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Abstract

Let H(k)(n,N), where k ≥ 2, be a random hypergraph on the ver-
tex set [n] = {1, 2, . . . , n} with N edges drawn independently with
replacement from all subsets of [n] of size k. For d̄ = kN/n and any
ε > 0 we show that if k = o(ln(d̄/ lnn)) and k = o(ln(n/ ln d̄)), then
with probability 1−o(1) a random greedy algorithm produces a proper
edge-colouring of H(k)(n,N) with at most d̄(1 +ε) colours. This yields
the asymptotic chromatic number of the corresponding uniform ran-
dom intersection graph.

keywords: random uniform hypergraph, chromatic index, random inter-
section graph, greedy algorithm.

1 Introduction

A hypergraph is a pair H = (V,E), where V = V (H) is a set of vertices
and E = E(H) is a family of subsets of V , called edges (we will allow mul-
tiple edges). H is k–uniform if all of its edges are of size k. The chromatic
index of H, denoted χ′(H), is the smallest number of colours needed to
colour its edges so that no two intersecting edges share the same colour
(edge-colourings that have the last property are called proper). Equiva-
lently, χ′(H) is the smallest such number t such that the edges of H can
be partitioned into t matchings. We consider the chromatic index of the
random hypergraph H(k)(n,N).
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This problem is related to the generalisation of Vizing’s theorem for
hypergraphs. Some related results and conjectures may be found in [1] and
[5]. Given a hypergraph H, let degH(x) denote the degree of a vertex x,
that is degH(x) = |{e : e ∈ E(H), x ∈ e}| (in the case H contains repeated
edges, we count the degree with multiplicity). Let

D(H) = max
x∈V (H)

degH(x) and d(H) = min
x∈V (H)

degH(x).

Also let C(H) = maxx ̸=y |{e ∈ E(G) : x, y ∈ e}|. Vizing’s theorem [24]
states that for any 2-uniform hypergraph without loops and multiple edges,
χ′(H) is either D(H) or D(H) + 1. Obviously, for any hypergraph

d(H) ≤ D(H) ≤ χ′(H).

In 1989 Pippenger and Spencer [22] proved that Vizing’s theorem may be
extended in a certain sense to uniform hypergraphs in which degrees are
concentrated around one value and C(H) is small compared to D(H).

Theorem 1.1 (Pippenger and Spencer [22]) For every k and every ε >
0 there exist δ > 0 and n0 such that if H is a k-uniform hypergraph on n ≥ n0

vertices satisfying d(H) ≥ (1 − δ)D(H) and C(H) ≤ δD(H) then

χ′(H) ≤ (1 + ε)D(H).

In this article we are interested in asymptotic results concerning an algorith-
mic version of the theorem for random hypergraphs. By

([n]
k

)
we will denote

the family of all k–element subsets of [n]. It will also be convenient for us
to write a = b± c for a ∈ [b− c, b + c].

Theorem 1.1 implies that χ′(H(k)(n,N)) = d̄(1 ± ε) when the degrees
of H(k)(n,N) are large and close to their mean d̄ = kN

n . This happens
w.h.p. (with probability tending to 1 as n → ∞) when lnn = o(d̄) for
fixed k. Motivated by the problem of determining the chromatic number
of random intersection graphs (see below), we ask whether a similar result
holds for random uniform hypergraphs even when the set size k increases
with n. The main result of the paper is the following theorem.

Theorem 1.2 For any ε > 0 there is a constant cε > 0, such that the fol-
lowing holds. Let H(k)(n,N), where k, n,N ≥ 2, be a random hypergraph on
the vertex set [n] with N edges of size k drawn independently with replace-

ment from the set
([n]
k

)
. Write d̄ = kN

n . Suppose

k ≤ cε ln
( n

ln d̄

)
and k ≤ cε ln

(
d̄

lnn

)
. (1)
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Then a greedy algorithm properly colours all edges of H(k)(n,N) with at most
⌈d̄(1 + ε)⌉ colours with probability at least 1 − 2

n − 2
d̄
.

The algorithm mentioned in Theorem 1.2 is a simple polynomial-time
algorithm which for each edge just selects a random available colour. Its de-
scription is given in Section 2. Our proof is an application of the differential
equations method [11, 25], and it differs from the method used in [22]. It
should be pointed out that by a simple coupling argument analogous theo-
rems follow for random hypergraphs with independent edges and N edges
chosen without replacement.

As mentioned above, the motivation for our research was studying the
chromatic number of uniform random intersection graphs. The random
intersection graph model was introduced by Karoński, Scheinerman and
Singer-Cohen [17] and further generalised by Godehardt and Jaworski [14].
For a survey of known results concerning properties of the model we refer
the reader to two upcoming papers [6] and [7].

