G satisfies

tw(G) = min
T∈T

max
v∈V (G)

aT (v) (5.1)

where T is the set of all normal trees for G.

We refer to [38] for more facts on treewidth (though note that in that book a
normal tree in a graph is required to be a subgraph). We prove the theorem in
Section 7.3.1.

5.3 Enumerating graphs from minor-closed classes

5.3.1 Planar graphs

Like the fundamental work of Robertson and Seymour on graph minors had its
roots in the works of Kuratowski and Wagner on planar graphs, the motivating
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results on enumeration of minor-closed classes concern the class of planar graphs.
A theory for enumerating maps (3-connected planar graphs) was developed

by Tutte in the 1960s, see [52]. Bender, Gao and Wormald [9] applied these
results for counting 2-connected planar graphs. In 2005, Giménez and Noy finally
obtained the asymptotic formula for the class P = Ex {K3,3, K5} of planar graphs

|Pn| ∼ gn−7/2γnn!

where g and γ ≈ 27.23 are analytic constants. Giménez and Noy also obtained
limit laws for the number of edges, number of blocks and number of components
for uniformly random planar graphs of size n, see the survey [52]. The same au-
thors developed a more general framework how to prove similar results for other
classes with 2-connected excluded minors in the case where the exponential gener-
ating functions for 3-connected graphs are known. This framework, for example,
has been applied in [32] to count series-parallel graphs and outerplanar graphs.
Most of the analysis mentioned above was done using the generating functions ap-
proach and the methods of [48]. More recent very impressive results obtained with
this technique include asymptotic enumeration of graphs with fixed genus [8, 36],
improving earlier results of [73].

Steger and Panagiotou [85] gave an interesting application of the Boltzmann
sampling technique for studying asymptotic number of vertices of degree k in ran-
dom planar graphs. (Boltzmann sampling uses exponential generating functions
for relevant classes to sample graphs of size n uniformly at random.)

5.3.2 General minor-closed classes

A parallel approach for proving enumerative results uses probabilistic and combi-
natorial methods rather than generating functions and singularity analysis. These
results are usually less precise (i.e. explicit constants are not computed) but hold
more generally.

In 2006, Norine, Seymour, Thomas and Wollan [83] proved that each proper
minor-closed class of graphs A is small, that is, the supremum as n → ∞ of the
sequence (

|An|
n!

)1/n

(5.2)

is finite, see also [43]. If the above sequence converges to γ ∈ [0;∞), we say that
A has a growth constant γ = γ(A).

For any class of graphs A we denote the upper and lower limits of (5.2) by
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γ(A) and γ(A) respectively. Also, let ρ(A) denote the radius of convergence of
the exponential generating function A of A. Of course, γ(A) = ρ(A)−1 (if we
assume that 0−1 =∞).

Bernardi, Noy and Welsh asked in 2010 whether every proper minor-closed
class of graphs has a growth constant. To date, this question has been answered
positively for many specific minor-closed classes of graphs, and no example of a
class without a growth constant is known. A table with numeric values of growth
constants for some specific classes is available in [52].

The work that is closest in spirit to this thesis, and which we use repeatedly in
our proofs are papers by McDiarmid, Steger and Welsh (2005) [77] and McDiarmid
(2009), [74].

A minor-closed class of graphs is called addable, if each excluded minor is 2-
connected. We say that A is bridge-addable if given any graph in A and vertices
u and v in distinct components of G, the graph obtained from G by adding an
edge joining u and v must be in A.

A class A is smooth if there is a constant γ such that |An|/(n|An−1|) → γ

as n → ∞. It is not difficult to see that if A is smooth then γ is the growth
constant of A. It was proved in [77] that each addable class of graphs has a
growth constant, this was strengthened by McDiarmid [74]: he showed that each
addable class of graphs is smooth. The last result implies that the answer to the
question of Bernardi, Noy and Welsh is positive for the class of planar graphs P as
well as for any minor-closed class characterised by a set of 2-connected excluded
minors.

Another surprisingly useful property of a random graph from an addable class
A is that with a high probability it has linearly many “pendant” copies of any
fixed connected graph in A. We state this formally, as it will be used in multiple
places in Part II.

Let H be a connected graph on the vertex set {1, . . . , h} which we consider to
be rooted at vertex 1, and let G be a graph on the vertex set {1, . . . , n}, where
n > h. Then an induced subgraph H̃ of G is a pendant appearance of H if (a)
the increasing bijection from {1, . . . , h} to V (H̃) gives an isomorphism between
H and H̃; and (b) there is exactly one edge in G between V (H̃) and the rest of
G, and this edge is incident with the vertex of H̃ with smallest label.

Lemma 5.3.1 Let A be a proper addable minor-closed class of graphs, and let
H be a connected graph in A. There is a constant a > 0 such that the following
holds. For Rn ∈u A, with probability 1 − e−Ω(n) Rn has at least a · n disjoint
pendant appearances of H.
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Also, the complete limit distribution of the graph that remains by subtracting the
largest component is available by [74]. We present this in more detail in Chapter 7.

More recent development in this direction concerns distribution of random
graphs from minor-closed classes, where a pair of parameters (weights) is used to
control the edge density and the number of components (connectivity) [76]. The
last paper also contains an extensive list of literature regarding enumeration of
minor-closed classes.

5.4 Non-addable classes of graphs
While each addable class of graphs is proved in [77] to have growth constant,
the classes that are not addable are much less well behaved, and the question of
Bernardi, Noy and Welsh has been answered only in a few cases.

One of the strongest results here concerns the important class of graphs em-
beddable on a surface of genus g, where g is any fixed non-negative integer. In
particular, the case g = 0 corresponds to planar graphs and the case g = 1 corre-
sponds to graphs embeddable on torus. It is known, see [73], that these classes are
not addable, for example the graph 2K5 is not embeddable on torus. This class of
graphs (for any g ≥ 0) was initially shown to have a growth constant [73] (using
combinatorial methods), then complete asymptotics were obtained independently
in [8, 36] (using singularity analysis).

The class ExP of graphs, where P is a fixed path has growth constant 0 [11].
Forests of paths, the graphs without the “bow-tie” graph as a minor and several
other minor-closed classes were considered in [31]: while the growth constant for
such classes was shown to exist, other properties, such that the asymptotics of
the probability of connectedness seem to vary depending on the excluded minor.

The work presented in this part demonstrates two different infinite families of
non-addable minor-closed classes that have a growth constant. There was some
other work on disjoint excluded minors, using the approach of [64]. McDiarmid
and Kang proved an analogue of Theorem 6.1.1 for unlabelled graphs with at most
k disjoint cycles [57]. The class of graphs with at most k disjoint t-star minors
(a t-star is the complete bipartite graph K1,t) was studied in [75]. We note that
results in [76] on random graphs from a weighted minor-closed class allow certain
well-behaved non-addable classes as well, such as, for example, the class of graphs
with at most k disjoint cycles.
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5.5 Generating functions and singularity analy-
sis

In Chapter 9 we make a substantial use of generating function methods for asymp-
totic enumeration, including the singularity analysis method developed by Flajolet
and Odlyzko building on the work of many other authors, see [48].

Let g(x) and h(x) be complex functions and let D be a domain. Let a ∈ C.
We write f(x) = O(g(x)) (respectively, f(x) = o(g(x))) as x → a, x ∈ D if
|f(x)/g(x)| is bounded by a constant (respectively, |f(x)/g(x)| → 0) uniformly as
x→ a, x ∈ D.

Given numbers φ,R and ρ with R > ρ > 0 and 0 < φ < π/2, define a complex
domain

∆(φ, ρ,R) = {z : |z| < R, z 6= ρ, |arg(z − ρ)| > φ} .

A central result of this method is the so called Transfer theorem (we state a
simplified specific version relevant to us, as presented in [52]).

Theorem 5.5.1 (Transfer) Let α be a real number, not a non-positive integer
and let R > ρ > 0. Assume that f(x) is analytic in a domain ∆ = ∆(φ, ρ,R). If,
as x→ ρ in ∆

f(x) = (1− x/ρ)−α(1 + o(1))

Then
[xn]f(x) =

nα−1

Γ(α)
ρ−n(1 + o(1)).

As it is common, we will apply this theorem to the exponential generating func-
tion of a class A. To obtain the exponential generating function, one can use
intuitive high level language to describe the class A in terms of A itself and other
classes and operations on them. For example, if C is a class of connected graphs,
then its relation to the class A of all graphs with components in C is written
down symbolically as A = SET(C). An automatic translation rule to generating
functions then yields

A(x) = eC(x).

The example above is a very simple one, there are general rules how to automat-
ically derive exponential generating functions for a great variety of combinatorial
classes, this is called the “symbolic method”. We refer for an excellent presen-
tation of the technique to the book “Analytic Combinatorics” by Flajolet and
Sedgewick [48], see also Section 8.2.1.
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Chapter 5. Background

Another theory relevant to us is the enumeration of tree-like structures, where
general and very useful results have been obtained by Meir and Moon [79] (using
earlier work by Bender and Canfield).

140



Chapter 6

Graphs with few disjoint cycles

6.1 Introduction
Call a set B of vertices in a graph G a blocker if the graph G − B obtained by
deleting the vertices in B has no cycles.

We let F denote the class of forests; let apex kF denote the class of graphs with
a blocker of size at most k; and let Ex (k + 1)C denote the class of graphs which
do not have k+1 disjoint cycles. With this notation the Erdős-Pósa theorem says
that

Ex (k + 1)C ⊆ apex f(k)F .

Now clearly
Ex (k + 1)C ⊇ apex kF ; (6.1)

for if a graph has a blocker B then it can have at most |B| disjoint cycles. How
much bigger is the left side of (6.1) than the right? Our main theorem is that the
difference is relatively small: amongst all graphs without k+ 1 disjoint cycles, all
but a small proportion have a blocker of size k. For any class A of graphs we let
An denote the set of graphs in A on the vertex set {1, . . . , n}. (When we say a
‘class’ of graphs it is assumed to be closed under automorphism.)

Theorem 6.1.1 For each fixed positive integer k, as n→∞

|(Ex (k+1)C)n| = (1 + e−Ω(n)) |(apex kF)n|. (6.2)

Graphs in Ex 2C (that is, with no two disjoint cycles) have been well char-
acterised (Dirac [39], Lovász [67]); and from this characterisation we can much
refine the above result for the case k = 1 – see Section 6.6 below. It seems that
no such characterisation is known for graphs in Ex 3C.
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Chapter 6. Graphs with few disjoint cycles

The natural partner to Theorem 6.1.1 is an asymptotic estimate for |(apex kF)n|.
Recall the result of Rényi (1959) [87] that

|Fn| ∼ e
1
2nn−2 ∼

( e

2π

) 1
2
n− 5

2 enn! as n→∞. (6.3)

Theorem 6.1.2 For each fixed positive integer k, as n→∞

|(apex kF)n| ∼ ck2
kn|Fn| (6.4)

where ck =
(
2(

k+1
2 )ekk!

)−1

.

A class A of graphs has growth constant γ if

(|An|/n!)1/n → γ as n→∞.

The above results (6.2), (6.3) and (6.4) show that both apex kF and Ex (k + 1)C

have growth constant 2ke.
In order to prove Theorem 6.1.1, we use a seemingly minor ‘redundant blocker’

extension, Theorem 6.1.3, of the Erdős-Pósa theorem. Call a blocker B in a graph
G k-redundant if B \ {v} is still a blocker for all but at most k vertices v ∈ B.
Thus a set B of vertices in G is a k-redundant blocker if and only if there is a
subset S of B of size at most k such that each cycle in G − S has at least two
vertices in B \S (clearly in this case B is also a blocker). Theorem 6.1.3 says that
if G does not have k + 1 disjoint cycles then it has a small k-redundant blocker.
Let us now take f(k) as the least value that works in the Erdős-Pósa theorem;
and recall that f(k) is Θ(k ln k).

Theorem 6.1.3 If G does not have k+1 disjoint cycles then it has a k-redundant
blocker of size at most f(k) + k.

The above results yield asymptotic properties of typical graphs without k + 1

disjoint cycles. We state three theorems. First we note that with high probability
k vertices really stand out – they each have degree about n/2 whereas each other
vertex has much smaller degree – and they form the only minimal blocker of
sublinear size. We write Rn ∈u A to mean that the random graph Rn is sampled
uniformly from the graphs in An.

Theorem 6.1.4 There is a constant δ > 0 such that the following holds. Let k
be a positive integer. For n = 1, 2, . . . let Rn ∈u Ex (k+1)C, and let Sn be the set
of vertices in Rn with degree > n/ lnn. Then with probability 1− e−Ω(n) we have:
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6.1. Introduction

(i) |Sn| = k and Sn is a blocker in Rn;

(ii) each blocker in Rn not containing Sn has size > δn;

(iii) Rn has k disjoint triangles; and

(iv) for any constant ε > 0, each vertex in Sn has degree between (1
2
− ε)n and

(1
2
+ ε)n.

The second theorem on the random graph Rn ∈u Ex (k + 1)C concerns con-
nectivity. Recall that the exponential generating function for the class T of (la-
belled) trees is T (z) =

∑
n≥1 n

n−2zn/n!, and T (1
e
) = 1

2
. Also note that by Rényi’s

result (6.3), for Rn ∈u F we have P(Rn is connected)→ e−
1
2 as n→∞.

Theorem 6.1.5 Let k ≥ 0 be an integer, and let pk = e−T ( 1

2ke
). Then for Rn ∈u

Ex (k + 1)C we have

P(Rn is connected )→ pk as n→∞. (6.5)

In particular, p0 = e−1/2 = 0.606531 (as we already noted), p1 = 0.814600,
p2 = 0.907879, p3 = 0.953998 and p4 = 0.977005 (to 6 decimal places).

The third and final theorem presented here on the random graph Rn ∈u Ex (k+
1)C concerns the chromatic number χ(Rn) and the clique number ω(Rn). It shows
for example in the case k = 2 (concerning graphs with no three disjoint cycles)
that both P(χ(Rn) = ω(Rn) = 3) and P(χ(Rn) = ω(Rn) = 4) tend to 1

2
as n→∞.

Theorem 6.1.6 Let k be a positive integer, and let the random graph R be picked
uniformly from the set of all graphs on {1, . . . , k}. For each n let Rn ∈u Ex (k +
1)C. Then for each 3 ≤ i ≤ j ≤ k + 2, as n→∞

P ((ω(Rn) = i) ∧ (χ(Rn) = j))→ P((ω(R) = i− 2) ∧ (χ(R) = j − 2))

(and for other values of i, j the left side tends to 0).

The plan of the rest of the chapter is as follows. First we prove Theo-
rem 6.1.2 concerning the number of ‘apex forests’. Next we prove the ‘redundant
blocker’ result, Theorem 6.1.3, which we then use in the proof of our main result,
Theorem 6.1.1. After that, we prove the three theorems on the random graph
Rn ∈u Ex (k + 1)C, namely Theorems 6.1.4, 6.1.5 and 6.1.6. The last main sec-
tion concerns the case k = 1 on graphs with no two disjoint cycles; and finally we
make some remarks concerning extensions of the results presented earlier.
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Chapter 6. Graphs with few disjoint cycles

In our proofs we use some results developed in the study of random planar
graphs [77, 78] and graphs from minor-closed classes [74]. Most of those results
no longer work when a class of graphs fails to be closed under taking a disjoint
union (as is the case here). However, for example to prove the main theorem, our
extension of the Erdős-Pósa theorem allows us to decompose a graph with few
disjoint cycles into a small redundant blocker and a forest, and we may then use
the results mentioned above for random forests.

Initial work on this chapter was done in 2008 while the author of the thesis was
studying for an MSc at the University of Oxford, with the second author, Colin
McDiarmid, as supervisor. It was mainly written while the second author was at
the Mittag-Leffler Institute during April 2009; and the support of that Institute
is gratefully acknowledged.

6.2 Counting apex forests
The following lemma will be useful in this section and in Section 6.4. Call a pair
of adjacent vertices in a graph a spike if it consists of a leaf and a vertex of degree
2, which are not contained in a component of just three vertices forming a path.
Observe that distinct spikes are disjoint.

Lemma 6.2.1 There exist constants a > 0 and b > 0 such that, for n sufficiently
large, the number of forests F ∈ Fn with less than an spikes is less than e−bn|Fn|.

Proof Let H be the path of 3 vertices rooted at an end vertex. By (6.3) the
class F of forests has a growth constant, namely e. Thus we may apply the
‘appearances theorem’ Theorem 5.1 of [78] to lower bound the number of pendant
appearances of H in a random forest; and each such appearance yields a spike. (A
pendant appearance may be defined as follows. Let H be a connected graph on
the vertex set {1, . . . , h} and let G be a graph on the vertex set {1, . . . , n}. Then
an induced subgraph H̃ of G is a pendant appearance of H if (a) the increasing
bijection from {1, . . . , h} to V (H̃) gives an isomorphism between H and H̃; and
(b) there is exactly one edge in G between V (H̃) and the rest of G, and this edge
is incident with the vertex of H̃ with smallest label.) 2

Proof of Theorem 6.1.2 By (6.3) we have

|Fn| ∼ (n)k e
k|Fn−k|. (6.6)

144



6.2. Counting apex forests

Let n > k, let V = {1, . . . , n}, and consider the following constructions of graphs
on V :

(i) Choose a k-set S ⊂ V , and put any graph on S (
(
n
k

)
2(

k
2) choices).

(ii) Put any forest F on V \ S ( |Fn−k| choices).

(iii) Add the edges of any bipartite graph H with parts S and V \ S ( 2k(n−k)

choices).

Clearly each graph constructed is in (apex kF)n, and each graph in (apex kF)n is
constructed at least once. By (6.6) the number of constructions is(

n

k

)
2(

k
2)2k(n−k)|Fn−k| ∼ ck2

kn|Fn|

so |(apex kF)n| is at most this number.
Let us bound |(apex kF)n| from below by showing that almost all of the con-

structions yield distinct graphs. Observe that G ∈ (apex kF)n appears just once
if and only if G has a unique blocker of size k. Fix S = S0 for some k-set S0 ⊆ V .

Let us say that a graph G ∈ (apex kF)n is good if (a) G − S0 ∈ F ; and (b)
for each vertex s ∈ S0 the forest G − S0 has k + 1 spikes such that s is adjacent
to both vertices in each of these spikes, and so forms a triangle with each. If G
is good then S0 must be the unique blocker of size k in G. For if S ′ is another
blocker, and s ∈ S0 \ S ′, then S ′ must contain a vertex from each spike in G− S0

which forms a triangle with s, and so |S ′| ≥ k + 1.
By Lemma 6.2.1, there exist constants a > 0 and b > 0 such that (assuming

n is sufficiently large) the number of forests F ∈ Fn−k with less than an spikes is
less than e−bn|Fn−k|. But if F has at least an spikes then there are at most

2k(n−k)k P (Bin (dane, 1/4) ≤ k)

ways to choose the bipartite graph H in step (iii) so that the resulting graph
constructed is not good. Hence, by considering separately the cases when F has
< an spikes and when F has ≥ an spikes, we see that the number of ways to
choose F and H so that the resulting graph will be constructed more than once
is at most

2k(n−k)|Fn−k|
(
e−bn+ k P

(
Bin(dane, 1

4
) ≤ k

))
.
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Chapter 6. Graphs with few disjoint cycles

Now if X ∼ Bin(m, p) and 0 ≤ j ≤ m then P(X ≤ j) ≤
(
m
j

)
(1 − p)m−j, and so

since k is constant

P
(
Bin(dane, 1

4
) ≤ k

)
≤
(
dane
k

)
(3/4)an−k = O(nk(3/4)an).

Thus the number of constructions that fail to yield a unique graph when the choice
at step (i) is fixed is at most

2kn|Fn| e−Ω(n). (6.7)

Since the number of all possible sets S and graphs on S is
(
n
k

)
2(

k
2) = O(nk), it

follows that the total number of constructions that fail to yield a unique graph is
also at most the quantity in (6.7), which completes the proof. 2

6.3 Redundant blockers: proof of Theorem 6.1.3
We will deduce Theorem 6.1.3 easily from the following lemma.

Lemma 6.3.1 Let k ≥ 0, let G ∈ Ex (k+1)C, and let Q be a blocker in G. Then
there are sets S ⊆ Q with |S| ≤ k and A ⊆ V (G) \Q with |A| ≤ k such that there
is no cycle C in G− S with |V (C) ∩ (Q ∪ A)| ≤ 1.

Note that the conclusion of the lemma is equivalent to saying that the graph
G − ((Q \ {x}) ∪ A) is acyclic for each vertex x ∈ Q \ S; that is, each vertex
x ∈ Q \ S has at most one edge to each tree in the forest G− (Q ∪ A).

Proof We use induction on k. Clearly the result holds for the case k = 0, as we
may take A = S = ∅. Let j ≥ 1 and suppose that the result holds for k = j − 1.
Let G ∈ Ex (j + 1)C and let Q be a blocker in G. We may assume that for
some tree T in the forest G − Q, and some vertex y ∈ Q, the induced subgraph
G[V (T ) ∪ {y}] has a cycle (as otherwise we may again take A = S = ∅ and we
are done).

Fix one such tree T , and fix a root vertex r in T . For each vertex v in T let
Tv denote the subtree of T rooted at v. (Thus Tr is T .) Let

R = {v ∈ V (T ) : G[V (Tv) ∪ {x}] has a cycle for some x ∈ Q}.

By our assumption R 6= ∅. In the tree T , choose a vertex u ∈ R at maximum
distance from the root r. Let z ∈ Q be such that G[V (Tu) ∪ {z}] has a cycle.
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6.4. Proof of the main theorem, Theorem 6.1.1

Let G′ = G− (V (Tu) ∪ {z}) and let Q′ = Q \ {z}. Then clearly G′ ∈ Ex (jC)
and Q′ is a blocker in G′. Hence we can apply the induction hypothesis to G′ and
Q′, and obtain sets of vertices S ′ ⊆ Q′ and A′ ⊆ V (G′) \ Q′ each of size at most
j − 1, such that there is no cycle C in G′ − S ′ with |V (C) ∩ (Q′ ∪ A′)| ≤ 1.

Now set S = S ′ ∪ {z} and A = A′ ∪ {u}. Suppose that there is a cycle C in
G − S with |V (C) ∩ (Q ∪ A)| ≤ 1. We want to find a contradiction, since that
will establish the induction step, and thus complete the proof of the lemma.

Note that C must have a vertex in the blocker Q: so we may let x ∈ Q be the
unique vertex in V (C) ∩ (Q ∪ A). It follows that u 6∈ V (C). But V (C) ∩ V (Tu)

cannot be empty: for then C would be a cycle in G′ − S ′, and by induction we
would have 2 ≤ |V (C) ∩ (Q′ ∪ A′)| ≤ |V (C) ∩ (Q ∪ A)|.

Hence the connected graph C−{x} is a subgraph of T with a vertex in Tu but
not containing u. Therefore C−{x} must be contained in a proper subtree Tw of
Tu; but this implies that w ∈ R, which contradicts our choice of u. 2

Proof of Theorem 6.1.3 Let k ≥ 0 and let G ∈ Ex (k+1)C. Let Q be a blocker
in G of size at most f(k). By Lemma 6.3.1, there are sets S ⊆ Q with |S| ≤ k

and A ⊆ V (G) \ Q with |A| ≤ k such that there is no cycle C in G − S with
|V (C) ∩ (Q ∪ A)| ≤ 1.

Then the set B = Q∪A is as required. For, given v ∈ B \S, there cannot be a
cycle C in G− (B \ {v}), since C would be a cycle in G−S with |V (C)∩B| ≤ 1;
and thus B \ {v} is a blocker. 2

6.4 Proof of the main theorem, Theorem 6.1.1
Let κ(G) denote the number of connected components of a graph G. If the random
variable X has the Poisson distribution with mean 1, then for each positive integer
t we have P[X ≥ t] ≤ 1/t!. Hence by Theorem 2.1 of McDiarmid, Steger, Welsh
(2006) [78] applied to the class F of forests we have:

Lemma 6.4.1 For each positive integer t

|{F ∈ Fn : κ(F ) ≥ t+ 1}| ≤ |Fn|/t!.

The idea of the proof of Theorem 6.1.1 is to give constructions which yield
every graph in (Ex (k+1)C)n at least once (as well as other graphs); show that
there are few ‘unrealistic’ constructions; and show that few ‘realistic’ constructions
yield a graph in (Ex (k+1)C \ apex kF)n.
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Chapter 6. Graphs with few disjoint cycles

Proof of Theorem 6.1.1 Fix a positive integer k. By Theorem 6.1.3, there is an
integer r ≤ f(k)+k such that the following holds. For each graph G in Ex (k+1)C
with at least r vertices, there is a blocker R of size r and a subset S of R of size
k such that R \ v is still a blocker for each vertex v ∈ R \ S.

Let n > r. Then the following constructions will yield every graph in (Ex (k+
1)C)n at least once (as well as other graphs).

(i) Choose an r-subset R ⊆ V , put any graph on R, and choose a k-subset S ⊆ R

(
(
n
r

)
2(

r
2)
(
r
k

)
= O(nr) choices).

(ii) Add the edges of any bipartite graph with parts S and V \R (2k(n−r) choices).

(iii) Put any forest F on V \R ( |Fn−r| choices).

(iv) Add the edges of any bipartite graph with parts R \S and V \R, subject to
the restriction that each v ∈ R \S has at most one edge to each component
tree of the forest F on V \R.

We want upper bounds on the number of constructions. By the restriction in
(iv) above, for each vertex v ∈ R \ S, the number of edges between v and the
vertices in V \R is at most κ(F ). Let t = t(n) ∼ n(lnn)− 1

2 . Then by Lemma 6.4.1

|{F ∈ Fn−r : κ(F ) ≥ t}| ≤ |Fn−r|/(t− 1)! ≤ |Fn| e−Ω(n(lnn)
1
2 ).

Call a construction realistic if there are at most t edges between each vertex
v ∈ R \ S and the vertices in V \R; and unrealistic otherwise. Then the number
of unrealistic constructions is at most

O(nr) 2kn |Fn| 2(r−k)(n−r) e−Ω(n(lnn)
1
2 ) = |Fn| e−Ω(n(lnn)

1
2 ).

Thus there are relatively few unrealistic constructions, and we see that we need
to consider only realistic constructions. Further, since t = o(n), for n sufficiently
large

t∑
i=0

(
n− r
i

)
≤ 2

(
n− r
t

)
≤ 2

(ne
t

)t
;

and so, in realistic constructions, the number of choices for step (iv) is

(
t∑

i=0

(
n− r
i

))r−k

≤ 2r
(ne
t

)tr
= (1 + o(1))n.
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6.5. Proofs for random graphs Rn

Let us bound the number of realistic constructions yielding a graph G in
(Ex (k+1)C \ apex kF)n. Each such construction has a cycle contained in V \ S;
and such a cycle C can touch at most 2(r − k) spikes, since as we travel around
C we must visit R \ S at least once between any three visits to distinct spikes.

Now suppose that each vertex in S is adjacent to both vertices of at least
2r − k spikes. Then the k vertices in S would each form triangles with at least
2r − k − 2(r − k) = k spikes disjoint from C; and amongst these triangles we
could find k disjoint ones (for example by picking the triangles greedily). But
together with C there would now be at least k + 1 disjoint cycles, contradicting
the assumption that G ∈ Ex (k+1)C. Hence, for at least one vertex v in S, v must
be adjacent to both vertices of at most 2r − k − 1 ≤ 2r spikes.

Therefore, given any choices at steps (i),(iii) and (iv), if F has z spikes then
the number of choices at step (ii) to obtain a graph in (Ex (k+1)C \ apex kF)n is
at most

2k(n−r) k P[Bin(z, 1/4) ≤ 2r],

and arguing as before

P[Bin(z, 1/4) ≤ 2r] ≤
(
z

2r

)
(3/4)z−2r = O(z2r(3/4)z).

By Lemma 6.2.1, there exist constants a > 0 and b > 0 such that (assuming
n is sufficiently large) the number of graphs F ∈ Fn−r with less than an spikes
is at most e−bn|Fn−r|. Hence, by considering separately the cases when F has
< an spikes and when F has ≥ an spikes, we see that the number of realistic
constructions which yield a graph in (Ex (k+1)C \ apex kF)n is at most

O(nr) 2k(n−r)2r
(ne
t

)tr
|Fn−r|

(
e−bn +O(z2r(3/4)z)

)
= e−Ω(n)2kn |Fn| = e−Ω(n)|(apex kF)n|

by Theorem 6.1.2. 2

6.5 Proofs for random graphs Rn

In this section we prove Theorems 6.1.4, 6.1.5 and 6.1.6. The following lemma
makes the task more straightforward. Recall that the total variation distance
dTV (X, Y ) between two random variables X and Y is the supremum over all
events A of |P(X ∈ A)− P(Y ∈ A)|.
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Chapter 6. Graphs with few disjoint cycles

Lemma 6.5.1 Let k be a positive integer. Let Rn ∈u Ex (k + 1)C; let Ra
n ∈u

apex kF ; and let Rc
n denote the graph which is the result of a construction as in

the proof of Theorem 6.1.2, where the steps are chosen uniformly at random. If
Xn and Yn are any two of these random variables, then the total variation distance
between them satisfies

dTV (Xn, Yn) = e−Ω(n). (6.8)

Proof Theorem 6.1.1 gives dTV (Rn, R
a
n) = e−Ω(n); and Theorem 6.1.2 and the

inequality (6.7) give dTV (R
a
n, R

c
n) = e−Ω(n). 2

Proof of Theorem 7.1.3 By Lemma 6.5.1, we may work with Rc
n rather than

with Rn. Let Fm ∈u Fm for m = 1, 2, . . .. If positive numbers n1, . . . , nj sum
to at most m then

∏
i ni ≤

(
m
j

)j
. Also, if vertex 1 has degree j in Fm and we

delete this vertex then we obtain a forest with at least j components. Thus by
considering the component sizes in Fm−1, and using Lemma 6.4.1

P(∆(Fm) = j) ≤ m ·
(
m

j

)j |Fm−1|
(j − 1)!

1

|Fm|

≤ j

(
m

j

)j
1

j!
since m|Fm−1| ≤ |Fm|

≤ j

(
me

j2

)j

since j! ≥ (j/e)j.

Hence P(∆(Fm) ≥ j) = e−Ω(m) if j = Ω(m/ lnm).
Recall that we let S denote the set used in the construction of Rc

n as in the
proof of Theorem 6.1.2. The key observation now is that

P(Sn 6⊆ S) ≤ P(∆(Fn−k) > n/ lnn− k),

and so by the above P(Sn 6⊆ S) = e−Ω(n). But the number of constructions with
Sn a proper subset of S is at most 2(k−1)n+o(n)|Fn−k|, which is 2−n+o(n) times the
number of constructions, and hence P(Sn = S) = 1− e−Ω(n).

We have now dealt with statement (i) in the theorem, so let us consider state-
ments (ii) and (iii). By Lemma 6.2.1, there exists δ > 0 such that the probability
that Fn−k has a matching of size at least 5δn is 1 − e−Ω(n); and given such a
matching, for each j ∈ S, the probability that j fails to be the central vertex of
at least δn otherwise disjoint triangles (disjoint from S \ {j}) is at most

P
(
Bin(d5δne, 1

4
) < δn

)
≤ e−δ2n/8 = e−Ω(n)
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6.5. Proofs for random graphs Rn

by a standard Chernoff bound (namely that if X ∼ Bin(m, p) and a ≥ 0 then
P(X ≤ mp − a) ≤ e−2a2/m). But if vertex j is the central vertex of at least δn
otherwise disjoint triangles, then any blocker not containing j must have size at
least δn. Also in this case if n is sufficiently large that δn ≥ 2k we can pick k
disjoint triangles in Rc

n one for each vertex in S. This deals with statements (ii)
and (iii).

Finally, for statement (iv), a two-sided Chernoff bound shows that the number
of constructions such that (iv) fails is 2kn−Ω(n)|Fn−k|; and it follows that (iv) holds
with probability 1− e−Ω(n). 2

In order to prove Theorem 6.1.5 we shall use Lemma 4.3 of [74]. We need some
definitions to present that lemma (in a simplified form).

Given a graph G on {1, . . . , n} let Big(G) denote the (lexicographically first)
component of G with the most vertices, and let Frag(G) denote the graph induced
on the vertices not in Big(G). Let A be a class of graphs. We say that A is bridge-
addable if given any graph in A and vertices u and v in distinct components of
G, the graph obtained from G by adding an edge joining u and v must be in A.
Given a graph H in A, we say that H is freely addable to A if, given any graph
G disjoint from H, the union of G and H is in A if and only if G is in A. We
say that the class A is smooth if A has growth constant γ and |An|

n|An−1| → γ as
n → ∞. Finally, note our standard convention that for the class A we will use
A(z) to denote its exponential generating function

∑
n≥0 |An|zn/n!.

Lemma 6.5.2 (McDiarmid [74]) Let the graph class A be bridge-addable; let
Rn ∈u An; let B denote the class of all graphs freely addable to A; and suppose
that P(Frag(Rn) ∈ B) → 1 as n → ∞. Suppose further that A is smooth, with
growth constant γ. Let C denote the class of connected graphs B. Then C(1/γ) is
finite, and

P[Rn is connected ] → e−C(1/γ) as n→∞.

Proof of Theorem 7.1.5 By Lemma 6.5.1, we may work with Ra
n, rather than

with Rn. Let A denote apex kF : thus Ra
n ∈u An. Clearly A is bridge-addable,

and the class of graphs freely addable to A is F . By Theorem 6.1.2, A is smooth,
with growth constant 2ke. By Lemma 6.5.2 above, it now remains only to show
that P(Frag(Ra

n) ∈ F)→ 1 as n→∞. We may assume that k ≥ 1.
By Theorem 6.1.2, the class apex k−1F has growth constant 2k−1e, and so the

class D of graphs with each component in apex k−1F also has growth constant
2k−1e (by the ‘exponential formula’). If G ∈ (A \ D)n and Frag(G) 6∈ F , then
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apart from a unique component of size at most bn/2c which is in A \ apex k−1F
the rest of the graph is in F ; and the number of such graphs is at most

bn/2c∑
t=0

(
n

t

)
|At| · |Fn−t| = n!(e+ o(1))n2kn/2 = 2−kn/2+o(n) · |An|.

Thus P(Frag(Ra
n) 6∈ F) = e−�(n) = o(1). 2

Lemmas 4.3 and 4.4 in [74] may be used to yield further results on Frag(Rn).

Proof of Theorem 6.1.6 By Lemma 6.5.1 it is sufficient to consider Rc
n rather

than Rn. Let H be the random graph on the set S of k vertices when constructing
Rc

n as in the step (i) of the proof of Theorem 6.1.2. It is easy to see that, with
probability→ 1 as n→∞, there are adjacent vertices in V \S which are adjacent
to each vertex in S, and thus ω(Rc

n) = ω(H) + 2 and χ(Rc
n) = χ(H) + 2, which

completes the proof. 2

6.6 No two disjoint cycles
Let Dk denote the ‘difference’ class Ex (k+1)C \ apex kF , the class of graphs with
no k + 1 disjoint cycles but with no blocker of size at most k. Our main result,
Theorem 6.1.1, shows that Dk is exponentially smaller than Ex (k+1)C. For the
case k = 1 we can say much more about D = D1, based on results from 1965 of
Dirac [39] and Lovász [67], see also Lovász [68] problem 10.4.

We need some definitions and notation. The 2-core or just core of a graph G
is the unique maximal subgraph of minimum degree at least 2, and is denoted
by core(G). Let K̃ denote the class of graphs homeomorphic to K5; let B̃ denote
the class of graphs homeomorphic to a multigraph K̃3,t formed from the complete
bipartite graph K3,t for some t ≥ 0 by possibly adding edges or multiple edges
between vertices in the ‘left part’ of size 3 (K3,0 has only a ‘left part’); and let
c̃w denote the class of graphs homeomorphic to a multigraph formed from the t-
vertex wheel Wt for some t ≥ 4 by possibly adding parallel edges to some spokes.
Let K, B, cw denote the classes of graphs G such that core(G) is in K̃, B̃, c̃w
respectively. Call the graphs in cw generalised wheels, and note that cw ⊆ D.

Theorem 6.6.1 (Dirac [39], Lovász [67])

Ex 2C = (apex F) ∪ cw ∪ B ∪ K.
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6.6. No two disjoint cycles

By Theorems 6.1.1 and 6.1.2, Ex 2C and apexF both have growth constant 2e,
and D = Ex 2C \ apexF is exponentially smaller. The next result shows that
D is dominated by the class cw of generalised wheels, and gives an asymptotic
formula for |Dn|.

Theorem 6.6.2 The classes K and B each have growth constant e, and cw has
growth constant γ satisfying e < γ < 2e. Indeed |cwn| ∼ c/n γn n!, where the
constants c and γ are given by equations (6.9) and (6.10). Thus |Dn| ∼ c/n γn n!

so that D has growth constant γ, and D \ cw has growth constant e. To 3 decimal
places we have c = 0.158 and γ = 4.346.

Proof Direct estimation shows easily that K̃ has growth constant 1. Let R
denote the class of rooted trees, so that R(z) =

∑
n≥1 n

n−1zn/n!. It is well known
that the radius of convergence ρR of R equals 1/e and R(1/e) = 1. Since graphs
in K are obtained from graphs in K̃ by substituting rooted trees for vertices, we
have K(z) = K̃(R(z)), and it follows that K has growth constant e. In a similar
way we may see that B also has growth constant e.

Now let us consider cw. We need to see how graphs in cw are formed from
simpler graphs. A ‘hairy cycle’ is a graph formed by attaching vertex-disjoint
paths to a cycle. More precisely, a connected graph is a hairy cycle if its core is a
cycle and each vertex not on the cycle has degree 1 or 2. A coloured hairy cycle is
a hairy cycle in which each vertex on the cycle is coloured black or white. Let H+

be the class of coloured hairy cycles, and let H be the class of graphs in H+ such
that at least 3 vertices on the cycle are either coloured black or have degree at
least three. We shall see later that the difference between H+ and H is negligible.

Let S denote the class of homeomorphs of a star (sometimes called ‘spiders’),
rooted at the centre vertex, with the root coloured black or white. Thus the graphs
in S correspond to a black or white root vertex and a set of oriented paths; and
so S(z) = 2zez/(1−z). Recall that the exponential generating function for cycles
is C(z) = −1

2
ln(1 − z) − 1

2
z − 1

4
z2. Graphs in H+ are obtained from cycles by

substituting a rooted graph from S for each vertex, so H+(z) = C(S(z)).
Let c̃w+ be the class of graphs G obtained by starting with a root vertex v

and a graph H ∈ H+ not containing v; and joining v to each leaf of H and to each
black vertex on the cycle in H, and then removing all colours. If the initial graph
H is in H then G ∈ c̃w (the rooting of v is irrelevant since the ‘centre’ vertex of a
wheel is unique, so we may say c̃w ⊆ c̃w+). Conversely, given a graph G in c̃w+,
with root vertex v, colour the vertices on the rim black if they are adjacent to v
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Chapter 6. Graphs with few disjoint cycles

and white otherwise, and then delete v. We obtain a graph H in H+, and if the
initial graph G is in c̃w then H ∈ H. Hence W̃ (z) = zH(z) and W̃+(z) = zH+(z).

Let cw+ be the class of graphs formed by starting with a graph in c̃w+ and
substituting rooted trees for vertices. (Thus cw+ is the class of graphs with 2-core
in c̃w+, except that we always treat the root as having degree at least 2.) Then,
cw ⊆ cw+, and arguing as earlier, W (z) = W̃ (R(z)), and W+(z) = W̃+(R(z)) =

R(z) C(f(z)) where f(z) = S(R(z)).
Observe that S(1

2
) = e > 1, so there exists x with 0 < x < 1

2
such that

S(x) = 1. Since ρR = 1/e and R(1/e) = 1, there exists r with 0 < r < 1/e such
that R(r) = x; and so

f(r) = S(R(r)) = 1. (6.9)

We have a supercritical composition C(f(z)) (see [48] VI.9 page 411). It follows
from standard results (see for example Theorem VI.3 and Example VI.11 in [48])
that

|cw+
n | ∼ c/n γn n! where γ = 1/r and c =

1

2
R(r). (6.10)

Finally, it is easy to see that H+ \H has growth constant 1, and so cw+ \ cw has
growth constant e < γ. Thus the asymptotic formula in (6.10) applies also to cw.

Numerical calculations yield c and γ as given in the theorem. Indeed S(x) = 1

for x = 0.315411 (to six decimal places); c = x/2; and R(r) = x for r = 0.230089

(to six decimal places). 2

6.7 Concluding Remarks
Our results are stated for a fixed number k of disjoint cycles, but they hold also
when k is allowed to grow with n. Indeed it is straightforward to adapt the proofs
to show that Theorem 6.1.2 holds as long as k = o(n), and Theorem 6.1.1 holds
for k = o(lnn/(ln lnn)2) (in the proof take t = ω(n) n/ lnn where ω(n) → ∞
slowly as n→∞).

It would be interesting to know more about the difference class Dk = Ex (k+
1)C \ apex kF for k ≥ 2, ideally along the lines of the results on D1 in the last
section. There are results for unlabelled graphs corresponding to the results given
here for labelled graphs – see [57].

The Erdős-Pósa theorem was extended from disjoint cycles to suitable more
general disjoint graph minors by Robertson and Seymour [88] in 1986. Our results
can be extended in this direction, and we do so in the following chapters. For
example, there is a result corresponding to Theorem 6.1.1 for ‘long’ cycles. Fix
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an integer j ≥ 3, and call a cycle long if it has length at least j. Then amongst
all graphs G on {1, . . . , n} which do not have k+1 disjoint long cycles, all but an
exponentially small proportion have a set B of k vertices such that G−B has no
long cycles, indeed in Chapter 7more general minor-closed classes are considered
and a condition for a similar result to hold is given.

There is also a version of the Erdős-Pósa theorem for directed graphs [86]:
what can be said in this case?

As well as concerning a problem which is interesting in its own right, the results
presented here are a step towards understanding the behaviour of random graphs
from a minor-closed class where the excluded minors are not 2-connected, see the
last section of [74].