Let N , n and k be positive integers. Moreover, let V = {v1, . . . , vN}
and W = [n] be disjoint sets. By a uniform random intersection graph
G(N,n, k) we mean a graph on the vertex set V in which each vertex v ∈ V
chooses a set Sv independently and uniformly at random from all k–element
subsets of the set W. Two vertices v, v′ ∈ V are connected by an edge in
G(N,n, k) if and only if Sv ∩Sv′ ̸= ∅. Naturally, G(N,n, k) is a line graph of
the hypergraph H(k)(n,N). Therefore χ′(H(k)(n,N)) = χ(G(N,n, k)), and
Theorem 1.2 is immediately applicable. Results concerning the chromatic
number of other models of random intersection graphs might be found in [4]
and [21].

The chromatic number of any graph G on N vertices is related to its
independence (stability) number α(G) and to the size of the largest clique
ω(G) by the simple inequalities

χ(G) ≥ N

α(G)
and χ(G) ≥ ω(G). (2)

In a series of papers [9, 10, 12, 18, 19] it was shown that for G = G(N, p), the
Erdős–Rényi random graph with independent edges, the first inequality of
(2) is nearly an equality w.h.p. when Np → ∞. The independence number
of G(N,n, k) was studied in [23], where it was shown that w.h.p. the greedy
algorithm constructs an independent set of the optimal size n

k (1 ± ε) when-
ever the second inequality of (1) holds. Also, the main result of [2] implies
that w.h.p. ω(G(N,n, k)) = kN

n (1 ± ε) whenever k = o(n1/3) and kN
n → ∞

not too slowly. Recently, the results of [2] have been extended to an even
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wider range of parameters, see [3, 15]. Our result shows that subject to the
assumptions of Theorem 1.2, both inequalities of (2) are nearly equalities
w.h.p. when G = G(N,n, k).

Note that (1) can be rewritten as

n

k
ek/cε lnn ≤ N ≤ n

k
ene

−k/cε
, (3)

which is possible for all n large enough, as long as, e.g., k ≤ cε(lnn−3 ln lnn).
For such k the upper bound for N , equivalently the left inequality of (1),
is very generous: it allows N ≥

(
n
k

)
. Also, the results of [18] indicate that

the second constraint should be not far from the best possible even for
larger k. Naturally, it would be interesting to determine χ(G(N,n, k)) or,
equivalently, χ′(H(k)(n,N)) for other ranges of parameters, including those
covered in [2, 8, 23].

Finally, let us make the following observation. The greedy colouring
algorithms for G(N, p) usually use about twice the chromatic number of
colours (see, e.g., [13] or Section 7.2 of [16]). Our randomised greedy algo-
rithm (see also [4] and [21]) produces an asymptotically optimal colouring
of G(N,n, k) w.h.p. One could ask whether such an algorithm also exists for
other ranges of k and N , perhaps in all cases where the clique number of
G(N,n, k) is w.h.p. approximately equal to its chromatic number.

2 The algorithm

The edges of H(k)(n,N) can be represented as a sequence e1, . . . , eN of inde-
pendent identically distributed sets, where each set is selected uniformly at
random from

([n]
k

)
. We imagine e1, . . . , eN being added to the hypergraph

one by one and coloured by a random valid colour. More precisely, we fix
a positive integer q, the number of possible colours. The set e1 is coloured
with a uniformly random colour from [q].

The random hypergraph obtained by adding and colouring the first i
edges is denoted by H(i). We always consider H(i) together with the (ran-
dom) colouring of its edges C(i). For any set S ⊆ [n] let MS(i) denote the
set of all colours not used on edges of H(i) incident to the vertices in S.

Let MS(i) = |MS(i)|. Thus, MS(i) is the number of “available” colours
for the set S after the step i.

For i ≥ 1 the edge e = ei+1 is coloured with a uniformly random colour
c(e) from the subset Me(i) (given Me(i), the colour c(e) is conditionally
independent of H(i) and C(i)). If the set Me(i) is empty for the random
edge e = ei+1, then the colour of e remains unassigned.
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For a colour c ∈ [q], let Lc(i) be the number of vertices from [n] which do
not belong to an edge coloured c in the hypergraph H(i). In the beginning
we have Me(0) = q for each k-element subset of [n] and Lc(0) = n for each
c ∈ [q]. We will prove Theorem 1.2 by showing that for any ε > 0 the
above algorithm with a large enough probability succeeds to colour every
edge ei for i ≤ N(1− ε) when q =

⌈
kN
n

⌉
. From this, it follows that the same

algorithm succeeds with the claimed probability to colour all N edges when
we start with q = ⌈(1 + 2ε)d̄⌉.

3 Proofs

In the following sections we assume that the integers N ≥ 1, k ≥ 2 and
n ≥ 3 are fixed and satisfy k2 < n/2, kN

n ≥ 1.