Acknowledgement We would like to thank the referee of [64] for helpful
detailed comments.
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Chapter 7

Few disjoint minors in B when
ExB excludes a fan

7.1 Introduction
The Erdős-Pósa theorem was generalised in 1986 by Robertson and
Seymour [88]. Let A be a minor-closed class of graphs; that is, if G ∈ A and
H is a minor of G then H ∈ A. Then A may be written as ExB, where B consists
of the minor-minimal graphs not in A, the excluded minors of A; and B is finite
by the fundamental result in 2004 by the same authors [89]. A B-minor-blocker
for a graph G is a set B of vertices such that G−B is in ExB.

The generalisation of the Erdős-Pósa theorem is as follows. Let A be any
minor-closed class of graphs which does not include some planar graph, and let B
be its set of excluded minors, so that A is ExB. Then for each positive integer k
there is a value g(k) such that the following holds: each graph G which does
not have as a minor a graph formed from k + 1 vertex disjoint members of B
contains a set B of at most g(k) vertices such that G−B is in A (that is, B is a
B-minor-blocker)1. In symbols we have

Ex (k + 1)B ⊆ apex g(k)A.

The assumption that some excluded minor is planar cannot be dropped [88].
Of course, there is an obvious containment result corresponding to (6.1),

namely
Ex (k + 1)B ⊇ apex kA. (7.1)

1Only the case of a single excluded minor is considered in [88] but the extension is straight-
forward, see also Proposition 7.3.6 below.
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How much bigger is the left hand side than the right in this case? For which
classes B is there an ‘almost equality’ result corresponding results of Chapter 6?
Our main result provides a sufficient and essentially best possible condition for
the class Ex (k + 1)B to be ‘almost apex’.

A class of graphs is proper if it is not the class of all graphs. Following [77] we
call a minor-closed class A addable if each excluded minor is 2-connected. (Thus
each such class contains all forests.) The fan Fj is the graph consisting of a path
Pj−1 of j − 1 vertices together with a vertex joined to each vertex on this path.
Observe that the addable class F = ExC of forests does not contain the fan F3:
in contrast, the addable class ExK4 of series-parallel graphs contains all fans. The
following theorem is our central result.

Theorem 7.1.1 Let A be a proper minor-closed class of graphs, with set B of
excluded minors. If A is addable and does not contain all fans, then for each
positive integer k, as n→∞

|(Ex (k+1)B)n| = (1 + e−Θ(n))|(apex kA)n|. (7.2)

On the other hand, if A contains all fans then this result fails; and indeed there
is a constant c such that for all positive integers k and n

|(Ex (k+1)B)n| ≥ 2(k−c)n |(apex kA)n|.

Let us consider a few examples illustrating this result. Recall that the number
f(k) in the Erdős-Pósa theorem [45] must be of order k ln k. From (7.1) and
Theorem 7.1.1 it follows that by removing just k vertices we can obtain:

• a forest from almost every graph with at most k disjoint cycles (Chapter 6);

• more generally, a graph without any cycles of length at least ` from almost
every graph with at most k disjoint cycles of length at least ` (see also [26]);

• a collection of cacti (that is, a graph with each edge in at most one cycle)
from almost every graph with at most k disjoint subdivisions of the diamond
graph D = K4−e.

In contrast, by Remark 7.5.7 below, almost none of the graphs in Ex 2K4 can be
turned into a series-parallel graph by removing one vertex.

A natural partner for this theorem is an asymptotic estimate for sizes of apex
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classes. Recall that a class A of graphs has growth constant γ > 0 if

|An| = (γ + o(1))nn! as n→∞.

It is easy to see that if A has growth constant γ then apex j A has growth constant
2jγ, see for example [11, 73], but we want a more precise result. Every proper
addable minor-closed class of graphs has a growth constant γ > 0, see [74, 78].
For two sequences of reals (an) and (bn) which are positive for n sufficiently large,
we write an ∼ bn if limn→∞

an
bn

= 1. The next result extends Theorem 6.1.2 from
Chapter 6 on forests.

Theorem 7.1.2 Let A be a proper addable minor-closed class of graphs, with
growth constant γ; and let k be a fixed positive integer. Then as n→∞

|(apex kA)n| ∼ ck2
kn |An|

where ck =
(
2(

k+1
2 )γkk!

)−1

.

The above results yield asymptotic properties of typical graphs with at most
k disjoint excluded minors. We state three theorems. First we note that with
high probability k vertices really stand out – they each have degree about n/2
whereas each other vertex has much smaller degree – and they form the only
minimal blocker of sublinear size. We write Rn ∈u A to mean that the random
graph Rn is sampled uniformly from the graphs in An. Thus for Rn ∈u Ex (k +

1)B, equation (7.2) in Theorem 7.1.1 says that Rn has a blocker of size k with
probability 1− e−Θ(n): the next theorem refines this result.

Theorem 7.1.3 Let A be an addable minor-closed class of graphs which does not
contain all fans, and let B be the set of excluded minors for A. There is a constant
δ > 0 such that the following holds. Let k be a positive integer and let 0 < ε < 1

2
.

For n = 1, 2, . . . let Rn ∈u Ex (k+1)B, and let Sn be the set of vertices in Rn with
degree > εn. Then with probability 1− e−Ω(n) we have:

(i) |Sn| = k and Sn is a B-minor-blocker in Rn;

(ii) each vertex in Sn has degree between (1
2
− ε)n and (1

2
+ ε)n; and

(iii) each B-minor-blocker in Rn not containing Sn has size > δn.
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Our second theorem on random graphs Rn concerns the clique number ω(Rn) and
the chromatic number χ(Rn). Given a class A of graphs let

ω(A) = sup{ω(G) : G ∈ A} and χ(A) = sup{χ(G) : G ∈ A}.

If A is a proper minor-closed class then these quantities are finite, since the
average degree of the graphs in A is bounded, by a result of Mader [70], see
also Theorem 7.22 and Corollary 5.23 in [38]. For example, if A is ExC4 then
ω(A) = χ(A) = 3 (since each block of each graph in A is an edge or a triangle).
If also A is addable then we may use the ‘pendant appearances theorem’ of [77],
restated as Lemma 7.2.1 below, to show that for Rn ∈u A

ω(Rn) = ω(A) and χ(Rn) = χ(A) with probability 1− e−Ω(n).

Recall that the total variation distance dTV (X, Y ) between two random vari-
ables X and Y is the supremum over all (measurable) sets A of |P(X ∈ A)−P(Y ∈
A)|. The next result shows that for Rn ∈u Ex (k + 1)B as defined below, the ran-
dom pair consisting of ω(Rn) and χ(Rn) is very close in total variation distance
to a certain simply defined pair of random variables.

Theorem 7.1.4 Let A be an addable minor-closed class of graphs which does not
contain all fans, and let B be the set of excluded minors for A. Let k be a positive
integer; let the random graph R be picked uniformly from the set of all graphs
on {1, . . . , k}; and let X = ω(R) + ω(A) and Y = χ(R) + χ(A). For each n let
Rn ∈u Ex (k + 1)B. Then

dTV ((ω(Rn), χ(Rn)), (X, Y )) = e−Ω(n).

For example, for Rn ∈u Ex 3C4, both P(χ(Rn) = 4) and P(χ(Rn) = 5) are
1
2
+ e−Ω(n). Since there is only a finite range of relevant values, the result above is

saying essentially that

P (ω(Rn) = i and χ(Rn) = j) = P (X = i and Y = j) + e−Ω(n)

for each 1 + ω(A) ≤ i ≤ j ≤ k + χ(A), and the probability that the pair
(ω(Rn), χ(Rn)) does not take values in this range is e−Ω(n).

The third and final theorem on random graphs Rn presented here concerns con-
nectivity. We let frag(G) denote |V (G)| minus the maximum number of vertices
in a component of G.
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Theorem 7.1.5 Let A be an addable minor-closed class of graphs which does
not contain all fans; let B be the set of excluded minors for A; and let C(z) =∑

n≥1 |Cn|zn/n! be the exponential generating function for the class C of connected
graphs in A, with radius of convergence ρ. Given a positive integer k, for Rn ∈u

Ex (k + 1)B we have as n→∞

P(Rn is connected)→ e−C(ρ/2k)

and
E [frag(Rn)]→ (ρ/2k) C′(ρ/2k) <∞.

See Chapter 6 for numerical values for these limiting probabilities in the case
when A is the class of forests. We shall actually prove a detailed extension of this
result, Theorem 7.6.1 below, concerning the limiting distribution of the unlabelled
‘fragment’ graph formed from the vertices not in the ‘giant’ component.

We now state two key intermediate results needed to prove our main theorem,
Theorem 7.1.1. The first one extends a case of the Robertson-Seymour gener-
alisation of the Erdős-Pósa theorem. Our extension asserts that, under suitable
conditions, in graphs with few disjoint excluded minors there are small blockers
with an additional ‘redundancy’ property. We write R ∪ v and R \ v to denote
R ∪ {v} and R \ {v} respectively.

Lemma 7.1.6 Let B be a set of 2-connected graphs containing at least one planar
graph. Then for each integer k ≥ 1 there is an integer f(k) (depending on B)
such that the following holds. Each graph G in Ex (k+1)B has a B-minor-blocker
R with |R| ≤ f(k) such that for all but at most k vertices v in R, the set R \ v is
still a B-minor-blocker.

The second result concerns the existence of vertex degrees of linear order. A
class A of graphs has the no-linear-degrees property if, with Rn ∈u A as usual,
for each δ > 0 and each α we have P[∆(Rn) ≥ δn] = O(e−αn). (Here ∆(G)

denotes the maximum vertex degree in G.) Observe that if |An| = O(γnn!) for
some finite γ (as holds for every proper minor-closed class of graphs [43,83]), and
if A contains all fans, then A does not have this property: for there are 1

2
(n− 1)!

fans on [n] with vertex 1 as the centre vertex (for n ≥ 3), and so

P(vertex 1 has degree n− 1 in Rn) ≥
1
2
(n− 1)!

|An|
= Ω(n−1γ−n).
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The next lemma shows that, as long as A is not too small, the absence of some
fan yields the no-linear-degrees property.

Lemma 7.1.7 Let the class A of graphs satisfy lim inf
(

|An|
n!

)1/n
> 0, and suppose

that for some positive integer j, no graph in A contains the fan Fj+2 as a minor.
Then A has the no-linear-degrees property.

The plan of this chapter is as follows. In Section 7.2 we count apex graphs
and prove Theorem 7.1.2: this work needs no preliminaries.

Section 7.3 concerns redundant blockers. First we introduce a useful theorem
of Kloks which relates normal trees and tree decompositions (and we provide a
proof). Then we give two structural lemmas on normal trees and small ‘splitting
sets’. We use those lemmas to prove a result related to the Robertson-Seymour
generalisation of the Erdős-Pósa theorem and then we prove Lemma 7.1.6.

In the next section, Section 7.4, we consider the no-linear-degrees property
and prove Lemma 7.1.7. Following that, in Section 7.5, we complete the proof
of Theorem 7.1.1. In Section 6.5 we use our main results to prove the theorems
on properties of the random graph Rn ∈u Ex (k + 1)B. Finally, we make some
concluding remarks.

7.2 Counting apex classes
We shall use the ‘pendant appearances theorem’, Theorem 4.1 from [77], several
times, so for convenience we state here a suitable special case as a lemma.

Let H be a connected graph on the vertex set {1, . . . , h} which we consider to
be rooted at vertex 1, and let G be a graph on the vertex set {1, . . . , n}, where
n > h. Then an induced subgraph H̃ of G is a pendant appearance of H if (a)
the increasing bijection from {1, . . . , h} to V (H̃) gives an isomorphism between
H and H̃; and (b) there is exactly one edge in G between V (H̃) and the rest of
G, and this edge is incident with the vertex of H̃ with smallest label.

Lemma 7.2.1 ( [77]) Let A be a proper addable minor-closed class of graphs,
and let H be a connected graph in A. There is a constant a > 0 such that the
following holds. For Rn ∈u A, with probability 1 − e−Ω(n) Rn has at least a · n
disjoint pendant appearances of H.

Proof of Theorem 7.1.2 Since A is proper minor-closed and addable, by
Theorem 1.2 of [74] A is smooth with some growth constant γ > 0, that is
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|An|/ (n|An−1|)→ γ as n→∞. Hence

|An| ∼ (n)k γ
k |An−k|.

Let n > k, let V = {1, . . . , n}, and consider the following constructions of graphs
on V :

(1) Choose a k-set S ⊆ V , and put any graph on S (
(
n
k

)
2(

k
2) choices).

(2) Put any graph F ∈ A on V \ S ( |An−k| choices).

(3) Add the edges of any bipartite graph B with parts S and V \ S ( 2k(n−k)

choices).

Clearly each graph constructed is in (apex kA)n, and each graph in (apex kA)n is
constructed at least once. The number of constructions is(

n

k

)
2(

k
2)2k(n−k)|An−k| ∼ ck2

kn|An|

so |(apex kA)n| is at most this number.
Let us bound |(apex kA)n| from below by showing that almost all of the con-

structions yield distinct graphs. Observe that G ∈ (apex kA)n appears just once
if and only if G has a unique k-set S of vertices such that G− S is in A.

Let B be the set of excluded minors for A and fix a graph H ∈ B (which
must be 2-connected). Let h = |V (H)|. Fix a vertex v in H, and let H− be the
connected graph H − v. Let us say that a graph G ∈ (apex kA)n is good if for
some k-set S0 it satisfies the following: (a) G − S0 ∈ A; and (b) for each vertex
s ∈ S0 there are k+1 pairwise disjoint sets X1(s), X2(s), . . . , Xk+1(s) ⊆ V (G)\S0

such that each induced subgraph G[Xi(s) ∪ s] has a minor H. If G is good then
S0 must be the unique k-set S such that G − S is in A. For if S ′ is another set
such that G − S ′ is in A, and w ∈ S0 \ S ′, then S ′ must contain a vertex from
each of the sets X1(w), X2(w), . . . , Xk+1(w), and so |S ′| ≥ k + 1.

Now by Lemma 7.2.1 (the ‘pendant appearances theorem’) there exist con-
stants a > 0 and b > 0 such that the following holds for a random graph Rn ∈u A:
Rn contains at least a · n pairwise vertex-disjoint copies of H− with probability
at least 1− e−bn for n sufficiently large. If F has at least a(n− k) such copies of
H− then there are at most

2k(n−k)k P
(
Bin(da(n− k)e, 2−h+1) ≤ k

)
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ways to choose the bipartite graph B with parts S and V \S so that the resulting
graph is not good. So the number of ways to choose the graphs F and B so that
the resulting graph is constructed just once is at least

2k(n−k)|An−k|
(
1− e−b(n−k) − kP

(
Bin(da(n− k)e, 2−h+1) ≤ k

))
= 2k(n−k)|An−k|

(
1− e−Ω(n)

)
,

by a Chernoff bound. Summing over all sets S and all graphs on S we obtain

|apex k (A)n| ≥ ck2
kn|An|

(
1− e−Ω(n)

)
,

as required. 2

7.3 Redundant blockers
In this section, after some preliminary results we prove the ‘redundant blockers
lemma’, Lemma 7.1.6.

7.3.1 Treewidth and normal trees

We prove Kloks’es theorem, Theorem 5.2.3 stated in Section 5.2.2.
Proof of Theorem 5.2.3 (≥) Let G have treewidth k. We shall prove that for
any given vertex s0 ∈ V (G) there is a normal tree T for G, rooted at s0, such that

max
v∈V (G)

aT (v) ≤ k. (7.3)

Let (T0, (Vt : t ∈ T0)) be a tree decomposition for G with |Vt| = k + 1 for each
node t in T0, and with |Vs \ Vt| = 1 for each edge st in T0 (it is easy to see that
such a tree decomposition always exists, see for example [38]). We call Vt the bag
for t.

For convenience we shall consider the following small modification of T0. Pick
a node u of T0 with s0 ∈ Vu. Suppose that Vu = {s0, s1, . . . , sk}. Let u0, u1, . . . , uk
be a path on k + 1 new nodes, and identify uk with u. Let Vuj

= {s0, . . . , sj} for
each j = 0, 1, . . . , k. Let T1 be the tree we have formed from T0 by adjoining the
path, and note that (T1, (Vt : t ∈ T1)) is also a tree decomposition for G. Root T1
at u0.

The set Vu0 consists of the single vertex s0: define v(u0) = s0. For each node t
in T1 other than u0 denote its parent in T1 by t′; and let v(t) be the unique vertex
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in Vt \Vt′ . It is a property of tree decompositions that the nodes corresponding to
the bags that contain w ∈ V (G) form a subtree of T1, which we call the tree for
w. It follows that v(s) 6= v(t) for distinct nodes s and t in T1, since v(s) = v(t)

would imply that both Vs and Vt contain v(s) but there is a node on the path
from s to t in T1 whose bag does not contain v(s). Also, for each vertex v in G
there is a node t in T1 such that v(t) = v (the node t with v ∈ Vt which is nearest
to the root). Thus the map t → v(t) gives a bijection between the nodes of T1
and the vertices of G. Let T be the tree on V (G) which corresponds to T1 under
this map; that is, let T be the tree on V (G) with an edge v(t)v(t′) for each edge
tt′ in T1, rooted at s0. We claim that T is a normal tree for G and (7.3) holds.

To see that T is a normal tree for G, consider two vertices x and y which are
incomparable in T . Let tx and ty be the nodes of T1 with v(tx) = x and v(ty) = y

respectively. Then tx and ty are incomparable in T1, so the trees for x and y do
not meet in T1 and thus x and y are not adjacent in G.

It remains to prove (7.3). Fix a vertex x in G, and let tx be the node of T1 with
v(tx) = x. If y ∈ AAT (x) then y ∈ Vx\x; and so aT (x) = |AAT (x)| ≤ |Vx|−1 ≤ k,
as required.

(≤) Let T be a normal tree for G, and let maxv∈V aT (v) = k. For each vertex
x define the bag Vx as AAT (x) ∪ x. We claim that (T, (Vx : x ∈ V (T )) is a
tree decomposition of G, of width at most k. Certainly each bag Vx satisfies
|Vx| ≤ k + 1.

Let uv be an edge of G. Then u and v are comparable in T : without loss of
generality suppose that u <T v. So u ∈ AAT (v), and thus both u and v are in the
bag Vv. It remains to check that for each vertex w of G the nodes t of T whose
bag Vt contains w form a subtree of T . But if w ∈ AAT (v) then w ∈ AAT (u) for
each vertex u (other than w) on the path in T between w and v. This completes
the proof. 2

Note that the above proof yields a normal tree with the property (7.3) rooted
at an arbitrary vertex in V (G). Hence we can take the set T in (5.1) to be the
set of all normal trees on V (G) rooted at any chosen vertex r ∈ V (G).

Note also that Theorem 5.2.3 fails if we additionally require the normal trees
in T to be subgraphs of G. For example, consider a complete bipartite graph Kn,n

with n ≥ 3. The treewidth of Kn,n is n, but each normal tree T for Kn,n which is
its subgraph must be a path where the vertex w at distance 2n− 2 from the root
has aT (w) = 2(n− 1) > n.
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7.3.2 Disjoint subgraphs, splitting sets, treewidth
and blockers

In this part we work with classes H of graphs which are closed under isomorphism
but not necessarily minor-closed. Given a class H of graphs, denote by Forb (H)
the class A of all graphs G such that no subgraph of G is in H. Also, call a set B
of vertices such that G−B ∈ Forb (H) an H-subgraph-blocker.

Let T be a normal tree and let H be a connected graph on a subset of V (T ).
For a set A of vertices we say that A splits H in T if there is a vertex v ∈ A such
that either v ∈ V (H) or H contains vertices above v and below v in T .

We state and prove two general lemmas regarding graphs without k disjoint
subgraphs belonging to some class H of connected graphs. Their proofs have a
similar structure and the proof of the former is a good warm-up for the proof of the
latter. At the end of this section we also present an application of Lemma 7.3.1.

Lemma 7.3.1 Let H be a non-empty class of connected graphs, let k ≥ 0 be an
integer, let G ∈ Forb (k + 1)H, and let T be a normal tree for G. Then there is
a set A of at most k vertices such that, for each subgraph H ∈ H of G, the set A
splits H in T .

Proof We will use induction on k. The statement is trivially true for the case
k = 0, with A = ∅. Let j ≥ 1 and suppose that the statement holds for k = j− 1.
Let G ∈ Forb (j + 1)H, and let T be a normal tree for G. Denote the subtree of
T rooted at v by Tv. Let

B := {v ∈ V (G) : G[V (Tv)] has a subgraph in H}.

If B = ∅ then G ∈ Forb (H) so we may take A = ∅: thus we may assume that
B 6= ∅. Consider a vertex u ∈ B at maximum distance in T from the root r. If
u = r then B = {r} so every subgraph of G in H must contain r. In this case we
may take A = {r}: thus we may assume that u 6= r.

Let G′ = G− V (Tu) and let T ′ = T − V (Tu). Since G[V (Tu)] has a subgraph
in H, we have G′ ∈ Forb jH. Clearly, T ′ is a normal tree for G′. Apply induction
for G′ and T ′ to obtain a set of at most j − 1 vertices A′ ⊆ V (G′) such that A′

splits in T ′ each subgraph H of G′ such that H ∈ H.
Now let A = A′ ∪ u. We will show that A has the required property for G and

T . Suppose H is a subgraph of G and H ∈ H. If V (H)∩ V (Tu) is empty then H
is a subgraph of G′, so there is a vertex v ∈ A′ ⊆ A such that H either contains
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H    T w

Figure 7.1: If V (H) ∩ [V (Tu) \ u] 6= ∅ then H must have an edge between this set and
some vertex y ∈ AAT (u). In this illustration H consists of a subgraph strictly below u
together with the bold edges. In our terminology, {u} splits H in T .

v or contains vertices both above and below v in T ′ and so in T . Thus it suffices
to consider the case when V (H) ∩ V (Tu) is not empty.

We may assume that H does not contain u, as otherwise we are done. Let
w be a child of u in T such that Tw contains a vertex in H. Then since w 6∈ B,
Tw does not contain all of V (H). Since H is connected, there must be an edge
between a vertex x of H in Tw and a vertex y of H not in Tw; and since T is
normal, y must be in AAT (u). But now x is below u and y is above u in T , and
the proof is complete. 2

We now assume that the class H consists of 2-connected graphs. The following
lemma will be crucial in the proof of Lemma 7.3.8, and thus in the proof of
Lemma 7.1.6. It asserts that any H-subgraph-blocker can be transformed into
one with a specific ‘redundant’ structure by adding a few extra vertices.

Lemma 7.3.2 Let H be a non-empty set of 2-connected graphs. Let k ≥ 0, let
G ∈ Forb (k + 1)H, let Q ⊆ V (G) be an H-subgraph-blocker in G, and let T be a
normal tree for G−Q. Then there are sets S ⊆ Q with |S| ≤ k and A ⊆ V (G−Q)
with |A| ≤ k, such that for each vertex x ∈ Q\S and each subgraph H of G−(Q\x)
in H the set A splits H − x in T .

To read the last sentence, it may help to observe that, given x ∈ Q \ S and a
subgraph H of G− (Q \ x) in H, we must have V (H) ∩Q = {x}.

Proof The proof is similar to the proof of Lemma 7.3.1, except that in this
case we use induction on k to obtain the set S together with the set A.
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Clearly the case k = 0 holds, as we may take A = S = ∅. Let j ≥ 1 and
suppose that the result holds for the case k = j − 1. Let G ∈ Forb (j + 1)H, let
Q ⊂ V (G) be an H-subgraph-blocker in G, and let T be a normal tree for G−Q.
Let

B = {v ∈ V (G) : G[V (Tv) ∪ x] 6∈ ForbH for some x ∈ Q}.

If B is empty then we are done (again take A = S = ∅, and note that there are
no relevant graphs H); so assume that B is non-empty. Choose a vertex u ∈ B
with maximum distance from the root r in T .

Consider first the case u = r. Let H ∈ H be a subgraph of G with V (H)∩Q =

{x}. Since u = r, the vertices of the connected graph H − x are not contained in
V (Tv) for any subtree Tv where v is a child of r. Also, since T is normal, there
are no edges between subtrees Tv and Tv′ for distinct children of r. Hence H must
contain r. Thus each subgraph in H of G which meets Q in just one vertex must
contain r. Hence we may take S = ∅ and A = {r}.

We may now assume that u 6= r. Let z ∈ Q be such thatG[V (Tu)∪z] 6∈ ForbH.
Let G′ = G− (V (Tu) ∪ z), let Q′ = Q \ z, and let T ′ = T − V (Tu). Then clearly
G′ ∈ Forb jH, Q′ is an H-subgraph-blocker in G′, and T ′ is a normal tree for G′.
Hence we can apply the induction hypothesis to G′, Q′ and T ′. We obtain sets
S ′ ⊆ Q′ with |S ′| ≤ j − 1 and A′ ⊆ V (G′ − Q′) with |A′| ≤ j − 1, such that for
each vertex x ∈ Q′ \ S ′ if H ∈ H is a subgraph of G′ − (Q′ \ x)) then A′ splits
H − x in T ′.

Now let S = S ′ ∪ z and A = A′ ∪ u. Let x ∈ Q \ S, and suppose that the
subgraph H of G − ((Q \ x) ∪ A) is in H. Note that u ∈ A so u 6∈ V (H). If
V (H) ∩ V (Tu) = ∅ then H is a subgraph of G′ − ((Q′ \ x) ∪ A′): hence there is
a vertex v ∈ A′ ⊆ A for which H has vertices above and below v in T ′ and so in
T . This leaves the case that V (H) ∩ V (Tu) 6= ∅. Suppose that H has no vertex
above u in T : we want to find a contradiction.

Now V (H − x) cannot be contained in V (Tv) for any subtree Tv where v is a
child of u, as this would imply that v ∈ B which would contradict our choice of
u. But as in the case u = r, since T is normal the connected graph H − x cannot
have vertices in subtrees Tv and Tv′ of Tu where v and v′ are distinct children of u.
Thus we have a contradiction, and the proof is complete. 2

A variant of the following lemma was first proved by Robertson and Sey-
mour [88] in order to prove the generalised Erdős-Pósa theorem. We state it in
a more general form (proved by Thomassen [98]) and give a simple proof using
Theorem 5.2.3 and Lemma 7.3.1.
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Lemma 7.3.3 LetH be a class of connected graphs and let k and w be nonnegative
integers. If G ∈ Forb (k+1)H and tw(G) ≤ w then G has an H-subgraph-blocker
of size at most k(w + 1).

Proof of Lemma 7.3.3 Suppose G ∈ Forb (k + 1)H and tw(G) ≤ w. By
Theorem 5.2.3, there is a normal tree T for G such that maxv∈V aT (v) ≤ w. Let
A be a set of at most k vertices as in Lemma 7.3.1, and let

B = A ∪ (∪v∈AAAT (v)) .

Observe that |B| ≤ k(w + 1). We claim that B is an H-subgraph-blocker in G.
For suppose it is not, and let H ∈ H be a subgraph of G − B. By Lemma 7.3.1
there is a vertex v ∈ A such that H contains vertices both above v and below v in
T (note that v 6∈ V (H) since A∩V (H) = ∅). Since H is connected, it has an edge
xy with x above v and y below v. But then x ∈ AAT (v) ⊆ B, a contradiction. 2

7.3.3 Treewidth and blockers: a more general case

Lemma 7.3.3 is what we need in this paper, to prove Lemma 7.1.6; but it does
not apply to disconnected excluded subgraphs. We include for completeness a
treatment of this case, and give a more general version of Lemma 7.3.3.

We give two preliminary lemmas. The proof of the first one uses induction
much as in [88], but as in the proof of Lemma 7.3.1 we use normal trees. For any
graph H we let 0H denote the graph with no vertices: thus for any graph H we
have G ∪ 0H = G.

Lemma 7.3.4 For t ≥ 1 let H1, H2, . . . , Ht be connected graphs. Let
k1, k2, . . . , kt be nonnegative integers, not all zero. If

G ∈ Ex (k1H1 ∪ k2H2 ∪ · · · ∪ ktHt)

and T is a normal tree for G, then there is a set A ⊆ V (G) and an integer j with
kj ≥ 1, such that |A| ≤ (

∑
i ki)− 1 and A splits in T each connected subgraph of

G with a minor Hj.

Proof We use induction on
∑

i ki. If
∑

i ki = 1, then G ∈ ExHj for some j: so
we may take A = ∅ and we are done.

Let s ≥ 2, suppose we have proved the hypothesis for each sequence k′1, k′2, . . . , k′t
with

∑
i k

′
i < s, and let

∑
i ki = s. We proceed as in the proof of Lemma 7.3.1.
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Let B be the set of all vertices v of T such that G[V (Tv)] 6∈ ExHi for some i with
ki ≥ 1, and let u be a vertex in B with maximum distance from the root.

Suppose first that u is the root of T . Then we may take A = {u} as u must
be in every subgraph of G with a minor in {H1, . . . , Ht}. So we may assume that
u is not the root of T .

Let j be such that kj ≥ 1 and G[V (Tu)] 6∈ ExHj. Write T ′ = T − Tu and let
k′i = ki, for i 6= j and k′j = kj − 1. Since

G′ := G− Tu ∈ Ex (k′1H1 ∪ · · · ∪ k′tHt) ,

T ′ is a normal tree for G′ and
∑

i k
′
i = s−1, we may apply induction to find some

l with k′l ≥ 1 and a set A′ of at most s−2 vertices that splits in T ′ each connected
subgraph H of G′ with a minor Hl. We claim that A = A′ ∪ u splits in T every
connected subgraph of G with a minor Hl. As in the proof of Lemma 7.3.1, every
connected subgraph H of G with a minor Hl such that H is not a subgraph of G′

and u 6∈ V (H) must have vertices both in V (Tu) and V (G′) (or otherwise we get
a contradiction to the choice of u). But then {u} splits in T each such subgraph
H. 2

Lemma 7.3.5 Let A be a minor-closed class of graphs (perhaps the class of all
graphs), and let H consist of the graphs not in A together with an arbitrary class
of connected graphs. Let s be the sum over the disconnected excluded minors M
for A of the number κ(M) of components (so 0 ≤ s < ∞). Let k ≥ 0 be an
integer, let G ∈ Forb (k + 1)H, and let T be a normal tree for G. Then there is
a set A of at most s(k + 1) + k vertices such that for each subgraph H ∈ H of G
the set A splits in T some component of H.

Proof Let H̃ consist of the connected graphs in H. By Lemma 7.3.1, there is a
set A0 ⊆ V (G) with |A0| ≤ k such that A0 splits in T each subgraph H ∈ H̃ of
G.

Suppose that A has j ≥ 0 disconnected excluded minors Gi, i = 1, . . . , j. Let
i ∈ {1, . . . , j}. Since G ∈ Ex (k+1)Gi, by Lemma 7.3.4, there is a set Ai ⊆ V (G)

with |Ai| ≤ κ(Gi)(k + 1) − 1 such that Ai splits in T some component of each
subgraph G′ of G which has a minor Gi, that is, of each G′ in the complement
(ExGi)

c of ExGi.
Finally, observe that H is the union of H̃ and ∪i(ExGi)

c, and so we may form
a set A as required from the union of the j + 1 sets Ai. 2
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Now from the above lemma and Theorem 5.2.3 following the lines of the proof
of Lemma 7.3.3 we have:

Proposition 7.3.6 Let A be a minor-closed class of graphs and let H consist of
the graphs not in A together with an arbitrary class of connected graphs. Then for
each pair of non-negative integers k and w there is an integer f(k, w) such that if
G ∈ Forb (k + 1)H and tw(G) ≤ w then G has an H-subgraph-blocker of size at
most f(k, w).

7.3.4 Proof of Lemma 7.1.6

We introduce the following fundamental result, Theorem (2.1) of Robertson and
Seymour [88].

Lemma 7.3.7 For every planar graph H, there is a number α(H) such that every
graph with no minor H has treewidth at most α(H).

We now prove the redundant blockers lemma, Lemma 7.1.6 (see Figure 2),
quickly using the above results. We give a slightly more general version first.

Lemma 7.3.8 Fix a 2-connected planar graph H0. Then for each integer k ≥ 1

there is an integer f(k) such that the following holds.
Let H be a set of 2-connected graphs such that H contains H0 and all 2-

connected graphs contractible to H0. Then each graph G in Forb (k + 1)H has an
H-subgraph-blocker R with |R| ≤ f(k) such that for all but at most k vertices v
in R, the set R \ v is still an H-subgraph-blocker.

Proof of Lemma 7.3.8 If a graph contains H0 as a minor then it contains
a 2-connected subgraph contractible to H0. Thus Forb kH ⊆ Ex kH0 for each
positive integer k.

Let k ≥ 1 and let G ∈ Forb (k + 1)H. Then G ∈ Ex (k + 1)H0 and (k + 1)H0

is planar; so by Lemma 7.3.7, G has treewidth at most w for some constant w =

w(k,H0). Therefore by Lemma 7.3.3 there is a positive integer g(k) (depending
only on k and H0) such that each graph in Forb (k + 1)H has an H-subgraph-
blocker Q of size at most g(k).

Now G−Q ∈ ForbH ⊆ ExH0. Using Lemma 7.3.7 again, we see that G−Q
has treewidth at most α for some constant α = α(H0); and so it has a normal
tree T with aT (v) ≤ α for each vertex v ∈ V (T ) by Theorem 5.2.3. Let A and S
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S
R

Figure 7.2: For example, it follows easily from Lemma 7.1.6 that we can always decom-
pose a graph G in Ex 4D into a set R of a constant size and a collection of cacti, where
each vertex in R, except at most 3 of them, can have at most 2 edges to each component
of G−R. (Here D is the diamond graph K4 − e.)

be sets obtained in Lemma 7.3.2 for k, G, Q and T . Define R ⊆ V (G) by

R := Q ∪ A ∪

(∪
v∈A

AAT (v)

)
.

Note that |R| ≤ f(k) := g(k) + (α + 1)k. We want to show that R − u is still
an H-subgraph-blocker for G for each vertex u ∈ R \ S. This is clearly true for
u ∈ R \Q; so assume that u ∈ Q \ S, and some subgraph H of G− (R \ u) is in
H. But then H is a subgraph of G − ((Q \ u) ∪ A), and so by Lemma 7.3.2, for
some vertex w ∈ A, H must have vertices both above and below w in T . Hence
the connected subgraph H − u of G − R has vertices both above and below w

in T . But by the definition of normal tree, AAT (w) is a separating set for the
vertices below w and the rest of T , so H − u contains a vertex in AAT (w) ⊂ R, a
contradiction. 2

Proof of Lemma 7.1.6 Let H be the class of all 2-connected graphs con-
tractible to a graph in B. Then ForbH = ExB, and more generally Forb (k +

1)H = Ex (k + 1)B for each k ≥ 0. Also, a B-blocker is the same as an H-
subgraph-blocker. Now the result follows directly from Lemma 7.3.8. 2

7.4 Graph classes not containing all fans
In this section, after a preliminary lemma on coloured forests, we prove Lemma 7.1.7
on the no-linear-degrees property.

172



7.4. Graph classes not containing all fans

For graphs where each vertex is coloured black or white, we define the contrac-
tion operation as usual, but colour black each vertex resulting from contracting
a connected graph which contains a black vertex. A forest is rooted if in each
component tree a vertex is distinguished as the root: often we will think of the
edges as being oriented away from the root. Let us say that a class A of graphs
is very small (or A has growth constant 0) if

(
|An|
n!

) 1
n

→ 0 as n→∞.

For example, the class of graphs with no path of length j is very small [11]: we
shall use this result in the proof of the next lemma. Recall that the path Pj has
j vertices.

Lemma 7.4.1 Fix an integer j ≥ 2 and 0 < α ≤ 1. Let F ′ be the class of
black/white coloured rooted forests such that no forest in F ′ has a black path Pj

as a minor, and each forest in F ′
n has at least αn black vertices. Then F ′ is very

small.

Proof Call a colouring of a forest as above good, and call a good colouring (black-
) maximal if there is no vertex coloured white such that recolouring it black gives
another good colouring. Let F̂ be the set of all possible (unrooted) forests F
together with a specified maximal good colouring of F . Since |F ′

n| ≤ 4n|F̂n|, it
suffices for us to prove that F̂ is very small. (For an n-vertex forest, there are at
most 2n choices for the colouring and at most 2n choices for the roots.)

Let F ∈ F̂n. Observe that trimming off a white leaf yields another coloured
forest in F̂ . The core of F is the coloured forest obtained by repeatedly trimming
off white leaves until none remain. Thus core(F ) is in F̂n1 for some n1 ≥ αn.

The key observation is that in core(F ) each white vertex has degree 2. For
suppose that vertex v is white and has degree at least 3. Let us change the colour
of v to black. By the maximality of the colouring, core(F ) now has a black Pj

minor. There must be a vertex w of the minor to which v is contracted; and
if Tv denotes the tree in core(F ) containing v which is contracted to w, then
with the original colour of v each vertex in Tv is white (for otherwise the colour
change would not have mattered). Thus there are at least 3 edges between Tv and
subtrees of the rest of core(F ), which each contain a black vertex. At least one
of these subtrees must be entirely deleted when the minor is formed (since the
minor has maximum degree 2): but if instead we added such a subtree to Tv and
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contracted all these vertices to form w then w would be black even without the
colour change. Thus core(F ) has a black minor Pj with the original colouring,
and this contradiction shows that indeed each white vertex in core(F ) has degree
2.

We have now seen that each coloured forest F ∈ F̂ may be obtained from an all
black forest with no path Pj by subdividing edges using white vertices, and then
attaching pendant trees using more white vertices (to reverse the initial operation
of repeatedly trimming off white leaves). Thus the following constructions yield
each member of F̂n at least once.

1. Choose a set V1 ⊆ V = [n] of n1 ≥ αn vertices; colour each of these vertices
black; and choose a forest F ′ on V1 which does not contain a path Pj.

2. Choose a set V2 ⊆ V \ V1 of n2 ≥ 0 vertices; colour each of these vertices
white; and use them to subdivide edges in F ′.

3. Take the remaining set V3 = V \ (V1 ∪ V2) of vertices; colour each of these
vertices white; and use them to form n1 + n2 trees Tx rooted at the vertices
in V1 ∪ V2.

4. The edges of the coloured forest F are those of the subdivided forest F ′

together with those of the trees Tx.

Let us bound the number of constructions. For step 1, let f̃n1 denote the number
of forests on [n1] which do not contain a path Pj. Now consider step 2, after we
have chosen the set V2. List the t ≤ n1 − 1 edges of F ′ in some fixed order, with
a fixed orientation: then we see that the number of ways to use the n2 vertices in
V2 to subdivide the edges of F ′ is (n2+ t− 1)!/(t− 1)! = (n2+ t− 1)n2 ≤ nn2 . For
step 3, recall that the number of forests on the vertex set V containing exactly
n1 + n2 rooted trees with given roots is (n1 + n2)n

n−n1−n2−1 ≤ nn−n1−n2 .
From the above we see that in total the number of constructions is at most

n∑
n1=dαne

(
n

n1

)
f̃n1

n−n1∑
n2=0

(
n− n1

n2

)
nn2nn−n1−n2

= (2n)n
n∑

n1=dαne

(
n

n1

)
f̃n1(2n)

−n1 .

Now let ε > 0, and suppose that ε ≤ 1
e
so that

∑
m≥0(eε/2)

m ≤ 2. From [11],
there is a m0 such that for each m ≥ m0 we have f̃m ≤ (εm)m. Hence for all n
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sufficiently large that αn ≥ m0, the number of constructions is at most

(2n)n
n∑

n1=dαne

(
n

n1

)
(εn1)

n1(2n)−n1

≤ (2n)n
n∑

n1=dαne

(
ne

n1

· εn1

2n

)n1

≤ (2n)n
∑

m≥dαne

(eε/2)m ≤ 2 · (21−α(eε)αn)n.

This completes the proof, since we may make 21−α(eε)α arbitrarily small by choice
of ε. 2

We have already seen that each proper minor-closed class of graphs that con-
tains arbitrarily large fans fails to have the no-linear-degrees property. We now use
Lemma 7.4.1 to prove Lemma 7.1.7, which says that excluding some fan ensures
that a suitable class has the no-linear-degrees property.

Proof of Lemma 7.1.7 For a class A and a random graph Rn ∈u A the
no-linear-degrees property is equivalent to the requirement that

P(d(v0) ≥ cn) = o(e−an) for every c, a > 0

where v0 is vertex 1 and d(v0) is its degree in the graph Rn.
Let j be a positive integer, and suppose that no graph in A contains as a minor

the fan Fj+2. Fix c ∈ (0, 1]. We are going to bound the number of graphs in An

such that d(v0) ≥ cn.
Consider a graph G ∈ An. Let the least vertex in each component be the root

vertex of that component (so v0 is a root). Perform a depth-first search starting
from each root vertex in G. Recall that the DFS procedure produces a spanning
forest F of G where we consider each tree as rooted as above; also each tree is a
normal subtree of its component.

Let Tr be a tree component of F , with root r; let v be any vertex in Tr; and
let Tv be the subtree of T rooted at v. Observe that such a subtree Tv can have
edges (in G) to at most j ancestors of v (from Tr), since otherwise we could form
a minor Fj+2 by contracting Tv into a single vertex and considering the path from
v to the root of the tree. (Note also that by Theorem 5.2.3 this establishes that
A has treewidth at most j, though we will not use this fact.)

Now colour black each vertex of F which is adjacent in G to v0, and colour
each other vertex (including v0) white. We have described G as a forest of rooted
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trees on n vertices coloured black or white, with some additional edges (the ‘back
edges’ from the DFS).

Consider the rooted forest F̄ = F − v0 (set the nodes that were adjacent to
v0 in F as roots of the newly created trees). Note that F̄ can have no black path
Pj+1 as a minor, and if d(v0) ≥ cn then there are at least cn black vertices in F̄ .
Thus by Lemma 7.4.1 the number of all possible rooted forests F̄ is o(εnnn) for
every ε > 0. But since there are at most 2n−1 ways to add the node v0 back to
the forest F̄ to obtain a valid forest F , the number of different forests F we can
get is also o(εnnn) for all ε > 0.

From the rooted forests F on [n] we can construct the graphs in An by adding
some DFS back edges. Let us show that there are not too many ways to do that.
We shall see that, given G ∈ An and a DFS spanning forest F for G, we can record
a small amount of information at the vertices and edges of F such that from F and
this information we can reconstruct G. The total amount of information recorded
is at most (2j + 1)n bits.

Assuming that we are able to do that, then the number of constructions on n
vertices which yield a graph with d(v0) ≥ cn is at most |F ′

n| ·2n ·2(2j+1)n = o(εnn!)

for any ε > 0. But |An| = Ω(γnn!) for some γ > 0. Therefore, for any ε > 0

P(d(v0) ≥ cn) ≤ εn

for n sufficiently large. Thus the following lemma will complete the proof of
Lemma 7.1.7. 2

Lemma 7.4.2 Let j be a positive integer and suppose that no graph in A contains
as a minor the fan Fj+2. Given a graph G ∈ A and a DFS spanning forest F for
G, we can uniquely describe G using F together with j bits for each vertex of F
other than a root, and j+1 bits for each arc of F other than those leaving a root.

Proof of Lemma 7.4.2 Consider a rooted tree T in F . For each vertex x

other than the root, let Lx be the list of the ancestors of x (in F ) other than the
parent of x which have an edge (in G) to Tx, listed in order of increasing distance
from the root. Thus Lx has length between 0 and j. Let Bx be the binary j-tuple
bx(1), . . . , bx(j), where bx(i) = 1 if the list Lx has length at least i and its ith
member is adjacent to x, and otherwise bx(i) = 0.

Also, for each edge xy of T oriented away from the root where x is not the root,
let Cxy be the binary (j + 1)-tuple cxy(1), . . . , cxy(j + 1) defined as follows. Let L
be the list Lx with the parent of x appended at the end; and for i = 1, . . . , j + 1
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let cxy(i) = 1 if the list L has length at least i and its ith member has a non-tree
edge to Ty, and otherwise let cxy(i) = 0.

Given G and F we can of course construct all the lists Lx and the tuples Bx

and Cxy. But conversely, given F and the tuples Cxy we can construct the lists
Lx and then we can use the tuples Bx to recover G.

We do this as follows. For each tree T in F , we construct the lists Lx by
moving one step at a time away from the root. If x is a child of the root then
Lx is empty. Now let xy be an edge in T oriented away from the root where x
is not the root, and suppose that we know Lx. We form Ly as follows. Let L be
Lx with the parent of x appended at the end. For i = 1, . . . , j + 1, if cxy(i) = 1

we keep the ith member of L, otherwise we delete it, maintaining the same order:
this gives Ly.

Thus we can determine each list Lx for x not the root; and now we can use F
to determine the parent of x, and Lx and Bx to determine all its other ancestors
to which it is adjacent. Thus we can determine G. 2

7.5 Proof of Theorem 7.1.1
In the last two sections we proved Lemma 7.1.6 and Lemma 7.1.7. In this sec-
tion, after a further few preliminary lemmas we use the earlier results to prove
Theorem 7.1.1.

7.5.1 Minors, paths and pendant subgraphs

The following lemma is ‘nearly obvious’ but we spell out a proof.

Lemma 7.5.1 Let the graph G have H as a minor. Then G has a subgraph H̃

which contracts to a graph isomorphic to H, and a family (Q(xy) : xy ∈ E(H))

of paths in H̃, which partition the edges of H̃ and have no internal vertices in
common.

Proof Since G has H as a minor, there is a family (T 0
x : x ∈ V (H)) of disjoint

(that is, pairwise vertex-disjoint) subtrees of G, such that for each edge xy ∈ E(H)

there is at least one edge uv in G between the vertices of T 0
x and T 0

y . Form a set
D ⊆ E(G) by picking exactly one such edge uv for each edge xy ∈ E(H). Call
these the ‘cross edges’.

Let x ∈ V (H) and consider the tree T 0
x . Repeatedly remove leaves that are

not incident with any cross edge, until no such leaves are left or the tree has
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just one vertex. The resulting tree Tx has the property that if it has at least
two vertices then each leaf of Tx is incident with a cross edge. Do this for each
vertex x ∈ V (H), and let the subgraph H̃ of G be the graph consisting of all the
trees Tx together with the edges in D. If we contract each of these trees Tx to a
single vertex we obtain a copy of H. Thus it will suffice to show that there is an
appropriate family of paths for H̃; and so the following claim will complete the
proof.

Claim There is a family (Q(uv) : uv ∈ D) of pairwise internally vertex-disjoint
paths such that (a) for each edge uv in D, Q(uv) contains the edge uv and if uv
has one end vertex in Tx and one in Ty then so does Q(uv); and (b) each edge in
the trees Tx is contained in one of the paths.

We will prove the claim by induction on |D|. It is trivial if |D| = 0, so suppose
that |D| ≥ 1 and we know the result for smaller values. Let uv ∈ D and suppose
that u is in Tx and v is in Ty (and so x 6= y). We form the path Q(uv) as follows.

If Tx consists just of u, or u is not a leaf of Tx, or u is incident with another
edge in D, then let P (u) be the trivial path consisting just of u. Otherwise u is
a leaf of Tx and Tx has at least two vertices, and u is not incident with any edge
in D \ uv: in this case we let the path P (u) be the shortest path in Tx between
u and a vertex u′ such that either u′ is incident with an edge in D \ uv or u′ has
degree > 2 in Tx. Similarly we form a corresponding path P (v) in Ty. Let Q(uv)
be the path formed by concatenating P (u), uv and P (v).

Now we remove uv from D, and from Tx and Ty we remove the edges and
internal vertices of Q(uv). It is easy to see that may use the induction hypothesis
to obtain a family of paths for the new configuration, and then add the path
Q(uv) to complete the proof of the claim, and thus of the lemma. 2

The next lemma follows quickly from the last one.

Lemma 7.5.2 Let the graph G have H as a minor and let W ⊆ V (G). Then G

has a subgraph H̃ which contracts to a graph isomorphic to H, and a family F of
paths in H̃ such that

(a) the paths in F partition the edges of H̃,

(b) no path in F has an internal vertex in W , and

(c) |F| ≤ |E(H)|+ |W |.
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Proof By the last lemma, G has a subgraph H̃ which contracts to a graph
isomorphic to H, and a family (Q(xy) : xy ∈ E(H)) of paths in H̃, which partition
the edges of H̃ and have no internal vertices in common.

If a vertex w ∈ W is internal for a path P in this family then P is the only such
path for w, and we form two new paths P ′ and P ′′ by ‘cutting’ P at w (so that
both of the new paths have w as an endpoint and not as an internal vertex). We
do this for each vertex w ∈ W , and thus obtain a family F of paths as required.

2

We call a connected subgraph H of G a pendant subgraph if there is exactly
one edge of G between V (H) and V (G) \ V (H). From the last lemma we deduce:

Lemma 7.5.3 Let G = (V,E) be a graph, let W ⊂ V , let G′ = G−W and let
P be a collection of pairwise vertex-disjoint pendant subgraphs of G′. Suppose the
graph H has no isolated vertices, and let G have H as a minor. Then G has a
subgraph H̃ which contracts to a graph isomorphic to H, and which has vertices
in at most 2(|E(H)|+ |W |) of the subgraphs in P.

Proof Invoke Lemma 7.5.2 to obtain a family F of at most |E(H)|+ |W | paths
where no path has an internal vertex in W and

∪
P∈F P yields a graph which

contracts to a graph isomorphic to H.
We claim that any path P ∈ F can touch at most 2 distinct pendant subgraphs

in P . Clearly the lemma will follow from this claim.
To establish the claim, assume for a contradiction that some path P in F

shares vertices with each of 3 distinct subgraphs C1, C2 and C3 in P . Since P
does not have internal vertices in W , we may assume it is entirely contained in G′

(otherwise consider P less any vertices in W ). Travel along P and without loss of
generality suppose that C1 is visited first and C2 is visited second. But in order
to visit C2 after C1 we must cross the bridge e connecting C2 to the rest of G′,
and there is no path in G′ − e from V (C2) to V (C3), so P cannot reach C3. 2

7.5.2 Completing the proof of Theorem 7.1.1

Lemma 7.5.4 Let A be an addable minor-closed class of graphs such that its
family B of excluded minors includes at least one planar graph. Assume that A
has the no-linear-degrees property. Then for each positive integer k, we have

|(Ex (k+1)B)n| = (1 + e−Ω(n))|(apex kA)n|.
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The idea of the proof is similar to that of the proof of Theorem 6.1.1 in Chapter 6.
We first describe constructions which yield every graph in (Ex (k+1)B)n at least
once (as well as other graphs); we then show that there are few ‘unrealistic’
constructions; and finally we show that few ‘realistic’ constructions yield a graph
not in apex kA.

Proof of Lemma 7.5.4 Fix a positive integer k. By Lemma 7.1.6, there is a
positive integer r such that the following holds. For each graph G in Ex (k + 1)B
with at least r vertices, there is a B-blocker R of size r and a subset S of R of
size k such that R \ v is still a B-blocker for each vertex v ∈ R \ S.

Let n > r. By the above, the following constructions yield every graph in
(Ex (k + 1)B)n at least once (as well as other graphs).

(i) Choose an r-subset R ⊆ V , put any graph on R, and choose a k-subset S ⊆ R

(
(
n
r

)
2(

r
2)
(
r
k

)
= O(nr) choices)

(ii) Add the edges of any bipartite graph H(S, V \ R) with parts S and V \ R
( 2k(n−r) choices)

(iii) Put any graph F in A on V \R ( |An−r| choices)

(iv) Add the edges of any bipartite graph H(R \ S, V \R) with parts R \ S and
V \R, subject to the restriction that for each v ∈ R\S the induced subgraph
on V \ (R \ v) is in A.

By the graph minors theorem of Robertson and Seymour [89], B is a finite set
of j ≥ 1 graphs H1, . . . , Hj; and by assumption each Hi is 2-connected. Let m be
the maximum number of edges in these graphs Hi.

Pick distinct vertices v1 and r1 in H1, and consider the connected graph H1−v1
in A. Write h1 = |V (H1)|. From this graph, form the graph H̃ ∈ A by attaching
a path of length h1 to r1; let vertex r the other end of the path; and let H̃ be
rooted at r. Call the part corresponding to H1 − v1 in a pendant appearance of
H̃ a spike (following the terminology of Chapter 6) Our construction ensures that
spikes must be disjoint.

By Lemma 7.2.1 (the ‘pendant appearances’ theorem of [77]), there exist con-
stants a > 0 and b > 0 such that (assuming n is sufficiently large) the number
of graphs F ∈ An−r with less than an spikes is at most e−bn|An−r|. We define
further constants in terms of a and b. By a Chernoff bound, there is a constant
c > 0 such that

P
(
Bin(dane, 2−h1+1) < 2m+ 2r

)
= O(e−cn).
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Let η, 0 < η < 1
2
be sufficiently small that(

e

η

)ηr

< emin{b,c}.

Let α be sufficiently large that eα > 2r, and let t = t(n) = dηne.
Call a construction realistic if there are at most t edges between each vertex

v ∈ R \ S and the vertices in V \ R; and unrealistic otherwise. Let C(n) denote
the set of graphs in An−r+1 such that vertex n−r+1 has degree > t. Since A has
the no-linear-degrees property,

|C(n)| = O(e−αn) |An|.

For a given choice of R and S, the number of graphs F̃ on V \ S such that the
induced subgraph F̃ [R \ S] is some fixed graph, and some vertex in R \ S has > t

edges to the vertices in V \R is at most

(r − k) |C(n)| 2(r−k−1)(n−r).

Hence the number of unrealistic constructions is at most

O(nr) · 2k(n−r) 2(r−k−1)(n−r)|C(n)| ≤ O(nr) · 2rn|An| e−αn = |An| e−Ω(n).

Thus there are few unrealistic constructions so that we may ignore them further.
Note that in realistic constructions, the number of choices for the bipartite graph
H(R \ S, V \R) in step (iv) is

(
t∑

i=0

(
n− r
i

))r−k

≤
(
n

(
n

t

))r

≤ nr
(ne
t

)tr
≤ nr

(
e

η

)(ηn+1)r

.

Let us bound the number of realistic constructions which yield a graph G in
Ex (k+1) B\apex kA. For each such construction, the graph G[V \S]must contain
a minimal subgraph K which contracts to an excluded minor Hi for some i ∈
{1, . . . , j}; and by Lemma 7.5.3, such a subgraphK can touch at most 2(m+r−k)
spikes.

Now suppose that each vertex v in S is adjacent to all h1 − 1 vertices of each
spike in a set Av of at least 2m+2r− k spikes. Since the graph K does not touch
at least 2m + 2r − k − 2(m + r − k) = k spikes in Av for each vertex v ∈ S, we
can pick a spike in Av (for example, greedily) for each v ∈ S to form k disjoint
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subgraphs isomorphic to H1 with none of them touching the graph K.
But now there are at least k + 1 disjoint excluded minors in G, contradicting

G being in Ex (k+1)B. Hence, for at least one vertex v in S, v must be adjacent
to all h1 − 1 vertices of at most 2m+ 2r − k − 1 < 2m+ 2r spikes.

Therefore, given any choices at steps (i),(iii) and (iv), if F has z spikes then
the number of choices at step (ii) to obtain a graph in Ex (k + 1)B \ apex kA is
at most

2k(n−r) k P
(
Bin(z, 2−h1+1) < 2m+ 2r

)
.

Hence, by considering separately the realistic constructions which yield a graph
in Ex (k + 1)B \ apex kA such that F has < an spikes and those ones where F
has ≥ an spikes, we see that the number of such constructions is at most

O(n2r) 2kn
(
e

η

)ηrn

|An−r|
(
e−bn + e−cn

)
= e−Ω(n) 2kn |An−k| = e−Ω(n) |(apex kA)n|.

since |(apex kA)n| ≥ 2k(n−k)|An−k|. This completes the proof of the lemma. 2

The following two simple facts will be useful.

Lemma 7.5.5 Let A be a proper minor-closed class of graphs, with set B of
excluded minors, such that no graph in B has a component which is a path. Let k
be a positive integer. Then there is a positive integer t such that for all n ≥ t

(Ex (k + 1)B \ apex kA)n ≥ n!/(2 · t!).

Proof We need only show that for some t ≥ 3, the graph Kt is in Ex (k + 1)B \
apex kA, since then the graphs formed fromKt together with a disjoint path would
also be in this class.

Let h be the least number of vertices in a graph in B, so h ≥ 3. Let t = h+ k,
and note that t < (k + 1)h, since (k + 1)h− (h+ k) = k(h− 1) > 0. Then Kt is
not in apex kA because removing k vertices from Kt leaves a copy of Kh; and Kt

cannot contain a minor in (k + 1)B since t < (k + 1)h. 2

Lemma 7.5.6 Let A be a proper minor-closed class of graphs with set B of
excluded minors, and suppose that A ⊇ apex l C for some class C of graphs and
some positive integer l. Then Ex (k + 1)B ⊇ apex (k+1)(l+1)−1 C.

Proof Let G ∈ apex (k+1)(l+1)−1 C; and suppose for a contradiction that G has
k + 1 disjoint subgraphs H1, . . . , Hk+1 each with a minor in B. Let S ⊆ V (G) be
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a set of size at most (k+1)(l+1)− 1 such that G−S ∈ C. Since apex l C ⊆ ExB,
each graph Hi must have at least l + 1 vertices in S; and since the graphs Hi are
pairwise disjoint we must have that |S| ≥ (k + 1)(l + 1), contradicting our choice
of S. 2

Now Theorem 7.1.1 will follow easily.

Proof of Theorem 7.1.1 For the first part, suppose that A is addable and
does not contain all fans. Then directly from Lemmas 7.1.7 and 7.5.4, for each
positive integer k, as n→∞

|(Ex (k+1)B)n| = (1 + e−Ω(n))|(apex kA)n|.

But now Lemma 7.5.5 allows us to replace the e−Ω(n) by e−Θ(n).
Let us prove the second part of the theorem. Suppose that A contains all fans.

Let P denote the class of all paths, so A ⊇ apexP . Then by Lemma 7.5.6 we
have Ex (k + 1)B ⊇ apex 2k+1P . So, by counting just the graphs where the first
2k + 1 vertices form an apex set,

|(Ex (k + 1)B)n| ≥ |(apex 2k+1P)n|

≥ 2(2k+1)(n−2k−1)1

2
(n− 2k − 1)!

≥ n! 2(2k+1)n−o(n).

But since A is proper minor-closed, it is small [83] (see [43] for another proof);
that is, |An| = O(γnn!) for some γ. So

|(apex kA)n| ≤
(
n

k

)
2kn|An−k| = O((2kγ)nn!).

Therefore
|(Ex (k + 1)B)n|/|(apex kA)n| ≥

(
2k+1−o(1)/γ

)n
and we have completed the proof. 2

Remark 7.5.7 If the class A contains an apex class larger than apexP we can
obtain a better lower bound than in the last part of the proof above. For example,
the class ExK4 of series-parallel graphs contains apexF , so for each fixed k ≥ 1,
by Lemma 7.5.6, |(Ex (k + 1)K4)n| ≥ 2(2k+1)nen−o(n)n!. Also ExK4 has growth
constant γ ≈ 9.07 [11], and 2k+1e ≥ 4e ≈ 10.87 so 2k+1e > γ; and hence the
graphs on [n] in apex k (ExK4) form only an exponentially small proportion of
those in Ex (k + 1)K4.
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7.6 Properties of the random graphs Rn

In this section we use the ‘counting’ results Theorems 7.1.1 and 7.1.2 to prove
Theorems 7.1.3 and 7.1.4, as well as Theorem 7.6.1 which extends Theorem 7.1.5.

LetMk be the multiset of graphs produced by the constructions in the proof
of Theorem 7.1.2. For graphs Rn ∈u Ex (k + 1)B and R′

n ∈u Mk, that proof
together with Theorem 7.1.1 gives that

dTV (Rn, R
′
n) = e−Ω(n) (7.4)

where dTV denotes total variation distance. Therefore it is enough to prove The-
orems 7.1.3 and 7.1.4 with Rn replaced by R′

n (except for the easy lower bound
in the second result). Notice that the graph R′

n can be generated by choosing the
set S and the graphs G[S], F and B in the steps in the proof of Theorem 7.1.2
uniformly at random.

Proof of Theorem 7.1.3 Suppose S = S0 was chosen for step (1). Note that
for each v ∈ S0

P
((

1

2
− ε
)
n ≤ d(v) ≤

(
1

2
+ ε

)
n

)
= 1− e−Ω(n).

Indeed, since the graph G[S] and the bipartite graph B are chosen uniformly at
random, each vertex v ∈ S0 has d(v) ∼ Bin

(
n− 1, 1

2

)
.

To show that with probability 1 − e−Ω(n) no vertex v 6∈ S0 may belong to Sn

(that is, have degree > εn) we can apply Lemma 7.1.7 to the class A (as each
proper addable minor-closed class of graphs has growth constant at least e). Thus
for the graph F picked in step (2) uniformly from An−k we get

P
(
∆(F ) >

εn

2

)
= e−Ω(n).

Hence with probability 1− e−Ω(n), given that S = S0 was chosen in step (1), each
vertex in V (F ) has degree not larger than εn

2
+ k < εn in R′

n, for n sufficiently
large. Considering now all k-subsets S0 ⊂ [n] completes the proof of (i) and (ii).

For (iii), let a,H,H− and h be such as in the proof of Theorem 7.1.2. We say
that a construction G obtained in that proof is very good if for each vertex s ∈ S
there are at least m = 2−han pairwise disjoint subsets X1(s), X2(s), . . . , Xm(s) ⊆
V (F ) such that each graph G[Xi(s) ∪ s] has H as a minor.

If G is very good and S ′ is another B-blocker of G such that S 6⊆ S ′, then S ′

must have at least δn vertices where δ := 2−ha (to see this, let s ∈ S \S ′ and note
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that S ′ has to contain a vertex from each of the disjoint sets Xi(s)). But given
that S = S0 and that F has at least a(n − k) copies of H−, the probability that
a random construction R′

n is not very good is at most

k P
(
Bin

(
ba(n− k)c, 2−h+1

)
< d2−hane

)
= e−Ω(n).

2

Proof of Theorem 7.1.4 Let K,H ∈ A be (fixed) connected graphs such
that ω(K) = ω(A) and χ(H) = χ(A). Fix a k-set S0 of vertices and a graph H0

on S0. By Lemma 7.2.1 (the pendant appearances theorem of [77]), there exists
a > 0 such that, with probability 1− e−Ω(n), the graph F chosen in step (2) of the
construction has at least 2dane disjoint sets of vertices such that the first dane
induce copies of K, and the second dane induce copies of H.

Standard bounds for the binomial distribution now show that with probability
1 − e−Ω(n) there is a copy of K and a copy of H such that each possible edge
between S0 and these copies is present. Thus with probability 1 − e−Ω(n) we
have ω(R′

n) ≥ ω(H0) + ω(A) and χ(R′
n) ≥ χ(H0) + χ(A). Hence, removing

the conditioning on S and the graph on S, with probability 1 − e−Ω(n) we have
ω(R′

n) ≥ ω(R′) +ω(A) and χ(R′
n) ≥ χ(R′) +χ(A), where R′ denotes the induced

subgraph R′
n[S]. Also R′ ∼ R; that is, R′ and R have the same distribution.

Of course, the reverse inequalities, ω(R′
n) ≤ ω(R′)+ω(A) and χ(R′

n) ≤ χ(R′)+

χ(A) always hold. We have now shown that

dTV ((ω(R′
n), χ(R

′
n)), (X,Y )) = e−Ω(n)

and thus, by the discussion at the start of this section, that

dTV ((ω(Rn), χ(Rn)), (X, Y )) = e−Ω(n).

To replace e−Ω(n) by e−Θ(n) note that P(Rn ∈ A) = e−O(n). 2

We shall deduce Theorem 7.1.5 from a more general result, Theorem 7.6.1. For
a graph G we let Big(G) denote its (lexicographically first) largest component, and
let the fragment Frag(G) be G less Big(G). Let us use v(G) to denote |V (G)|.
Thus frag(G) = v(Frag(G)). We shall investigate the asymptotic behaviour of
Frag(Rn), following the treatment in [74].

A class A of graphs is called decomposable if a graph is in A if and only
if each component is. (It is easy to see that each addable minor-closed class
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is decomposable.) For any graph class A we let UA denote the corresponding
unlabelled graph class, with members the equivalence classes of graphs in A under
isomorphism.

Now let A be any decomposable class of (labelled) graphs, and let A(x) =∑
n≥0 |An|xn/n! be its exponential generating function. Let C denote the class

of connected graphs in A, with exponential generating function C(x). Recall the
‘exponential formula’, that A(x) = eC(x) (see for example [48]). (By convention
the empty graph ∅ is in A and not in C.) If ρ > 0 is such that A(ρ) is finite, then
we may obtain a natural ‘Boltzmann Poisson distribution’ on UA, as follows. Let

λ(H) =
ρv(H)

aut(H)
for each graph H ∈ UA (7.5)

where aut(H) denotes the number of automorphisms of H. Then

∑
H∈UA

λ(H) = A(ρ) = eC(ρ).

The Boltzmann Poisson random graph R = R(A, ρ) takes values in UA, with

P[R = H] =
λ(H)

A(ρ)
for each H ∈ UA. (7.6)

It is shown in [74] that the number of components of R isomorphic to a given graph
H ∈ UC has distribution Po(λ(H)), and numbers of components corresponding
to distinct graphs in UC are independent; and thus the random number κ(R) of
components of R satisfies κ(R) ∼ Po(C(ρ)). Also, v(R) is the sum of independent
random variables v(H)Po(λ(H)) for H ∈ UC; and

P[v(R) = n] =
|An|ρn/n!
A(ρ)

for n = 0, 1, 2, . . . (7.7)

We are interested in the limiting behaviour of the random graph Frag(Rn). It
is convenient to deal with the corresponding random unlabelled graph which we
denote by UFrag(Rn).

Theorem 7.6.1 Let A be an addable minor-closed class of graphs which does not
contain all fans; let ρ be the radius of convergence of its exponential generating
function A(x); and let B be its set of excluded minors. Let C be the class of
connected graphs in A, with exponential generating function C(x). Then A(ρ) <
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∞; and given a positive integer k, for Rn ∈u Ex (k + 1)B we have

dTV (UFrag(Rn),R)→ 0 as n→∞. (7.8)

where R = R(A, ρ/2k) is the Boltzmann Poisson random graph for A and ρ/2k

as in (7.5) and (7.6) above. Further,

E [frag(Rn)]→ E [v(R)] = (ρ/2k) C′(ρ/2k) <∞. (7.9)

Since P(R = ∅) = e−C(ρ/2k), Theorem 7.1.5 follows as an immediate corollary.
Also, dTV (frag(Rn), v(R))→ 0 as n→∞, where the distribution of v(R) is given
by (7.7) with ρ replaced by ρ/2k.

To prove (7.8) in Theorem 7.6.1 we use one preliminary lemma, followed by a
lemma taken from [74]. After that, to prove (7.9) in Theorem 7.6.1 we use another
preliminary lemma.

Lemma 7.6.2 Let A be a minor-closed class of graphs, with set B of excluded
minors. Let j be a positive integer, suppose that Ex jB has a positive growth
constant, and let Rn ∈u Ex jB. Then

P(Frag(Rn) ∈ A) = 1− e−�(n) as n→∞.

Proof The case j = 1 is trivial, since A = ExB; so assume that j ≥ 2. For
i = 1, 2, . . . let Ai denote Ex iB, and let the exponential generating function Ai(x)

of the graphs in Ai have radius of convergence ρi. Then ρi+1 ≤ ρi/2, since from
each graph G in Ai

n we may construct at least 2n graphs in Ai+1
n+1 by adding any

set of edges between vertex n+ 1 and V (G). Thus ρj ≤ 2−(j−1)ρ1 ≤ ρ1/2.
Observe that if any component of Rn is in Aj \ Aj−1 then the remaining

components must be in A. Thus

P(Frag(Rn) 6∈ A) ≤ P(Rn has all components in Aj−1) (7.10)

+ P(Frag(Rn) has a component in Aj \ Aj−1).

The first term on the right side tends to 0, because the family D of graphs
with all components from Aj−1 has radius of convergence ρj−1 ≥ 2ρj. To see this,
let C(x) denote the exponential generating function of the connected graphs in
Aj−1: then, by the exponential formula, D has exponential generating function
eC(x), and this converges for 0 < x < ρj−1.
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Consider the second term on the right side. Fix ε > 0 sufficiently small that

(ρ−1
1 + ε)(ρ−1

j + ε)

(ρ−1
j − ε)2

< 1.

There are constants 0 < a ≤ b such that for all non-negative integers n

a(ρ−1
j − ε)n ≤

|Aj
n|
n!
≤ b(ρ−1

j + ε)n

(since Aj has growth constant ρ−1
j ) and

|An|
n!
≤ b(ρ−1

1 + ε)n.

Since each component of Frag(Rn) has at most n/2 vertices, it now follows that
the second term on the right side of (7.10) is at most

1

|Aj
n|

bn2 c∑
t=0

(
n

t

)
|Aj

t ||An−t| ≤
b2n!

an!(ρ−1
j − ε)n

bn2 c∑
t=0

(ρ−1
j + ε)t(ρ−1

1 + ε)n−t

≤ (b2/a)n

(
(ρ−1

1 + ε)(ρ−1
j + ε)

(ρ−1
j − ε)2

)n/2

= e−Ω(n).

2

We say that A is bridge-addable if given any graph G in A and vertices u and
v in distinct components of G, the graph obtained from G by adding an edge
joining u and v must be in A. It is easy to see that each addable minor-closed
class is bridge-addable. Given a graph H in A, we say that H is freely addable
to A if, given any graph G disjoint from H, the union of G and H is in A if and
only if G is in A. Recall that A is called smooth if |An|/ (n|An−1|) converges to
some finite constant γ > 0 as n → ∞. The following lemma is a combination of
Lemmas 4.4 and 4.5 from McDiarmid [74].

Lemma 7.6.3 Let the class A of graphs be minor-closed and bridge-addable; let
Rn ∈u A; let B denote the class of all graphs freely addable to A; and suppose
that P(Frag(Rn) ∈ B)→ 1 as n→∞. Suppose further that A is smooth, and its
exponential generating function A(x) has radius of convergence ρ, with 0 < ρ <∞.

Then the exponential generating function B(x) of B satisfies 0 < B(ρ) < ∞;
and dTV (UFrag(Rn),R)→ 0 where R = R(B, ρ) is the Boltzmann Poisson random
graph for B and ρ as defined in (7.5) and (7.6) above. Further, E [v(R)] = ρC ′(ρ) <
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∞, where C(x) is the exponential generating function of the class C of connected
graphs in B.

Proof of (7.8) in Theorem 7.6.1 Let Ak+1 denote Ex (k + 1)B. Since A
is addable, it follows that Ak+1 is bridge-addable and the class of graphs freely
addable to Ak+1 is A. By Theorems 7.1.1 and 7.1.2, Ak+1 is smooth and its expo-
nential generating function has radius of convergence ρ/2k. Thus by Lemma 7.6.2
we may use Lemma 7.6.3 to complete the proof. 2

In order to prove (7.9) in Theorem 7.6.1 we need one more lemma. For a
vertex v in a graph G, we let Comp(v,G) denote the component containing v and
let comp(v,G) denote its number of vertices.

Lemma 7.6.4 Let A be an addable minor-closed class of graphs which does not
contain all fans; let B be its set of excluded minors; let k be a positive integer and
let Rn ∈u Ex (k + 1)B. Then for each ε > 0 there is a K ≥ 0 such that

E [|{v ∈ V (Frag(Rn)) : comp(v,Rn) ≥ K}|] < ε.

Proof By (7.4), it suffices to prove this result with Rn replaced by R′
n. Recall

that R′
n specifies a k-set S and Fn−k ∈ A. Let An be the event that in R′

n, each
vertex in S has an edge to Big(Fn−k). We first show that

P(An) = 1− e−Ω(n
1
2 ). (7.11)

Since A is bridge-addable, by Theorem 2.2 of [77], if we let k = bn 1
2 c then

P(κ(Fn−k) ≥ k + 1) ≤ 1/k! = e−Ω(n
1
2 logn).

(Recall that κ(G) denotes the number of components of G.) Thus

P(|Big(Fn−k)| < n 1
2 ) = e−�(n

1
2 log n).

Hence, if vi is a vertex in S then

P(vi has no edge to Big(Fn−k)) ≤ 2−n
1
2 + P(|Big(Fn−k)| < n 1

2 ) = e−�(n
1
2 );

and now (7.11) follows.
Next observe that if An holds then S and Big(Fn−k) are contained in Big(R′

n);
and thus if v ∈ V (Frag(R′

n)) then v ∈ V (Frag(Fn−k)), and there is no edge
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between S and Comp(v, Fn−k).
By (7.11) it suffices to upper bound E [|{v ∈ V (Frag(R′

n)) : comp(v,R′
n) ≥

K}| ·1An ]. For each v ∈ V \S let Bn(v) be the event that there is no edge between
S and Comp(v, Fn−k). By the above observations

E [|{v ∈ V (Frag(R′
n)) : comp(v,R′

n) ≥ K}| · 1An ]

≤ E [|{v ∈ V \ S : v ∈ V (Frag(Fn−k)), comp(v,Fn−k) ≥ K,Bn(v)}|]

≤
∑

v∈V \S

P (Bn(v) | comp(v, Fn−k) ≥ K, v ∈ V (Frag(Fn−k))) · P(v ∈ V (Frag(Fn−k)))

≤
∑

v∈V \S

2−kKP(v ∈ V (Frag(Fn−k)))

≤ 2−KE [frag(Fn−k)] ≤ c · 2−K.

In the last inequality here we used the result that E [frag(Fn−k)] ≤ c for a constant
c, see Lemma 2.6 of [74]. The lemma follows. 2

Proof of (7.9) in Theorem 7.6.1 Let ε > 0. By Lemma 7.6.3

E [v(R)] =
∑
H∈UC

v(H)λ(H) = (ρ/2k) C ′(ρ/2k) <∞.

Thus for K sufficiently large

E [v(R)]− ε ≤
∑

H∈UC,v(H)≤K

v(H)λ(H) ≤ E [v(R)].

By (7.8)

E [|{v ∈ V (Frag(Rn)) : comp(v,Rn) ≤ K}|]→
∑

H∈UC,v(H)≤K

v(H)λ(H),

and so

| E [|{v ∈ V (Frag(Rn)) : comp(v,Rn) ≤ K}|]− E [v(R)] | < ε+ o(1).

Hence by Lemma 7.6.4 with K sufficiently large

| E [frag(Rn)]− E [v(R)] | < 2ε+ o(1)

and we are done. 2
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7.7 Concluding remarks
Consider an addable minor-closed classA of graphs, with set B of excluded minors.
For such a class A, we have learned much about the class of graphs with at
most k disjoint excluded minors, and in particular about the relationship between
Ex (k+1)B and apex kA. Here there are just two cases: if A does not contain all
fans then the difference class Ex (k+1)B \ (apex kA) forms an exponentially
small proportion of Ex (k+1)B; and if A contains all fans then Ex (k+1)B is
exponentially larger than apex kA (at least for large k).

But what happens if the minors of A are not 2-connected? Consider for ex-
ample the class ExSt, where St denotes the star with t leaves (and thus with t+1

vertices). For each t ≥ 3 almost all graphs in Ex (k + 1)St are in apex k ExSt,
as in the case when A is addable and does not contain all fans; and for t = 3

the difference class Ex (k + 1)St \ (apex k ExSt) forms an exponentially small
proportion of Ex (k+1)St; but this is not the case for t ≥ 4, where the proportion
is 2−Θ(n

2t−5
2t−4 ), see [75]. There is more to be learned about disjoint excluded minors

in such classes of graphs.

A second natural question concerns the behaviour of Ex (k + 1)B when A is
minor-closed and contains all fans. We have learned little about this case, other
than the fact that apex kA is irrelevantly small in comparison (at least for large
k).

A good starting point is to consider the class A = ExK4 of series-parallel
graphs, see Remark 7.5.7. Clearly Ex 2K4 contains apex 3F , where F denotes the
class of forests, and so if Ex 2K4 has a growth constant then it must be at least
8e. It is not hard to see that this is not the right value, but it may give the
right idea. We conjecture that almost all graphs G in Ex 2K4 contain a set S of
three vertices such that any two form a K4-minor-blocker, or equivalently every
non-series-parallel subgraph of G has at least 2 vertices in S.

More generally, consider any (fixed) planar graph H. Perhaps there is a posi-
tive integer jH such that the following is true for every positive integer k: almost
all graphs G with at most k disjoint subgraphs contractible to H contain a set S
of (k+1)jH − 1 vertices such that each subgraph of G contractible to H contains
at least jH vertices from S. Observe that this is true for H = jC3, with jH = j.
For if we let B = {jC3} and A = ExB, then Ex (k + 1)B = Ex (k + 1)j C3 which
is very close to apex (k+1)j−1F (where F is the class of forests); and for a graph
G in this class, the set S consisting of the (k + 1)j − 1 apex vertices is such that
each subgraph of G not in A contains at least j vertices from S.
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Chapter 8

Few disjoint minors in B when
ExB contains all fans

8.1 Introduction
In Chapter 7 we studied classes Ex (k+1)B when the graphs in B are 2-connected
and ExB does not contain all fans. What happens in the case when ExB contains
all fans? We prove some general results in this chapter, and we consider specific
forbidden minors, such as 2K4 in the next one.

We call a B-blocker Q of a graph G redundant (“0-redundant”, in the termi-
nology of Chapter 7) if for each vertex v ∈ Q the set Q \ {v} is still a B-blocker
for G. We denote the class of graphs that have a redundant B-blocker for size k
by rd k B. For a graph H, we will often abbreviate Ex {H} to ExH, rd k {H} to
rd kH, etc.

Given a positive integer s call a graph G an s-fan if G is a union of a complete
bipartite graph with parts A and B, where |A| = s, and a path P with V (P ) = B.
We call 1-fans simply fans. Given a positive integer k and a set of graphs B we
denote by kB the class of graphs consisting of k vertex disjoint copies of graphs
in B (with repetitions allowed). Thus Ex (k + 1)B is the class of graphs that do
not have k + 1 vertex disjoint subgraphs H1, . . . , Hk+1, each with a minor in B.

Recall that a classical result of Robertson and Seymour says that each minor-
closed class can be characterised by a finite set B of minimal excluded minors, i.e.
A = ExB (see, e.g., [38]).

Let k be a positive integer and let A be a proper addable minor-closed class
of graphs, with a set B of excluded minors. Recall that by Theorem 7.1.1 from
Section 7.1

|(Ex (k+1)B)n| = (1 + e−Θ(n))|(apex kA)n| (8.1)

193



Chapter 8. Few disjoint minors in B when ExB contains all fans

if A does not contain all fans. Suppose A = ExB is addable but contains all
fans. Then the class apex kA ⊆ Ex (k + 1)B still seems a natural candidate to be
the dominating subclass of Ex (k + 1)B. However, we showed, see Remark 7.5.7,
that for such B Theorem 7.1.1 fails, at least for large k. The first (and the
main) theorem of this chapter shows that a very different subclass determines the
convergence radius of Ex (k+1)B, namely, the class rd 2k+1 B. Clearly, rd 2k+1 B ⊆
Ex (k+1)B: if Q is a redundant blocker for G and |Q| = 2k+1 then each subgraph
of G with a minor in B uses at least two vertices of Q, so we can find no more
than k disjoint such subgraphs.

Theorem 8.1.1 Let A be a proper addable minor-closed class of graphs, with a
set B of minimal excluded minors and growth constant γ. Suppose A contains all
fans, but not all 2-fans, nor all complete bipartite graphs K3,t.

Then there is a positive integer k0 = k0(B) such that the following holds. Let
k be a positive integer. If k ≥ k0,

ρ(Ex (k + 1)B) = ρ(rd 2k+1 B) < ρ
(
(Ex (k + 1)B) ∩ apex 2k−1A

)
.

If k < k0, the class Ex (k + 1)B has a growth constant 2kγ. Furthermore, if
ρ(rd 2k+1 B)−1 < 2kγ then (8.1) holds.

For t ≥ 4 we denote by Wt a wheel graph on t vertices. Some examples of
classes A for which Theorem 8.1.1 applies are ExK4, ExK2,t for t ≥ 3, ExW5, and
Ex {K3,t, Fs}, where t ≥ 2, s ≥ 5 and Fs is a 2-fan on s vertices. The condition of
Theorem 8.1.1 is not satisfied for, say, A = ExW6.

We believe that the condition of Theorem 8.1.1 can be weakened. For example,
it may be possible to drop the requirement that A does not contain all graphs
K3,t, to get an assumption similar to the one of Theorem 7.1.1. We also believe
that for k ≥ k0 the fraction of graphs in (Ex (k+1)B)n that are not in (rd 2k+1 B)n
is exponentially small.

Let A be an addable class of graphs. In [77], two properties are fundamental
in the proof that A has a growth constant. First, the class A is decomposable,
meaning that G is in A if and only if each component of G is. Second, A is
bridge-addable, i.e., it is closed under adding bridges between distinct components.
Classes Ex (k + 1)B are bridge-addable, but not decomposable. Theorem 8.1.1
reduces the problem of proving that a growth constant of Ex (k + 1)B exists,
to the analogous problem for the class rd 2k+1 B. Graphs in rd 2k+1 B with a fixed
redundant blocker can be represented by a decomposable class of coloured graphs,
see Section 8.4.
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With stronger conditions on A, this allows us to prove the following.

Theorem 8.1.2 Let k be a positive integer and let A be a proper addable minor-
closed class of graphs with a set B of minimal excluded minors. Suppose each graph
in B is 3-connected, A does not contain all 2-fans, nor all complete bipartite graphs
K3,t, nor all wheels. Then Ex (k + 1)B has a growth constant.

Classes A that satisfy the condition of Theorem 8.1.2 are, for instance, ExK4 and
ExW5, but not ExK2,3.

In Section 8.3 we prove our key structural lemmas and Theorem 8.1.1. Sec-
tion 8.4 is similar, using a superadditivity argument as in [77], we prove Theo-
rem 8.1.2 there.

8.2 Definitions

8.2.1 Definitions for coloured graphs

Let t ≥ 0 be a fixed integer. We will consider {0, 1}t-coloured graphs G where
each vertex v ∈ V (G) is assigned a colour

col(v) = colG(v) = (col1(v), . . . , colt(v)) ∈ {0, 1}t.

We say that v ∈ V (G) has colour i if coli(v) = 1. We denote by Col(v) =

ColG(v) = {k : ck(v) 6= 0} the set of all colours of v, similarly let Col(G) be the
union of ColG(v) for all v ∈ V (G). Also, denote by N(G) the uncoloured graph
obtained by removing all colours from G. Whenever t is clear from the context or
not important, we will call {0, 1}t-coloured graphs just coloured graphs or simply
graphs. We call a vertex v ∈ V (G) coloured if ColG(v) 6= ∅.

Let G be a {0, 1}t-coloured graph. Given a set L = {s1, . . . , st} such that
s1, . . . , st 6∈ V (G) and s1 < · · · < st, we can obtain an (uncoloured) graph GL on
vertex set V (G) ∪ L by connecting si to each vertex v ∈ V (G) that has colour i.
We call GL an extension of G. We denote by Ext(G) the set of all extensions GL

of G, and denote by ext(G) an arbitrary representative of Ext(G).
For a {0, 1}t-coloured graph G we define the contraction operation in the

standard way (see, e.g., [38]) with the addition that the vertex w obtained from
contracting an edge uv ∈ E(G) has colours Col(w) = Col(u) ∪ Col(v). A {0, 1}t-
coloured graph H is a subgraph of G if H is a subgraph of G, if the colours are
ignored, and for each v ∈ V (H) we have ColH(v) ⊆ ColG(v). H is a coloured
minor of G if it can be obtained by contraction and subgraph operations from G.
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When a (coloured) graph G has V (G) ⊆ [n] for some positive integer n, we
will usually assume that the new vertex w resulting from the contraction of an
edge e = xy has label min(x, y), so that V (G/e) ⊆ [n]. For a (coloured) graph G
and J ⊆ E(G) we will denote by G/J the graph resulting from the contraction of
all of the edges in J . The operation G/J corresponds to a partition of V (G) into
a set of “bags” {Bag(v) : v ∈ V (G/J)} , where Bag(v) is the set of vertices that
contract to v. We call a subgraph H of G stable with respect to contraction of J
in G if no pair of vertices of H is contracted into the same bag.