3.1 One-step differences

We are going to use the differential equations method, see [11, 25]. We will
analyse the randomised colouring algorithm with q =

⌈
kN
n

⌉
colours. The

final result of one run is a random object in the probability space (Ω,F ,P),

where Ω =
([n]
k

)N
× {0, . . . , q}N , F is the σ-field generated by the outcomes

of all N edges and their colours1, and P is as described in Section 2. The
associated natural filtration is

{∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ FN = F ,

where Fi is the σ-field generated by the random edges e1, . . . , ei and their
colours c(e1), . . . , c(ei). Corresponding to each Fi is a natural partition of
Ω into blocks that generate Fi, that is, a block (or an atom) of Fi is the set
of all ω ∈ Ω corresponding to a particular sequence of the first i edges and
their colours.

Given i ∈ {0, . . . , N−1}, some non-negative µM (i), µL(i) and small non-

negative k1(i), k2(i), we will consider the events that for each k-set e ∈
([n]
k

)
Me(i) = µM (i) ± k1(i), (4)

and for each colour c ∈ [q]

Lc(i) = µL(i) ± k2(i). (5)

1A special value 0 is assigned to the edges which the algorithm fails to colour.
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The numbers µM (i) and µL(i) will be defined later, but one can think for
now that they are the expected values of Me(i) and Lc(i) respectively, while
k1(i) and k2(i) are the corresponding “errors”. So we will assume that
µL(i) ≤ n.

Observe that the difference Me(i + 1) − Me(i) is either −1 or 0; and
Lc(i+1)−Lc(i) is either −k or 0. If Me(i+1)−Me(i) < 0 or Lc(i+1)−Lc(i) <
0 we will say that Me or, respectively, Lc decreases (at step i + 1).

Lemma 3.1 Suppose i ∈ {0, 1, . . . , N − 1} and positive numbers µM (i),
µL(i), k1(i), k2(i) satisfy

k1(i) < µM (i)/2 and k2 + kk2(i) < µL(i) ≤ n. (6)

Let Bi be a block of the partition generating Fi. Suppose (4) and (5) are

satisfied on Bi. Then for each e ∈
([n]
k

)
P (Me(i + 1) −Me(i) = −1|Bi)

=
k2µL(i)k−1

nk

(
1 ± 30

(
k1(i)

µM (i)
+

k2 + kk2(i)

µL(i)

))
and for each c ∈ [q]

P (Lc(i + 1) − Lc(i) = −k|Bi)

=
µL(i)k

µM (i)nk

(
1 ± 8

(
k1(i)

µM (i)
+

k2 + kk2(i)

µL(i)

))
.

Proof Since i is fixed, we write µL = µL(i), µM = µM (i), kj = kj(i),
MS = MS(i), Lc = Lc(i) and MS = MS(i). Conditionally on Bi, all
random variables that are Fi-measurable are constant. This includes MS

for any S ⊆ [n] and Lc for any c ∈ [q], etc. Note that (4–6) imply that

Me > 0 for any e ∈
([n]
k

)
, so each edge of H(i) is assigned some colour on Bi.

In order for Me to decrease at step i+ 1, ei+1 has to be incident to e. So

P(Me decreases |Bi) =
∑
f :f∼e

P(ei+1 = f)P(Me decreases|ei+1 = f,Bi)

=

(
n

k

)−1 ∑
f :f∼e

P(Me decreases|ei+1 = f,Bi)

Here f ranges over all k–element subsets of [n] intersecting e (we write
e ∼ f if edges f and e share at least one vertex). Since the algorithm picks

6



a colour c = c(ei+1) uniformly at random from all available ones, and since
Me decreases only in the case that in the hypergraph H(i) both e and ei+1

could be coloured with colour c, we get

P (Me decreases | ei+1 = f,Bi) =
Mf∪e
Mf

.

Using (4) and (6) we can approximate

M−1
f = (µM ± k1)

−1 = µ−1
M

(
1 ± 2k1

µM

)
(7)

to get

P (Me decreases |Bi) =

(
n

k

)−1

µ−1
M

(
1 ± 2k1

µM

) ∑
f :f∼e

Mf∪e. (8)

For any set S ⊆ [n] and any c ∈ [q] let Ac,S = Ac,S(i) be the indicator of the
event that the colour c is not used on edges of Hi incident to vertices in S.
Then

MS =
∑
c∈[q]

Ac,S .

Let Lc = Lc(i) be the set of vertices which are not contained in an edge
coloured c in H(i). Recall that |Lc| = Lc. Note that Ac,e∪f = Ac,eAc,f = 1
if both e and f are subsets of Lc. If e ⊆ Lc then the number of k-subsets
f of Lc intersecting e is at least k

(
Lc−k
k−1

)
and at most k

(
Lc−1
k−1

)
. Writing

r = Lc − µL and using (5) and (6) we have(
Lc − k

k − 1

)
=

µk−1
L

(k − 1)!