We say that two {0, 1}t-coloured graphs G′ and G′′ are isomorphic if there is
a bijection f : V (G′) → V (G′′) such that xy ∈ E(G′) if and only if f(x)f(y) ∈
E(G′′) and ColG′(x) = ColG′′(f(x)) for each x ∈ V (G′).

For a {0, 1}t-coloured graph G, we say that S ⊆ V (G) has colour c if c ∈
ColG(v) for some v ∈ S. We say that G has colour c if V (G) does. For a vertex
v ∈ V (G) we let Γ(v) = ΓG(v) denote the set of neighbours of v in G. It will be
convenient to call the colours 1, 2 and 3 red, green and blue respectively.

Let C be the set of cut points of G and let B be the set of its blocks. Fix
r ∈ V (G). Then the tree Tr with vertex set C ∪ {r} ∪ B and edges given by uB
where u ∈ C ∪ {r}, B ∈ B and u ∈ V (B) will be called a rooted block tree of G,
rooted at r. (This is a minor modification of the usual block tree, see [38].) We
call graphs that are either 2-connected or isomorphic to K2 biconnected.

For a graph G and a set S, we write G ∩ S = G[V (G) ∩ S]. For two graphs
G1 = (V1, E1) and G2 = (V2, E2) we write G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2) and
G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2).

8.2.2 Analytic combinatorics

We will apply the “symbolic method” of Flajolet and Sedgewick [48] to study the
asymptotic number of graphs from various classes.

In this Chapter we follow the notational conventions used in [48]. The size of
a graph G is the number of labelled vertices, while V (G) refers to the set of all
vertices of G, including the unlabelled (pointed) ones. The exponential generating
function of A,B, . . . is denoted A(x), B(x), . . . respectively. For instance, A(x) =∑∞

n=0
|An|
n!
xn. By Z we denote the class of graphs consisting of a single vertex

with a label, such that Z(x) = x.
We use the notation A+B, A×B, A(B) to denote the class of graphs obtained

by the (disjoint) union, labelled product and composition operations respectively,
see [48]. For a positive integer k, Ak denotes the class consisting of a sequence
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of k disjoint members from A, and we define A0 to be the class with exponential
generating function A0(x) = 1. We also refer to [48] for the formal definition
of the class SET(A) (obtained by taking arbitrary sets of elements of A and
appropriately relabelling), the class SEQ(A) (obtained by taking any ordered
sequence of elements of A and appropriately relabelling), and classes SET≥k(A)
(sets of at least k elements) and SEQ≥k (sequences of at least k elements). Given a
positive integer k, we will denote by k×A a combinatorial class with the counting
sequence (k|An|, n = 0, 1, . . . ).

To denote dependence of a class A (or a generating function A) on a parameter
l we will use either superscript A<l>, Al or a subscript Al.1

If A and B have identical counting sequences (|An|, n = 0, 1, . . . ), (|Bn|, n =

0, 1, . . . ) we call A and B combinatorially isomorphic and write A = B. We
note that most of the decomposition results of Section 9.2 and onwards yield a
stronger kind of isomorphism than just the combinatorial one: we prove unique
decompositions of graphs from one class into unions of subgraphs with disjoint
sets of labels from other classes. This is important since many of our proofs rely
on the structure of graphs.

8.3 Structural results for Ex (k + 1)B

8.3.1 The colour reduction lemma

The following simple lemma will be very useful in our structural proofs.

Lemma 8.3.1 Let l be a non-negative integer. Let G be a {0, 1}2-coloured graph.
Suppose G does not have l+1 disjoint connected subgraphs containing both colours.
Then there is a set S of at most l vertices such that each component of G−S has
at most one colour.

Proof For two new vertices s, t 6∈ V (G) consider the extension G′ = G{s,t}. G′

has l + 1 internally disjoint paths from s to t if and only if G has l + 1 disjoint
connected subgraphs containing both colours. By Menger’s theorem we may find
a set S of at most l vertices in V (G) such that S separates s from t in G′, and
hence each component of G− S can have at most one colour. 2

Given an integer s and a graph G, we define its apex width of order s, denoted
awsG as the maximum number j such that G has a minor H on j + s vertices

1When this coincides with the notation for the elements An in A with labels in [n] or with
a power of a class Ak, the meaning should be determined from the context.
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where H is a union of a tree T with |V (T )| = j and a complete bipartite graph
with parts V (T ) and V (H) \ V (T ). For a class of graphs A we define aws (A)
to be the supremum of aws (G) over G ∈ A. In this thesis we will only use the
parameter aw2 . For example, it is easy to check that its value for classes ExK4,
ExK2,t and ExK5 is 2, t− 1 and ∞ respectively. In Section 8.3.4 below we give
a condition to check if awj (A) is finite.

Given integers s and t, 1 ≤ s ≤ t and a {0, 1}t-coloured graph G, define its
coloured apex width of order s, denoted caws (G), as the maximum number j,
for which there are j pairwise disjoint connected subgraphs H1, . . . , Hj of G that
have at least s common colours, i.e., |Col(H1) ∩ · · · ∩ Col(Hj)| ≥ s. For a class
of coloured graphs A we define caws (A) as the supremum of caws (G) over the
graphs G ∈ A.

We state one of our key structural lemmas next. We assume that all graphs
here have vertices in N.

Lemma 8.3.2 (Colour reduction lemma) Let t ≥ 2 be an integer and let G be
a connected {0, 1}t-coloured graph. Suppose caw2 (G) ≤ j, for some non-negative
integer j.

Then there is a connected {0, 1}t-coloured graph G′ and a set J ⊆ E(G′) of
size at most (j+1)t−1− 1 such that a) each component of G′− J has at most one
colour, b) G′/J = G and c) each component of G′ − J is stable with respect to
contraction of J in G′.

Proof We use induction on t. For t = 2 by Lemma 8.3.1 there is a set B of at
most j vertices in G such that each component of G−B has at most one colour.
Denote by Vgreen the set of vertices that belong to a component of G−B that has
the green colour.

Let G0 = N(G[B]). For each vertex v ∈ B take a new vertex v′ 6∈ V (G);
let B′ = {v′ : v ∈ B}. Now define a matching J = {vv′ : v ∈ B} on |B| ≤ j

edges. Consider the {0, 1}2-coloured graph G1 on the vertex set B∪B′, with edges
E(G[B]) ∪ J and colours

ColG1(v) = {red} ∩ ColG(v) and ColG1(v
′) = {green} ∩ ColG(v).

for each v ∈ B.
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Now let G′ be the union of G1, G−B and the set of edges E1 ∪E2 defined as
follows:

E1 = {v′x : v ∈ B, x ∈ Vgreen, and vx ∈ E(G)};

E2 = {vx : v ∈ B, x ∈ V (G) \ (B ∪ Vgreen), and vx ∈ E(G)}.

In words, G′ is obtained from G by splitting each vertex v ∈ B, so that one
of the new vertices inherits the green colour of v (if it had that colour) and all
neighbours of v in Vgreen while the other vertex inherits the rest of the neighbours
of v. Obviously, G′/J = G if we make sure that the newly created vertices v′ have
larger labels than those in V (G). By our construction, J separates B and B′ in
G1 and each component of G′ − J containing green colour can have vertices only
in Vgreen ∪B′, thus each component of G′ − J has at most one colour.

Consider a component C of G′ − J . Since J is a matching and each edge of J
is between different components of G′−J , the contraction of J in G′ may not put
two vertices of C into the same bag. This completes the proof for the case t = 2.

Suppose t > 2. Assuming that we have proved the claim for any t′ < t, we
now prove it with t′ = t. Delete the colour t from G to get a {0, 1}t−1-coloured
graph G1. By induction, there is a {0, 1}t−1-coloured graph G′

1 and a set of edges
J1, such that |J1| ≤ (j + 1)t−2 − 1, each component of G′

1 − J1 has at most one
colour, it is stable with respect to contraction of J1 in G′

1 and G′
1/J1 = G1. For a

vertex v of G′
1/J1, denote by Bag(v) the set of vertices of G′

1 that contract to v.
Now let us return the colour t back as follows. For each vertex v of G that

has colour t in G pick one vertex v′ ∈ Bag(v) ⊆ V (G′) and add the colour t to
ColG′(v′): we obtain a {0, 1}t-coloured graph G2 such that G2/J1 = G and each
component of G2 − J1 can have at most two colours.

Now since each component C of G2−J1 is stable with respect to contraction of
J1 in G2, we have caw2 (C) ≤ caw2 (G) ≤ j. Thus, by symmetry, we can apply the
already proved case t = 2 of the lemma to each such C to obtain a {0, 1}t-coloured
graph C ′ and a set JC ⊆ E(C ′) of at most j edges, such that Col(C) = Col(C ′),
every component of C ′ − JC has at most one colour, is stable with respect to
contraction of JC in C ′ and C ′/JC = C. We assume that the labels for the new
vertices are chosen so that they are larger than any label of G2 and V (C ′

1) and
V (C ′

2) remain disjoint for distinct components C1 and C2 of G2.
For any v ∈ V (C ′/JC) denote by BagC(v) the set of all vertices of C ′ that

contract to v. Now for any edge e = xy ∈ J1, let Cx and Cy be the components of
G2 − J1 containing x and y respectively, and define e′ = x′y′ where x′ and y′ are
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any vertices in BagCx(x) and BagCy(y) respectively. Set J = {e′ : e ∈ J1}∪
∪

C JC ,
where the union is over the components of G2 − J1. Finally, let G′ be the graph
obtained by adding J to the union of the disjoint graphs C ′, for each component
C of G2 − J1.

Clearly, each component of G′ − J has at most one colour. Now consider
the operation G′/J in two stages: in the first stage contract all edges

∪
C JC , in

the second stage contract the edges in J1. Then at the first step we obtain the
graph G2, and in the second step, we obtain the graph G. Furthermore, if C̃ is a
component of G′ − J , then it is a component of C ′ − JC for some C. C̃ is stable
with respect to contraction of JC in C ′ and C is stable with respect to contraction
of J1 in G2, therefore C̃ is stable with respect to contraction of J in G′.

Also, since G is connected G2 has at most |J | + 1 components. Therefore
|J | ≤ |J1|+ (|J1|+ 1)j ≤ (j + 1)t−1 − 1. 2

8.3.2 Redundant blockers

The main result of this section is the following lemma (cf. Lemma 7.1.6 of the
previous chapter).

Lemma 8.3.3 Let k be a positive integer, and let A be a proper addable minor-
closed class with a set B of minimal excluded minors. Suppose that aw2 (A) is
finite.

Then there is a constant c = c(B, k) such that any graph in Ex (k + 1)B has a
B-blocker Q of size at most c and a set S ⊆ Q of size at most 2k such that any
subgraph H of G with H 6∈ A that meets Q in at most two points, also meets the
set S.

The proof will follow from a slightly more general result, Lemma 8.3.4 below;
we first need a few definitions. Given a graph G, a set of graphs B and a set
Q ⊆ V (G), we say that Q is a (j,B)-blocker of G if G contains no subgraph H,
such that H 6∈ ExB and |V (H) ∩ Q| ≤ j. We say that Q is a (j, s,B)-blocker of
G if (a) Q is a B-blocker for G and (b) G does not contain s pairwise disjoint
subgraphs H1, . . . , Hs 6∈ ExB, where each Hi, i = 1, . . . , s has at most j vertices
in Q.

A graph H will be called B-critical if H 6∈ ExB but H ′ ∈ ExB for any H ′ ⊂ H.
Notice that if each graph in B is 2-connected, then so is each B-critical graph.

As in Chapter 7 we will use normal trees for our proofs, see Section 7.3.1 for
the definitions. Finally, denote by f ∗n the n-th iteration of the function f , so that
f ∗0(x) = x and f ∗(n+1)(x) = f(f ∗n(x)) for n = 0, 1, . . . .
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Lemma 8.3.4 Let k be a positive integer, let A be a proper addable minor-closed
class with a set B of minimal excluded minors. Suppose that aw2 (A) ≤ j.

There are positive constants c1 = c1(B) and w = w(B) such that the following
holds. Define a function f : N → R+ by f(q) = jc1q

2 + jc1wq. Suppose Q is a
non-empty (2, k + 1,B)-blocker for a graph G. Then there are sets S,Q′ ⊆ V (G),
such that S,Q ⊆ Q′, |S| ≤ 2k, |Q′ \ S| ≤ f ∗k(|Q|) and Q′ \ S is a (2,B)-blocker
for G− S.

Proof of Lemma 8.3.3 The assumption that aw2 (A) < ∞ implies that some
planar graph, a 2-fan, is excluded from A. By the theory of graph minors [88],
see also [38] and Proposition 7.3.6 above, there is a constant c′ = c′(B, k) such
that every graph G ∈ Ex (k + 1)B has a B-blocker Q0 of size at most c′ (we may
assume Q0 is non-empty). Such a set Q0 is clearly also a (2, k + 1,B)-blocker
of G. Now Lemma 8.3.4 ensures that there is a B-blocker Q of size at most
c = c(B, k) = f ∗k(c′) and a set S ⊆ Q of size at most 2k as required. 2

Proof of Lemma 8.3.4 We use two results from the theory of graph minors of
Robertson and Seymour [88]: since A excludes a planar graph (a 2-fan on j + 2

vertices), the maximum treewidth over graphs in A, denoted w = w(B), is finite.
Furthermore, the set B is finite.

Let c1 = c1(B) be the maximum number of components that can be created
by removing three vertices from a B-critical graph. Since there is a finite number
of graphs in B, the number c1 is finite (see Lemma 7.5.2 above). For example,
we have c1({K4}) = 4. Since A is addable, we have j ≥ 1 and c1 ≥ 1. The case
V (G) = Q is also trivial (take S = ∅ and Q′ = Q), so we will assume Q ⊂ V (G).

We will prove the lemma by induction on k. The case k = 0 is trivial: we may
take Q′ = Q and S = ∅. Assuming the lemma holds for 0 ≤ k < k′, where k′ is a
positive integer, we prove it for k = k′.

By (5.1), the graph G−Q has a (rooted) normal tree T such that maxv aT (v) ≤
w. Let r be the root of T . Form a set U of all such vertices v ∈ V (G) \ Q for
which there are some vertices x, y ∈ Q ∪AAT (v) that the subgraph of G induced
on V (Tv) ∪ {x, y} has a minor in B. Choose a vertex u ∈ U with maximum
distance from r in T . Let R = Q ∪ AAT (u).

Let P be a set of minimum size such that G[P ∪ V (Tu)] 6∈ ExB. Then |P | ∈
{1, 2}. Fix a B-critical graph H, such that H ⊆ G[P ∪ V (Tu)].

Consider the graph G1 = G[Tu] − u. This graph consists of some connected
components. Since H ∩ V (G1) = H − (P ∪ {u}), the graph H has vertices in
t ≤ c1(B) such components. Call these components Ci, i = 1, . . . , t. Fix a pair
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x, y ∈ R such that {x, y} ∩ P = ∅. We claim, that for i = 1, . . . , t there is a set of
at most j vertices Di(x, y), such that in Ci −Di(x, y) no component has edges to
both x and y.

Let us show why it is true. In the component Ci colour vertices adjacent to x
red, and those adjacent to y green to obtain a {0, 1}2-coloured graph C ′

i (vertices
adjacent to both x and y are coloured {red, green}, and the remaining vertices
are coloured ∅). Suppose C ′

i has j + 1 disjoint connected subgraphs containing
both colours. Then since aw2 (A) ≤ j we would have that G[{x, y} ∪ V (Ci)] 6∈ A.
But this contradicts to the choice of u: since T is normal, the vertices of the
component Ci must be entirely contained in V (Tu′) for some u′ ∈ V (Tu − u), so
u′ ∈ U . Thus C ′

i cannot have j + 1 connected subgraphs containing both colours,
so we may apply Lemma 8.3.1 to find a suitable set Di(x, y) of size at most j.

Now define sets S0, Q1 as follows. If |P | = 1, let S0 = P ∪ {u}, otherwise, let
S0 = P . Set

Q1 = ((Q ∪ AA(Tu) ∪ {u}) \ S0) ∪
∪

i∈[t],x,y∈R\P,x 6=y

Di(x, y).

Writing q = |Q| and considering the cases |P | = 1 and |P | = 2 separately we get
that

|Q1| ≤ jc1(q − 1)(q − 2 + w) + q − 1 + w ≤ f(q).

If Q1 is a (2, k,B)-blocker for G − S0, then we can use induction to find sets
S ′, Q′ ⊆ V (G)\S0 such that S ′, Q1 ⊆ Q′, |S ′| ≤ 2(k−1), |Q′\S ′| ≤ f ∗(k−1)(|Q1|) ≤
f ∗k(q) and Q′ \ S ′ is a (2,B)-blocker for G − S0. Then the lemma follows with
S = S ′ ∪ S0 and Q′.

It remains to show that Q1 is a (2, k,B)-blocker for G − S0. Assume this is
not true. Let H̃ ⊆ G be a kB-critical subgraph of G− S0 showing that Q1 is not
a (2, k,B)-blocker: that is H̃ = H ′

1 ∪ · · · ∪H ′
k, where H ′

i 6∈ ExB, i = 1, . . . , k are
2-connected and pairwise disjoint; and for each i ∈ [k] we have |V (H ′

i) ∩Q1| ≤ 2.
Now H̃ and H may not be disjoint: otherwise Q would not be a (2, k + 1,B)

blocker for G. Let H ′ be a component of H̃ which shares at least one vertex with
H. Then V (H ′) ∩ V (H) ⊆ V (H) \ S0 ⊆ V (Tu).

Suppose first that V (H ′)∩Q1 consists of a single vertex v. Note, that we must
have v ∈ Q \ S0. The graph H ′ − v cannot be entirely contained in G[V (Tu)]. To
see why, observe first that by our construction in this case u ∈ S0. Since H ′− v is
connected it must be entirely contained in one of the proper subtrees of Tu, but
this contradicts our choice of u.
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Thus H ′−v must have a vertex a in V (Tu−u) and a vertex b in G−(S0∪Q1∪
V (Tu)). The set AAT (u) ⊆ Q1\{v} separates V (Tu−u) from G−(S0∪Q1∪V (Tu).
On the other hand, there is a path from a to b in the connected graph H ′ − v:
this is a contradiction.

Now suppose H ′ has exactly two vertices x, y in Q1.
First consider the case where x, y ∈ Q∪AAT (u). Let a be a vertex in V (H)∩

V (H ′). It cannot be a = u since in this case we have that |V (H ′) ∩ Q1| ≥ 3.
It follows that a ∈ V (C ′) where C ′ is a component of Ci − Di(x, y) for some
i ∈ {1, . . . , t}. But C ′ cannot have edges to both x and y. This means that either
x or y is a cut vertex in H ′: this contradicts the fact that H̃ is kB-critical.

If x ∈ Q and y ∈ Di(x
′, y′) for some pair {x′, y′}, then suppose that H ′ − x is

contained in G[V (Tu)]. By the choice of the set P this means that u ∈ S0. But
since T is normal, this contradicts the definition of u. Otherwise, suppose that
H ′−x has a vertex in G− (S0∪Q1∪V (Tu)). Since AAT (u) ⊆ Q1 \{x, y} we have
that x must be a cut point in H ′: this is a contradiction to the kB-criticality of
H̃.

Finally, consider the case x ∈ Q and y = u. Note, that the only case when
u 6∈ S0 by our construction is when there is no vertex z such that G[V (Tu)∪ {z}]
has a minor in B. ThusH must contain at least one vertex in G−(S0∪Q1∪V (Tu)),
and we saw earlier that it has a vertex in (V (H) \ S0) ⊆ V (Tu).

Again, each path in H ′ from V (H ′)∩V (Tu) to V (H ′)∩ (V (G)\ (S0∪Q1∪Tu))
must use x, since AAT (u) ⊆ Q1 \ {x, y} separates Tu from the rest of G−Q. So
we obtain a contradiction to the fact that H ′ is 2-connected. In all of the cases
we obtained a contradiction, so we conclude that Q1 must be a (2, k,B)-blocker
for G− S0. 2

8.3.3 Blockers of size 2k

We will need another definition. We call a B-blocker Q of a graph G a (k, j,B)-
double blocker if there is a set S ⊆ Q of size at most k, which is a redundant
B-blocker for G − (Q \ S), and Q \ S is a (j,B)-blocker for G − S. Such a set S
is called a special set of Q.

Lemma 8.3.5 Let k, l be positive integers and let B be the set of minimal excluded
minors of a proper addable minor-closed class and assume that B contains a planar
graph. Then there is a positive constant w = w(B) such that the following holds.

Suppose G ∈ Ex (k+1)B has a B-blocker Q of size at most q and a set S ⊆ Q

of size at most l such that Q \ S is a (2,B)-blocker for G − S. Then G can be
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represented as the union of two graphs, G = G1 ∪G2, where

• the graph G1 has an (l, 2,B)-double blocker Q1 ⊇ Q of size at most q+w+1,
such that S is the special set;

• G2 ∈ apex (Ex kB) and Q ⊆ V (G1) ∩ V (G2) ⊆ Q1.

Proof The set B contains a planar graph, so by the theory of graph minors,
see [38, 88], the treewidth of G − Q is bounded by a constant w = w(B). Since
the claim is trivial in the case Q = V (G) (take G1 = G, Q1 = Q and G2 = K̄Q,
where K̄Q is the empty graph on Q), we will assume that Q ⊂ V (G). By the
Kloks theorem (5.1), G − Q has a normal tree T such that the number of active
ancestors satisfies aT (v) ≤ w for each v ∈ V (T ). Denote by r the root of T .

Let U be the set of all vertices v ∈ V (G−Q) such that G[V (Tv)∪{x}] 6∈ ExB
for some x ∈ S. If U = ∅ then Q is itself an (l, 2,B)-double blocker for G, so we
may take G1 = G and G2 = K̄Q. Now assume that U is non-empty. Let u ∈ U
be a vertex with maximum distance in T from the root r and let x0 be a vertex
in S showing that u ∈ U . Write A = AAT (u), let G1 = G[V (Tu)∪Q∪A], and let
G2 = G− V (Tu). We claim that G1 and G2 are as required.

We have V (G1)∩V (G2) = Q∪A, so G1 and G2 share |Q∪A| ≤ q+w vertices.
We will show that Q1 = Q ∪ A ∪ {u} is an (l, 2,B)-double blocker for G1,

and S is its special set. Indeed, using the assumption of the lemma, the set
Q1 \ S = (Q \ S) ∪ A ∪ {u} is a (2,B)-blocker for G1 − S. Now suppose that
G[V (Tu − u) ∪ {z}] 6∈ ExB for some x ∈ S. Let H be a B-critical subgraph of
G[V (Tu − u) ∪ {x}]. Then, since T is normal, all vertices of the connected graph
H − x must be contained in V (Tv) for some v strictly below u in T . This is a
contradiction to the choice of u.

Finally observe that if G2−x0 contains a minor in kB then since V (Tu)∪{x0}
and V (G2−x0) are disjoint, G 6∈ Ex (k+1)B. So G2 ∈ apex (Ex kB) is as claimed.

2

In the proof of the next lemma and in much of the remaining part of the
Chapter, we will find it more convenient to represent graphs with small blockers
as coloured graphs, where a colour class corresponds to a vertex in the blocker,
and the set of colours of a vertex corresponds to the set of its neighbours in the
blocker. What follows is an attempt to capture this formally.

Let r be a fixed integer. We call a graph G with r distinct distinguished
vertices, or roots, an r-rooted graph. The roots will be labelled and ordered.
We say that a class Π of r-rooted graphs is an r-property if Π is closed under
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isomorphism and under deleting edges between the roots. We say that an unrooted
graph G has r-property Π if it is possible to root r of its vertices, so that the
resulting r-rooted graph is in Π. We associate two classes with Π: the class AΠ of
uncoloured, unrooted graphs that have r-property Π and the class ÃΠ of {0, 1}r-
coloured graphs G, such that if q1 < · · · < qr are not elements of V (G), then
G{q1,...,qr} with roots (q1, . . . , qr) belongs to Π.

The next proposition just spells out the well known fact that a class of rooted
graphs has the same radius of convergence as the class of corresponding unrooted
graphs.

Proposition 8.3.6 Let Π be an r-property for some positive integer r. Then
the sequence (5.2) for the class of rooted graphs Π, the class of unrooted graphs
A = AΠ and the class of {0, 1}r-coloured graphs Ã = ÃΠ has the same set L of
limit points, L ⊆ [0;∞].

Proof The claim follows, since

|Ãn| ≤ |An+r| ≤ |Πn+r| ≤ 2(
r
2)(n+ r)r|Ãn|,

and if (5.2) has a limit for a subsequence (nk, k = 1, . . . ) for any of the classes, it
has the same limit for the other two. 2

The most important r-property for us will be the property of having a redun-
dant blocker of size r. Formally, given a set B of graphs and a positive integer
r, Π0 is the set of all r-rooted graphs G, such that any subgraph of G containing
just one of the roots of G is in ExB.

Define Ar,B = ÃΠ0 and notice that AΠ0 = rd r B. To keep the notation simpler,
below we will omit the subscript B, since the class B will always be fixed. Propo-
sition 8.3.6 implies that the ρ(Ar) = ρ(rd r B). We will also denote by Cr = Cr,B

the class of connected graphs in Ar.
Given a set of graphs B and a coloured graph G with N(G) ∈ ExB, call a

colour c bad for G (with respect to B), if N(G) ∈ Ex (B), but adding to G a new
vertex xc connected to every vertex v ∈ V (G) which has colour c we produce a
graph with a minor in B. Otherwise, call c good for G. Notice, that G ∈ Ak if
and only if N(G) ∈ ExB and Col(G) ⊆ [k] and every colour is good for G.

Lemma 8.3.7 Let k and r be positive integers, such that k < r, and let B be a
finite set of graphs. Suppose aw2 (ExB) is finite. Let A be the class of graphs that
have a (k, 2,B)-double blocker of size r. Then ρ(A) = ρ(rd k+1 B).
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Proof Let Π be the r-property for “containing a (k, 2,B)-double blocker of size
r”, i.e., Π is the set of all graphs G ∈ A with r distinct roots q1, . . . , qr so that
{q1, . . . , qr} is a (k, 2,B)-double blocker for G with a special set {q1, . . . , qk}. Then
A = AΠ and Ã = ÃΠ have the same radius of convergence by Proposition 8.3.6.

Let C̃ be the class of connected graphs in Ã. The exponential formula, see,
i.e., [48], gives that for n = 0, 1, 2, . . .

[xn]C̃(x) ≤ [xn]Ã(x) ≤ [xn]eC̃(x)

so ρ(C̃) = ρ(Ã). Similarly ρ(Ck+1) = ρ(Ak+1). Therefore by Proposition 8.3.6 it
suffices to prove that

ρ(C̃) = ρ(Ck). (8.2)

We have Ckn ⊆ C̃n, so ρ(Ck) ≥ ρ(C̃). The difficult part is the opposite inequality.
Our idea is to use the “Colour reduction lemma”, Lemma 8.3.2, to represent each
graph in C̃ as a transformation of a finite set of disjoint graphs in Ck.

Write a = aw2 (ExB). Consider a {0, 1}r-coloured graph G ∈ C̃. Let G′

be a {0, 1}r-coloured graph obtained by removing the colours {1, . . . , k} from G.
Suppose caw2 (G

′) > a. Then for any set L = {l1, . . . , lr} such that l1 < · · · < lr

and L∩V (G) = ∅, the graph GL−{l1, . . . , lk} has a subgraph H 6∈ ExB such that
H has at most two vertices in {lk+1, . . . , lr}. But by the definition of Ã (and C̃),
{lk+1, . . . , lr} is a (2,B)-blocker for GL − {l1, . . . , lk}, a contradiction. Therefore
caw2 (G

′) ≤ a.
By Lemma 8.3.2, there is a graph G1 obtained from the union of κ ≤ N =

(a + 1)r−k−1 disjoint graphs, each with at most one colour in {k + 1, . . . , r}, and
a set J of m ≤ N − 1 edges between these graphs, such that G1/J = G′ and each
component of G1 − J is stable with respect to G1/J .

Now return the colours {1, . . . , k} back: starting with the coloured graph
G1, for each c ∈ {1, . . . , k} and each v ∈ V (G1/J), add c to the set of colours
for one of the vertices v′ ∈ Bag(v). Denote the newly obtained graph by G′′.
Then G′′/J = G. Each component C of G′′ − J can have at most one colour
c ∈ {k + 1, . . . , r}, and so at most k + 1 colours in total. Crucially, if C contains
a colour c ∈ {k + 1, . . . , r}, we can map the colour c to k + 1, and this yields a
graph C ′ in Ck+1. Why? Since C is stable with respect to contraction of J in G1

(and also in G′′), C is isomorphic to a (coloured) subgraph of G. If there was a
colour j ∈ col(C) which was bad for C, then it would be bad for G. But G ∈ Ã,
this gives a contradiction.
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Recall that we assume that a contraction of an edge xy produces a new vertex
with label min(x, y). Thus, each graph G ∈ C̃n (as well as other graphs) can
be obtained by choosing integers κ, l,m with 0 ≤ l,m, κ − 1 ≤ N − 1, a graph
G0 ∈

(
Ck+1

)κ
n+l

, for each component of G0, mapping the colour k + 1 to an
arbitrary colour in {k + 1, . . . , r}, adding a set J of m edges to G0 and finally
contracting them. Therefore we have

[
xn

n!

]
C̃(x) ≤

N−1∑
l=0

N∑
κ=1

N−1∑
m=0

(n+ l)2m
[

xn+l

(n+ l)!

] (
(r − k)Ck+1

)κ
,

from which it follows that ρ(C̃) ≥ ρ(Ck+1). 2

Lemma 8.3.8 Let B be any set of graphs. Let k and r be positive integers, k ≥ r.
Then

γ(rd k B)2 ≤ γ(rd k+r B)γ(rd k−r B).

Proof By Proposition 8.3.6 it suffices to show that γ(Ak)
2 ≤ γ(Ak+r)γ(Ak−r)

(see above for the definition of Ak). Fix positive integers l, n. Note that A0 =

ExB. We can partition the class Al,n (of {0, 1}l-coloured graphs on vertex set
[n]) into |A0,n| disjoint subclasses according to the underlying uncoloured graph
N(G) of G ∈ Al,n.

Given an uncoloured graph G ∈ A0, let XG be the number of ways to add
colour 1 so that the resulting {0, 1}1-coloured graph is in A1. Since the constraint
for redundant blockers involves only individual vertices, we can pick the sets of
vertices coloured 1, 2, . . . , l independently, in X l

G ways. Therefore

|Al,n| =
∑

G∈A0,n

X l
G.

We see that the equality also holds when l = 0. Choose G from A0,n uniformly
at random. Then X = XG is a random variable and |Al,n| = |A0,n|EX l. By the
Cauchy-Schwarz inequality applied with random variables X(l−r)/2 and X(l+r)/2

we have
(EX l)2 ≤ EX l+rEX l−r,

or
|Al,n|2 ≤ |Al+r,n||Al−r,n|.

Now the claim follows by dividing each side by (n!)2, raising to 1/n and considering
the subsequence that realizes the upper limit of the left side. 2
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Lemma 8.3.9 Let A be a proper addable minor-closed class of graphs with a set
B of minimal excluded minors. Suppose aw2 (ExB) is finite and there is a positive
integer k0 such that

r =
γ(Ex (k0 + 1)B)
γ(Ex k0B)

> 2.

Then for any k ≥ k0

γ(Ex (k + 1)B) = γ(rd 2k+1 B) ≥ rγ(Ex kB).

Proof In the proof we will need the following important consequence of the
preceding lemmas.

Let t be a positive integer. By Lemma 8.3.3, every graph G ∈ Ex (t + 1)B
has a B-blocker Q, such that Q contains a set S of size at most 2t and Q \ S is
a (2,B)-blocker for G − S. Furthermore, the size of Q is bounded by a constant
c = c(B, t).

For any integer j ≥ 0 write γj = γ(rd j B). Then

γ(Ex (t+ 1)B) = max(γ2t+1, γ(apex (Ex tB))). (8.3)

Let us prove (8.3). Write d = c + w where w = w(B) is as in Lemma 8.3.5. We
claim that for n ≥ d+ 1 we have

[xn]A(x) ≥ [xn]A1(x)A2(x), (8.4)

where A(x), A1(x), A2(x) are exponential generating functions of Ex (t+ 1)B, the
class A1 of graphs that have a (2t, 2,B)-double blocker of size d+1 with d rooted
vertices, and the class A2 of graphs in apex (Ex tB) which have d pointed (i.e.,
unlabelled, but distinguishable) vertices respectively.

(8.4) can be seen as follows. Given graphs G1 ∈ A1 and G2 ∈ A2 with disjoint
labels we can obtain a new graph by identifying the i-th distinguished vertex of G1

with the i-th distinguished vertex of G2 for i = 1, . . . , d and removing repetitive
edges. By Lemma 8.3.5, the set of all resulting graphs will contain all graphs in
Ex (k + 1)B of size at least d+ 1. Note that if G ∈ Ex (k + 1)B has at least d+ 1

vertices, we may assume that G1, G2 given by Lemma 8.3.5 are such that G1 has
exactly d + 1 vertices, |Q1| = d + 1 and |V (G2) ∩ V (G2)| = d; otherwise G1, G2

can be extended by including extra isolated vertices, and Q1 can be extended by
adding more vertices from G1 −Q1.
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Now rooting or pointing a fixed number of vertices does not change the con-
vergence radius of a class (see, i.e., Proposition 8.3.6), therefore A1 has the con-
vergence radius ρ1 = γ−1

2t+1 by Lemma 8.3.7, A2 has convergence radius ρ2 =

γ(apex (Ex tB))−1, and by the theory of generating functions, see i.e., [48], the
convergence radius ρ of A is at least min(ρ1, ρ2). Finally, ρ is exactly this, since
both rd 2t+1 B and apex (Ex tB) are contained in Ex (t+ 1)B.

We will also use a simple bound γ(apex (D)) ≤ 2γ(D), which is valid for any
class of graphs D, since |apex (D)n| ≤ n2n−1|Dn−1|.

Let us now prove the lemma. We use induction on k. First consider the case
k = k0. We have γ(apex (Ex k0B)) ≤ 2γ(Ex k0B) < γ(Ex (k0 + 1)B) and so by
(8.3), only one candidate to realize γ(Ex (k0 + 1)B) remains:

γ(Ex (k0 + 1)B) = γ2k0+1.

Now let k′ > k0 be an integer, assume we have proved the lemma with k < k′,
let us now prove the case k = k′.

We have γ(Ex kB) = γ2k−1 by induction, therefore

γ(apex (Ex kB)) ≤ 2γ2k−1.

Now Lemma 8.3.8 and induction yields

γ2k+1 ≥ γ2k−1

γ2k−1

γ2k−3

≥ rγ2k−1.

So finally
γ2k+1 ≥ rγ2k−1 > 2γ2k−1 ≥ γ(apex (Ex kB))

and the claim follows by (8.3). 2

We are now ready to prove our first main theorem.

Proof of Theorem 8.1.1 We use the notation from Lemma 8.3.9. By Lemma
8.3.10 below, aw2 (A) < ∞. As has been noticed in Chapter 7, since A contains
all fans, apex 2k+1 (P) ⊆ Ex (k + 1)B, where P is the class of paths. So we have
γ(Ex (k + 1)B) ≥ 22k+1 for k = 1, 2, . . . . Also by Theorem 7.1.2, γ(apex k (A)) =
2kγ.

Let k0 be the smallest positive integer, such that

γ(Ex (k0 + 1)B) > γ(apex k0 (A)).
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Then for 1 ≤ j < k0, by applying (8.3) j times we have

γ(Ex (j + 1)B) = 2jγ.

Since apex j (A) ⊆ Ex (j + 1)B, it follows that 2jγ is the growth constant of
Ex (j + 1)B. Thus

γ(Ex (k0 + 1)B) > 2k0γ = 2γ(Ex k0B),

therefore γ(Ex (k + 1)B) = γ(rd 2k+1 B) for all k ≥ k0 by Lemma 8.3.9.

Let us show that for k ≥ k0,

γ
(
(Ex (k + 1)B) ∩ apex 2k−1 (A)

)
< γ2k+1.

By Lemma 8.3.9 we have

γ(apex (Ex kB)) ≤ 2γ2k−1 < γ2k+1.

So, using Lemma 8.3.8

γ2k ≤
√
γ2k+1γ2k−1 ≤ 2−1/2γ2k+1.

Now apply Lemma 8.3.5 (with k,B and l = 2k−1), Lemma 8.3.7 and an inequality
analogous to (8.3), to get

γ
(
(Ex (k + 1)B) ∩ apex 2k−1 (A)

)
= max(γ2k, γ(apex (Ex kB))) < γ2k+1.

Finally, let us show that (8.1) holds in the case γ2k+1 < 2kγ. Note that, in such
case 1 ≤ k < k0. It cannot be that for some j ∈ {1, . . . , k−1} we have γ2j+1 > 2jγ,
since Lemma 8.3.9 would imply that γ2k+1 > 2kγ. Similarly, if γ2j+1 = 2jγ, we
would have γ2k+1 ≥ 2k−jγ2j+1 ≥ 2kγ by Lemma 8.3.8. Thus γ2j+1 < 2jγ for all
j = 1, . . . , k − 1.

Trivially, |(Ex (0+1)B)n| = |An| = |(apex 0 (A))n|. Using Lemma 8.4.11 (given
in Section 8.4.2 below) and induction, we get that for j ∈ {1, . . . , k}

|(Ex (j + 1)B)n| = |(apex j (A))n|(1 + e−Θ(n)).

2
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8.3.4 When is apex width finite?

In Section 8.3.1 we introduced the apex width parameter, which is not standard.
Here we present a characterisation of classes with bounded apex width in terms
of excluded minors.

Lemma 8.3.10 Let A be a minor-closed class. Then awj (A) <∞ if and only if
some j-fan and some bipartite graph Kj+1,t does not belong to A.

For stating Theorem 8.1.2 in terms of minors, we will need another lemma.

Lemma 8.3.11 Let A be a minor-closed class such that aw2 (A) <∞. Then the
following two statements are equivalent.

(1) There is a constant c such that for each G ∈ A and each v ∈ V (G), if G− v
is 2-connected then the degree of v in G is at most c.

(2) Some wheel does not belong to A.

To prove the above lemmas, we need a few simple preliminary results. Recall
that the height of a rooted tree is the number of edges in the longest path starting
from the root. A leaf of a rooted tree is a vertex of degree 1, which is not the
root. A straightforward fact is:

Lemma 8.3.12 Let T be a rooted tree of size n, height h and with l leaves. Then
lh ≥ n− 1.

For positive integers j and s, denote by F j
s the j-fan on s vertices. Also, let K∗

j,s

denote a graph obtained from the union of a Kj,s and a (j − 1)-star on the part
of size j. Note, that for j ≤ s+ 1, awj (K

∗
j+1,s) = s+ 1, and K∗

j+1,s is isomorphic
to a minor of Kj+1,s+j.

Proof of Lemma 8.3.10 If A contains all j-fans then awj (A) =∞ by definition.
If A contains all graphs Kj+1,t, then it contains all graphs K∗

j+1,t, where t is
arbitrary and j is fixed, so again awj (A) =∞.

Now suppose there are integers t ≥ 1 and s ≥ 2 such that F j
j+s+1, Kj+1,t 6∈ A.

Let T be any tree on at least st vertices, let S be a set of j vertices, disjoint from
T , and let H be the union of T and the complete bipartite graph with parts S and
V (T ). If T has a path of length at least s, then H has a subgraph isomorphic to
F j
j+s+1. Otherwise we can root T at a vertex r, so that the resulting rooted tree
Tr has height at most s− 1. By Lemma 8.3.12, Tr has at least

⌈
st−1
s−1

⌉
≥ t leaves.

Therefore, contracting all internal vertices of Tr into a single vertex and using
vertices in S, we obtain a minor of Kj+1,t. We have shown that awj (A) < st. 2
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It is well known that each 2-connected graph on at least 3 vertices has a
contractible edge (so that contracting this edge yields again a biconnected graph),
see, e.g., [38]. We need a simple refinement of this.

Lemma 8.3.13 Let G be a 2-connected graph on at least 3 vertices, and let
x ∈ V (G). There is an edge xy ∈ E(G), such that G/xy is biconnected.

Proof Assume the claim is false: then for each neighbour u of x, {u, x} must be
a cut in G. Denote by C(u) a component of G − {x, u} of minimal size, and let
u′ minimize |V (C(u))| over the neighbours u of x. Since G is 2-connected, Both
x and u must have neighbours in C(u′). Let z ∈ C(u′) be a neighbour of x in
G. Suppose {x, z} is a cut in G. The graph (G − C(u′)) − x is connected (this
follows using Menger’s theorem), so G−{x, z} must have a connected component
which is strictly contained in C(u′). But this contradicts to the definition of u′.
We conclude that {x, z} is not a cut in G, so G/xz must be 2-connected. 2

The following “simple fact” about the size of largest cycle (circumference) of
a 2-connected graph is stated in [84]. For completeness, we include a proof.

Lemma 8.3.14 Let k ≥ 3 be an integer. There is a positive integer N = N(k)

such that each 2-connected graph with at least N vertices contains either a cycle
of length k as a subgraph or the complete bipartite graph K2,k as a minor.

Proof Write N = k3k
2
+ 1, ∆ = k3 + 1, and let G be a 2-connected graph of size

at least N .
Let P be the longest path in G, and let x, y be its endpoints. Suppose P has

length at least k2. By Menger’s theorem, G has a cycle C containing x and y. We
can assume that |V (C)| ≤ k − 1. The vertices in V (C) ∩ V (P ) partition P into
at most k − 1 subpaths, with internal vertices disjoint from C (and endpoints in
C). One of these subpaths must have at least k vertices. This subpath, together
with a part of the cycle C yields a cycle of length at least k in G.