(
1 − k − r

µL

)
× · · · ×

(
1 − 2k − 2 − r

µL

)
≥

µk−1
L

(k − 1)!

(
1 − (k − r) + · · · + (2k − 2 − r)

µL

)
≥

µk−1
L

(k − 1)!

(
1 − kk2 + 1.5k2

µL

)
.

Also, by (6) we have x = k2/µL ≤ 1/k, so using the simple inequalities
(1 + x)k−1 ≤ 1 + kx(1 + x)k−1 and (1 + x)k−1 ≤ e(

Lc − 1

k − 1

)
≤

µk−1
L

(k − 1)!

(
1 +

ekk2
µL

)
.
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Thus if Ac,e = 1 then∑
f :f∼e

Ac,f =
kµk−1

L

(k − 1)!

(
1 ± 3(k2 + kk2)

µL

)
.

Therefore∑
f :f∼e

Mf∪e =
∑
f :f∼e

∑
c∈[q]

Ac,f∪e

=
∑
c∈[q]

∑
f :f∼e

Ac,f∪e =
∑
c∈[q]

Ac,e
kµk−1

L

(k − 1)!

(
1 ± 3(k2 + kk2)

µL

)

=
kµk−1

L µM

(k − 1)!

(
1 ± 3(k2 + kk2)

µL

)(
1 ± k1

µM

)
.

In the last step we used
∑

c∈[q]Ac,e = Me = µM ± k1. Putting the last
estimate into (8) we obtain

P (Me decreases |Bi)

=
k2µk−1

L

nk

(
1 ± 2k1

µM

)(
1 ± k2

n

)(
1 ± 3(k2 + kk2)

µL

)(
1 ± k1

µM

)
=

k2µk−1
L

nk

(
1 ± 30

(
k1
µM

+
k2 + kk2

µL

))
.

Now denote by Pc = Pc(i) the set of k–element subsets of vertices in
H(i) which do not touch an edge of colour c. We have

P(Lc decreases |Bi) =
∑
e∈Pc

P(Lc decreases |ei+1 = e,Bi)P(ei+1 = e)

=
∑
e∈Pc

1

Me

1(
n
k

) = µ−1
M

(
1 ± 2k1

µM

)(
Lc

k

)(
n

k

)−1

=
µk
L

µMnk

(
1 ± 2k1

µM

)(
1 ± 4(k2 + kk2)

µL

)
=

µk
L

µMnk

(
1 ± 8

(
k1
µM

+
k2 + kk2

µL

))
.

Here we used (5), (6), (7) and

µk
L

nk

(
1 − kk2 + k2

µL

)
≤ (Lc)k

(n)k
≤ Lk

c

nk
≤

µk
L

nk

(
1 +

4kk2
µL

)
.

2
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3.2 Differential equations

If Me and Lc were always concentrated around the functions µM and µL,
respectively, then by Lemma 3.1 we would have, informally,

µM (i + 1) − µM (i) ≈ −k2µL(i)k−1

nk

and

µL(i + 1) − µL(i) ≈ − kµL(i)k

nkµM (i)
.

We can rescale the “time” i and the random variables. Define new functions
f and g by t = i/N , µM (i) = qf(t) and µL(i) = ng(t), so that

q(f(t + 1/N) − f(t)) ≈ −k2g(t)k−1

n

n(g(t + 1/N) − g(t)) ≈ −kg(t)k

qf(t)

or

N(f(t + 1/N) − f(t)) ≈ −kg(t)k−1

N(g(t + 1/N) − g(t)) ≈ −g(t)k

f(t)
.

The left-hand sides above can be approximated by f ′(t) and g′(t) respec-
tively (assuming that f and g are differentiable).

This suggests a system of differential equations:{
f ′(t) = −kg(t)k−1

g′(t) = −g(t)k

f(t)

with the initial condition f(0) = 1 and g(0) = 1.
The solution is f(t) = (1 − t)k and g(t) = (1 − t). This argument is not

formal, but indicates the choice for µM and µL. It will be formalised below.

3.3 Martingales

In the rest of this paper we write t = t(i) = i/N and

µM (i) = q(1 − t)k µL(i) = n(1 − t) for i = 0, 1, . . . , N. (9)

9



Lemma 3.2 Suppose i ∈ {0, 1, . . . , N − 1}, (6) holds and let Bi be as in
Lemma 3.1.

P (Me(i + 1) −Me(i) = −1|Bi) (10)

=
k2(1 − t)k−1

n
± 30

(
(k4 + k3k2(i))(1 − t)k−2

n2
+

kk1(i)

N(1 − t)

)
and

P (Lc(i + 1) − Lc(i) = −k|Bi) =
1

q
± 30

(
k1(i)

q2(1 − t)k
+

k + k2(i)

N(1 − t)

)
.