Therefore we may assume that each path of G has length at most k2 − 1. Let
Tr be a rooted spanning tree of G. A rooted tree with maximum degree at most
∆− 1 and height h can have at most

1 + (∆− 1) + · · ·+ (∆− 1)h ≤ (∆− 1)h+1

vertices. Since |V (G)| ≥ N , T (and G) has a vertex v of degree at least ∆.
Consider the {0, 1}1-coloured connected graph G′ obtained from G − v by

setting CG′(u) = {red} for each neighbour u of v in G. Let T ′ be a minimal
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(Steiner) subtree of G′ containing all the red vertices. |V (T ′)| ≥ ∆ and T ′ has
diameter at most k2. By Lemma 8.3.12, T ′ has at least d(∆− 1)/k2e ≥ k leaves.
By the minimality of T ′, each leaf has the red colour. Contract the internal vertices
of T ′ to a single vertex; this vertex, the leaves of T ′ and the vertex x demonstrate
that G has a minor K2,k. 2

Proof of Lemma 8.3.11 It is trivial to see that if A has arbitrarily large wheels,
then (1) does not hold: the “hub” vertex x of a wheelWt has t−1 neighbours, and
Wt−{x} is 2-connected. Suppose a wheelWr is excluded from A and (1) does not
hold: we will obtain a contradiction. Set j = aw2 (A). Take a graph G ∈ A and
a vertex x such that G−{x} is 2-connected, and x has d ≥ N(k) + 3 neighbours,
where k = max(r − 1, j + 2) and N(k) is as in Lemma 8.3.14. Let G′ be the
{0, 1}1-coloured graph obtained from G−{x} by colouring the former neighbours
of u {red}. By Lemma 8.3.13, the graph G′ has an all-red 2-connected minor H of
size d (repeatedly contract a contractible edge incident to an uncoloured vertex,
until no uncoloured vertices remain). Now by Lemma 8.3.14, H either has a cycle
C of length k ≥ r − 1, or K2,k as a minor. Recalling that v in G is incident
to each red vertex of G′, we get that G ∈ A has a minor Wk+1 in the first case
(contradiction to the fact that Wr 6∈ A). In the second case, we see that G has a
minor K3,j+2, therefore also a minor K∗

3,j, so aw2 (A) ≥ j + 1, a contradiction. 2

8.4 Growth constants for Ex (k + 1)B

8.4.1 Proof of Theorem 8.1.2

In this section we prove Theorem 8.1.2. Similarly as McDiarmid, Steger and
Welsh [77], we will make use of a version of Fekete’s lemma.

Lemma 8.4.1 Suppose (f(n), n = 1, 2, . . . ) is a sequence of real numbers such
that for any positive integers n,m

f(n+m+ 1) ≥ f(n) + f(m).

Then
sup f(n)

n+ 1
≤ lim inf f(n)

n
; lim sup f(n)

n
≤ sup f(n)

n
.

Proof The second inequality is obvious. Fix any d ∈ N. We will show that

f(d)

d+ 1
≤ lim inf f(n)

n
.
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Define f(0) := f(d+ 1)− f(d). For any n ∈ N, let k and r be such integers that
n = (d+ 1)k + r and 0 ≤ r ≤ d. Then using the assumption

f(n)

n
≥ kf(d) + f(r)

(d+ 1)k + r
→ f(d)

d+ 1
, as n→∞.

2

We will use the following lemma multiple times in the following sections (cf.
Lemma 4.4.4 of [38]).

Lemma 8.4.2 Let {v1, v2} be a cut in a graph G. Suppose G1 and G2 are sub-
graphs of G with V (G1) ∩ V (G2) = {v1, v2} and G1 ∪ G2 = G. Let H ′ be a
subdivision of a 3-connected graph H, and suppose H ′ is not a subgraph of G1 or
G2. Then either G1 ∩H ′ or G2 ∩H ′ is a path from v1 to v2.

Proof For i = 1, 2 write G′
i = Gi − {v1, v2}. By the assumption, H ′ must have

vertices both in G′
1 and in G′

2, and so {v1, v2} is a cut in H ′ (both of these vertices
must belong to H ′ since it is 2-connected).

Suppose first, that v1 and v2 are both on a path P ′ of H ′ which is a subdivided
edge of H. Let P be the path connecting v1 with v2 in P ′. If P has no internal
vertices, then because H is 3-connected, the graph H − {v1, v2} is connected, a
contradiction. So P has at least one internal vertex, so that H − {v1, v2} has
exactly two parts, one of which is the path P − {v1, v2}. Since H ′ has vertices
both in G′

1 and G′
2, one of these parts is contained in a component of G′

1 and
another in a component of G′

2. The path P is a subgraph of P ′, so H[V (P )] = P ,
and in particular v1v2 6∈ E(H). The claim follows.

Now suppose there is no path P in H ′ which is a subdivided edge of H and
contains both v1 and v2. Using the fact that H is 3-connected we see easily that
H ′ − {v1, v2} must be connected, a contradiction. 2

Let a positive integer l and a class B be fixed. As mentioned in the intro-
duction, the class of {0, 1}l-coloured graphs Al obtained from rd l B in Proposi-
tion 8.3.6 is decomposable. Unfortunately, this class is not bridge-addable: in the
case B = {K4}, consider, for example, the coloured graph H obtained from K3,
by colouring each vertex with a distinct pair from {1, 2, 3}, see Figure 8.1. Then
the graph 2H ∈ A3, but no bridge can be added between the two components.

Let, as before, Cl be the class of connected graphs in Al. We call a graph
G ∈ Cl l-rootable at a vertex x ∈ V (G), if colouring x with [l] yields a graph still
in Cl. G is l-rootable if it is l-rootable at some vertex x ∈ V (G). For example,
in the case B = {K4}, the coloured graph H from Figure 8.1 is not 3-rootable.
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{red, green}

{green, blue} {red, blue}

Figure 8.1: This graph is not 3-rootable with respect to B = {K4}.

Denote by C•l the class of all rooted graphs (with at least one vertex) that can be
obtained by declaring an l-rootable vertex of a graph in Cl the root.

We will see next, that when B consists of 3-connected graphs, it is possible to
partly restore the property of bridge-addability: if we add an edge xy connecting
different components of G ∈ Al, we obtain a graph in Al, provided that x and y
are rootable in their respective components.

Lemma 8.4.3 Let l be a positive integer, and let B be as in Theorem 8.1.2. Then
the class U ′ of graphs in Cl that are not l-rootable has γ(U ′) ≤ γ(Cl−1).

Proof Call G ∈ Cl nice, if there is x ∈ V (G) such that G − x has at least two
components containing all l colours. We claim that in this case, G is rootable at
x. Suppose the contrary.

Then there is a colour i ∈ [l] such the graph G′ obtained by adding a new
vertex s to G connected to x and each vertex of G that has colour i, contains a
B-critical subgraph H.

Clearly i 6∈ ColG(x) and sx ∈ H, otherwise we would have that G 6∈ Cl.
Suppose H shares vertices with more than one component of G−x. Let C be one
such component. By Theorem 9.12 of [35] an expansion of a 3-connected graph
at a vertex of degree at least 4 is 3-connected, and so H is a subdivision of a
3-connected graph. We may apply Lemma 8.4.2 with G1 = G′[V (C) ∪ {s, x}],
G2 = G′ − V (C) and the cut {s, x} to get that H meets either G1 or G2 just by
a path from s to x: since sx ∈ H this path must be sx, a contradiction.

Thus V (H) \ {s, x} must be completely contained in V (C) for a component
C of G− x. But this means that G 6∈ Cl: we may replace the edge sx by a path
from x to s in G′ − C, since G − s has a component, disjoint from C with the
colour i. We conclude that indeed G is rootable at x.

Denote by U the class of graphs in Cl that are not nice. Then U ′ ⊆ U , and
we need to show that γ(U) ≤ γ(Cl−1). Each graph G ∈ U contains a block B,
such that for any cut vertex y ∈ V (B), the components of G− y disjoint from B

can have at most l− 1 colours. (This can be seen as follows. Consider the rooted

215



Chapter 8. Few disjoint minors in B when ExB contains all fans

block tree T of G, and let r be its root. For any block B′ let r(B′) ∈ V (G) be its
parent in T , and denote by GB′ the component of G−r(B′) containing B−r(B′).
Define the set S of of all blocks B′, such that Col(GB′) = [l]. We can assume it
is non-empty, otherwise any block containing r has the required property. Pick a
block B ∈ S with maximum distance from r in T . Then each component C of
G − V (B) contains at most l − 1 colours: otherwise, if C ⊆ GB we would have
contradiction to the choice of B, and if C ⊆ G−GB′ , then r(B) would be a vertex
showing that G is nice.)

By Lemma 8.3.11 for each colour i ∈ [l] there can be at most a constant number
c of vertices x ∈ V (B) such that either x has colour i or the graph “attached” to
B at x has colour i. Each graph in Cl with at most l− 1 colours can be obtained
from a pair (j, G1), where j ∈ [l] and G1 ∈ Cl−1 by mapping the colour j to l in
G1. Therefore, for n ≥ cl the coefficients

[
xn

n!

]
U(x) are bounded from above by[

xn

n!

]
xclA(cl)(x)

(
l(C l−1(x))′

)cl
where A(x) is the generating function of A = ExB and A(cl)(x) is its cl-th deriva-
tive. The convergence radius of U(x) is at least min(ρ(A), ρ(Cl−1)). The class
Cl−1 contains all connected graphs in A; by the exponential formula we have
ρ(A) ≥ ρ(Cl−1). So γ(U) ≤ γ(Cl−1). 2

We will need a simple technical lemma next.

Lemma 8.4.4 Suppose classes of graphs A and B both have growth constants.
Then γ(A ∪ B) exists and is equal to max(γ(A), γ(B)).

Proof We may assume that γ(A) ≥ γ(B). Clearly, γ(A ∪ B) ≥ γ(A). Suppose
there is a subsequence (nk, k = 1, 2, . . . ) such that

(
|Ank

∪ Bnk
|

nk!

)1/nk

→ a > γ(A).

If γ(A) > γ(B) then |An|/|Bn| → ∞ and there is k0 such that for k ≥ k0 we
have |Ank

| ≥ |Bnk
|. If γ(A) = γ(B) then either |Ank

| ≥ |Bnk
| or |Ank

| ≤ |Bnk
|

for infinitely many k. In this case, rename A and B if necessary, so that the
former holds. We get that (nk) contains a subsequence (n′

l, l = 1, 2, . . . ) such that
|An′

l
∪ Bn′

l
| ≤ 2|An′

l
| and

( |An′
l
∪ Bn′

l
|

n′
l!

)1/n′
l

≤
(
2|An′

l
|

n′
l!

)1/n′
l

→ γ(A).
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This is a contradiction. 2

Lemma 8.4.5 Let l be a positive integer and let B be as in Theorem 8.1.2.
Suppose that Cl−1 and C•l have growth constants. Then Cl has a growth constant

γ(Cl) = max(γ(Cl−1), γ(C•l)).

Proof Denote by C ′ the class of all l-rootable graphs in Cl, and denote by C ′′ the
class of graphs G ∈ Cl that are either not l-rootable or have Col(G) ⊆ [l − 1].

Then C ′ has a growth constant, since C•l does, and

|C ′n| ≤ |C•ln | ≤ n|C ′n|.

The class C ′′ also has a growth constant: γ(C ′′) = γ(Cl−1). This is because by
Lemma 8.4.3, γ(C ′′) ≤ γ(Cl−1), and Cl−1 ⊆ C ′′.

Now, by Lemma 8.4.4, the class Cl = C ′ ∪ C ′′ is as claimed. 2

The next lemma shows that for good enough B, the class C•l is closed under
joining smaller rooted graphs into “strings”.

Lemma 8.4.6 Let l be a positive integer and let B be a set of 3-connected graphs.
Let G be a graph obtained from a non-empty set S of disjoint graphs in C•l, and
a path on the set R(S) of the roots of the graphs in S; and let G be rooted at
r ∈ R(S). Then G ∈ C•l.

Proof We first note that ExB contains all fans: indeed fans are series-parallel
graphs, and if a fan F had a minor in B, then since each 3-connected graph has K4

as a minor (Lemma 3.2.1 of [38]), F would have K4 as a minor, a contradiction.
Suppose the claim does not hold. Call S bad if the lemma fails for S, a path

P on R(S) and a vertex r ∈ V (P ). Let N(S) be the number of graphs in S that
have size at least 2. Let ν be the size of the smallest bad set S, and consider a
set S ′ which minimizes N(S) over bad sets S of size ν, let P ′ be a path on R(S ′)

and let r′ ∈ V (P ′) be the root for which the lemma fails.
Then there is a colour i ∈ [l] such that if we add a new vertex s to G, connect

s to r′ and every vertex of G that has colour i and remove all the colours, the
resulting graph G′ 6∈ ExB. Let H be a B-critical graph in G′.

Suppose all graphs in S are of size 1. Then G′ is isomorphic to a minor of a
fan, and G′ ∈ ExB, a contradiction.

Let G1 be a graph in S ′ with root r1 and size at least 2. If H has no vertices
in G1 − r1, then we could replace G1 with G1[{r1}] and obtain a bad set S ′′ with
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N(S ′′) < N(S ′). Thus, we may assume G1 has at least one vertex coloured i, other
than r1. Since G1 ∈ C•l, H− s also has a vertex not in G1. Now {r1, s} is a cut in
H, so by Lemma 8.4.2, either H ∩ (V (G1)∪{s}) or H ∩ (V (G−G1)∪{s, x}) is a
path P1 from r1 to s. In the first case we may replace G1 with the graph consisting
of a single vertex r1 coloured {i} to obtain a set S ′′ with N(S ′′) < N(S ′). In the
second case, we may replace P with the edge r1s to show that G1 6∈ C•l.

In each case we obtained a contradiction, so it must be that G ∈ C•l. 2

Lemma 8.4.7 Let l be a positive integer and let B be as in Theorem 8.1.2. Then
C•l has a growth constant.

Proof Let n,m be positive integers. We claim that

|C•ln+m+1| ≥ (n+m+ 1)

(
n+m

n

)
|C•ln ||C•lm|. (8.5)

The above formula follows from the following construction for graphs on n+m+1

vertices. In the case n 6= m, pick a root vertex r, divide the remaining n + m

vertices into two parts of sizes n and m, and add a graph G1 ∈ Cl of size n on
the first part and a graph G2 ∈ Cl of size m on the second part. Connect r
to the roots r1 and r2 of G1 and G2 respectively, and declare r the root of the
formed graph G. Each construction gives a unique graph, because given a graph
G obtained in this way we may recover G1 and G2 uniquely by deleting the root
of G and declaring the vertices adjacent to the two neighbours of G the roots of
the respective components.

In the case n = m, we have to avoid obtaining each graph twice because of
symmetry. So if V (G1) is lexicographically smaller than V (G2) output the graph
G as above, otherwise output the graph G − rr1 + r1r2. To finish the proof of
(8.5), note the constructions G are always in the class C•l by Lemma 8.4.6.

Now let d, k be positive integers, k ≥ 2 and set n = kd. Form a graph G

by taking an arbitrary set S of k disjoint graphs in C•l of size d, adding a path,
P rooted at one of the endpoints r and with V (P ) consisting of all roots of the
graphs in S. Declare r the root of G. By Lemma 8.4.6, G ∈ C•l.

Note also, that we never construct a graph G twice: it is always possible to
recover the path P and the set S uniquely from G. (Start with the root r of G.
There can be only one edge rx ∈ G, such that G− rx has a component C of size
d: rx is the first edge of P . Delete rx and proceed in the same way with the
component of G − rx containing x, rooted at x.) Let P be the set of all graphs
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constructed in this way. Then

|Pn| =
(dk)!

d!k
|C•ld |k

Next we observe, that since ExB contains all apex paths, the class R of rooted
uncoloured cycles is contained in C•l. This class is clearly disjoint from P , in
which every graph has a bridge.

For t = 1, 2, . . . let f(t) = ln(|C•lt |/t!). We have

f(n)

n
≥ 1

n
ln
(
|Pn|+ |Rn|

n!

)
>
f(d)

d
. (8.6)

From (8.5) it follows that

f(n+m+ 1) ≥ f(n) + f(m).

Thus by the modification of Fekete’s lemma, Lemma 8.4.1

sup f(n)

n+ 1
≤ lim inf f(n)

n
; lim sup f(n)

n
≤ sup f(n)

n
.

By (8.6), for n = kd and any integer k = 2, 3, . . .

f(n)

n+ 1
− f(d)

d+ 1
>

d

d+ 1

(
f(n)

n
− f(d)

d

)
> 0.

Therefore
sup f(n)

n+ 1
= lim sup f(n)

n+ 1
= lim sup f(n)

n
,

and
f(n)

n
→ lim sup f(n)

n
∈ [0;∞].

Since ExB is small by [43], we conclude that C•l has a growth constant.
Also, because ExB includes all graphs without a 3-connected minor, by Lem-

ma 3.2.1 of [38], γ(C•l) ∈ [γ(ExK4),∞), where γ(ExK4) = 9.073.., see Section 9.2.
2

Lemma 8.4.8 Let l be a non-negative integer and let B be as in Theorem 8.1.2.
Then the class Cl has a growth constant.

Proof We use induction on l. The class C0 is the class of connected graphs in
ExB, this class has a growth constant by [74, 77]. Suppose now that l > 0 and
assume that we have proved the claim for each class Ex (l′ +1)B, where l′ < l, we

219



Chapter 8. Few disjoint minors in B when ExB contains all fans

now prove it for l′ = l.
The class C•l has a growth constant by Lemma 8.4.7. The class C(l−1) has a

growth constant by induction. So Cl has a growth constant by Lemma 8.4.5. 2

We can now combine the lemmas of this section to finish the proof of Theo-
rem 8.1.2.

Proof of Theorem 8.1.2 The class C2k+1 has a growth constant γ by Lemma 8.4.8.
Since

[xn]C2k+1(x) ≤ [xn]A2k+1(x) ≤ [xn]eC
2k+1(x),

we get, see i.e. [48], that A2k+1 also has growth constant γ. Using Proposi-
tion 8.3.6, we see that rd 2k+1 B has growth constant γ as well. By the assumption
of the theorem, there must be a constant c, such that B does not contain a wheel
Wc+1 as a minor (which is a planar graph). Now Theorem 8.1.1 completes the
proof. 2

8.4.2 Small blockers and small redundant blockers

In this section we collect several auxiliary lemmas. For B and k0 as in Theo-
rem 8.1.1, we can often conclude that Rn ∈ Ex (k + 1)B either has a blocker of
size k (if k < k0) with probability 1− e−Ω(n) or (if k ≥ k0) it has a constant size
(2k, 2,B)-double blocker with probability 1−e−Ω(n) . Using results of this section,
it can be shown that this happens, for example, when γ(rd 2k+1 B) 6= 2kγ(ExB)
exists for all k.

Lemma 8.4.9 Let k be a positive integer and let B be the set of minimal excluded
minors for a proper addable minor-closed class of graphs. Suppose aw2 (ExB) is
finite.

If γ(Ex (k + 1)B) > 2γ(Ex kB) then there is a constant r = r(k,B) such that
all but at most e−Ω(n) fraction of graphs in (Ex (k+1)B)n have a (2k, 2,B)-double
blocker of size r.

Proof By Lemma 8.3.3 and Lemma 8.3.5 there is a constant r = r(k,B) > 2k

such that every graph in G ∈ Ex (k + 1)B is a union of two graphs G1 and G2,
where G1 has a (2k, 2,B)-double blocker Q of size at most r with a special set S,
S ⊆ V (G1) ∩ V (G2) ⊆ Q, G2 ∈ apex (Ex kB) and Q is a B-blocker for G.

We may assign each G ∈ Ex (k + 1)B a unique tuple t(G) = (G1, G2, Q, S)

as above. Call G complex, if G2 − (Q \ S) contains a subgraph H 6∈ ExB which
has only one vertex z ∈ S. Observe, that if G is not complex, then Q is a
(2k, 2,B)-double blocker for G, and S is its special set.
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Suppose G is complex, and let H be a subgraph of G2 − (Q \ S) such that
V (H)∩S = {z} for z ∈ S. Then G1−z is disjoint from H, so G1−z ∈ Ex kB and
G1 ∈ apex (Ex kB). In this case, ifG has at least r vertices, it can be obtained from
a graph G̃1 in apex (Ex kB) which has s = |V (G1)∩V (G2)| distinguished vertices
(roots) and another graph G̃2 in apex (Ex kB) which has s pointed vertices, by
identifying the i-th rooted vertex with the i-th pointed vertex and merging edges
between the distinguished vertices.

Thus the n-th coefficient, of the exponential generating function for the com-
plex graphs is bounded by

[xn]
r∑

s=0

xs
(
A(s)(x)

)2
,

where A is the exponential generating function of apex (Ex kB) and A(s) is the
s-th derivative of A. This shows that the inverse radius of convergence for the
class of complex graphs is at most

γ(apex (Ex kB)) ≤ 2γ(Ex kB) < γ(Ex (k + 1)B),

see Proposition 8.3.6 and the proof of Theorem 8.1.1. Hence, all but at most
e−Ω(n) fraction of graphs in |(Ex (k + 1)B)n| are not complex, and therefore have
a (2k, 2,B)-double blocker. 2

We call a connected subgraph H of G a pendant subgraph, if there is exactly
one edge in G between V (H) and V (G) \ V (H).

Lemma 8.4.10 Let A be a proper addable minor-closed class of graphs. Let
H ∈ A be a connected graph and let k be a non-negative integer.

There is a constant c > 0, such that the random graph Rn ∈u apex k (A) with
probability 1− e−Ω(n) has a set S of k vertices, such that Rn−S contains a family
H of at least cn pairwise disjoint pendant subgraphs isomorphic to H, and each
vertex of S is incident to all vertices of every graph H̃ ∈ H.

Proof This fact is proved in the proof of Theorem 7.1.2. 2

Lemma 8.4.11 Let k be a positive integer and let B be the set of minimal excluded
minors for a proper addable minor-closed class of graphs. Suppose ExB contains
all fans, aw2 (ExB) is finite,

|(Ex kB)n| ≤ |(apex k−1 (ExB))n|
(
1 + e−Ω(n)

)
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and γ2 > γ1, where γ2 = γ(apex (Ex kB)), γ1 = γ(rd 2k+1 B). Then

|(Ex (k + 1)B)n| = |(apex k (ExB))n|
(
1 + e−Θ(n)

)
.

Proof By Lemma 8.3.3 and Lemma 8.3.5 there is a constant r = r(k,B) > 2k

such that every graph in G ∈ Ex (k+1)B with at least r vertices can be generated
as follows.

1) Pick n2 ∈ {0, . . . , n}.

2) Pick a set V2 ⊆ [n] of size n2.

3) Pick q ∈ {0, . . . , n2 ∧ r}.

4) Pick a set Q ⊆ V2 of size q.

5) Put any graph G2 ∈ A on V2. Here A = apex (Ex kB).

6) Add edges of any graph G1 ∈ D on V1 = ([n] \ V2) ∪ Q (merge repetitive
edges, if necessary). Here D is the class of graphs with a (2k, 2,B)-double
blocker of size at most r.

Let un be the total number of constructions, i.e., the total number of different
tuples (n2, q, V2, Q,G1, G2) that can be generated by the above procedure. Denote
by U be the combinatorial class with the counting sequence (un, n = 0, 1, . . . ).
Also, let Rn be the graph obtained by taking the tuple (n2, q, V2, Q,G1, G2) uni-
formly at random from all un possible tuples. (In the rest of the proof n2, q, V2, Q,

G1 and G2 will be random variables.)
By Lemma 8.3.7, γ(D) = γ1. Similarly as in the proof of (8.3)

un ≤ [xn/n!]
r∑

q=0

xqA(q)(x)D(q)(x),

so, see [48], γ(U) ≤ γ2. Fix ε ∈ (0, 0.5) and δ > 0 such that

(γ1 + δ)ε(γ2 + δ)1−ε < γ2.

Let H be a graph of minimal size that can be obtained by removing one vertex
from a graph in B. Let c be a constant as in Lemma 8.4.10 applied with ExB and
H. We say that a set S ⊆ V2 is good if |S| = k and there is a family HS of at least
cn/4 disjoint pendant subgraphs H̃ in G2− (S ∪Q) such that H̃ is isomorphic to
H and every vertex v ∈ S is incident to every vertex of V (H̃).

222



8.4. Growth constants for Ex (k + 1)B

Define the following events:

A = {G2 has at least (1− ε)n vertices};

B = {G2 ∈ apex k (ExB)};

C = {G2 has a good set S}.

We will show that

P(Ā) ≤ e−Ω(n); P(B̄) ≤ e−Ω(n); P(C̄) ≤ e−Ω(n). (8.7)

and
γ(U) = γ(apex k (ExB)) = γ2. (8.8)

For n large enough, A,B and C imply that either Rn ∈ apex k (ExB) or Rn has
k + 1 disjoint subgraphs not in ExB. Indeed, by Lemma 5.3 of [65], if S is a
good set, then for a B-critical subgraph H1 of G− S, there is at most a constant
number Nk,B of subgraphs H̃ ∈ HS, which are not disjoint from H1. For n large
enough, k < cn/4 − Nk,B, so we can construct k disjoint subgraphs not in ExB,
each containing one vertex from S, and each disjoint from H1, producing k + 1

disjoint forbidden subgraphs in total.
Denote a′n := |apex k (ExB)n|. Assuming (8.7) and (8.8) hold, we have for n

large enough

|(Ex (k + 1)B)n \ (apex k (ExB))n| ≤ un(P(Ā) + P(B̄) + P(C̄))

= n!γ
n−Ω(n)
2 = e−Ω(n)a′n. (8.9)

Let us show (8.7) and (8.8). Recall that by Theorem 7.1.2, γ(apex l(ExB)) =

2lγ(ExB) for any l = 0, 1, 2, . . . . By the definition of apex classes and the as-
sumption of the lemma

|apex (Ex kB)n \ (apex k (ExB))n| ≤ n2n−1|(Ex kB)n−1 \ (apex k−1(ExB))n−1|

≤ n2n−1e−Ω(n)|(apex k−1 (ExB))n−1|

The last line is e−Ω(n)a′n again by Theorem 7.1.2. So

an := |apex (Ex kB)n| ≤ a′n(1 + e−Ω(n)) (8.10)
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and γ2 = 2kγ(ExB) is the growth constant of apex (Ex kB). Since un ≥ a′n, we
have γ(U) ≥ γ2 and (8.8) follows.

Let dn = |Dn|. There is a constant C, such that for any n = 1, 2, . . .

an ≤ Cn!(γ2 + δ)n; dn ≤ Cn!(γ1 + δ)n.

Using (8.8), there is a constant C ′ > 0, such that the number of constructions
with n2 < (1− ε)n is at most

b(1−ε)nc∑
n2=0

r∧n2∑
q=0

(
n

n2

)(
n2

q

)
an2dn−n2+q

≤ C ′n2q+1n! max
n2<(1−ε)n

(γ1 + δ)n−n2(γ2 + δ)n2

≤ C ′n2q+1n!
(
(γ2 + δ)1−ε(γ1 + δ)ε

)n
≤ e−Ω(n)un,

and the first bound of (8.7) follows.
The second bound of (8.7) follows by the first one and (8.10) since

P(B̄) ≤ P(Ā) + P(B̄|A) = e−Ω(n).

Fix an integer t, (1 − ε)n ≤ t ≤ n, and a subset V2 = Ṽ of size t. Conditionally
on V2 = Ṽ and the event B, the random graph G2 is a uniformly random graph
on Ṽ from apex k (ExB).

By Lemma 8.4.10 there is a constant c1 > 0 such that for all large enough n,
conditionally on V2 = Ṽ and B, the graphG2 with probability at least 1−e−c1(1−ε)n

has a set S, where every vertex in S is incident to every vertex of at least c(1−ε)n ≥
cn/2 disjoint pendant subgraphs of G2 isomorphic toH. At most q such subgraphs
can have vertices in Q, so if n is large enough then cn/2−q > cn/4 and S is good.

Now
P(C̄) ≤ P(Ā) + P(B̄) + P(C̄|A,B).

For large enough n, by the above argument and symmetry the last term on the
right side is

1

P(A,B)

∑
Ṽ⊆[n],|Ṽ |≥(1−ε)n

P(C̄|V2 = Ṽ , B)P(V2 = Ṽ , B)

≤ e−c1(1−ε)nP(A,B)

P(A,B)
= e−Ω(n),
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and the last bound of (8.7) follows.
Finally, the fact that |(Ex (k + 1)B)n \ (apex k (ExB))n| ≥ e−Θ(n)a′n follows by

Lemma 7.5.5 from the previous chapter.
2

For B as in Theorem 8.1.2 and sufficiently large k we have, using Theorem 8.1.1,
that Rn ∈u rd 2k+1 B belongs to apex 2k−1 B ⊇ apex k B with probability e−Ω(n).
The next lemma shows that the two candidates for the main subclass of Ex (k+1)B
studied so far essentially do not overlap.

Lemma 8.4.12 Let A be a proper addable minor-closed class. Let B be its set
of minimal excluded minors. There is a constant c > 0 such that with probability
1− e−Ω(n) every redundant blocker Rn ∈u apex k (ExB) is of size at least cn.

Proof Fix a graph H ∈ B. Let H0 = H − v, where v ∈ V (H) is any vertex. Fix
ε ∈ (0, 1), and let Aε = Aε(n) be the event that the random graph Rn has a unique
blocker S of size k and the graph Rn − S has at least εn pendant appearances H̃
of the graph H0, such that every vertex of H̃ is connected to every vertex of S
(call such pendant appearances good), and any B-blocker not containing S has at
least εn vertices. By Lemma 8.4.10 and Theorem 7.1.3 we can choose ε so, that
Aε occurs with probability 1− e−Ω(n).

Let c = ε/2. Let n be sufficiently large, so that (ε − c)n > 2. Suppose Aε

occurs and Rn has a redundant blocker Q of size at most cn. Then Q must contain
S and there must be at least one good appearance H̃ disjoint from Q. Now any
vertex x ∈ S together with H̃ induces a graph containing H in Rn − (Q \ {x}),
thus Q is not a redundant blocker. So the probability that Rn has a redundant
blocker of size at most cn is at most P(Āε) = e−Ω(n). 2
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Chapter 9

Few disjoint minors K4

9.1 Introduction
Recall that series-parallel graphs are exactly the class ExK4. Asymptotic count-
ing formulas and other properties of series-parallel and outerplanar graphs were
obtained by Bodirsky, Giménez, Kang and Noy [32]; the degree distribution was
studied by Bernasconi, Panagiotou and Steger [12] and by Drmota, Giménez and
Noy [41].

The main result of this chapter concerns the number of graphs, not containing
a minor isomorphic to k+1 disjoint copies of K4 (i.e., B = {K4}). At the expense
of delving deeply into the structure of series parallel graphs (coloured according
to certain rules), and analysing specific generating functions, we obtain much
sharper conclusions than in the previous chapter, as well as explicit numerical
approximations for constants.

Theorem 9.1.1 Let k be a positive integer. We have

|(Ex (k + 1)K4)n| = (1 + e−Θ(n))|(rd 2k+1K4)n|.

There are constants ck > 0 and γk > 0, such that

|(rd 2k+1K4)n| = ckn
−5/2n!γnk (1 + o(1)).

Furthermore, γ1 = 23.5241...

The proof of the above theorem yields the following facts about the structure of
typical graphs without a minor isomorphic to (k+1)K4. Recall that given a class
of graphs A, we write Rn ∈u A to mean that Rn is a uniformly random graph
drawn from An.
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Theorem 9.1.2 Let k be a positive integer and let Rn ∈u Ex (k + 1)K4.

(a) There is a constant ak > 0, such that with probability 1− e−Θ(n), the graph
Rn has a unique redundant K4-blocker Q of size 2k + 1, each vertex in Q

has degree at least akn, and any K4-blocker Q′ with |Q \ Q′| > 1, has at
least akn vertices.

(b) The probability that Rn is connected converges to pk = A(γ−1
k ) where A is

the exponential generating function of ExK4 and γk is as in Theorem 9.1.1.

Let us point out that the complete asymptotic distribution of the ‘fragment’ graph
of Rn (Rn minus its largest component) and the asymptotic Poisson distribution
of the number of components in Rn can be easily obtained (in terms of A and
γk) using results from [74]. Furthermore, the expected number of the vertices
not in the largest component of Rn is O(1), this holds more generally for random
graphs from any bridge-addable class [74]. We provide an approach to evaluate
γk, k = 1, 2, . . . numerically to arbitrary precision. Then pk can be numerically
evaluated using results of [32].

The proof of Theorem 9.1.1 is much more complicated than the proof in the
case B = {K3} in Chapter 6 or the more general Theorem 7.1.1. When ExB does
not contain all fans, a random graph from (Ex (k + 1)B)n essentially consists of
a random graph in ExB on n − k vertices and k apex vertices with their neigh-
bours chosen independently at random, each with probability 1/2 (see Chapter 7).
Meanwhile, if Q is a redundant blocker for G ∈ Ex (k + 1)K4, then the possible
neighbours of a vertex v ∈ Q depend on the series-parallel graph G − Q. To
solve this, we obtain decompositions of the dominating subclass of rd 2k+1 B into
tree-like structures and analyse the corresponding generating functions.

In our last result we look at classes Ex (k + 1){K2,3, K4}. For k = 0, this
corresponds to outerplanar graphs.

Theorem 9.1.3 Let B = {K2,3, K4}. The class Ex (k+1)B has a growth constant
γ′k for each k = 1, 2, . . . . We have

γ′1 = γ(apex (ExB)) = 2γ(ExB) > γ(rd 3 B)

and for a positive constant c

|(Ex 2B)n| = cn−3/2γ′n1 n!(1 + o(1)).
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However, for any k ≥ 2

γ′k = γ(rd 2k+1 B) > γ(apex k (ExB)) and |(Ex (k + 1)B)n| = eΩ(n1/2)γ′nk n!

The first few values are γ′1 = 14.642.., γ′2 = 34.099.., γ′3 = 130.023.., and for
k ≥ 2 γ′k admits a closed-form expression.

The last theorem shows that Theorem 8.1.1 does not hold in general with k0 = 1.
The unusual subexponential factor for k ≥ 2 shows up because the underlying
structure of typical graphs in rd 2k+1 {K2,3, K4} is “path-like”, whereas it is “tree-
like” for graphs in rd 2k+1K4, see Figure 6 (c).

The structure of this Chapter is as follows. In Section 9.2, we explore the
rich structure of the classes rd 2k+1K4, which we then translate into generating
functions and apply analytic combinatorics to get the growth constant when k = 1.
In Section 9.3 we count graphs obtained from unrooted Cayley trees, where edges,
internal vertices and leaves are replaced with graphs from different classes. Then,
in Section 9.4 we complete the proof of Theorem 9.1.1. In Section 9.5 we prove
Theorem 9.1.3. Finally, in Section 9.6 we discuss open questions that arise from
this work and give some concluding remarks.

9.2 Analytic combinatorics for Ex 2K4

In this section we focus on the case B = {K4} and the class C3. Recall that
Al denotes the set of {0, 1}l-coloured graphs G such that if G ∈ Al,n then
{n+ 1, . . . , n+ l} is an l-redundant blocker for G{n+1,...,n+l} and Cl is the class of
connected graphs in Al. The main result of this section is the following.

Lemma 9.2.1 Let B = {K4}. The class C3 has growth constant γ(C3) = 23.5241.. .

This shows that in Theorem 8.1.1 and Theorem 8.1.2 we have k0 = 1 for
B = {K4}:

Corollary 9.2.2 Let B = {K4}. For any k = 1, 2, . . .

γ(Ex (k + 1)K4) = γ(rd 2k+1K4) = γ(A2k+1).

Proof Bodirsky, Giménez, Kang and Noy [32] showed that γ(ExK4) = 9.073 . . . .
By the exponential formula

C3(x) ≤ A3(x) ≤ eC
3(x),
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so by Proposition 8.3.6, Lemma 9.2.1 and Lemma 9.2.1

γ(rd 3K4) = γ(A3) = γ(C3) > 2γ(ExK4).

Now the claim follows by Lemma 8.3.9. 2

9.2.1 Series-parallel networks

Recall that a graph G is called series-parallel if G ∈ ExK4. A series-parallel graph
G with an ordered pair of distinguished vertices s and t is called an SP-network if
G is connected and adding an edge st to G, the resulting multigraph is 2-connected
and series-parallel (so a network isomorphic to K2 is also an SP -network). s and
t are called the poles of G; s is the source of G and t is the sink of G. The poles
have no label and do not contribute to the size of G. A vertex v ∈ V (G) that is
not a pole, is called an internal vertex.

Denote by D the class of all SP -networks and by E2 the class of SP -networks
consisting of a single edge between the source and the sink. Also, denote by E1 the
class of degenerate networks with source and sink represented by the same vertex
and zero internal vertices. The corresponding exponential generating functions
are E2(x) = E1(x) = 1.

Lemma 9.2.3 (Trakhtenbrot 1958, [99], see also [100]) We have

D = E2 + S + P .

Here S and P are defined by |S0| = |P0| = 0 and

S = (P + E2)× SEQ≥1(Z × (P + E2));

P = E2 × SET≥1(S) + SET≥2(S).

Furthermore, the classes S and P correspond to disjoint classes of networks and
the above relation corresponds to a unique decomposition of a graph G ∈ S (re-
spectively, G ∈ P) into subgraphs in P ∪ E2 (respectively, S ∪ E2) with pairwise
disjoint sets of labels.

The last statement of the lemma asserts that there is a stronger kind of isomor-
phism than just combinatorial one. More precisely, the classes S, P and E2 can
(and will) be considered as classes of graphs, which naturally partition the class of
all SP -networks, see Figure 9.1. A network G ∈ S is called a series SP-network.
G can be decomposed uniquely into k ≥ 2 networks H1, . . . , Hk ∈ P + E2, where
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S P E2

Figure 9.1: The structure of the class D provided by Lemma 9.2.3.

the sink of Hi is the source of Hi+1 for i = 1, . . . , k − 1, the source of G is the
source of H1, the sink of G is the sink of Hk, and the sets of internal vertices are
disjoint for Hi, Hj, i 6= j. We say that G is obtained from H1, . . . , Hk by series
composition.

A network G ∈ P with source s and sink t is called a parallel SP-network. G
can be decomposed uniquely into k ≥ 2 networks S1, . . . , Sk ∈ S ∪ E2, where at
most one network is in E2. In such a decomposition, the sets of internal vertices
of S1, . . . , Sk are pairwise disjoint, the source of S1, . . . , Sk is s, and the sink of
S1, . . . , Sk is t. We say that G is obtained from S1, . . . , Sk by parallel composition.
The above decomposition also implies that for any internal vertex v of G ∈ P ,
we may represent G as a parallel composition of a network S ∈ S (where S = Sj

with v ∈ V (Sj)) and a network D ∈ D (where D = ∪i6=jSi).
It has been shown, see [32] and [12], that the exponential generating functions

of D and P satisfy

xD(x)2

1 + xD(x)
= ln

(
1 +D(x)

2

)
; (9.1)

P (x) + 1 =
D(x)

1 + xD(x)
. (9.2)

To keep formulas shorter, for exponential generating functions A(x) we will often
skip “(x)”; x ∈ C will usually be fixed, and its value should be clear from the
context. Identities where the range of x is not explicitly stated, will hold for some
δ > 0 and any x ∈ C with |x| < δ.

The following simple facts were used already in [99].

Proposition 9.2.4 Let G be an SP -network with poles s and t. Then for each
internal vertex v of G there is a path from s to t containing v.
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Proof If G is a parallel SP -network, then since G is 2-connected, there are
internally disjoint paths, a path from v to s and a path from v to t. Connecting
them, we obtain a path from s to t.

Suppose G is a series network. Let H1, . . . , Hk be the decomposition of G
into graphs in P + E2 as in Lemma 9.2.3. Then for i = 1, . . . , k, the network
Hi contains a path Pi connecting its poles, and, if v is an internal vertex of Hi,
also containing v. Connecting each of the paths Pi yields a path from s to t that
contains v. 2

Proposition 9.2.5 Let G be a parallel SP -network with source s and sink t.
Then for each internal vertex v of G there are two internally disjoint paths from
s to t such that one of the paths contains v.

Proof By Lemma 9.2.3 the graph G can be obtained by a parallel composition
of two networks S ∈ S and D ∈ D with disjoint sets of vertices where v is an
internal vertex of S. By Proposition 9.2.4, there is a path P from s to t that
contains v. Now D contains another path from s to t internally disjoint from P .

2

Proposition 9.2.6 Let G ∈ D. The network G′ obtained by adding a new vertex
w connected to both poles of G satisfies G′ ∈ P.

Proof This is an immediate consequence of Lemma 9.2.3, see the comment after
it. 2

9.2.2 Rooted graphs of multiple types

Let F (x) and B(x) denote the exponential generating functions of rooted con-
nected series-parallel graphs and biconnected series-parallel graphs respectively.
Then (see, e.g., [32, 52])

F (x) = xeB
′(F (x)). (9.3)

An analogous formula works for any addable class of graphs. However, it fails for
classes Ck: we have to consider several types of rooted graphs instead.

Let G be a coloured graph with one pointed uncoloured vertex r, called the
root of G. Let C be the set of all colours of G. We call a colour c good for G,
if the graph obtained from G by adding a new vertex w connected to r and each
vertex of G coloured c contains no K4 as a minor. Otherwise we call c bad for G.
We call G a C-tree, if the following three conditions are satisfied:
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Figure 9.2: A {red, green, blue}-tree G. The elliptic shapes represent blocks, the white node is
the root r. For each colour c the blocks on the path from the root vertex to a vertex coloured
c form a sequence of SP-networks joined at their poles and only the “joints” of these networks
can have colour c. All such blocks for any given colour c form a {c}-tree which is a “subtree” of
G, here the subtree for c = red is highlighted.

(a) each colour c ∈ C is good for G,

(b) G is connected and it has no cut vertex x such that G− x has a component
without colours and without r, and

(c) r is not coloured, not a cut vertex of G and not the only vertex of G.