Proof Simply use (9) in Lemma 3.1. 2

Let ω,C,K, ε be positive reals, 0 < ε < 1. Write N1 = ⌊(1 − ε)N⌋ and
define for i ∈ {0, . . . , N1}

E1(i) =
kq

ω
eCt and E2(i) =

n

ω

eCt

(1 − t)k
.

We want to show that for each edge e the process Me(i) remains at distance
at most E1(i) from the deterministic function µM (i), and similarly Lc(i)
remains at distance at most E2(i) from µL(i). The values of E1 and E2

were chosen so that the difference Ej(i + 1) − Ej(i) cancels out the error
resulting from our approximation, see e.g., inequality (20) below.

For any i ∈ {0, . . . , N1} and e ∈
([n]
k

)
set

M−
e (i) = Me(i) − µM (i) − E1(i); (11)

M+
e (i) = Me(i) − µM (i) + E1(i); (12)

and for each colour c ∈ [q]:

L−
c (i) = Lc(i) − µL(i) − E2(i); (13)

L+
c (i) = Lc(i) − µL(i) + E2(i). (14)

We will consider a stopping time TS given by

TS = 1 + sup
i

{
M−

e (i) ≤ Kk
√

q lnn,M+
e (i) ≥ −Kk

√
q lnn,

L−
c (i) ≤ K

√
kn ln q, L+

c (i) ≥ −K
√

kn ln q,

for all e ∈
(

[n]

k

)
, c ∈ [q]

}
.
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Note that TS is well defined since i = 0 is always in the set.
Now for each e ∈

([n]
k

)
define the stopped processes {M̃−

e } = {M̃−
e (i), i =

0, . . . , N1} and {M̃+
e } = {M̃+

e (i), i = 0, . . . , N1} where

M̃−
e (i) = M−

e (i ∧ TS), M̃+
e (i) = M+

e (i ∧ TS)

and x ∧ y = min(x, y). Also, for each c ∈ [q] define stopped processes
{L̃−

c } = {L̃−
c (i), i = 0, . . . , N1} and {L̃+

c } = {L̃+
c (i), i = 0, . . . , N1} where

L̃−
c (i) = L−

c (i ∧ TS) and L̃+
c (i) = L+

c (i ∧ TS).

Lemma 3.3 Suppose that 2k2/n ≤ ε < 1, K ≥ 1, (kN)/n ≥ 3, C =
240kε−2 and ω is such that

4keCε−(k+1) ≤ ω ≤ K−1 min

(
q

lnn
,

n

k ln q

)1/2

.

Then for any e ∈
([n]
k

)
and any c ∈ [q] the processes {M̃−

e }, {L̃−
c } are super-

martingales and {M̃+
e }, {L̃+

c } are submartingales.

Note that the existence of ω satisfying the condition of this lemma (and
the next one) will be proved only in the proof of Theorem 1.2, given in
Section 3.4.

Proof Suppose i ≤ min(TS , N1). Then

Me(i) = µM (i) ± k1(i) ∀e ∈
(

[n]

2

)
,

Lc(i) = µL(i) ± k2(i) ∀c ∈ [q],

where

k1(i) = E1(i) + Kk
√

q lnn,

k2(i) = E2(i) + K
√

kn ln q.

Write ϕ(τ) = eCτ and γ(τ) = eCτ/(1− τ)k. Both ϕ and γ are increasing for
τ ∈ [0, 1). Since ω ≤ K−1

√
q/ lnn and ω ≤ K−1

√
n/(k ln q) we have

k1(i) ≤ 2E1(i); (15)

k2(i) ≤ 2E2(i). (16)

11



We claim that (6) is satisfied for each i ∈ [0, N1]. Indeed, since ε ≥
2k2/n, ω ≥ 4keCε−(k+1) and ϕ, γ are increasing

k1(i)

µM (i)
≤ 2E1(i)

q(1 − t)k
=

2kγ(t)

ω
≤ 2keC

ωεk
≤ 1

2
; (17)

kk2(i)

µL(i)
≤ 2kE2(i)

n(1 − t)
≤ 2kγ(t)

ω(1 − t)
≤ 2keC

ωεk+1
≤ 1

2
;

k2

µL(i)
=

k2

n(1 − t)
≤ k2

εn
≤ 1

2
.

So k1(i) ≤ µM (i)/2 and k2 + kk2(i) ≤ µL(i) as required.
We will first show that {M̃+

e } is a submartingale and {M̃−
e } is a super-

martingale. Since the increments are zero for i ≥ TS , it suffices to prove
that

E
(
M̃−

e (i + 1) − M̃−
e (i)|i < TS

)
≤ 0, E

(
M̃+

e (i + 1) − M̃+
e (i)|i < TS

)
≥ 0.

On the event i < TS (4) and (5) hold by the definition of TS .
Write

R1(i) =
30k4(1 − t)k−2

n2
+

30k3k2(i)(1 − t)k−2

n2
+

30kk1(i)

N(1 − t)
.

By Lemma 3.2

E
(
M̃+

e (i + 1) − M̃+
e (i)|i < TS

)
=

(
−k2(1 − t)k−1

n
±R1(i)

)
+ (µM (i) − µM (i + 1)) + (E1(i + 1) − E1(i)) .

Some of the terms cancel out:

− k2(1 − t)k−1

n
+ µM (i) − µM (i + 1)

= −k2

n

(
1 − i

N

)k−1

+ q

((
1 − i

N

)k

−
(

1 − i + 1

N

)k
)

≥ −
k2
(
1 − i

N

)k−1

n
+

kN

n

(
1 − i

N

)k
(

1 −
(

1 − 1

N − i

)k
)

≥ −
k2(1 − i

N )k−1

n
+

kN

n

(
1 − i

N

)k ( k

N − i
− k2

2(N − i)2

)
= − k3

2Nn

(
1 − i

N

)k−2

≥ − k

N
. (18)

12



Similarly, since q = ⌈kNn ⌉ ≤ kN
n + 1

− k2(1 − t)k−1

n
+ µM (i) − µM (i + 1) ≤ k

N
.

We will also need later that since k
N ≤ k2

3n we have

µM (i) − µM (i + 1) <
2k2

n
. (19)

Therefore

E
(
M̃+

e (i + 1) − M̃+
e (i)|i < TS

)
≥ (E1(i + 1) − E1(i)) −

k

N
−R1(i).

Similarly,

E
(
M̃−

e (i + 1) − M̃−
e (i)|i < TS

)
≤ −(E1(i + 1) − E1(i)) +

k

N
+ R1(i).

It remains to verify that

k

N
+ R1(i) ≤ E1(i + 1) − E1(i). (20)

Since ϕ′′(t) > 0 we have

E1(i + 1) − E1(i) =
kq

ω

(
ϕ

(
t +

1

N

)
− ϕ(t)

)
(21)

≥ qkϕ′(t)

ωN
=

Cqkϕ(t)

ωN
≥ Ck2ϕ(t)

ωn
.

Now, firstly,
k

N
≤ 1

4
(E1(i + 1) − E1(i)).

This is because by (21) the ratio of the left side and the right is at most

k

N

4ωN

Cqkϕ(t)
≤ 4ω

Cqϕ(0)
≤ 4

q1/2C
≤ 1.

Here we used that ϕ is increasing, ω ≤ q1/2 and C > 8 from the assumption
of the lemma. Secondly, for the first term of R1(i) we have

30k4(1 − t)k−2

n2
≤ 1

4
(E1(i + 1) − E1(i)).

13



To see this, note that by (21), the ratio of the left and the right side expres-
sions is at most

120k2(1 − t)k−2ω

nCeCt
≤ 120k2ω

nC
≤ kω

2n
≤ 1

2K

√
k

n ln q
≤ 1.

Here we used the facts that eCτ/(1 − τ)k−2 is increasing for τ ∈ [0, 1) and
the earlier assumptions about n, q, k, C and ω.

Thirdly,

30k3k2(i)(1 − t)k−2

n2
≤ 1

4
(E1(i + 1) − E1(i)).

Indeed, by (21), the ratio of the left and the right side is at most

120kk2(i)ω(1 − t)k−2

nCeCt
≤ 240kE2(i)ω(1 − t)k−2

nCeCt
≤ 240k

C(1 − t)2
≤ 1.

Here we used (16) in the first inequality and t ≤ 1−ε in the last one. Finally,
for the last term of R1(i)

30kk1(i)

N(1 − t)
≤ 1

4
(E1(i + 1) − E1(i)).

This is because the ratio of the left side and the right by (21) and (15) is at
most

120k1(i)ω

CqeCt(1 − t)
≤ 240kqeCt

CqeCt(1 − t)
≤ ε ≤ 1.

Now (20) follows by combining bounds for each of the four terms of k/N +
R1(i).

Let us now show that {L̃−
c } is a supermartingale. Again it suffices to

consider only the blocks of Fi where i < TS . By Lemma 3.2

E
(
L̃−
c (i + 1) − L̃−

c (i)|i < TS

)
= E (Lc(i + 1) − Lc(i)|i < TS) + (µL(i) − µL(i + 1)) + (E2(i) −E2(i + 1))

= −k

q
±R2(i) + (µL(i) − µL(i + 1)) + (E2(i) − E2(i + 1)) ,

where

R2(i) =
Dkk1(i)

q2(1 − t)k
+

30k2

N(1 − t)
+

30kk2(i)

N(1 − t)

14



Now

−k

q
+ µL(i) − µL(i + 1) = −k

q
+ n

((
1 − i

N

)
−
(

1 − i + 1

N

))
= −k

q
+

n

N
∈
[
0,

2k

q2

]
, (22)

since kN
n ≥ 3 and n

kN ≤ 1
q−1 . Therefore

E
(
L̃−
c (i + 1) − L̃−

c (i)|i < TS

)
= E2(i) − E2(i + 1) ±

(
R2(i) +

2k

q2

)
.