For a positive integer k and C ⊆ [k], denote by AC the family of all C-trees, see
Figure 9.2. We define A∅ = ∅. If C 6= ∅, then for n = 0, 1, 2, |AC,n| is equal to 0, 1

and 2|C| respectively. We will now study the exponential generating functions of
AC ; in the end of this section we will use the results to obtain the growth constant
of Ck.

Let G be a C-tree with root r, for some C ⊆ [k]. Then G has a unique rooted
block tree T with root r. Consider any block B of G. Denote by r(B) the vertex
of B closest to r in G. For v ∈ V (G), denote by Gv the subgraph of G induced
on v and the vertices of all blocks of G that are ancestors of v in T (if v is not a
cut vertex and v 6= r, then it has no ancestors), with the label and colour from
v removed. We call the set of colours Col(v) ∪ Col(Gv) the type of v in G, and
denote it by typeG(v). For any block B of G and any colour c, let Xc(B) denote
the set of vertices v ∈ V (B) such that c ∈ typeG(v).

Proposition 9.2.7 If G is a C-tree then for any block B of G and any c ∈ C we
have Xc(B) ≤ 1.

Proof Let GB be the subgraph of G induced on the vertices of B and the vertices
of all blocks that are ancestors of B in the rooted block tree of G. It is easy to
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see that GB is a C ′-tree for some C ′ ⊆ C. Therefore it suffices to prove the claim
in the case where r(B) is the root r of G.

Suppose Xc(B) ≥ 2. Then G has a coloured minor isomorphic to a vertex-
pointed 2-connected graph H obtained from N(B) by setting Col(x) = Col(y) =
{c} for two distinct vertices x, y ∈ V (B)\{r}. Now c is bad for H, since adding a
new vertex with at least three neighbours to a 2-connected graph in ExK4 yields
K4 as a minor. It follows that c is bad for G. 2

For k = 1, 2, . . . , denote by Bk the family of biconnected graphs in A[k], such
that each vertex has at most one colour. Again, if B ∈ Bk and c ∈ [k], then there
is exactly one vertex in B coloured c. For n = 0, 1, 2, |B1,n| is equal to 0, 1, 2

respectively; also Bk,j = 0 if j < k.
For a set C of positive integers, denote by ÂC the set of all vertex-pointed

graphs G, such that Col(G) = C and which further satisfy the conditions (a) and
(b) of the definition of a C-tree. It is easy to check using the definition that |ÂC,n|
is equal to 1 and 4|C| − 2|C| for n = 0 and 1 respectively. Each non-empty graph
in ÂC can be decomposed uniquely into a (coloured and pointed) root vertex r
and a set of graphs G1, . . . Gt where for i = 1, . . . , t, the graph Gi is a Ci-tree for
some Ci ⊆ C, and V (Gi) ∩ V (Gj) = {r} for i 6= j.

Proposition 9.2.8 Let C1, C2 be finite non-empty sets of positive integers. Sup-
pose G1 ∈ ÂC1 and G2 ∈ ÂC2 have only their root vertex in common. Then
G1 ∪G2 ∈ ÂC1∪C2.

Proof It is easy to see that the condition (b) holds for G. Suppose (a) does not
hold, i.e., c ∈ C1 ∪C2 is bad for G. Consider the graph G+ obtained by adding a
new vertex w, connected to the root of G and each vertex coloured c. For i = 1, 2

let G′
i = G+[V (Gi) ∪ {w}]. By Lemma 8.4.2 for some i = 1, 2 we have G′

i + rw

has a subdivision of K4, thus Gi 6∈ ÂCi
. This is a contradiction. 2

Lemma 9.2.9 Let C be a finite non-empty set of positive integers. The exponen-
tial generating functions of ÂC and AC are related by

ÂC =
∑
S⊆C

(−1)|C|−|S|2|S| exp
(∑

S′⊆S

AS′

)
.

Notice, that by definition A∅(x) = 0 and Â∅(x) = 1.
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Proof For any set S ⊆ C, define

ÃS = ∪T⊆SÂT ,

and note that |ÃS,0| = 2|S| . Since AS ∩ AS′ = ∅ for S 6= S ′, for any C ′ ⊆ C

ÃC′ = 2|C
′| exp

(∑
S⊆C′

AS

)
.

Fix a non-negative integer n, and for S ⊆ C let bS = bS,n be the number of graphs
G in ÃC,n, such that Col(G) ∩ S = ∅. Then the number of graphs in ÃC,n where
some colour from C is missing, by the inclusion-exclusion principle is

∑
S⊆C,S 6=∅

(−1)|S|−1bS.

Now bS =
∣∣∣ÃC\S,n

∣∣∣, therefore, summing over all n ≥ 0

ÃC − ÂC =
∑

S⊆C,S 6=∅

(−1)|S|−1ÃC\S =
∑
S⊂C

(−1)|C|−|S|−1ÃS

and

ÂC =
∑
S⊆C

(−1)|C|−|S|ÃS =
∑
S⊆C

(−1)|C|−|S|2|S| exp
(∑

S′⊆S

AS′

)
.

2

Proposition 9.2.10 Let k be a positive integer, and let C be a set of positive
integers, |C| ≥ k. Let B ∈ Bk. For i = 1, . . . , k, denote by vi be the vertex of B
coloured {i}. Let P be a partition of C into k non-empty sets S1, . . . , Sk (listed in
the lexicographic order), and let G1, . . . , Gk be pairwise disjoint graphs, all disjoint
from B, with Gi ∈ ÂSi

, i = 1, . . . , k.
Then the graph G obtained by identifying the root ri of Gi with vi and setting

ColG(vi) = ColGi
(ri) for each i, is a C-tree.

Proof We have to show the conditions (a)-(c) of the definition of the C-tree are
satisfied. It is trivial to check (b) and (c), so we will check just (a). Suppose
it does not hold, i.e., c ∈ C is bad for G. Consider the graph G+ formed by
adding to G a new vertex w 6∈ V (G) and connecting w to the root r of G and
each vertex coloured c. Let Si be the set containing c. Let G′

1 = G[V (Gi) ∪ w]
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and G′
2 = G+ − (Gi − vi). We have G′

1 ∪G′
2 = G+ and V (G′

1) ∩ V (G′
2) = {vi, w}.

Let K ′ be a subdivision of K4 in G+.
By Lemma 8.4.2, either K ′ is contained in G′

1 or G′
2, or the intersection of K ′

with G′
j is a path from vi to w for some j ∈ {1, 2}. If K ′ is a subgraph of G′

1,
then c is bad for G1; if K ′ is a subgraph of G′

2, then c is bad for B. If G′
2 ∩K ′ is

a path from w to vi, then G′
1 + wvi contains a subdivision of K4, so c is bad for

Gi. If G′
1 ∩K ′ is a path from w to vi, then B +wvi contains a subdivision of K4,

and so c is bad for B. In each case we get a contradiction. 2

We can now use the above observations and the decomposition into blocks,
similarly as in (9.3) to give the exponential generating function for AC . Given a
set C ⊆ [k] for some positive integer k, let P(C) be the set of all set partitions of
C, so that |P([j])| is the j-th Bell number.

Lemma 9.2.11 Let k be a positive integer. For any non-empty set C ⊆ [k], the
exponential generating function of AC is

AC(x) =
∑

P∈P(C)

B|P |(x)
∏
S∈P

ÂS(x).

Proof Each C-tree G may be decomposed into the (uncoloured) block B con-
taining its root r, and a set of graphs Gv, such that v ∈ X = ∪c∈CXc(B). Since
the graph Ĝv obtained from Gv with vertex v coloured ColG(v) and its label re-
moved, is isomorphic to a coloured minor of G, we have that Ĝv ∈ ÂC′ where
C ′ = typeG(v). Let v(1), . . . , v(t) be the vertices of X sorted according to their
type in the lexicographic order, and for v ∈ X let ind(v) be the position of v in
this list. The graph B̃ obtained from B by setting ColB̃(v) = {ind(v)} for each
v ∈ X satisfies B̃ ∈ Bt. Now using Proposition 9.2.10 we see that each graph in
AC can be represented uniquely by and constructed from

• a root block B ∈ Bt, for some t ∈ [|C|],

• a partition P = {S1, . . . , St} of C into non-empty sets (indexed in the lexi-
cographic order), and

• pairwise disjoint graphs G1, . . . , Gt, all disjoint from B, where Gi ∈ ÂSi
for

i = 1, . . . t

by identifying the root ri of Gi with the vertex v of B coloured {i}, and colouring
that vertex ColGi

(ri). Now the exponential generating function is obtained in a
standard way, see [48]. 2
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We write for shortness AR = A{1},ARG = A{1,2} and ARGB = A{1,2,3}.

Lemma 9.2.12 The exponential generating functions of AR,ARG and ARGB sat-
isfy

AR = B1ÂR;

ARG = B1ÂRG +B2Â
2
R;

ARGB = B1ÂRGB + 3B2ÂRÂRG +B3Â
3
R.

Here

ÂR = 2eAR − 1;

ÂRG = 4eARG+2AR − 4eAR + 1;

ÂRGB = 8eARGB+3ARG+3AR − 12eARG+2AR + 6eAR − 1.

Proof Notice, that by symmetry we have AC = AC′ whenever |C ′| = |C|. The
lemma follows by Lemma 9.2.9 and Lemma 9.2.11. 2

9.2.3 Blocks of coloured trees (two colours)

In this section we present a decomposition for coloured graphs in the class B2. For
a network G with two poles, we denote by G+ the network obtained by connecting
the poles with an edge. We will say that a colour c is bad for a (coloured) network
G, if adding a new vertex w to G connected to the source of G and each vertex
coloured c, we obtain a graph not in ExB. Recall that in this section B = {K4}.

Lemma 9.2.13 Let S1 be the class of {0, 1}1-coloured series SP -networks G

where exactly one internal vertex is coloured {red}, and the colour red is good for
G+.

Each graph in S1 admits a unique decomposition into two graphs in D or a
graph B2 and a graph in D. The exponential generating function of S1 is

S1(x) = D(x)(xD(x) +B2(x)).

We will use the following simple observation.

Lemma 9.2.14 Let k be a positive integer and let G be a {0, 1}k-coloured graph
with one pointed vertex r and exactly k coloured vertices, so that for each i ∈ [k]
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there is a vertex vi ∈ V (G) \ {r} coloured {i}. Denote by Gc the network with
source r and sink u obtained from G by removing the colour and the label from
the vertex u coloured {c}.

G ∈ Bk if and only if for each c ∈ [k] we have N(Gc) ∈ P + E2.

Proof If either G ∈ Bk or N(Gc) ∈ P + E2, then Gc is biconnected, so Gc 6∈ S.
(⇒) Suppose N(Gc) 6∈ P + E2 and let u be the vertex coloured {c}. Then

Gc + ru contains K4 as a minor. We may replace ru by the path rwu where
w 6∈ V (G) to see that the colour c is bad for G, a contradiction.

(⇐) Suppose we have N(Gc) ∈ P + E2, but c is not good for G. Let u be
the vertex coloured c. The assumption implies that with a new vertex w 6∈ V (G),
the graph G′ = N(G + rwu) contains K4 as a minor. Then so does Gc + ru and
N(Gc) 6∈ D, a contradiction. 2

Proof of Lemma 9.2.13 Let G ∈ S1, let s and t be its source and sink re-
spectively, and let v be the vertex coloured red. Then by Lemma 9.2.3, G
may be decomposed into a sequence of (pairwise internally disjoint) networks
H1, H2, . . . , Hk ∈ (P + e) with k ≥ 2 and vertices x1, . . . , xk−1, where xi is both
the sink of Hi and the source of Hi+1.

Suppose v is an internal vertex of some Hj, 2 ≤ j ≤ k. For j = 1, . . . , k

denote by sj and tj the source and the sink of Hj respectively (we have s1 = s

and tk = t). By Proposition 9.2.5, Hj contains a cycle C with vertices v, sj and
tj. By Lemma 9.2.3 and Proposition 9.2.4, there is a path P1 from s to sj in
H1 ∪ · · · ∪Hj−1, a path P2 from tj to t in Hj+1, . . . , Hk (which is trivial if j = k).
Now the graph obtained from the union of C,P1, P2 and rt demonstrates that the
colour red is bad for G+. Therefore v cannot be an internal vertex of Hj, j ≥ 2.

So v can have one of the following positions (and the cases are non-overlapping):

(a) v = xj for some j ∈ [k − 1];

(b) v is an internal vertex of H1.

Suppose first that (a) holds. Denote by D1 the SP -network with source s and
sink v obtained from the union (series composition) ofH1, . . . , Hj and x1, . . . , xj−1.
Denote by D2 the network with source v and sink t obtained from the union (series
composition) ofHj+1, . . . , Hk and the vertices xj+1, . . . , xk−1. By Lemma 9.2.3 and
the comment thereafter, D1, D2 ∈ D.

Now let D′
1, D

′
2 ∈ D be arbitrary, and let G′ be a network obtained by series

composition of D′
1 and D′

2 by colouring the common pole {red} and giving it an
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arbitrary label. Let s be the source of D′
1 and G′, and let t be the sink of D′

2 and
G′.

Lemma 9.2.3 and a comment after it, the decomposition of a graph S to a
graph in (P +E2) and a sequence of graphs in Z × (P + e) is unique. Therefore, if
G′ ∈ S1 applying the decomposition of G = G′ into graphs H1, . . . , Hk as above,
we recover D1 = D′

1 and D2 = D′
2.

Let us check that G′ ∈ S1. Consider the network G̃ obtained from G′+ by
making v a sink and t an internal vertex. N(G̃) is a parallel SP -network, since it
is obtained by a series composition of the network st and the SP-network←−D ′

2 and
a parallel composition of the resulting network with the SP -network D′

1 (here
←−
D ′

2

denotes D′
2 with its source and sink swapped. This change of orientation does not

change the type of the network). By Proposition 9.2.6, the red colour is good for
G̃, and so it is good for G′+, and G′ ∈ S1.

Now consider the case (b). Let H̃1 be a {0, 1}2-coloured graph obtained from
H1 by colouring its sink green and assigning the label x1. Since H̃1 is a subgraph
of G+, if the red colour is bad for H̃1, then it is also bad for G. If the green colour
is bad for H̃1, then the path P from s to x1 in G+, where P consists of the edge
st and a path from t to x1 in D = H2 ∪ {x2} ∪ · · · ∪ {xk−1} ∪Hk ∈ D shows that
G+ contains K4 as a minor, which is a contradiction. It follows that H̃1 ∈ B2 and
D ∈ D.

Now take an arbitrary graph H ′ ∈ B2 with root r, an arbitrary network D′ ∈ D
with source s′ and sink t′, and identify the green vertex of H ′ with the source of
D′ (call this vertex x) to obtain a network G′ with source r and sink t′. Denote
the vertex of G′ coloured {red} by v.

It is easy to see using the decomposition given by Lemma 9.2.3 that if G′ ∈ S1,
then the procedure described above applied with G = G′ recovers H ′ and D′ of
G′ as H̃1 and D respectively. It remains to show that G′ ∈ S1.

Consider the graph G′′ = G′+(w) obtained by adding a new vertex w to G′+,
such that Γ(w) = {r, v}. Assume that red is bad for G′. Then G′′ contains a
subdivision K ′ of K4. Since K ′ is 2-connected, it must contain both vertices v
and r. Clearly, {r, x} is a cut in G. Apply Lemma 8.4.2 to G′′, and its subgraphs
H̃ ′ = G′′[V (H ′) ∪ {w}] and R = G′′ − (H̃ ′ − {r, x}). We consider three possible
cases.

Case 1. K ′ is entirely contained in H̃ ′. Then H ′ 6∈ B2, which is a contradiction.
Case 2. K ′∩ H̃ ′ is a path from r to x. Let G1 be the network with poles r and

x obtained by a series composition of rt′ and
←−
D′. Then the network G1 + rx ∈ P

contains K4 as a minor, this is a contradiction to Lemma 9.2.3.
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Figure 9.3: The part K ′
1 of the subdivision of K4 contained in H̃1 is a subdivision of one of

these four types of graphs. Here the unlabelled vertices can be any vertices of H̃1.

Case 3. K ′ ∩ R is a path P from r to x. Consider K ′
1 = K ′ ∩ H̃ ′. Then K ′

1

is a subdivision of K4 with a part of subdivided edge (i.e., the internal vertices of
P ) removed.

It must be that w ∈ V (K ′
1), otherwise N(G+) 6∈ D, again contradicting

Lemma 9.2.3. Since K ′ is 2-connected, w must have degree 2 in K ′
1. We have

that K ′
1 is a subdivision of one of the graphs shown in Figure 9.3, with the re-

striction that rw cannot be subdivided. Importantly, in all cases, the graph
K ′′ = K ′

1 − {w, r, x} is connected. The SP-network H ′ is parallel (it contains an
internal vertex v), so by Lemma 9.2.3 it can be obtained in a unique way by par-
allel composition of some l ≥ 2 networks S1, . . . , Sl ∈ S ∪ e. The connected graph
H ′′ belongs to exactly one of these networks; change the indices if necessary, so
that this network is S1. Now, since V (K ′)∩ V (S2) ⊆ {r, x} we may use a path in
S2 from r to x to replace the path P and show that H̃ ′ also contains a subdivision
of K4. This demonstrates that H ′ 6∈ B2, which is a contradiction.

Combining the decompositions in each of the cases (a) and (b) yields the
bijection

S1 = Z ×D2 +D × B2,

which translates into the generating function, see [48], as claimed. 2

Lemma 9.2.15 Each graph in B2 admits a unique decomposition into a network
in D and a network in S1. The exponential generating function of B2 satisfies

B2(x) = xD(x)S1(x)

Proof Let G ∈ B2, let r be the root of G and let u and v be the vertices coloured
{green} and {red} respectively. Consider the {0, 1}1-coloured network G̃ with
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rg g

r

Figure 9.4: Graphs in the class B2 can be decomposed into one of the following constructions.
Here the white shapes represent networks in D, the grey shape represents a graph in B2 where
the green vertex is converted into the sink. r and g mark vertices coloured red and green
respectively.

poles r and u obtained with c = green as in Proposition 9.2.14. N(G̃) ∈ P (it has
an internal vertex v), so it can be decomposed uniquely using Lemma 9.2.3 into
a network D ∈ D and a series graph S that contains v, both with poles s and u.
Since the graph S+ is isomorphic to a minor of G̃, if red is bad for S+, then it is
bad for G̃. Thus S ∈ S1.

Now take arbitrary networks D′ ∈ D and S ′ ∈ S1 with disjoint sets of internal
vertices and join them in parallel. Label the sink vertex u and colour it green. We
claim that the resulting graph G′ ∈ B2. Suppose, not. The colour green cannot be
bad for G′ by Proposition 9.2.6. Suppose red is bad for G′. The root r of G′ is its
unique pointed vertex (the common sink of D′ and S ′). Using Lemma 8.4.2, since
D′ ∈ D, we get that red is bad for S ′ + ru, which contradicts to the definition of
S1. So we have

B2 = Z ×D × S2,

and applying the standard conversion to generating functions [48] completes the
proof. 2

We may combine the results of this section to obtain the full picture of graphs
in the class B2, see Figure 9.4.

Corollary 9.2.16 Each graph in B2 admits a unique decomposition into three
graphs in D or two graphs in D and a graph in B2:

B2 = Z2 ×D3 + Z ×D2 × B2.

Proof Combine Lemma 9.2.13 and Lemma 9.2.15. 2
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9.2.4 Blocks of coloured trees (general case)

In this section we give a nice characterisation of the class of coloured blocks Bk
for arbitrary k. It turns out that each graph in Bk can be formed by substituting
an SP-network for each edge of an “apex tree”.

Let k be a positive integer. Let T ′
k be the class of {0, 1}k-coloured Cayley trees

T containing exactly k coloured vertices v1, . . . , vk, where vertex vi has colour {i}
for each i = 1, . . . , k with the following restriction: if a vertex u ∈ V (T ) has
no colour, then it must have degree at least 3. Since every leaf is coloured by
a unique colour, each T ∈ T ′

k has only one automorphism. Therefore, we have
|T ′

k,n| = n!|(UT ′
k )n|, where UT ′

k is the class of unlabelled {0, 1}k-coloured trees
that can be obtained from the trees in T ′

k .
For k = 1, 2, . . . the number of elements in UT ′

k is

1, 1, 4, 31, 367, . . .

For example, all trees in the class UT ′
3 are shown in Figure 9.5. It is interesting to

note, that the above sequence does not yet appear in the Sloane’s Encyclopedia
of Integer Sequences [95].

Now let F ′
k be the class of all vertex-pointed graphs that can be obtained

by taking a coloured tree T ∈ T ′
k , subdividing its edges arbitrarily (by inserting

new uncoloured labelled vertices) to get a tree T ′, and finally adding a pointed
root vertex r connected to each leaf of T ′ and each uncoloured vertex of degree 2
(edges rv where v is coloured or has at least 3 neighbours may be included or not
included).

Let F ′
k(·,D) denote the class of graphs that can be obtained from graphs in

F ′
k by replacing their edges by arbitrary networks in D. Since each network has

an orientation (it starts with its source and ends with its sink), in order for such
replacement to be well defined for a given G ∈ F ′

k and {De ∈ D : e ∈ E(H)}, the
edges of G have to be oriented. We can assume that each edge in the tree G− r
points towards the red vertex, and each edge of G adjacent to r points away from
r.

Theorem 9.2.17 Let k be a positive integer. Each graph in Bk can be obtained
in a unique way by substituting an SP-network for each edge of a graph in F ′

k:

Bk =

{
F ′

1(·,P + E2) = Z × (P + E2) for k = 1

F ′
k(·,D) otherwise.
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Figure 9.5: The isomorphism groups for the class of coloured trees T ′
3 .

We will prove Theorem 9.2.17 using the next two lemmas.

Lemma 9.2.18 Let k ≥ 2 be an integer. Each pair (H,DH), where H ∈ F ′
k and

DH = {De ∈ D : e ∈ E(H)} yields a unique graph G = G(H,DH) ∈ Bk, where G
is obtained from H by replacing e with De for each edge e ∈ E(H).

Proof Fix a pair (H,DH) and let r be the root of G = G(H,DH). Let us first
prove that G ∈ Bk. To this aim, by Lemma 9.2.14 it suffices to show that for each
colour c ∈ [k], if vc is the vertex coloured {c}, then the network Gc with source r
and sink vc obtained from G as in Lemma 9.2.14 satisfies N(Gc) ∈ P .

The graph Gc is 2-connected, so N(Gc) 6∈ S ∪ E2. Suppose Gc + rvc contains
a subdivision K ′ of K4. Let B be the block of Gc − r containing the 2-core of
K ′− r (the 2-core of a graph is the unique graph obtained by repeatedly deleting
vertices of degree at most 1, until no such vertices remain). Since each vertex
v ∈ V (H) \ {r} is a cut point of Gc − r, we have that B is isomorphic to a
subgraph of De for some e = xy ∈ H. Furthermore, Gc contains a path from the
source to the sink of De which does not use any internal vertex of De. It follows
by Lemma 8.4.2 that De is not an SP -network, a contradiction.

Let us now prove that given G = G(H,DH) where H ∈ F ′
k for any k ≥ 2 we

can always recover H and DH . We prove this claim by induction on |V (H)|.
Suppose |V (H)| = 3. Then the unique decomposition is provided by Corol-

lary 9.2.16, and the corresponding tree in F ′
k is the unique tree with two nodes u

and v, which are the vertices of G coloured {green} and {red} respectively.
Now let h ≥ 4 be an integer. Suppose that for any H̃ ∈ F ′

k on at most h− 1

vertices, we can always recover H̃ andDH̃ given just the graphG = G(H̃,DH̃). Let
H ∈ F ′

k be a graph on h vertices with root r and let DH = {De ∈ D : e ∈ E(H)}
be arbitrary. Denote the tree H−r by T (it is a subdivision of a graph in T ′

k ). Let
u be a coloured vertex in G− r, such that there are no two coloured components
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in G − {r, u}. If there is more than one candidate for u, let u be such that
Col(u) = {j} has the largest j. At least one such vertex exists since for any leaf
x of the tree T , all coloured vertices of T − u (and also in G − {r, u}) are in a
single component. Furthermore, for any vertex u′ of T that is an internal vertex
of T , there are at least 2 coloured components in T − u′ (and also in G−{r, u′}).
So u is the leaf vertex of T with the largest colour index.

Let C be the component of G − {r, u} containing all coloured vertices. Then
the network D′

ru with poles r and u obtained from G− C is the network Dru.
Now consider the graph G̃ = G−(V (D′

ru)\{r, u}). For each cut vertex v′ of G̃,
let C(v′, u) denote the component of G̃− v′ containing u. Let S be the set of cut
vertices v′ such that either v′ is coloured or G− C(v′, u) is 2-connected. Finally,
call a vertex v′ ∈ S a candidate if G− C(v′, u) does not contain any vertex from
S. It is not difficult to see that there is exactly one candidate: the neighbour v of
u in T .

Let D′
uv be the network obtained from G̃[V (C(v, u)) ∪ {v}] by making u the

source and v the sink. We can see that D′
uv = Duv (the orientation is correct,

since by definition j > 1).
Now consider the graph G̃ − V (D′

uv − v). If v is not coloured, colour it {j},
and add a dummy path vwr, where w is a vertex not in G̃. Denote the resulting
graph by G̃2. At the same time consider the graph obtained from H − u by
adding an edge rv, if it is not already there, and colouring v with {j}, if it is not
coloured. Let Prwv be the network with poles r and v obtained from the path rwv.
If rv 6∈ E(H), let D̃rv = Prwv otherwise define D̃rv = Drv ∪ P̃ . The graph G̃2 can
be obtained from H ′ by replacing each edge by a network D′

e, where D′
e = De, if

e ∈ E(H ′) \ {rv} and D′
rv = D̃rv.

By induction (rename colours, if necessary) we may recoverH ′ andD′ uniquely.
Now we see, that connecting u to v and r in H ′, returning the original colour to v,
and removing rv if D′

rv = Prwv, recovers the graph H. For e ∈ E(H)\{ru, rv, uv},
the network De is the network D′

e by induction, for e ∈ {rv, uv}, we have shown
above that De = D′

e. Finally, if rv ∈ H ′, we obtain Drv as D′
rv − w. 2

Lemma 9.2.19 For any integer k ≥ 2 we have Bk ⊆ F ′
k(·,D).

Proof We use induction on k. For k = 2, fix G ∈ B2. By Corollary 9.2.16, G
admits either a representation by three SP-networks (we say that G is of the first
type) or by two SP-networks and a (smaller) network G′ ∈ B2 (we say that G is
of the second type), see Figure 9.4. Let G0 = G. For i = 0, . . . , if the graph Gi is
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of the second type, define Gi+1 = G′
i. Let j be the index of the last Gi that has

been defined.
To prove the lemma for the case k = 2 we apply induction on j. When

j = 0, we have that G is of the first type, so by Corollary 9.2.16, it is a triangle
H ∈ F ′

2,2 with each edge replaced by a network in D. Now let j′ ≥ 1, assume
that the claim holds for k = 2 and all j ∈ {0, . . . , j′ − 1}, and suppose j = j′.
Then by Corollary 9.2.16, the graph G = G0 is obtained from G1 by taking a
series composition D of two graphs D1, D2 ∈ D with the common pole coloured
{green}, identifying the sink of D with the green vertex u of G1 and removing
the colour from u. By induction, G1 can be obtained from a graph H ′ ∈ F ′

2 by
replacing each edge e ∈ E(H ′) with a network D′

e ∈ D.
Let H be a graph obtained from H ′ by inserting the vertex u 6∈ V (H ′), so

that u is connected to the green vertex u′ of H ′ and the root, colouring u {green}
and removing the colour from u′. Clearly, H ∈ F ′

2. Also, for e ∈ E(H ′) define
De = D′

e, and let Dru = D1 and Duu′ = D2. Thus G0 can be obtained from the
graph H ∈ F ′

2, by replacing each edge e ∈ E(H) with De. This completes the
proof for the case k = 2.

Assume now that we have proved the lemma for Bl with l ∈ {2, . . . , k−1}, and
suppose G ∈ Bk, where k ≥ 3. Let u be the vertex of G coloured {k}. Remove
the colour from u to obtain a graph G′ ∈ Bk−1. Use induction to find a graph
H ′ ∈ F ′

k−1 and a set of networks DH′ = {D′
e : e ∈ E(H ′)} such that G′ is the

graph obtained by replacing each edge e of H ′ by D′
e. Let r be the root vertex of

H ′, write T ′ = H ′ − r, and recall that T ′ is a subdivision of a tree in T ′
k−1.

The vertex u may have one of the following positions:

(a) u ∈ V (T ′).

(b) u is an internal vertex of D′
e for some e = xy ∈ E(T ′).

(c) u is an internal vertex of D′
rv for some v ∈ V (T ′).

The case (a) is easy: we let H be the graph obtained from H ′ by colouring u
with {k}, and let DH = DH′ .

Consider the case (b). Suppose, u is not a cut vertex of D′
e. By Lemma 9.2.3

and Proposition 9.2.5, De contains a minorM isomorphic to the triangle K3, such
that x, y and u all belong to different bags. Now, since each component of T ′−xy
contains at least one leaf of T ′, there are paths P1 and P2 in G′−(D′

e−{x, y}) from
r to x and y respectively. NowM , P1 and P2 demonstrate that the colour k is bad
for G. Thus, u must be a cut vertex of D′

e. Let H be the graph obtained from H ′
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by subdividing the edge xy with the vertex u. Let Dux and Dyu be the networks
with the common pole u (the orientation may be reversed, if necessary), such that
D′

e results from the series composition of Dux and Dyu. For e ∈ E(H ′) \ {e}, let
De = D′

e, and define DH = {De : e ∈ E(H)}. Then we have G = G(H,DH).
Now consider the case (c). Let G1 be the graph obtained from G[V (D′

rv)],
by colouring the vertex u {green} and the vertex v {red} and adding the edge
rv, if rv 6∈ E(G). For a {0, 1}k-coloured graph H and c ∈ [k], let (H)c = Hc

be as in Lemma 9.2.14. By Lemma 9.2.3, G1 is 2-connected and (G1)red ∈ P .
By Lemma 9.2.14, (G)k ∈ P , and since G contains a path from r to v internally
disjoint fromD′

rv which can be contracted to an edge rv, we get that (G1)green ∈ P .
Therefore, applying Lemma 9.2.14 second time, we see that G1 ∈ B2.

We have N(G1) ∈ P and G1 ∈ B2 by Lemma 9.2.14.
Using the already proved case k = 2, G1 can be obtained from a graph H1 ∈ F ′

2

by replacing each edge e ∈ E(H1) with an SP -network D′′
e . Let H̃1 be obtained

from H1 by setting ColH̃1
(u) = {k} and ColH̃1

(v) = ColG(v).
Now, if D′′

rv ∈ E2 and rv 6∈ E(G), let H = H ′ ∪ (H̃1 − rv), otherwise, let
H = H ′ ∪ H̃1. We can see that the tree T = H − r is obtained from T ′ by
attaching at the vertex v the graph P = H̃1 − r (which is a path from v to u).
The vertex u is coloured {k} in P and for each vertex x ∈ V (P ) \ {v} there
is an edge rx ∈ E(H) as required by the definition of F ′

k. Since v ∈ V (T ′) and
T ′ ∈ F ′

k−1, if v is not coloured it has degree at least 2 in T ′, and degree at least 3 in
T . Hence H ∈ F ′

k. For e ∈ E(H ′)\{rv}, define De = D′
e; for e ∈ E(H1)\{rv}, let

De = D′′
e . Finally, if rv ∈ E(G), set Drv = D′′

rv − rv. Let DH = {De : e ∈ E(H)}:
we have proved that G = G(H,DH), as required. 2

Proof of Theorem 9.2.17 The case k = 1 follows by Lemma 9.2.14. For k ≥ 2,
we combine Lemma 9.2.18 and Lemma 9.2.19. 2

Given a class A of graphs and a parameter X : A → Z≥0, let An,k = AX
n,k

denote the family of graphs G ∈ An with X(G) = k. We call

A(x, y) =
∑

n≥0,k≥0

|An,k|
n!

xnyk

the bivariate generating function of A (where y “counts” X). Below, wherever X
is not specified, y counts the number of edges, i.e. X(G) = |E(G)|.

It is not difficult to get the bivariate generating function F ′
k for F ′

k, when k is
small.
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Lemma 9.2.20 The bivariate generating functions of F ′
2 and F ′

3 are

F2(x, y) =
x2y3

1− xy2
; F3(x, y) =

x3y4(3− 2xy2)(1 + y)

(1− xy2)3
.

Proof Denote by T̃ ′
k the class of trees obtained by subdividing edges of trees in

T ′
k arbitrarily. The graphs in T̃ ′

2 are paths with coloured endpoints (the colours
provide a unique orientation) and the univariate exponential generating function

T̃ ′
2(x) =

∞∑
n=2

n!

n!
xn =

x2

1− x
.

Each T ∈ T̃ ′
2 on n vertices yields a unique fan F ∈ F ′

2 with 2n− 1 edges, so

F ′
2(x, y) =

T̃ ′
2(xy

2)

y
=

x2y3

1− xy2
.

Now consider k = 3. There are 3n!(n − 2) trees T ∈ T̃ ′
3,n such that N(T ) is

isomorphic to a path, and n!
(
n−2
2

)
trees T ∈ T̃ ′

3,n which are subdivided 3-stars, see
Figure 9.5. Therefore the exponential generating function of T̃ ′

3 is

T̃ ′
3(x) =

∞∑
n=3

3(n− 2)xn +
∞∑
n=4

(
n− 2

2

)
xn =

3x3

(1− x)2
+

x4

(1− x)3
.

From each tree in T̃ ′
3 on n vertices we can obtain two fans F1, F2 ∈ F ′

3,n with
2n− 1 and 2n− 2 edges respectively (this is because the middle coloured vertex
in the “path” case, and the centre of the star, in the “star” case may or may not
be connected to the root). This yields the exponential generating function

F ′
3(x) = T̃ ′

3(xy
2)(y−1 + y−2) =

x3y4(3− 2xy2)(1 + y)

(1− xy2)3
,

as claimed. 2

9.2.5 Growth of the class AR

We will use below the following fact about the class of SP-networks D.
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Lemma 9.2.21 (Lemma 2.3 of [32]) Let B be the class of biconnected series-
parallel graphs. Then

ρ(B) = ρ(D) = ρ(P) = (1 + t0)(t0 − 1)2

t30
= 0.1280.., and

D(ρ(D)) = t20
1− t20

= 1.8678..,

where t0 = 0.8070.. is the unique positive solution of

(1− t2)−1 exp(−t2/(1 + t)) = 2.

By Lemma 9.2.12 and Theorem 9.2.17

AR = B1(2e
AR − 1) = x(P + 1)(2eAR − 1). (9.4)

Notice, that if we add a new vertex w to any {red}-tree G, and connect it to the
root and every vertex coloured red, we obtain a 2-connected series-parallel graph
G′. This follows directly from the definition of a C-tree: if we delete any vertex
x ∈ V (G′) \ {w}, w has a neighbour in each of the components of V (G)−{x,w},
so G′−x is connected. If we delete w we obtain the connected graph G. Thus each
{red}-tree of size n gives a unique 2-connected series-parallel graph of size n+ 2

(we may label the root and the new vertex n+1 and n+2 respectively). Thus, if
B is the class of biconnected series-parallel graphs, we have ρ(B) = ρ(D) ≤ ρ(AR).
On the other hand, either looking at (9.4) or recalling that each SP -network yields
a unique {red}-tree, we see that ρ(AR) ≤ ρ(D). We conclude that ρ(AR) = ρ(D).

Proposition 9.2.22 For any positive integer k, we have ρ(Bk) = ρ(D).

Proof By Lemma 9.2.14

|Bk,n| ≤ nk|(P + E2)n−1|,

so ρ(Bk) ≥ ρ(P). By Theorem 9.2.17, each graph, obtained from a non-series
SP-network G and a coloured path P ∈ T̃ ′

k , by identifying the first endpoint of
P with the sink of G and adding an edge between the source of G and second
endpoint of P (if it is not already there), is in Bk. So

|Bk,n| ≥ (n)k|(P + E2)n−k|,

and ρ(Bk) ≤ ρ(P). So ρ(Bk) = ρ(P) = ρ(D) by Lemma 9.2.21. 2
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We remind a definition from [48]. Given two numbers φ,R with R > 1 and
0 < φ < π/2, define

∆(φ,R) = {z ∈ C : |z| < R, z 6= 1, |arg(z − 1)| > φ} .

A domain is a ∆-domain at 1 if it is ∆(φ,R) for some R and φ. For a complex
number ζ 6= 0, a ∆-domain at ζ is the image by the mapping z → ζz of a
∆-domain at 1.

For complex functions f, g we write f(z) = O(g(z)) as z → z0 if |f(z)/g(z)| is
bounded as z → z0.

The following fact is well known.

Lemma 9.2.23 The exponential generating function R(x) =
∑

n≥1
nn−1xn

n!
of

rooted Cayley trees has a unique dominant singularity e−1. R(x) can be ex-
tended analytically to a ∆-domain ∆ at e−1, such that for all x ∈ ∆ we have
R(x) = xeR(x) and for x→ e−1, x ∈ ∆ we have

R(x) = 1−
√
2(1− ex)1/2 +O(1− ex). (9.5)

Furthermore, R(x) is the unique solution y(x) of y = xey, which is analytic at 0
and satisfies R(0) = 0.

Proof See, e.g., Theorem VII.3 of [48] or Theorem 2.19 of [40]. For extension to
a ∆-domain see, e.g., proof of Theorem 2.19 of [40]. The identity R(x) = xeR(x)

for |x| < e−1 is shown, i.e., in [48]. The identity then extends to the whole ∆

domain by the Identity principle (see, e.g., Theorem 8.12 of [3]). 2

Recall that when we omit “(x)” in identities involving exponential generating
functions and do not mention otherwise, we mean that they hold for some δ > 0

and any x ∈ C with |x| < δ. (If each side is an exponential generating function of
a combinatorial class, this means that the counting sequences of both classes are
identical.)

Lemma 9.2.24 We have

AR = R(2B1e
−B1)−B1.

Proof We may rewrite (9.4) as

ÃR = EeÃR
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where ÃR = AR+B1 and E = 2B1e
−B1 . By Proposition 9.2.22, ρ(B1) = ρ(D) > 0,

so E is analytic at zero. Since E ′(0) = 2|B1,1| = 2 > 0, E has an analytic inverse
ψE at zero. Thus there is δ > 0 such that for all u ∈ C with |u| < δ we have

f(u) = uef(u),

where f(u) = ÃR(ψE(u)). Since f(0) = E(0) = ψE(0) = 0, we conclude (using
Lemma 9.2.23) that f(u) = R(u) for all u with |u| < δ. This implies that there is
ε > 0, such that for all x ∈ C with |x| < ε we have ÃR(x) = f(E(x)) = R(E(x)),
or

AR(x) = R(E(x))−B1(x).

Since the two analytic functions are identical on an open disc, they are identical
for all x with |x| < ρ(D). 2

9.2.6 Growth of the class ARG

In contrast to AR, the exponential generating function of ARG has a dominant
singularity smaller than ρ(D).

Lemma 9.2.25 For |x| < ρ(D) define a function E = E(x) by

E = 4B1 exp
(
2AR − (4eAR − 1)B1 + (2eAR − 1)2B2

)
.

The equation E(x) = e−1 has only one solution x0 = 0.086468.. in the interval
(0, ρ(D)) and ρ(ARG) = x0.

Proof Combining Lemma 9.2.12, Lemma 9.2.20 and Theorem 9.2.17 we get

ARG = B1

(
4eARG+2AR − 4eAR + 1

)
+B2(2e

AR − 1)2; (9.6)

B1 = x(P + 1); B2 =
x2D3

1− xD2
.

Denote
B = (4eAR − 1)B1 − (2eAR − 1)2B2.

and
ÃRG = ARG +B.

We may rewrite (9.6) as
ÃRG = EeÃRG .
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Since all of the functions P,AR, D,B1, B2 have convergence radius ρ(D), the func-
tion E(x) is analytic in the open disc |x| < ρ(D). Furthermore, E(x) is increasing
for x ∈ (0, ρ(D)). To see this, notice that the Taylor coefficients of E1 = E1(x)

given by
E1 = 4 exp

(
(2eAR − 1)2B2

)
are non-negative, so E1(x) is continuously increasing for x ∈ (0, ρ(D)). Also, by
(9.4) we have

2AR − (4eAR − 1)B1 = −B1.

So
E2 = B1 exp

(
2AR − (4eAR − 1)B1

)
= B1e

−B1 .

The function B1(x) continuously increases as x ∈ (0, ρ(D)), since B1 has non-
negative Taylor coefficients, not all zero. Furthermore, B1(0) = 0. By Lemma 9.2.21,
(9.2) and numeric evaluation we get B1(ρ(D)) = 0.1929.. < 1. Since the function
y(t) = te−t continuously increases for t ∈ (0, 1) we conclude that both y(B1(x))

and E(x) = E1(x)E2(x) continuously increase for x ∈ (0, ρ(D)).
We now claim that

ÃRG(x) = R(E(x)), (9.7)

where R is the exponential generating function for rooted Cayley trees. To see
why, first note that

E ′(0) = 4(P (0) + 1)e0 = 4

and so, since E is analytic at 0 and E(0) = 0, E(x) has an analytic inverse ψE(u)

for |u| < δ, with some positive δ, such that ψE(u) = 0. For such u we have

f(u) = uef(u) (9.8)

and we conclude as in the proof of Lemma 9.2.24 that for all x ∈ C, |x| < ρ where
ρ is the radius of convergence of R(E(x))

ÃRG(x) = f(E(x)) = R(E(x)).

Returning to ARG we have

ARG(x) = R(E(x))−B(x). (9.9)

Since ARG has non-negative Taylor coefficients, by Pringsheim’s theorem (see,
e.g., [48]), it has a dominant singularity in [0;∞]. The function E is continuously
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increasing for x ∈ (0, 0.12] ⊂ (0, ρ(AR)) and E(0.12) = 0.6436.. > e−1, therefore
there is exactly one solution of E(x) = 1/e in (0, ρ(D)); we call this solution x0.
Here we used (9.1), Lemma 9.2.24, (9.9) in Maple, to get the numeric evaluation of
E(0.12) and solve E(x) = 1/e. (Let us note here that D and R have explicit func-
tional inverses, see [32,48], therefore D,R,AR, ARG can be evaluated numerically
at any point inside their disc of convergence).

The function ARG is analytic for all x < x0, and there is ε > 0 such that B and
E are analytic for all x with |x| < x0 + ε. Using the fact that E has an analytic
inverse at x0 (since E ′(x0) > 0) we conclude that x0 must be a singularity of ARG.

2

9.2.7 Growth of the class ARGB.

For ARGB we will apply a very similar analysis as in the previous section, we only
have to work with slightly longer formulas.

Lemma 9.2.26 For |x| < ρ(ARG) define E(x) = E1(x)E2(x) where

E1 = 4 exp{3B2(2e
AR − 1)2(4eARG+2AR − 4eAR + 1) +B3(2e

AR − 1)3};

E2 = 2B1 exp{3ARG + 3AR +B1(6e
AR − 12eARG+2AR − 1)}.

The equation E(x) = e−1 has only one solution x1 = 0.044495.. in the interval
(0, ρ(ARG)) and ρ(ARGB) = x1.

Proof By Lemma 9.2.12 we have

ARGB = 8B1e
ARGB+3ARG+3AR −B,

where

B = B1(12e
ARG+2AR − 6eAR + 1)

− 3B2(2e
AR − 1)2(4eARG+2AR − 4eAR + 1)−B3(2e

AR − 1)3.

Setting ÃRGB = ARGB +B, we may rewrite this as

ÃRGB = EeÃRGB .

Notice, that by Lemma 9.2.25, and Section 9.2.5, Bk (for k ≥ 1), AR and ARG all
convergence radius at least ρ(ARG). Therefore E is analytic (and continuous) at
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any point x ∈ (0, ρ(ARG)), We claim that E(x) is increasing for x ∈ (0, ρ(ARG)).
To see why, recall the notation of Lemma 9.2.12, and note that

E1 = 4e3B2Â2
RÂRG+B3Â3

R

is an exponential generating function for a class of combinatorial objects, so its
coefficients are non-negative, not all zero. Hence E1(x) is increasing for x ∈
(0, ρ(ARG)). Now, by (9.4) and (9.6), the exponent in E2 is

3ARG + 3AR +B1

(
6eAR − 12eARG+2AR − 1

)
= 3B1

(
4eARG+2AR − 4eAR + 1

)
+ 3B2

(
2eAR − 1

)2
+ 3B1

(
2eAR − 1

)
+B1

(
6eAR − 12eARG+2AR − 1

)
= −B1 + 3B2Â

2
R.

Thus
E2 = 2B1e

−B1e3B2Â2
R

is increasing for x ∈ (0, ρ(ARG)) using a similar argument as in the proof of
Lemma 9.2.25. Since E = E1E2, E has the same property. Now since E(0) = 0,
E ′(0) = 8|B1,1| = 8, we have similarly as in the proof of Lemma 9.2.24

ÃRGB(x) = R(E(x))

for all x in the disc of convergence of ÃRGB, or, equivalently

ARGB(x) = R(E(x))−B(x).

Now using a numeric evaluation with 0.08 < ρ(ARG) yields E(0.08) = 0.855.. >

1/e, and B(x) is analytic for x < ρ(ARG). It follows similarly as in Lemma 9.2.25
that the smallest positive number x1 such that E(x1) = 1/e is a dominant singu-
larity of R(E(x)). Numerically solving with Maple yields x1 = 0.044495... (Here
the numeric evaluation of E(x) for x ∈ (0,ARG) can be easily carried out using
the inverse functions of R and D, Lemma 9.2.24 and (9.9).) Since the convergence
radius of B(x) is at least ρ(ARG), it follows that x1 is the convergence radius of
ARGB. 2
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9.2.8 Completing the proofs

Proof of Lemma 9.2.1 Let F be the class of rooted series-parallel graphs.
Bodirsky, Giménez, Kang and Noy [32] showed that the functional inverse ψF of
F satisfies

ψF (u) = ue−B′(u)

where

B(x) =
1

2
ln(1 + xD(x))− xD(x)(x2D(x)2 + xD(x) + 2− 2x)

4(1 + xD(x))

is the exponential generating function of biconnected series-parallel graphs. Using
Theorem 3.4 of [32], ψF (u) is continuously increasing for u ∈ [0, u0), where u0 =
F (ρ(F)) = 0.127969.. (denoted τ(1) in [32]) and ψF (u0) = ρ(F) = 0.11021...

Recall that A = C•3 is the class of all 3-rootable graphs rooted at a 3-rootable
vertex. Then (cf. (9.3) and the proof of Lemma 9.2.9)

A = 23 ×F ×
∏
S⊆[3]

SET(AS(F)).

Therefore
A(x) = 8eARGB(F (x))F (x)e

∑
S⊂[3] AS(F (x)). (9.10)

By Lemma 9.2.26 ρ(ARGB) = 0.044.. < F (ρ(F)) = u0 = 0.1279... Let ρ be the
unique solution in (0, u0) of

F (u) = ρ(ARGB),

so that ρ = ψF (ρ(ARGB)) = 0.042509..

Since F and ARGB have non-negative coefficients and F ′(ρ) 6= 0, ρ is a sin-
gularity of eARGB(F (x)). Moreover, since ρ(AS) > ρ(ARGB) for any S ⊂ [3] by
Lemma 9.2.25 and Lemma 9.2.26, we have that

g(x) = F (x)e
∑

S⊂[3] AS(F (x))

is analytic at ρ and g(ρ) 6= 0. It follows, see [48], that the radius of convergence of
A(x) is ρ, and so γ(A) = ρ−1 = 23.524122... By Lemma 8.4.7, ρ−1 is the growth
constant of A = C•3.

Now
γ(C2) ≤ γ(apex (ExK4)) ≤ 2γ(ExK4) < ρ−1,
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9.3. Counting tree-like graphs

since γ(ExK4) = 9.07.. by [32]. Also γ(C2) exists and is equal to γ(C2) by
Lemma 8.4.8. Applying Lemma 8.4.5 completes the proof. 2

9.3 Counting tree-like graphs

9.3.1 Substituting edges, internal vertices and leaves of
Cayley trees

Let T ′ be a class of trees. Let D, I,L be arbitrary non-empty classes of labelled
objects. As before, we assume that all classes are closed under isomorphism of
the labels. Although we use the same symbol to denote the class of series-parallel
networks, in this section D will be an arbitrary class. We will consider the class
T ′(D, I,L) obtained from trees in T ′ by attaching to leaves, internal vertices
and edges objects from L, I, D respectively. More precisely, denote by L(T )

and I(T ) the sets of all labelled leaves and labelled internal nodes of a tree T
respectively (in this section, a node of T is called a leaf, if its degree is at most
one; otherwise it is called an internal node). Then T ′(D, I,L) is the class of all
tuples (T,D′, I ′,L′) where T ∈ T ′, D′ = {De : e ∈ E(T )}, I ′ = {Iv : v ∈ I(T )}
and L′ = {Lv : v ∈ L(T )} are families of objects from D, I and L respectively,
and the sets of labels of each object in {T} ∪ LT ∪ IT ∪ DT are pairwise disjoint.

Suppose I,L are classes of vertex-pointed graphs, D is a class of networks,
and graphs in T ′ have at most one pointed (unlabelled) vertex. Then each object
α = (T,DT , IT ,LT ) ∈ T ′(D, I,L) corresponds naturally to a graph G(α) defined
as follows, see Figure 9.6. Starting with T , identify the pointed vertex of Lv with
the node v of T for each v ∈ L(T ), identify the pointed vertex of Iu with the node
u of T for each u ∈ I(T ) and replace each edge uv ∈ E(T ) by the network Duv.
To carry out the last substitution, fix a rule for orientation of edges of T . For
instance, identify the source and the sink of Duv with the smaller and the larger
of {u, v} respectively; a pointed vertex can be assumed to be smaller than any
labelled vertex.

Let T be the class of (unrooted) Cayley trees. For example, if ZC is the class
of graphs consisting of a single pointed vertex coloured C and E2 is the class of
trivial networks of size 0 containing a single edge, then the class T (E2,Z∅,Z{red}∪
Z{green}) is isomorphic to the class of all unrooted Cayley trees where the leaves
are coloured either red or green.

For α ∈ T ′(D, I,L), let T (α) denote the underlying tree T . Our aim in
this section is to enumerate general “supercritical” classes T (D, I,L) and obtain
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Figure 9.6: Theorem 9.3.1 characterises the growth of general “supercritical” class of graphs
T (D, I,L) obtained by replacing edges, internal nodes and leaves of Cayley trees by objects
from classes D, I and L respectively.

results on the underlying tree size: an application of this will be one of the key
elements in the proof of Theorem 9.1.1.

Theorem 9.3.1 Let D, I,L be non-empty classes of labelled objects. Let A =

T (D, I,L) and A′ = R(D, I,L). Suppose ρ = ρ(A) < min(ρ(D), ρ(I), ρ(L)) and
assume there are positive integers i, j, k with gcd(k − i, j − i) = 1 such that A
contains an object of each of the sizes i, j and k.

There are constants a > 0 and c > 0 such that the following holds. Let
Rn ∈u A′ or Rn ∈u A and let Yn = |V (T (Rn))|.

1) For any ε > 0, P
(∣∣Yn

n
− a
∣∣ > ε

)
= e−Ω(n);

2) |An| = (1 + o(1))(an)−1|A′
n| = ca−1n−5/2n!ρ−n(1 + o(1));

3) A and A′ converge at ρ.

To prove the theorem, we will need some preliminary results and a technical
lemma. Let D, I,L be as in Theorem 9.3.1. Let T1 be the class of Cayley
trees pointed at a leaf and containing at least two vertices. Consider the class
A1 = T1(D, I,L) with the bivariate generating function A1(x, s) where the second
variable s counts the size of the underlying tree (which is the number of its nodes
minus one). Then, writing D = D(x), I = I(x) and L = L(x),

A1(x, s) = sxDL+ sxDI
(
eA1(x,s) − 1

)
.

Consider additionally the class A2 with specification

A2 = A1 −Z ×D × L+ Z ×D × I,
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9.3. Counting tree-like graphs

Alternatively, A2 is the class T ′
1 (D, I,L), where T ′

1 is the same as T1, except that
when we have a tree of size one (i.e., isomorphic to K2), then its (unique) labelled
vertex u is treated as an internal vertex and an object from I, rather than from
L is attached to it.

The bivariate generating function A2(x, s) of A2 satisfies

A2(x, s) = sxDIesxD(L−I)eA2(x,s). (9.11)

Call a class A aperiodic, if there are positive integers i, j, k such that i < j < k,
|Ai|, |Aj|, |Ak| > 0 and gcd(k − i, j − i) = 1.

Lemma 9.3.2 Let D, I,L be non-empty classes of labelled objects. If any of the
classes A = T (D, I,L),A1,A2 is aperiodic, then all of them are.

Proof Given α ∈ T ′(D, I,L), and x ∈ V ∗(T (α))∪E(T (α)) we denote by Objx(α)
the object in D∪I ∪D associated with x. Here V ∗(T ) ⊆ V (T ) denotes the set of
labelled vertices of T .

1) Proof of A aperiodic =⇒ A2 aperiodic. Consider an object α obtained from
the path P2 = uvw where u and v are poles, with associated objects Duv, Dvw ∈ D,
Iv ∈ I such that the label sets of Duv, Dvw, Iv are pairwise disjoint, and disjoint
from u. Let α1, α2, α3 ∈ A be objects of sizes i1, i2, i3 respectively, such that
gcd(i3 − i1, i2 − i1) = 1. Let l ∈ {1, 2, 3}; we can assume that the label set of αl

is disjoint from the label set of α. Construct a new object α′
l from αl and α as

follows. If |V (T (αl))| 6= 2, then let x be a vertex of T with dT (v) 6= 1. Merge α
and αl by identifying the vertex u of T (α) with x. If V (T (αl)) has two vertices,
say a and b, then let α′

l be an object with underlying tree on edges {wv, va, vb}
by identifying u and a, so that Objvb(α′

l) = Objab(α) and other associations are
inherited from α and αl, see Figure 9.7. We have |α′

l| = |αl| + |α|, and αl ∈ A2.
Thus A2 contains objects of sizes i′l = il+|α| for l = 1, 2, 3 and gcd(i′3−i′1, i′2−i′1) =
gcd(i3 − i2, i2 − i1) = 1.

2) Proof of A2 aperiodic =⇒ A1 aperiodic. By definition, the only objects in
the symmetric difference of A1 and A2 are those, where the underlying tree has
only one edge.

Let α ∈ A1 be such that |V (T (α))| = 2. T (α) contains one labelled and one
pointed vertex. Let α1, α2, α3 ∈ A2 be objects of sizes i1, i2, i3 respectively, such
that gcd(i3− i1, i2− i1) = 1. We may assume that the set of labels of α is disjoint
from the set of labels of αl for l = 1, 2, 3. From αl we may obtain a new object as
follows. Let u be an internal vertex of T (αl), if |V (T (αl))| ≥ 3, otherwise, let u
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Figure 9.7: Top left: the object α, bottom left: the object αl in the case |T (αl)| = 2, right: the
object in A1 of size |α|+ |αl| obtained by merging αl and α.

be the unique labelled vertex of T (αl). Merge the objects α and αl by identifying
the pointed vertex of T (α) with u, so that all the associated objects are inherited
from the relevant tree. In particular, associate with u the object Obju(αl) ∈ I.
Call the resulting structure α′

l, and note that |α′
l| = |αl|+ |α| and α′

l ∈ A1 since u
is an internal vertex of T (α′

l). Similarly as above, it follows that A1 is aperiodic.
3) Proof of A1 aperiodic =⇒ A aperiodic. From any object α ∈ A1 we may

obtain an object in A by labelling the pointed vertex u of α and associating with
u an object in L of some fixed size. Now the claim follows similarly as in the
previous cases. 2

Lemma 9.3.3 Let D, I,L be non-empty classes of labelled objects. For A =

T (D, I,L), ρ(A) = ρ(A1) = ρ(A2).

Proof Constructions as in Lemma 9.3.2 show that for

(C ′, C ′′) ∈ {(A,A2), (A2,A1), (A1,A)},

there is a positive integer s, such that from any object in C ′n we can construct a
unique object in C ′′n+s. So |C ′′n+s| ≥ |C ′n|, ρ(C ′) ≤ ρ(C ′′) and the claim follows. 2

For the function f = f(x, s) below we denote by fx and fs its partial derivatives
with respect to x and s.

Lemma 9.3.4 Let D, I,L be non-empty classes of labelled objects. Let A2 be the
class with the bivariate generating function A2(x, s) given in (9.11). Suppose that
ρ(A2) < m = min(ρ(D), ρ(I), ρ(L)) and A2 is aperiodic.

There is δ > 0 such that the following holds. For any fixed s ∈ [1 − δ; 1 + δ]

we have
A2(x, s) = R(f(x, s)), (9.12)
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where f(x, s) = sxD(x)I(x)esxD(x)(L(x)−I(x)) and R is the Cayley tree function.
The function A2(x, s) has a dominant singularity at ρ(s), which is the smallest
number in (0,m) such that

f(ρ(s), s) = e−1.

Let ρ = ρ(1). We have fs(ρ, 1) > 0, fx(ρ, 1) > 0 and 0 < ρD(ρ)I(ρ) < 1, ρ(t)
is continuously differentiable for t ∈ [1 − δ, 1 + δ] and ρ′(1) = −fs(ρ, 1)/fx(ρ, 1).
Furthermore A2(x, s) is analytic in a ∆-domain ∆′ at ρ(s) and for x→ ρ, x ∈ ∆′

we have
A2(x, s) = 1− c(s)(1− x/ρ(s))1/2 +O((1− x/ρ(s))) (9.13)

where c(s) = (2eρ(s)fx(ρ(s), s))
1/2 is positive.

It is not difficult to modify the proof and show that O() holds uniformly for
some δ > 0 and s ∈ [1− δ, 1 + δ].

Proof We will write, for shortness, D = D(x), I = I(x) and L = L(x).
Fix s > 0. We have f(0, s) = 0 and since m > 0, f(x, s) is analytic at 0.

Define F [s](z, w) = f(z, s)ew − w. Then, see (9.11), the points (x,A2(x, s)) are
solutions of F [s](x, y) = 0. We have R(f(0, s)) = 0 and for x in a neighbourhood
of 0, see Section 9.2.5,

R(f(x, s)) = f(x, s)eR(f(x,s)),

so (x,R(f(x, s))) are also solutions of F [s](x, y) = 0. Since the derivative of
F [s] with respect to w satisfies F [s]

w (0, 0) = −1 6= 0 and F [s](0, 0) = 0, (9.12)
and the fact that ρ(A2) > 0 follow by the Analytic Implicit Function Theorem
(Theorem B.4 of [48]) and the Identity principle.

To prove the rest of the lemma we will apply the “smooth implicit function
schema” and a theorem of Meir and Moon [48,79]. The function f(x, s) (and F [s])
can have negative coefficients, therefore we will work with the function A1(x, s),
which satisfies

A1(x, s) = G[s](x,A1(x, s)) where G[s](x,w) = sxDL+ sxDI(ew − 1).

(Alternatively, one could apply Theorem 2 of [79] directly to F [s].)
Suppose f(x, 1) < e−1 for all x ∈ (0,m). Then for any x ∈ (0,m), A2 is ana-

lytic at x. Since by the Pringsheim’s theorem (see [48]), A2(x, 1) has a dominant
singularity in (0,∞), we conclude that ρ(A2) ≥ m, a contradiction. By continuity
of f(x, 1), there exists a smallest positive ρ ∈ (0,m), such that f(ρ, 1) = e−1.
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An important observation is that ρD(ρ)I(ρ) < 1. Suppose, this is false.
xD(x)I(x) continuously increases for x ∈ (0,m) (it counts a non-empty combina-
torial class), so there is a unique positive x0 ∈ (0, ρ] such that x0D(x0)I(x0) = 1.
Since the function h(z) = ze−z is increasing for z ∈ [0, 1) and exL(x)I(x) is increas-
ing for x ∈ (0,m), we have that f(x, 1) = h(xD(x)I(x))exL(x)I(x) is increasing for
x ∈ (0, x0). But

f(x0, 1) = e−1ex0D(x0)L(x0) = e−1eL(x0)/I(x0) > e−1,

so ρ < x0, a contradiction. So ρD(ρ)I(ρ) < 1, ρ < m, and we can further conclude
that f(x, 1) is continuously increasing for x ∈ (0; ρ + ε1) for some ε1 > 0. This
implies that fx(ρ, 1) > 0. Furthermore, for |x| < m

fs(x, s) = xDIesxD(L−I)(sxDL+ 1− sxDI),

and so fs(ρ, 1) > 0.
Now consider a function F̃ (x, s) = f(x, s) − e−1, as a real function. Since

F̃ (ρ, 1) = 0, F̃x(ρ, 1) = fx(ρ, 1) > 0 and F̃s(ρ, 1) = fs(ρ, 1) > 0, by the Implicit
Function Theorem (see, e.g., [90], Theorem 9.28), there is δ1 > 0 and a function
ρ(t) : R → R, such that for t ∈ [1 − δ1, 1 + δ1], ρ(1) = ρ, ρ(t) is continuously
differentiable, F̃ (ρ(t), t) = 0, ρ′(1) = − F̃s(ρ,1)

F̃x(ρ,1)
= − fs(ρ,1)

fx(ρ,1)
, and {(t, ρ(t)) : t ∈

(1− δ1, 1 + δ1)} contains all the solutions of F̃ (x, t) = 0 in the region [ρ− δ1, ρ+
δ1]× [1− δ1, 1 + δ1].

Since ρ < m, ρI(ρ)D(ρ) < 1, ρ(t) is continuous at t = 1 and xI(x)D(x) is
analytic at x = ρ, we see that there is δ ∈ (0, δ1), such that for t ∈ [1 − δ, 1 +

δ], sρ(t)I(ρ(t))D(ρ(t)) < 1 and ρ(t) < m. Now, since it is a product of two
continuously increasing functions, f(x, t) = h(txD(x)I(x))etxD(x)L(x) increases for
x ∈ (0, ρ(t)), so ρ(t) is the smallest positive solution of f(x, t) = e−1.

Assume s ∈ [1− δ, 1 + δ]. Define τ(s) = 1 + sρ(s)D(ρ(s)) (L(ρ(s))− I(ρ(s))).
We claim that the function G[s] satisfies the “smooth implicit function schema”
(Definition VII.4 of [48]). Indeed, ρ(s) < m, τ(s) < ∞, the condition (I1) is
satisfied, since G is (bivariate) analytic for |x| < m and |w| < ∞. The con-
dition (I2) follows since G[s](0, 0) = G

[s]
w (0, 0) = 0, and for any positive integer

m, [wm]G[s](x,w) = (m!)−1sxD(x)I(x) has non-negative coefficients, not all zero,
since D, I are non-empty. It remains to check the condition (I3).

G[s](ρ(s), τ(s)) = τ(s) and G[s]
w (ρ(s), τ(s)) = 1.
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Both identities follow after a simple calculation using the definition of τ(s) and
the fact that f(ρ(s), s) = e−1.

Furthermore, by Lemma 9.3.2, there are positive integers i1, i2, i3, such that
|A1,il | > 0, gcd(i3 − i1, i2 − i1) = 1 and, denoting A1,n,m the set of objects α ∈ A1

with |α| = n and |V (α)| = m,

[xil ]A1(x, s) = [xil ](n!)−1
∑
m≥1

|A1,il,m|sm > 0

for l = 1, 2, 3. Hence we can apply Theorem VII.3 of [48], which yields that ρ(s)
is the unique dominant singularity of A1(x, s) and there is a ∆-domain ∆ at ρ(s),
such that for x→ ρs, x ∈ ∆

A1(x, s) = τ(s)− c(s)(1− z/ρ(s))1/2 +O((1− x/ρ(s)))

where

c(s) =

(
2ρ(s)G

[s]
x (ρ(s), τ(s))

G
[s]
ww(ρ(s), τ(s))

)1/2

= (2eρ(s)fx(ρ(s), s))
1/2.

The last equality follows using f(ρ(s), s) = e−1, G[s]
ww(ρ(s), τ(s)) = 1 and compar-

ing G[s]
x (ρ(s), τ(s)) and fx(ρ(s), s) term by term.

Finally, let us show that there is a ∆-domain at ρ(s), such that y(x) = A1(x, s)

is analytic at each x ∈ ∆′ . By Lemma VII.3 of [48], y is analytic in a region
D0 = {z ∈ C : |z − ρ(s)| < r, | arg(z)− ρ(s)| > θ} for some r > 0 and 0 < θ < π

2
.

By Note VII.17 of [48] y is analytic at any ξ with |ξ| = ρ(s) and ξ 6= ρ(s), i.e.,
there exists an open ball Bξ centered at ξ and an analytic continuation of y in
Bξ. By compactness (see, e.g., proof of Theorem 2.19 of [40]), we may pick a
finite number of points ξ, such that the respective balls cover all points x ∈ D0

with |x| = ρ(s), and the union of these finite balls together with {z : |z| < ρ(s)}
contains some ∆-domain ∆′.

2

Proof of Theorem 9.3.1 In Example IX.25 of [48], Flajolet and Sedgewick give
a bivariate generating function R̃(x, z) for rooted Cayley trees where the variable
z counts leaves (the root is counted as a leaf only in the case n = 1)

R̃(x, z) = xz + x
(
eR̃(x,z) − 1

)
(9.14)
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which they show how to express using the usual (univariate) Cayley tree function

R̃(x, z) = x(z − 1) +R(xex(z−1)).

Let R(x, z) be the bivariate generating function for rooted Cayley trees, where z
counts leaves, and the root is also counted as a leaf whenever its degree is at most
one. Then, considering the cases when the root has 0, 1 or 2 children separately
and using xeR(x) = R(x) we get

R(x, z) = zx+ zxR̃(x, z) + x(eR̃(x,z) − R̃(x, z)− 1)

= R
(
xex(z−1)

)
(x(z − 1) + 1) + x2(z − 1)2 + x(z − 1). (9.15)

Let us add a variable w that counts internal nodes:

R(x,w, z) = R(xw, z/w).

And another variable y, that counts edges:

R(x, y, w, z) = R(xyw, z/w)/y.

We get using (9.15)

R(x, y, w, z) = (xy(z − w) + 1)R
(
xywexy(z−w)

)
y−1 + y(x(z − w))2 + x(z − w).

Then the bivariate generating function A′, where for α ∈ A′, the variable s
counts the size of the underlying tree T (α) is

A′(x, s) = R(sx,D, I, L)

= (sxD(L− I) + 1)
R(f(x, s))

D
+ (sx(L− I))2D + sx(L− I).

Here D = D(x), I = I(x), L = L(x) are the exponential generating functions of
D, I and L respectively, and f(x, s) = sxDIesxD(L−I) as before.

By Lemma 9.3.2, A2 is aperiodic. Denote m = min(ρ(D), ρ(I), ρ(L)). By
Lemma 9.3.3, ρ(A2) = ρ(A) < m. Therefore we can apply Lemma 9.3.4 to the
class A2 and its bivariate generating function A2(x, s) = R(f(x, s)).

Let ρ = ρ(1) > 0 be as in Lemma 9.3.4. Our constant a will be

a = −ρ
′(1)

ρ
=

fs(ρ, 1)

ρfx(ρ, 1)
.
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By Lemma 9.3.4, a is positive.
Fix a small ε ∈ (0,min(0.5, 0.5a)). Let R′

n ∈u A′ be a uniformly random
construction of size n and let X ′

n = |V (T (R′
n))|. The key part of the proof will be

to show that
P(|X ′

n − an| > εn) = e−Ω(n). (9.16)

Let δ be given by Lemma 9.3.4 applied with D, I,L. We can assume that
δ < min

(
1
2
, ε
16a
, ε
16a2

)
. Fix s ∈ {1 − δ, 1, 1 + δ}. By Lemma 9.3.4, we may also

assume that δ is small enough that

|ρ(s)− ρ− ρ′(1)| < ερδ

2
and 0 < ρ(s) < m. (9.17)

We can write A′(x, s) = E1D
−1A2(x, s) + E2 where

E1 = E1(x, s) = sxD(L− I) + 1;

E2 = E2(x, s) = (sx(L− I))2D + sx(L− I).

Using (9.17) D(ρ(s)) > 0, so E1D
−1 and E2 are analytic at x = ρ(s). So we have

as x→ ρ(s)

E1D
−1 = E1(ρ(s))D(ρ(s))−1 +O(x− ρ(s)), E2 = E2(ρ(s)) +O(x− ρ(s)).

Using Lemma 9.3.4, R(x) = xeR(x), the fact that m < ρ(s) and writing

A2(x, s) = E1D
−1R(f(x, s)) + E2 = E1sxIe

sxD(L−I)+R(f(x,s)) + E2

we get (see [48]) that ρ(s) is the unique dominant singularity of A′(x, s) and there
is a ∆-domain ∆′ at ρ(s), such that for x→ ρ(s), x ∈ ∆′

A′(x, s) = c0(s)− c1(s)
(
1− x

ρ(s)

)1/2

+O

(
1− x

ρ(s)

)
,

with c1(s) = E1(ρ(s), s)c(s)D(ρ(s))−1, c0(s) = c1(s) + E2(ρ(s), s).
Now by the “Transfer method” of Flajolet and Odlyzko (Theorem VI.1 and

Theorem VI.3 of [48])

[xn/n!]A′(x, s) =
c1(s)

2
√
π
n−3/2ρ(s)−n

(
1 +O(n−1/2)

)
,
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the probability generating function of X ′
n at s satisfies

E sX′
n =

[xn]A′(x, s)

[xn]A′(x, 1)
=

(
ρ

ρ(s)

)n

(1 +O(n−1/2)),

By Markov’s inequality, for s = 1− δ

P(X ′
n ≤ (a− ε)n) = P(sX′

n ≥ s(a−ε)n) ≤ E sX′
n

s(a−ε)n

= exp ((p1 − (a− ε))n ln s+ o(1)) = e−Ω(n).

since by (9.17) and our choice of ε, δ

p1 =
ln ρ− ln ρ(1− δ)

ln(1− δ) ≥ ln(1 + aδ − δε/2)
− ln(1− δ) ≥ ln(1 + aδ − δε/2)

δ + δ2

≥ aδ − δε/2− (aδ)2

δ + δ2
≥
(
a− ε/2− δa2

)
(1− δ)

≥ a− ε/2− δa2 − δa > a− ε.

Here we used simple inequalities b − b2 ≤ ln(1 + b) ≤ b and 1/(1 + b) ≥ 1 − b,
which are valid for any b ∈ (−0.5, 0.5).

Now taking s = 1 + δ, we get by Markov’s inequality

P(X ′
n ≥ (a+ ε)n) ≤ E sX′

n

s(a+ε)n
=

(
ρ

ρ(s)sa+ε

)n

(1 + o(1))

= exp ((p2 − (a+ ε))n ln s+ o(1)) = e−Ω(n)

since similarly as above

p2 =
ln ρ− ln ρ(s)
ln(1 + δ)

≤ − ln(1− aδ − εδ/2)
ln(1 + δ)

≤ aδ + δε/2 + (aδ + δε)2

δ − δ2

≤ (a+ ε/2 + 4a2δ)(1 + 2δ) ≤ a+ ε/2 + 4a2δ + 4aδ < a+ ε.

This completes the proof of (9.16) and yields 1) with Yn = X ′
n.

Let us finish the proof of the theorem. Let an(k, l) (respectively, a′n(k, l))
be the number of objects α in T (D, I,L)n (respectively, R(D, I,L)n) such that
|V (T (α))| ∈ [k, l]. Also let An = an(1, n) and A′

n = a′n(1, n). Since each unrooted
tree T corresponds to exactly |V (T )| rooted trees

An ≤ A′
n ≤ nAn and kan(k, l) ≤ a′n(k, l) ≤ lan(k, l). (9.18)
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By (9.16) we have

dn = A′
nP(|X ′

n − an| > εn) = A′
ne

−Ω(n).

For Rn ∈u A, let Xn = X(Rn). The fact that 1) holds for Yn = Xn follows since

P (|Xn − an| > εn) ≤ ndn
A′

n

= e−Ω(n).

Let us now show 2). Observe that since X ′
n ≤ n, by 9.16 it must be a ∈ (0, 1].

Let ε′ = min(ε, 1− a). By (9.18)

a′n ((a− ε)n, (a+ ε′)n)

(a+ ε′)n
≤ an ((a− ε)n, (a+ ε′)n) ≤ a′n ((a− ε)n, (a+ ε′)n)

(a− ε)n
.

So
an ((a− ε)n, (a+ ε′)n) ∈

(
(A′

n − dn)(1− 2ε/a)

an
,
A′

n(1 + 2ε/a)

an

)
and also

An − an ((a− ε)n, (a+ ε′)n) ≤ dn = e−Ω(n)A′
n.

So ∣∣∣∣An −
A′

n

an

∣∣∣∣ ≤ A′
n

an

(
2ε

a
+ e−Ω(n)

)
.

Letting ε go to zero shows that An ∼ A′
n

an
. Thus 2) follows with

c =
c1(1)

2
√
π

=
ρD(ρ)(L(ρ)− I(ρ)) + 1

D(ρ)

(
eρfx(ρ, 1)

π

)1/2

.

Finally, since R(e−1) = 1, we have that

A′(ρ) = A′(ρ, 1) = c0(ρ) + c1(ρ)

is finite. Using Lemma 9.3.3 we have ρ(A) = ρ. By (9.18), the coefficients of A(x)
are dominated by the coefficients of A′(x) and so A(ρ) ≤ A′(ρ) = c0(ρ)+ c1(ρ). 2

9.3.2 The case B = {K4}

In this section we will have B = {K4} fixed and l a positive integer. Recall from
the proof of Lemma 8.4.3, that G ∈ Cl is called nice if there is a vertex x ∈ V (G)

such that G − x has at least two components containing all colours [l]. In this
case, we call the vertex x nice in G. For G ∈ Al we say that a vertex x is nice
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if it is nice in its connected component. Also recall that by U = U<l> we denote
the class of graphs in Cl that are not nice. By Lemma 8.4.3, Lemma 8.4.7 and
Lemma 8.4.5, we know that γ(Cl) exists and γ(U) < γ(Cl). Consider a graph
G ∈ Cl. Repeatedly “trim off” “pendant uncoloured subgraphs” from G (i.e. for
x ∈ V (G) such that G − x has an uncoloured component H, delete V (H) from
G) until no such subgraphs remain. We call the remaining graph G′ the coloured
core of G.

Suppose G has a nice vertex r. Then since all coloured vertices remain in G′,
G′ is also nice. Consider the rooted block tree Tr of G′. Recall that the nodes of
Tr are {r} ∪ X ∪ H, where X is the set of cut points of G′ and H is the set of
blocks of G′.

We call a block B of G′ simple if there are at most two coloured components in
G′−E(B). If there are more than two coloured components in G′−E(B), we call
B complex. Suppose y is a nice vertex and y 6= r. Then, using Proposition 9.2.5
we see that every block node on the path Pyr from y to r in Tr must correspond
to a simple block B. By Theorem 9.2.17, the edges of B form either a single edge
or a parallel SP -network, where only the poles can be coloured. Furthermore, the
poles s and t of B must be nice.

All paths {Pyr : y is nice} form an (unrooted) subtree T ′ of Tr, and the blocks
corresponding to them form a connected subgraph of G′. Since a block node B
of T ′ corresponds to a simple block, it has only two neighbours in T ′. Therefore
we may consider an unrooted tree T with V (T ) = {y ∈ V (G′) : y is nice} and
E(T ) = {xy : T ′ contains a path xBy for some B ∈ H}. The trees T ′ and T do
not depend on which nice vertex G is initially rooted at. We call T the nice core
tree of G.

Fix v ∈ V (T ). Consider, the graph G′
v induced on v and the vertices of those

components of G′ − v that do not contain any nice vertex, and pointed at the
vertex v (by retaining the colour of v).

First suppose that v is a leaf node of T . By Proposition 9.2.8, G′
v admits a

unique decomposition to a {0, 1}l-coloured vertex (i.e. the root) and some graphs
H1, . . . , Ht, where Hi is a Ci-tree with root v, such that Ci ⊆ [l], Ci 6= ∅. The
requirement that v is nice implies that at least one graph Hi must be an [l]-tree
with the restriction that Hi does not have a subgraph H ′ rooted at a cut vertex
v′ 6= v, such that H ′ is an [l]-tree (otherwise v′ would also be nice and v would not
be a leaf vertex). The generating function counting the class Ā of such graphs Hi

is the same as the one given in Lemma 9.2.11, with the only difference that we do
not allow an [l]-tree to be attached to the root block, so using Lemma 9.2.9 and
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Lemma 9.2.11

Ā = A[l] − 2lB1(e
A[l] − 1) exp

∑
S⊂[l]

AS


= B1

2l exp

∑
S⊂[l]

AS

+
∑
S⊂[l]

2|S|(−1)l−|S| exp
(∑

S′⊆S

AS′

)
+

∑
P∈P([l]),|P |≥2

B|P |
∏
S∈P

ÂS.

If T has at least two vertices, then G′−G′
v is non-empty and has a component

that contains all colours [l]. Then the exponential generating function for the
class L2 of all possible graphs G′

v is

L2 = 2l(eĀ − 1) exp

∑
C⊂[l]

AC

 .

If T has only one vertex, then there must be at least two graphs Hi, Hj ∈ Ā, so
the exponential generating function for the class L1 of all possible graphs G′

v is

L1 = 2l(eĀ − Ā− 1) exp

∑
C⊂[l]

AC

 .

Now suppose v is an internal node of T . Then G′−G′
v has at least two components

containing other nice vertices, and each such component contains all colours [l].
Therefore G′

v is in the class I with the exponential generating function

I = 2l exp

Ā+
∑
C⊂[l]

AC

 .

Observe that our expressions for Ā, L1, L2, I all are given in terms of analytic
functions of AC , C ⊂ [l] and Bi, i ≤ l. Thus, by Lemma 9.2.1, Lemma 9.2.21
and Proposition 9.2.22 the convergence radii of each of these functions are at least
ρ(Al−1) > ρ(Al).

If G is a graph, v is a vertex of G andA is a class of vertex-pointed graphs, G′ is
obtained from G by attaching a graph H ∈ A at v if G′ = G∪H, V (G′)∩V (H) =

{v} and we assume that v inherits the label of G.
Recall that F denotes the class of all rooted series-parallel graphs. Let F◦ de-

note the class of all vertex-pointed series-parallel graphs, so that F◦(x) = F (x)/x.
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For two pointed graphs G1 and G2 with disjoint sets of labels, let G1×G2 be the
pointed graph obtained by identifying their roots. Call classes D1,D2 of pointed
graphs uniquely mergeable, if G1×G2 6= G′

1×G′
2 for all G1, G

′
1 ∈ D1, G2, G

′
2 ∈ D2,

where G1×G2 and G′
1×G′

2 are defined. If D1 and D2 are uniquely mergeable, we
will identify with the combinatorial class D1×D2, the class of all graphs G1×G2,
where G1 ∈ D1, G2 ∈ D2, and G1 ×G2 is defined.

Obviously, the classes F◦ and A are uniquely mergeable, when A is L1, L2 or
I: the vertices of G ∈ F◦ ×A that belong to the graph G1 ∈ F◦ are exactly the
root r of G and those vertices that are in the uncoloured components of G− r.

Given a class of graphs A and a class of rooted graphs C, we denote by A(C)
the class obtained from graphs in A by replacing each vertex by a graph in B.
Let P+ = P ∪E2, be the class of non-series SP -networks. The above observations
imply that each graph G ∈ U can be constructed as follows.

• Take a tree T of size at least one from the set of all unrooted trees T (i.e. a
nice core).

• Replace each edge e of T by a network De ∈ P+(F) (to fix the orientation,
we may assume that edges of T are oriented away from the node with the
smallest label in T ).

• Attach at each leaf node of T a graph in F◦ × L1(F) (respectively in F◦ ×
L2(F)) if T has one node (respectively, at least two nodes).

• Attach at each internal node of T a graph in F◦ × I(F).

It is easy to see (for example, by fixing a root and comparing this construction
with the construction of an [l]-tree) that the above decomposition is unique and
the construction always yields a graph in Cl \ U .

Lemma 9.3.5 Consider B = {K4}. Let l ≥ 2 an integer, let Rn ∈u Cl. Let Yn
denote the number of nice vertices in Rn. There is a positive constant al, such
that

P(|Yn − aln| > εn) = e−Ω(n).

Proof Combining Corollary 9.2.2 with Lemma 8.3.9 we get that ρ(Cl) < ρ(Cl−1).
Write

T̃ = T (P+(F),F◦ × I(F),F◦ × L2(F)),

and notice that T̃ is aperiodic, since it contains, for example, all Cayley trees,
where each node has colour [l]. The construction given in this section above yields
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the following identity

Cl + Z × (F◦ × L2(F)) = T̃ + Z × (F◦ × L1(F)) + U . (9.19)

We will prove that the convergence radii of the exponential generating functions
of U , P+(F), F◦×I(F), F◦×L1(F) and F◦×L2(F) are all at least ρ(Cl−1). This
implies that |Cln| = |T̃n|(1 + e−Ω(n)) and the claim follows by Theorem 9.3.1.

Consider the class C̄ of rooted graphs obtained from graphs in A[l−1] by re-
placing each labelled vertex by a graph in F and labelling the root. Then C̄(x) =
xA[l−1](F (x)) and C̄ ⊆ C•(l−1) (defined in Section 8.4.1). Using Lemma 8.4.5,
ρ̄ := ρ(C̄) ≥ ρ(C•(l−1)) = ρ(Cl−1). By [32] the functional inverse ψF (x) of F is
increasing for x ∈ (0, x0) and F (x0) > ρ(D), where x0 = F (ρ(F)) = 0.1279..

(denoted τ(1) in [32]). By Proposition 9.2.22 ρ(D) = ρ(Bl−1) ≥ ρ(A[l−1]), so
x0 ≥ ρ(A[l−1]). We see (using e.g., Section VI.9 of [48]) that ρ̄ = ψF (ρ(Al−1)).

By our construction above, for i ∈ {1, 2}, ρ(Li) ≥ ρ(A[l−1]), therefore ρ(Z ×
(F0 × Li(F))) ≥ ψF (ρ(A[l−1])) = ρ̄ ≥ ρ(Cl−1). Since each graph in P+,n yields
a unique graph in Fn+2, ρ(P+(F)) ≥ ρ(F) ≥ ρ(Cl−1). Finally, ρ(U) ≥ ρ(U ′) ≥
ρ(Cl−1) by Lemma 8.4.3. 2

9.4 Structure of random graphs in Ex (k + 1)K4

9.4.1 Proof of Theorem 9.1.1 and Theorem 9.1.2

Let H be a fixed connected coloured graph on vertices {1, . . . , h}. Following [77],
we say that H appears in G at W ⊆ V (G) if (a) the increasing bijection from
{1, . . . , h} to W gives an isomorphism between H and G[W ] and (b) there is
exactly one edge in G between W and the rest of G, and it is incident with the
smallest element of W . We let fH(G) denote the number of sets W such that H
appears at W in G.

Let A be a class of (coloured) graphs and let H be a connected graph, rooted
at r ∈ V (H). Let G ∈ A, and let S ⊆ V (G). Suppose G and S have the following
property: if we take any number of pairwise disjoint copies of H, all disjoint from
G, and add an edge between the root of each copy and a vertex in S then the
resulting graph is still in A. The set S is called an H-attachable subset of G (with
respect to A).

The next lemma and its proof is just an adaptation of Theorem 4.1 of [77] for
graphs where not necessarily all of the vertices form an H-attachable set.
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Lemma 9.4.1 Let C be a non-empty class of (coloured) graphs, and suppose
γ(C) = c ∈ [e−1;∞). Let H be a connected (coloured) graph on the vertex set
{1, . . . , h} rooted at 1. Suppose there are constants a ∈ (0, 1), N0 > 0 and d > 0

such that the probability that Rn ∈u C has an H-attachable subset (with respect to
C) of size at least an is at least 1− e−dn all n ≥ N0. Fix α, such that α < d and
α ≤ a/(9e2ch(h+ 2)h!). Then there exists n0 such that

P(fH(Rn) ≤ αn) ≤ e−αn for all n ≥ n0.