We need to show that the above quantity is non-positive. Since γ′′(t) > 0
for t ∈ [0, 1), we have similarly as in (21)

E2(i + 1) − E2(i) ≥
γ′(t)n

Nω
≥ γ′(t)k

qω
≥ Cγ(t)k

qω
. (23)

We have
30kk1(i)

q2(1 − t)k
≤ 1

4
(E2(i + 1) −E2(i)),

since by (15) and (23) the ratio of the left and the right side is at most

120k

q2(1 − t)k
2kqϕ(t)

ω

qω

Cγ(t)k
= ε2 ≤ 1.

Let us now check that

30k2

N(1 − t)
≤ 1

4
(E2(i + 1) − E2(i)).

Indeed, the ratio of the left and the right side is by (23) at most

120k2

N(1 − t)

qω

Cγ(t)k
≤ qω

2N
≤ 1

K

√
k

n ln q
≤ 1.

The first inequality follows, among others, because (1− τ)γ(τ) is increasing
for τ ∈ [0, 1). Next,

30kk2(i)

N(1 − t)
≤ 1

4
(E2(i + 1) − E2(i)).

Indeed, by (16) and (23) the ratio of the left and the right side is at most

120k

N(1 − t)

2nγ(t)

ω

Nω

γ′(t)n
≤ ε ≤ 1.

15



Finally,
2k

q2
≤ 1

4
(E2(i + 1) − E(i)) .

Here, again, the ratio of the two sides is by (23) at most

2k

q2
4qω

Cγ(t)k
≤ ω

30qk
≤ 1

since ω ≤ q1/2.
We have shown that

R2(i) +
2k

q2
≤ E2(i + 1) − E2(i) (24)

and hence
E
(
L̃−
c (i + 1) − L̃−

c (i)|i < TS

)
≤ 0

as required, so {L̃−
c } is a supermartingale. The bounds above also show that

{L̃+
c } is a submartingale. 2

3.4 Applying concentration results

In this section we prove the main lemma of this paper. We will use a con-
centration result that takes into account conditional variance of martingale
differences (see McDiarmid [20]).

Let X be a F-measurable bounded random variable. Let (∅, ω) = F0 ⊆
F1 ⊆ · · · ⊆ Fn be a filtration in F . Let X0, . . . , Xn be a martingale obtained
by setting Xi = E (X|Fi). For 1 ≤ i ≤ n set Yi = Xi − Xi−1 and define
Fi−1-measurable functions dev+

i = sup(Yi|Fi−1) and vari = Var(Yi|Fi−1).
The number v̂ = sup

∑n
i=1 vari is called the maximum sum of conditional

variances. We call the quantity max dev+ = supi dev+
i the maximum condi-

tional positive deviation.

Theorem 3.4 (Theorem 3.15 of [20]) Let X be a random variable with
EX = µ and let (∅, ω) = F0 ⊆ F1 ⊆ · · · ⊆ Fn be a filtration in F . Assume
the maximum conditional positive deviation b = max dev+ and the maximum
sum of conditional variances v̂ are finite. Then for any x ≥ 0

P(X − µ ≥ x) ≤ exp

(
− x2

2v̂(1 + bx/(3v̂))

)
.
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Lemma 3.5 Suppose that ε ∈ (0, 1), C = 240kε−2, and

2k2eCε−(k+2) < ω <
1

8
√

30
min

(
q

lnn
,

n

k ln q

)1/2

.

Then

P(TS < ⌊(1 − ε)N⌋) ≤ 2

q
+

2

n
. (25)

Proof Set K = 8
√

30. The condition of the lemma implies that 2k2/n <
εk+2n−1/2 < ε and q = ⌈kN/n⌉ > k2 ≥ 4, so the assumptions of Lemma 3.3
are satisfied. By Lemma 3.3 {M̃−

e }, {L̃−
c } are supermartingales and {M̃+

e },

{L̃+
c } are submartingales for every e ∈

([n]
k

)
and c ∈ [q]. Observe that

M̃±
e (i) and L̃±

c (i) are Fi-measurable (where Fi is as in Section 3.1) and TS

is a well-defined stopping time for these processes.
Recall that N1 = ⌊(1 − ε)N⌋. We shall apply Theorem 3.4 to show that

for any e ∈
([n]
k

)
and c ∈ [q]:

P(M̃−
e (N1) ≥ Kk

√
q lnn) ≤ 1

nk+1
;

P(M̃+
e (N1) ≤ −Kk

√
q lnn) ≤ 1

nk+1
;

P(L̃−
c (N1) ≥ K

√
kn ln q) ≤ 1

q2
;

P(L̃+
c (N1) ≤ −K

√
kn ln q) ≤ 1

q2
.