Proof The proof is a simple modification of the proof of Theorem 4.1 of [77].
We skip some of the details and refer the reader for them to [77]. Write β =

a−1e2ch(h+2)h! and let ε ∈ (0, 1/3) be such that (αβ)α = 1−3ε. Let f(n) denote
the number of graphs in Cn. Then since γ(C) = c there is n1 ≥ N0 such that for
each n ≥ n1 we have e−αn ≥ 2e−dn and

2(1− ε)nn!cn ≤ f(n) ≤ (1 + ε)nn!cn. (9.20)

Assume that for infinitely many n ≥ n1 the claim of the lemma does not hold:
that is, at least e−αn fraction of graphs in G ∈ Cn “have few pendant appearances”,
i.e., fH(G) ≤ αn. Let C̃n ⊆ Cn consist of those graphs in Cn that have few pendant
appearances and an H-attachable subset with at least an vertices. Then

|C̃n| ≥ f(n)(e−αn − e−dn) ≥ e−αn(1− ε)nn!cn.

Let δ ∈ (0, 1) be given by δ = αh. We can construct a graph G on dn(1 + δ)e
vertices by putting a graph G0 isomorphic to a graph in C̃n on some n of these
vertices, and adding bαnc disjoint copies of H on the remaining dδne vertices, so
that for each added copy H ′ of H there is an edge between the least vertex of H ′

and some y ∈ S0, where S0 is the largest H-attachable subset of G0. The number
of such constructions bd(1+δ)ne satisfies

bd(1+δ)ne ≥
(
d(1 + δ)ne

n

)
|C̃n|
(
dδne

h, . . . , h

)
(an)bαnc

bαnc!

≥ d(1 + δ)ne!e−αn(1− ε)ncn abαnc

h!(h!α)bαnc
.

Now [77] show that each graph in this way is constructed at most
(b(h+2)αnc

bαnc

)
≤
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e((h+ 2)e)bαnc times. This, after a similar calculation as in [77] yields that

f(d(1 + δ)ne) ≥
bd(1+δ)ne

e((h+ 2)e)bαnc
≥ c′f(d(1 + δ)ne)

(
1− ε

(1− 3ε)(1 + ε)2

)n

,

for some constant c′ > 0 which does not depend on n. Since 1−ε
(1−3ε)(1+ε)2

> 1, our
assumption cannot hold for infinitely many n, a contradiction. 2

Corollary 9.4.2 Let B = {K4}, let h ≥ 1 and l ≥ 2 be integers and suppose
H ∈ Clh is rootable at 1. There is a constant a = a(l, h) > 0 such that the random
graph Rn ∈u Al satisfies

P(fH(Rn) ≥ an) ≥ 1− e−Ω(n).

Proof By Proposition 9.2.8 and the decomposition of Section 9.3.2 the set of nice
vertices of a graph G ∈ Al is H-attachable. The claim follows by Lemma 9.3.5
and Lemma 9.4.1. 2

Fix positive integers r and l, r > l. Recall the class Ã = Ã<B,l,r> defined in
the proof of Lemma 8.3.7: Ã is the class of {0, 1}r-coloured graphs corresponding
to the class of graphs that have an (l, 2,B)-double blocker of size r, and C̃ is the
class of connected such graphs. (In this section B = {K4} is fixed.)

Suppose H is an induced subgraph of a coloured graph G. Similarly as in the
previous chapters we will call H a spike of G if all of the following hold:

• H is a path v1 . . . vl+1;

• there is only one edge between V (H) and V (G − H), and this edge is uv1
where u ∈ V (G−H);

• ColH(v1) = · · · = ColH(vl+1) = {1, . . . , l, x} where x ∈ {l + 1, . . . , r};

• u < v for each v ∈ V (H).

It is easy to see that two different spikes must be pairwise disjoint.

Lemma 9.4.3 Let B = {K4}, let r and l be positive integers, r > l and consider
the random graph Rn ∈u C̃. There is a constant a′ = a′(r, l) such that

P(Rn has less than a′n spikes) ≤ e−Ω(n).

Proof Let H be a {0, 1}l+1-coloured path on the vertex set [l + 2] such that one
of its endpoints is 1 and for v ∈ {2, . . . , l + 2}, we have ColH(v) = [l + 1]. By
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Corollary 9.4.2, there are positive constants a, c and C, such that the number of
graphs in Cl+1

n with at most an pendant appearances H is at most Ce−cn|Cl+1
n | for

every n.
Let N = (1 + aw2 (ExK4))

l−1 = 3l−1. In the proof of Lemma 8.3.7 we have
shown that each graph in C̃n, as well as some other graphs, can be obtained as
follows.

• Pick κ ∈ [N ] and j,m ∈ {0, . . . , N − 1};

• choose a partition S of [n+ j] into κ sets V1, . . . , Vκ;

• for each i = 1, . . . , κ put an arbitrary graph Hi ∈ Cl+1 on Vi;

• for each i = 1, . . . , κ choose qi ∈ {l + 1, . . . , r}κ and map the colour l + 1 in
Hi to qi;

• choose a set J ofm edges between the components H1, . . . , Hκ and add them
to the resulting graph;

• finally, contract all edges J , so that the vertex resulting from a contraction
of an edge e = xy receives max(x, y) as a label.

Consider the set M(n) of all possible constructions that yield a graph on the
vertex set [n] (the (multi-)set of the resulting graphs contains C̃n).

By Lemma 8.4.8 the class Cl+1 has a growth constant γ. By Lemma 9.2.1 and
the proof of Lemma 8.3.7

|M(n)| = n!γn(1+o(1)) and |C̃n| = n!γn(1+o(1)).

Fix κ = κ0, m = m0 j = j0, S = S0, q = q0 and J = J0 such that there is at
least one construction inM(n) with these parameters. Then every choice of the
graphs in {Hi} yields a construction in M(n). In particular, writing ni = |Vi|,
there are in total t0 =

∏κ0

i=1 |Cl+1
ni
| constructions inM(n) with these parameters.

Note that the largest set Vj in S0 always contains n′ ≥ n/κ0 ≥ n/N elements.
It is easy to see that each pendant appearance of H in Hj yields a spike in Hj.
There are at most Ce−cn′|Cl+1

ni
| ways to choose the graph Hj so, that Hj has less

than an′ spikes. If Hj has more than an′ spikes, then the graph G resulting from
the construction has at least an′ − 2|J0| ≥ an′ − 2N spikes, since the spikes are
disjoint and each edge in J can touch at most two spikes.

Therefore there are at most

Ce−cn′
t0 ≤ Ce−(c/N)nt0
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ways to finish the construction by choosing H1, . . . , Hκ0 , so that the resulting
graph G has less than (a/N)n− 2N spikes.

Since this bound holds for every κ0,m0, j0,S0, q0 and J0, we get by the law
of total probability that the number of constructions inM(n) that yield a graph
with at most (a/N)n−N spikes is at most

Ce−(c/N)n|M(n)| ≤ n!e−(c/N)nγn+o(n).

So for any a′ < a/N and n large enough

P(Rn has less than a′n spikes) ≤ Ce−(c/N)n+o(n) = e−Ω(n).

2

Lemma 9.4.4 Let B = {K4}, let l, r and K be positive integers, r > l. Then for
Rn ∈u Ã we have

P(Rn has at most K spikes) ≤ e−Ω(n).

Proof Let Ã1 be the class of graphs in A that have at most K spikes, and let C̃1
be the class of graphs in C̃ that have at most K spikes. Then Ã1 ⊆ SET(C̃1) and

Ã1(x) ≤ eC̃1(x).

Using Lemma 9.4.3,
γ(Ã1) ≤ γ(C̃1) < γ(C̃) = γ(Ã).

The lemma follows by (5.2). 2

For an r-coloured graph G, S1, S2 ⊆ [r], and sets Q1, Q2 disjoint from V (H),
such that |Si| = |Qi| for i = 1, 2, we denote by GS1→Q1,S2→Q2 the graph obtained
by adding to G new vertices Q1∪Q2, and for i = 1, 2 adding an edge between q(j)i

and each vertex coloured s(j)i . Here q(j)i and s(j)i is the j-th smallest element in Si

and Qi respectively.

Lemma 9.4.5 Let k be a positive integer. Then

|(Ex (k + 1)K4)n| = (1 + e−Ω(n))|(rd 2k+1K4)n|. (9.21)

Proof By Lemma 8.3.9, Lemma 9.2.1, Lemma 8.4.9 and Theorem 8.1.2, there
is a constant r = r(k) > 2k such that all but an exponentially small fraction of
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graphs from Ex (k + 1)K4, have a (2k, 2, K4)-double blocker of size r. Here we
will show that all but an exponentially small fraction of graphs in the latter class
have a redundant blocker of size 2k + 1. Since each graph in rd 2k+1K4 is in the
class Ex (k + 1)K4, the claim will follow. We will use the idea of the proof of the
main result of Chapter 7.

Fix n ≥ r. All graphs in (Ex (k+1)K4)n that have a (2k, 2, K4)-double blocker
(and some other graphs) can be constructed as follows.

• Choose Q ⊆ [n] of size r and S ⊂ Q of size 2k.

• Put an arbitrary graph in G̃ ∈ Ã = Ã<{K4},2k,r> on [n] \Q.

• Put an arbitrary graph H on Q.

• Let G = G̃{1,...,2k}→S,{2k+1,...,r}→Q\S. This finishes the construction of a graph
G.

Suppose G̃ has more than K = r(k + 2r + 12) spikes. Then there is a (smallest)
colour q ∈ {2k+ 1, . . . , r} such that there are at least k+ 2r+ 12 spikes coloured
{1, . . . , 2k, q}. Let x be the vertex in Q\S whose neighbours in G are the vertices
coloured q in G̃. Denote S ′ = S ∪ {x}.

Suppose G contains a B-critical subgraph H ′ (that is, a subdivision of K4)
which has at most one vertex in S ′. By Lemma 7.5.3, H ′ can touch at most
2(r + |E(K4)|) = 2r + 12 spikes in G̃. Thus there are at least k spikes that are
disjoint from H. Form an arbitrary maximal matching in the set S ′ \ V (H): the
matching has exactly k pairs. For y, z ∈ S ′ and a spike P in G̃, we have that
G[V (P ) ∪ {y, z}] 6∈ ExK4. Thus, we can produce k disjoint minors in B for each
pair in the matching. The graph H yields (k + 1)-st disjoint minor in B.

Thus, whenever G̃ has at least K spikes and G ∈ Ex (k + 1)B, we have that
S ′ is a redundant blocker for G. So each construction G such that G ∈ Ex (k +

1)K4 \ rd 2k+1K4 is formed by taking a graph G̃ with at most K spikes in the
second step.

By Lemma 9.4.4, the number of choices for G̃, such that G̃ has less than K

spikes is at most
e−Ω(n)|An−r|.

Therefore if D = Ex (k + 1)K4 \ rd 2k+1K4, we have for n ≥ r, n→∞

|Dn| ≤
(
n

r

)(
r

2k

)
2(

2k
2 )e−Ω(n)|Ãn−r|

and γ(D) < γ(Ã) = γ(Ex (k + 1)K4). 2
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Lemma 9.4.6 Let B = {K4}, and let l ≥ 2 be an integer. We have

|(rd l B)n+l| = an(1− e−Ω(n)) where an = 2(
l
2)
(
n+ l

l

)
|Al,n|.

Proof Consider the following constructions of graphs on [n + l]: first pick a set
Q ⊆ [n+ l] of size l, next take a graph G0 ∈ Al with V (G0) = [n+ l] \Q and an
arbitrary graph H with V (H) = Q. Let G = GQ

0 ∪H. Each graph in (rd l B)n+l

can be obtained in this way, so |(rd l B)n+l| ≤ an. We aim to bound the number
of constructions that can be obtained twice, i.e., the ones which have two or more
different redundant K4-blockers of size l.

If G0 has at least l + 1 spikes then Q is a unique redundant blocker of size l.
Indeed, if Q′ is another such blocker, Q′ 6= Q, then take a vertex z ∈ Q \ Q′ and
any x ∈ Q \ {z}.

Now x, z and the vertices of any spike S induce a minor of K4. Therefore,
since Q′ \ {x} must still be a B-blocker for G, Q′ must contain a vertex from each
of the l + 1 spikes, and so |Q′| > l, a contradiction.

Thus every construction where Q is not the unique redundant blocker is ob-
tained when G0 has at most l spikes. By Corollary 9.4.2, there are at most

2(
l
2)
(
n+ l

l

)
e−Ω(n)|Al,n| = ane

−Ω(n)

such constructions, so the number of graphs in (rd l B)n that have a unique redun-
dant blocker is at least an(1− e−Ω(n)). 2

Lemma 9.4.7 Let l ≥ 2 be an integer and let Al be the class of coloured graphs
defined for B = {K4} in Section 8.3.3. Let ρl = ρ(Al). Then Al(ρl) < ∞ and
there is a constant al > 0 such that

|Al,n| = aln
−5/2n!ρ−n

l (1 + o(1)) .

Proof By the exponential formula we have ρ(Cl) = ρl. We will show that

(*) C l converges to some positive constant at ρl.

(**) |Cln| > 0 for all n ≥ 1.

(***) Cl is smooth, i.e. |Cln+1|/n|Cln| → ρ−1
l .

(****) For any w = w(n)→∞ we have
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S(n,w) =
n−w∑
k=w

(
n

k

)
|Clk||Cln−k| = o(|Cln|).

Then Al(ρl) ≤ eC
l(ρl) < ∞ and Theorem 2 of Bell, Bender, Cameron and Rich-

mond [7] yields
|Al,n| =

1

Al(ρl)
|Cln| (1 + o(1)) .

We will use the identity (9.19) and the notation from the proof of Lemma 9.3.5.
There we have shown that the class T̃ has ρ(T̃ ) = ρl and by Lemma 9.3.1 T̃ (ρl) <
∞. Since ρ(F◦), ρ(L1(F)), ρ(L2(F)), and ρ(U) are all strictly larger than ρl, we
have by (9.19) that C l(ρl) <∞. Since the coefficients of C l are non-negative, (*)
follows. The condition (**) is obvious (Cl includes, i.e., every uncoloured path on
n vertices). Furthermore, by (9.19) and Theorem 9.3.1

|Cln| = cn−5/2n!ρ−n
l (1 + o(1)) (9.22)

for some constant c > 0, so (***) follows.
Finally, let us prove (****). Let w = w(n) → ∞. We may assume 2 ≤

w(n) ≤ n/2 for all n. By (9.22) for any ε > 0, for all sufficiently large j we have
|Clj| ≤ (c+ ε)j−5/2j!ρ−j

l . So for n sufficiently large

S(n) =
n−w∑
k=w

(
n

k

)
|Clk||Cln−k| ≤ (c+ ε)2ρ−n

l n!
n−w∑
k=w

k−5/2(n− k)−5/2.

Now symmetry and a standard approximation of a sum by an integral gives for
w′ = w − 1

f(n) =
n−w∑
k=w

k−5/2(n− k)−5/2 ≤ 2n−4

∫ 1−w′
n

x= 1
2

x−5/2(1− x)−5/2dx.

Since for t ∈ (1/2, 1)∫ t

1/2

x−5/2(1− x)−5/2dx = −2(1 + 6t− 24t2 + 16t3)

3t3/2(1− t)3/2

we have

f(n) ≤ 4(n3 + 6w′n2 − 24w′2n+ 16w′3)

3n4(n− w′)3/2w′3/2 = O
(
n−5/2w−3/2

)
.
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Thus S(n) = O(|Cln|w−3/2) = o(|Cln|). This completes the proof. 2

We are now ready to prove Theorem 9.1.1.

Proof of Theorem 9.1.1 To replace Ω by Θ in the result of Lemma 9.4.5, note
that by Lemma 8.4.12 and Theorem 7.1.2, (Ex (k + 1)K4)n contains at least

|(apex kK4)n \ (rd 2k+1K4)n| = n!(2kγ(ExK4))
n+o(n)

graphs that do not have a redundant K4-blocker of size 2k + 1.
The theorem follows by Lemmas 9.2.1, 9.4.5, 9.4.6 and 9.4.7. 2

Proof of Theorem 9.1.2 Let R′
n be a random construction as in the proof of

Lemma 9.4.6, where we pick the set Q of size 2k + 1, the graph G0 ∈ Al,n and
the graph H on Q uniformly at random. Then Theorem 9.1.1 and the proof of
Lemma 9.4.6 imply that the total variation distance between Rn and R′

n satisfies

dTV (Rn, R
′
n) = e−Θ(n).

Therefore it is enough to prove the theorem for the random graph R′
n. By Corol-

lary 9.4.2, there is a constant ak > 0, such that the graph G0 has at least akn spikes
(and so, each vertex in Q has degree at least akn) with probability 1− e−Ω(n).

Suppose G0 has at least akn spikes and there is a blocker Q′ of R′
n and at least

two distinct vertices x, y ∈ Q′ \ Q. Then any spike and {x, y} induces a minor
K4. Thus every such blocker must have at least akn vertices with probability at
least 1 − e−Ω(n). Similarly Q is with probability 1 − e−Ω(n) a unique redundant
K4-blocker for Rn of size 2k + 1. This finishes the proof of (a).

Finally, (b) follows by a result of [74] (restated in a slightly more convenient
form in Chapter 7). More precisely, by Lemma 7.6.2 the graph Frag(Rn) obtained
fromRn by removing its (lexicographically) largest component is in the class ExK4

with probability 1 − e−Ω(n). The class Ex (k + 1)K4 is bridge-addable and by
Theorem 9.1.1 it is smooth and ρ = γ(Ex (k+1)K4)

−1 > 0. Therefore by [74], see
Lemma 7.6.3, Frag(Rn) converges in total variation to the “Boltzmann-Poisson”
random graph with parameters B and ρ, in particular P(|V (Frag(Rn))| = 0) →
pk = A(ρ)−1. 2
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9.5 The class Ex (k + 1){K2,3, K4}

The class Ex (k + 1){K2,3, K4} is a subclass of Ex (k + 1)K4. Even though it
does not satisfy the condition of Theorem 8.1.2, we can still adapt most of the
techniques from the preceding sections (the proofs are simpler for this case).

9.5.1 Coloured cores and paths

In this section we fix B = {K2,3, K4}. To avoid an additional index, we will
accordingly write Cl = Cl,B, Al = Al,B, and assume that the definitions such as
“good colour”, “nice vertex” and “nice graph” are with respect to B = {K2,3, K4}.

Lemma 9.5.1 Let B = {K2,3, K4}, let l be a positive integer and let G ∈ Cl be
nice. The nice core tree of G is a path.

Proof In Section 9.3.2 we showed that the nice core tree T of G ∈ Cl,B ⊂ Cl,{K4}

is a tree. If T has at least three leaves, we can produce a minor K2,3 by adding a
new vertex connected to each of these leaves, thus every colour is bad for G. 2

Let D̃ be the class of all biconnected outerplanar networks G such that adding
a new vertex connected to each pole of G gives an outerplanar graph. Let G ∈ D̃
be 2-connected. Then G has a unique Hamilton cycle H (see, e.g., [12]). The
poles s and t of G must be neighbours in H, otherwise adding a new vertex
connected to each pole yields a minor K2,3. Conversely, if we take an arbitrary
2-connected outerplanar graph G and pick an oriented edge st from its Hamilton
cycle H, the graph with source s and sink t obtained from G is from the class
D̃: this follows by the relation of 2-connected outerplanar graphs and polygon
dissections [12]. Therefore from each 2-connected rooted outerplanar graph we
can obtain two networks in D̃ (the root becomes the source and either the left
or the right neighbour of the root on the Hamilton cycle becomes the sink) with
n− 2 vertices. It follows that

D̃(x) =
2B(x)

x2
− 1,

where B(x) is the exponential generating function of rooted biconnected outer-
planar graphs (which contains K2). Bernasconi, Panagiotou and Steger [12] show
that

B(x) =
1

2
(D(x) + x2)
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D

D

D

1

2

3{r}

{g,b}

{r,g}
{g,b}

{r,g,b}

{r}

{g}

{b}

Figure 9.8: Coloured core of a graph in C3 in the case B = {K2,3,K4}. Replacing the three grey
networks (which belong to the class D̃) with edges we obtain its nice core tree (a path of length
three). The graphs attached to the endpoints of this path belong to the class L.

where D(x) is the exponential generating function for polygon dissections. Thus
D̃(x) = D(x)/x2 and we get by (4.1) of [12]

D̃(x) =
1

4x

(
1 + x−

√
x2 − 6x+ 1

)
. (9.23)

Solving quadratic equations and using the “first principle” from [48] we get that

ρ(D̃) = 3− 2
√
2 and ρ(D̃)D̃(ρ(D̃)) = 1−

√
2

2
= 0.292 . . . (9.24)

Lemma 9.5.2 Let B = {K2,3, K4}, let l ≥ 2 be an integer, and let C̃l be the class
of coloured cores of nice graphs in Cl. Then the class C̃l has exponential generating
function

C̃ l(x) =
2l−1xL(x)2

1− 2lxD̃(x)
, (9.25)

where L is the exponential generating function of a class L = L<l> with ρ(L) ≥
ρ(C̃l−1).

Proof Let L = L<l> be the class of all pointed {0, 1}l-coloured connected graphs
G satisfying the following conditions: a) each colour is good for G; b) G − r is
connected, Col(G − r) = [l] and Col(r) = ∅, where r = r(G) is the root of G; c)
for any x ∈ V (G), each component of G−x contains at least one colour or r, and
at most one component contains all colours [l] or r. The class L corresponds to
the class L2 from Section 9.3.2.

We will now prove that ρ(L) ≥ ρ(C̃l−1). We first claim that for each positive
integer i and each n = 0, 1, . . . ,

|C̃in| ≥ |C̃i−1
n |. (9.26)

Indeed, for any graph in G ∈ C̃in we can assign a graph G′ ∈ C̃i+1
n by picking the

lexicographically minimal pair of vertices coloured red and adding colour i+ 1 to
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their colour sets. Such a pair always exists since G is nice, and since the colour
red is good for G, the colour i+ 1 must be good for G′.

Let C be the class of all pointed graphs H, such that

1. Col(H) ⊂ [l];

2. if we add to H a new vertex w coloured Col(H) and connected to the root
of H and label the root of H arbitrarily, we obtain a graph in C̃l.

The coefficients of C(x) are dominated by those of
∑

j∈[l−1]

(
l
j

)
x2C̃j(x)′, therefore

ρ(C) ≥ minj∈[l−1] ρ(C̃j) ≥ ρ(C̃l−1). The last inequality follows using (9.26). Re-
call also that we denote by Z∅ the class of graphs consisting of a single pointed
uncoloured vertex only.

Now let G ∈ L. G can be constructed as follows: take a pointed biconnected
outerplanar graph B (B is the block of G containing the root with its colours
removed), colour t ≤ 2l of its (non-root) vertices v1, . . . , vt with some subsets of
[l] and identify vi with the root of a pointed graph Gi ∈ C∪Z∅ (so that labels of G,
G1, . . . , Gt are disjoint). To verify the last statement, note first that the number
of cut vertices and coloured vertices in B is bounded by 2l, since each component
of G − E(B) can contain at most two components containing colour c for each
c ∈ [l] (see Section 9.2.2). Secondly, suppose u is a cut vertex of G, and let Gu

the graph obtained from the component of G − E(B) containing u by pointing
the vertex u. The graph H obtained from G by contracting all vertices in G−Gu

into a single vertex w, setting ColH(w) = ColG(Gu − u) ⊂ [l] and ColH(u) = ∅ is
a coloured minor of G: this shows that indeed Gu ∈ C.

Let B◦ denote the class of pointed biconnected outerplanar graphs. By the
properties of biconnected outerplanar graphs discussed above in this section we
see that ρ(B◦) = ρ(D̃) ≥ ρ(C̃1). (The last inequality follows since from each graph
in D̃ we may obtain a graph in C̃1 by labelling its poles and colouring them {red}.)

The above observations imply that the coefficients of L(x) are bounded by the
coefficients of

2l∑
t=0

xtB◦(x)
(t+1)(2l(1 + C(x)))t.

Therefore ρ(L) ≥ min(ρ(C), ρ(B◦)) ≥ ρ(C̃l−1).
Now let C̃l,1 denote the subclass of graphs in C̃l with the nice tree of size 1,

and let C̃l,2 = C̃l \ C̃l,1. Using Lemma 9.5.1 and Section 9.3.2, each graph in C̃l,2

can be obtained as a series composition of r ≥ 1 outerplanar networks D1, . . . , Dr,
where only the poles of these networks can be coloured (with arbitrary colours in
2[l]), by attaching two rooted graphs L′, L′′ at the source of D1 and the sink of
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Dr respectively (attaching pendant coloured graphs to vertices corresponding to
internal vertices of the nice core path is forbidden, otherwise some colour would
be bad for the resulting graph), see Figure 9.8. Let c ∈ [l]. Since each pole of
a network Di is nice, there are two disjoint paths from each of the poles ending
with a vertex coloured c. This shows that Di ∈ D̃.

It is easy to see that L′, L′′ must always be from the class L. On the other
hand, every such construction gives a valid graph in C̃l,2, and every graph in C̃l,2

is obtained exactly twice (reversing each network and their order in the sequence
and swapping L′ with L′′ gives the same graph).

Therefore

2× C̃l,2 = (2l ×Z × L)2 × D̃ × SEQ((2l ×Z)× D̃).

Similarly
C̃l,1 = 2l ×Z × SET2(L).

Finally, the identity C̃l = C̃l,1 + C̃l,2 and a standard conversion to exponential
generating functions [48] yields (9.25). 2

Lemma 9.5.3 Let l ≥ 2 be an integer and let L<L>, C̃l be as in Lemma 9.5.2.
We have ρ(L<l>) > ρ(C̃l) = rl, where

rl =
1

2l

(
1− 1

2l − 1

)
.

There are constants R1 = R1(l) > rl and c′l > 0 and a function g1(x) = g1,l(x)

analytic for x ∈ C with |x| < R1 such that

C̃ l(x) =
c′l

1− x/rl
+ g1(x). (9.27)

Proof A simple calculation shows that the unique solution of 2lxD̃(x) = 1 is
rl. Notice also that since D̃ contains a network isomorphic to K2 and a network
isomorphic to an arbitrary cycle, we have [xn]2lxD̃(x) > 0 for n = 1, 2, . . . (that
is, 2lxD̃(x) is strongly aperiodic, see [48]).

We will also use that r2 = 1
6
and rj+1 < rj for any integer j = 2, 3, . . . . Define

c′l =
rlL(rl)

2

2(D̃(rl) + rlD̃′(rl))
.
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We prove the claim by induction on l. First consider the case l = 2. By
Lemma 9.5.2 ρ(L<2>) ≥ ρ(C̃1) = ρ(D̃) = 3 − 2

√
2 > 1

6
. We can write C̃2(x) =

h(x)f(x) where f(x) = (1−22xD̃(x))−1 and h(x) = 22xL<l>(x)2. By (9.24), f(x)
corresponds to a supercritical sequence schema and h(x) is analytic in ∆ = {x ∈
C : |x| < R1} for some R1 > r2, h(r2) > 0.

We get using Theorem V.1 of [48], its proof and properties of meromorphic
functions that C̃2 is meromorphic and has only one pole r2 (which is simple) in
∆, where it satisfies (9.27).

The proof of the general case l ≥ 3 follows similarly, since using Lemma 9.5.2
and induction we have ρ(L<l>) ≥ ρ(C̃l−1) = rl−1 > rl, 2lρ(D̃)D̃(ρ(D̃)) > 1 and
the convergence radius of 2lxD̃(x) is ρ(D̃) > r2 > rl. 2

9.5.2 Proof of Theorem 9.1.3

It remains to collect and combine the analytic results for classes related with ExB.
Denote by F the class of connected rooted outerplanar networks (we reuse the
symbol from the previous section). [32] show that the functional inverse of its
exponential generating function F is

ψF (u) = ue
1
8(

√
1−6u+u2−5u−1). (9.28)

Lemma 9.5.4 Let l ≥ 2 and let B = {K2,3, K4}. Define σl = ψF (rl), where rl
is as in Lemma 9.5.3. There are constants cl > 0, R > σl and a function g(x)

analytic in {z ∈ C : |x| < R} such that

C l(x) =
cl

1− x/σl
+ g(x).

Proof The class C̄ = C̄<l> of nice graphs in Cl has exponential generating function

C̄(x) = C̃(F (x)).

By [32], τ = F (ρ(F)) is the smallest positive solution of 3u4 − 28u3 + 70u2 −
58u + 8 = 0, and a numeric evaluation yields that τ = 0.170 · · · > 1/6 ≥ rl.
Furthermore, clearly |Fn| > 0 for n = 1, 2, . . . . Thus by 9.28 σl = ψF (rl) is the
smallest positive solution of F (x) = rl and the unique dominant singularity of
C̄(x).
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Using Lemma 9.5.3 we get

C̄(x) =
c′l

1− F (x)/rl
+ g1(F (x))

and g1(x) is analytic for |x| < R1 where R1 > rl. Since F has convergence radius
larger than σl, there is ε > 0, such that F (x) < R1 for x ∈ (0, σl + ε). By the
triangle inequality, for any t ∈ C, |t| < σ1 + ε we have |F (t)| ≤ F (|t|) < R1 so
g1(F (x)) is analytic at x = t.

Now applying the supercritical composition schema (Theorem V.1 of [48]) to
the function c′l(1−F (x)/rl)−1, we see that there is R2 ∈ (σl, σl+ε) such that C̄(x)
satisfies for x ∈ ∆ := {z ∈ C, |z| < R2}

C̄(x) =
cl

1− x/σl
+ g2(x), cl =

rlc
′
l

σlF ′(σl)

for some function g2(x) which is analytic in ∆.
Finally, to obtain C l(x) we have to add to C̄(x) the exponential generating

function U<l>(x) of graphs in Cl that are not nice. An argument analogous to
the one presented in the proof of Lemma 8.4.3 shows that ρ(U<l>) ≥ ρ(Cl−1).
Furthermore, [32] showed that the convergence radius of the class of outerplanar
graphs ρ(ExB) = 0.1365... Now in the case l = 2 the lemma follows, since
ρ(U2) ≥ ρ(C1) ≥ ρ(ExB) > σ2 = 0.1353.., so U<2>(x) is analytic at any t with
|t| < R := min(ρ(ExB), R2). Since (rl, l = 1, 2, . . . ) is strictly decreasing and ψF

is increasing for x ∈ (0, ρ(F)), we have that (σl, l = 1, 2, . . . ) is strictly decreasing.
Therefore have that ρ(U<l>) ≥ ρ(Cl−1) = σl−1 > σl by induction, and the lemma
follows similarly as in the case l = 2. 2

Lemma 9.5.5 Let l ≥ 2 be an integer and let B = {K2,3, K4}. Let cl, σl and g be
as in Lemma 9.5.4. Then

|Cln| = cln!σ
−n
l (1 + o(1))

and
|Al,n| = bln

−3/4e2(cln)
1/2

n!σ−n
l (1 + o(1))

where

bl =
c
1/4
l ecl/2+g(σl)

2π1/2
.

Proof The lemma follows by Lemma 9.5.4 and Proposition 23 of [31]. 2
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Proof of Theorem 9.1.3 By [32], there are computable constants h and γ, with
γ−1 = 0.1365.. such that the number of outerplanar graphs on vertex set [n] is

hn−3/2γnn!(1 + o(1)).

Using Lemma 9.5.4 and Theorem 7.1.2

γ(rd 3 B) = σ−1
3 = 10.482.. < γ(apex (ExB)) = 2γ = 14.642..

Therefore by Theorem 8.1.1 we have

|(Ex 2B)n| = |(apex (ExB))n|(1 + e−Θ(n)),

and using Theorem 7.1.2

|(Ex 2B)n| =
h

2γ
n−3/2n!(2γ)n(1 + o(1)).

Now
γ(rd 5 B) = σ−1

5 = 34.099..

and γ(apex (Ex 2B)) ≤ 4γ = 29.2.. < γ(rd 5 B). By Lemma 8.3.9 and Lemma 9.5.5

γ′k = γ(Ex (k + 1)B) = γ(rd 2k+1 B) < γ(apex k (ExB))

for each k = 2, 3, . . . .
Furthermore, using Lemma 9.5.5 there are constants b2k+1, c2k+1 > 0 such that

|(Ex (k + 1)B)n+2k+1| ≥ 2(
2k+1

2 )|A2k+1,n|

= 2(
2k+1

2 )b2k+1n
−3/4 exp

(
2(c2k+1n)

1/2
)
n!(γ′k)

n(1 + o(1))

= eΩ(
√
n+2k+1)(n+ 2k + 1)!(γ′k)

n+2k+1.

Finally, the values of γ′k = σ−1
2k+1 for k = 2, 3, . . . can be obtained using the

closed-form expression σl = ψF (rl). 2

9.6 Concluding remarks
As the length of Chapters 8 and 9 indicates, analysis of classes without k + 1

disjoint minors in B becomes more involved as the excluded minors get more
complicated. In the last two chapters we concentrated on families of sets B,
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not covered by the results of Chapter 7: we found that indeed the highest-level
structure of typical graphs in such cases may obey a different pattern.

There are a few possible directions of further research. One can conjecture that
for B as in Theorem 8.1.1, and perhaps for more general B, all but an exponentially
small proportion of graphs in (Ex (k+1)B)n belong to one of the classes rd 2k+1 B
or apex k (ExB). For certain B our results imply part of this conjecture, and
we gave specific examples where this conjecture holds. To advance it further,
one would need to develop a general way of comparing growth constants for two
or more candidate subclasses. It is not clear whether this can be done without
knowing the specific structure and generating functions for rd 2k+1 B.

It seems plausible, that for classes A with aw2 (A) ≤ j an analogue of Theo-
rem 1.2 is true with a more general kind of redundant blockers. One can go even
further and formulate conjectures as in Section 7.7 about classes Ex (k + 1)B in
the case when ExB contains all j-fans, j ≥ 2, but not all (j+1)-fans. Yet another
level of complexity would be to obtain any results in the case when B does not
contain a planar graph.

In Section 9.2 we proved decompositions for the class rd lK4 for general l =
1, 2, . . . . In the following table we present growth constants for l up to 5 obtained
automatically with the help of Maple (and a simple program to enumerate graphs
in T ′

l ). We explicitly proved validity of the numerical estimates up to l = 3 in
this paper.

l γ(rd lK4) Comment γ(rd lK4)/(2
le)

1 9.073311.. = γ(ExK4), [32] 1.67..
2 12.677273.. 1.17..
3 23.524122.. = γ(Ex 2K4) 1.08..
4 45.5488.. 1.05..
5 89.5511.. = γ(Ex 3K4) 1.03..

The last column shows the ratio of the growth constant of rd lK4 and the growth
constant of the class apex l (ExK3) (see Chapter 7), where ExK3 is the class of
forests of labelled trees. Not surprisingly, the numerical estimates indicate that
this ratio approaches 1 as l increases. A similar situation can be observed with
the ratio γ(rd l {K2,3, K4})/2l. This prompts the following questions: is it possible
that for some k = k(n)→∞, a typical graph from (Ex (k + 1)K4)n consists of a
forest and 2k+1 apex vertices with probability 1−o(1)? Can this be generalised?
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Results of Part I
1. In Chapter 2 we considered sequences of random intersection graphs {D(n)}

where D(n) = D(n,m, p−, p+) and m = m(n), p− = p−(n) and p+ = p+(n).
We defined the birth threshold function τ such that τ(n,m, p−, p+) → ∞
(respectively, 0) implies that D(n) contains (respectively, does not contain)
a copy of the complete directed graph −→Kh whp. Next, we introduced the
notion of a diclique cover of a digraph. We showed that there are several
possible cases of the relationship of the parameters m, p− and p+, and to
each case corresponds one or more simple diclique covers. The “in-star” and
the “out-star” covers that realise the birth threshold when p− is much larger
than p+ (respectively, p+ much larger than p−), were not possible in the
undirected case.

2. In Chapter 3 we considered sequences {G(n)} of sparse ‘active’ random in-
tersection graphs G(n) = G(n,m, P ), where m = m(n), P = P (n). We
introduced a power-law tail condition (3.6) for the normalized random sub-
set size Y (n) =

√
n
m
X(n), where X(n) is distributed according to P (n). We

determined the asymptotic clique number in G(n) (it is polynomial in n)
when Y (n) satisfies this condition with index α ∈ (1, 2) for a wide range
of sequences m = m(n), including the case m = Θ(n) that yields a non-
vanishing clustering coefficient. Secondly, we considered the case where
G(n) is sparse and EY = Θ(1) and V arY = Θ(1). In this case we showed
that the largest clique in G(n) is monochromatic (plus possibly a stochasti-
cally bounded number extra vertices) and we proved that the total variation
distance of ω′(G(n)) and the size of the maximum bin when (mn)1/2EY (n)

balls are thrown into m bins tends to zero. Thirdly, we described algorithms
to find a clique of asymptotically optimal size in each of the above cases,
and showed their correctness and efficiency. Finally, we proved a technical
result on the relation of Y (n) and the degree of a random vertex of G(n).

3. In Chapter 4 we introduced a randomized greedy algorithm for colouring
edges of the random uniform hypergraph H(k)(n,m) and proved that there
is a constant cε such that if k ≥ 2, k ≤ cε ln

(
n

ln d̄

)
and k ≤ cε ln

(
d̄

lnn

)
then

the algorithm properly colours the edges of H(k)(n,m) with dd̄(1+ε)e colours
and probability at least 1− 2

n
− 2

d̄
. For a sequence {H(n), n = n0, n0+1, . . . }

where k = k(n), m = m(n) and H(n) = H(k)(n,m) satisfies the above
condition this yields χ′(H(n)) = d̄(1 + oP (1)).
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4. In Section 1.2 we presented plots illustrating that parameters in real-world
networks can, with interesting exceptions, be matched closely with those in
random intersection graphs. This direction requires further research.

To sum up, we determined the behaviour of several important parameters in
random intersection graphs. Notably, we made progress in the most practically
relevant regime of sparse graphs with positive clustering.

Results of Part II
1. In Chapter 6 we proved that |(Ex (k + 1)K3)n| = (1 − e−Ω(n))|(apex k F)n|.

Using this, we obtained precise asymptotic counting formula for graphs with-
out k + 1 disjoint cycles. We showed that with probability 1 − e−Ω(n) a
uniformly random graph Rn from (Ex (k + 1)K3)n contains a unique vertex
feedback set (blocker) of size k, we determined the asymptotic probability
that Rn is connected and investigated the asymptotic distribution of the
number of components, chromatic and clique numbers of Rn.

2. In Chapter 7 we generalized results of Chapter 6 and proved that |(Ex (k +
1)B)n| = (1− e−Θ(n))|(apex kA)n|, as long as the class A = ExB is addable
and does not contain all fans. We showed that this implies that such a class
Ex (k+1)B has a growth constant 2kγ(A), i.e., the answer to the question of
Bernardi, Noy and Welsh in this case is positive. We expressed asymptotics
of |(Ex (k + 1)B)n| in terms of |An|. Next, we showed that with probability
1−e−Ω(n) a random graph Rn ∈u Ex (k+1)B contains a unique B-blocker S
of size k, such that each vertex in the blocker has a linear degree. We also
generalized proofs of other asymptotic properties (connectivity, components,
clique and chromatic number, etc.).

3. In Chapter 8 we considered addable classes A = ExB such that A contains
all fans, but not all 2-fans, nor all bipartite graphs K3,t. We showed that
there is a constant k0, such that for k ≥ k0, γ(Ex (k + 1)B) = γ(rd 2k+1 B)
and for a subsequence nl realising this upper limit, a random graph Rnl

∈u

Ex (k + 1)B has no B-blocker of size smaller than 2k with probability 1 −
e−Ω(nl) as l → ∞. We also proved that if we add a further condition that
the minimal excluded minors are 3-connected and A does not contain all
wheels, then Ex (k+ 1)B has a growth constant. To obtain these results we
proved two non-trivial graph-theoretical lemmas.
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4. In Chapter 9 we proved that for k = 1, 2, . . . there are constants ck, γk
such that |(Ex (k + 1)K4)n| = (1 − e−Ω(n))|(rd 2k+1K4)n| ∼ ckn

−3/2γnkn!.
We proved that Rn ∈u Ex (k + 1)K4 whp has a unique redundant blocker
of size 2k + 1, and each vertex in this blocker has a linear degree. Along
the way we obtained decompositions for classes related to rd 2k+1K4 and
proved a lemma for enumerating trees where leaves, internal vertices and
edges are replaced with objects of different type. Lastly, we considered class
Ex (k + 1){K2,3, K4} and showed that it behaves very differently.

The work explores a new subarea of asymptotic enumeration, i.e., counting
graphs with few disjoint excluded minors. We saw that such classes are combi-
natorially tractable and have an interesting structure. We made progress on two
rather general families of disjoint excluded minors, though an infinite number of
unresolved important cases (i.e., no two disjoint minors K5) remain.
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[36] G. Chapuy, E. Fusy, O. Giménez, B. Mohar and M. Noy. Asymptotic enu-
meration and limit laws for graphs of fixed genus. J. Combinatorial Theory
Ser A 118 (2011) 748–777.

[37] M. Deijfen and W. Kets, Random intersection graphs with tunable degree
distribution and clustering, Probab. Eng. Inf. Sci. 23 (2009) 661–674.

[38] R. Diestel, Graph Theory, third edition, Springer, 2005.

[39] G. Dirac, Some results concerning the structure of graphs, Canad. Math.
Bull. 8 (1965) 459–463.

295



Bibliography

[40] M. Drmota, Random trees: an interplay between combinatorics and proba-
bility, Springer, 2009.
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[56] S. Janson, T.  Luczak and A. Ruciński, Random Graphs, Wiley-Interscience,
2000.

[57] M. Kang and C. McDiarmid, Random unlabelled graphs containing few
disjoint cycles, Random Struct. Algorithms 38 (2011) 174–204.
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