Notice that if TS < N1 then at least one of the above events occurs (for some
e or for some c), since all the processes remain “frozen” after the time TS .

Since there are
(
n
k

)
≤ nk sets e ∈

([n]
k

)
and q colours c, the above inequalities

and the union bound imply (25). We will modify the submartingales and
supermartingales slightly to turn them into martingales.

Set β = 241. Then

ω > 2k2eCε−(k+2) > 2kCeCε−kβ−1.

Notice that the bounds on ω in the assumption imply(
lnn

q

)1/2

≤ 1

k2K
and

(
k ln q

n

)1/2

≤ 1

k2K
. (26)

For i = 0, . . . , N1 − 1 define random variables

Z−
M (i + 1) = −E (M̃−

e (i + 1) − M̃−
e (i)|Fi).

17



Since {M̃−
e } is a supermartingale, Z−

M (i) ≥ 0. Also, since {M̃+
e } is a sub-

martingale by Lemma 3.3

E (M̃−
e (i+1)−M̃−

e (i)|Fi)+2(E1(i+1)−E1(i)) = E (M̃+
e (i+1)−M̃+

e (i)|Fi) ≥ 0.

Therefore
0 ≤ Z−

M (i + 1) ≤ 2(E1(i + 1) − E1(i)). (27)

The sequence {M̂−
e } = {M̂−

e (i), i = 0, . . . , N1} where

M̂−
e (i) = M̃−

e (i) +
i∑

j=1

Z−
M (j)

is a martingale (here and below we define the sum when j ranges from 1 to
0 to be equal to 0) and

P
(
M̃−

e (N1) ≥ Kk
√

q lnn
)
≤ P

(
M̂−

e (N1) ≥ Kk
√

q lnn
)
.

Let us estimate the maximum conditional positive deviation and the maxi-
mum conditional variance of {M̂−

e }.
Notice that since (kN)/n ≥ 3, we have n/(kN) ≤ 3/(2q). Let ϕ(τ), γ(τ)

be as in the proof of Lemma 3.3. Since ϕ′(τ), γ′(τ) are increasing, the
following inequalities hold for i = 0, . . . , N1 − 1:

E1(i + 1) − E1(i) ≤
ϕ′(1 − ε)kq

ωN
≤ k2

n

CeC

ω
≤ βk

n
≤ βk2

n
; (28)

E2(i + 1) − E2(i) ≤
γ′(1 − ε)n

ωN
≤ 3k

2qω

(
CeC

εk
+

keC

εk+1

)
≤ β

q
. (29)

We have M̂−
e (i + 1) − M̂−

e (i) = 0 for i ≥ TS . If i < TS , using (19), (27) and
(28) the difference M̂−

e (i + 1) − M̂−
e (i) is

Me(i + 1) −Me(i) + µM (i) − µM (i + 1)

+ E1(i) − E1(i + 1) + Z−
M (i + 1)

≤ 2k2

n
+

βk2

n
≤ k2(2 + β)

n
.

Let R1, R2 be as in the proof of Lemma 3.3. For i ∈ {0, . . . , N1 − 1}, the
conditional variance of the differences of {M̂−

e } is

Var(M̂−
e (i + 1) − M̂−

e (i)|Fi) ≤ max
Bi

Var(Me(i + 1) −Me(i)|Bi)

≤ max
Bi

P(Me(i + 1) −Me(i) = −1|Bi)

≤ k2(1 − t)k−1

n
+ R1(i) ≤

k2(1 + β)

n
.
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Here Bi ranges over all blocks of the partition corresponding to Fi; to get
the third inequality we used Lemma 3.2 and to get the fourth inequality we
used (20) and (28). Thus the maximum sum of conditional variances v̂ for
M̂−

e satisfies

v̂ ≤ Nk2(1 + β)

n
≤ kq(1 + β)

and the maximum conditional positive deviation b satisfies

b ≤ k2(2 + β)

n
≤ 2 + β.

By Theorem 3.4, since E M̂−
e (N1) = E M̃−

e (0) = −E1(0) < 0,

P(M̂−
e (N1) > x) ≤ P(M̂−

e (N1) − E M̂−
e (N1) > x) ≤ exp

(
− x2

2v̂(1 + bx
3v̂ )

)
.

Therefore

P(M̂−
e (N1) ≥ Kk

√
q lnn) ≤ exp

(
− k2K2q lnn

2kq(1 + β) + 2
3(2 + β)Kk

√
q lnn

)

≤ exp

(
− kK2 lnn

2(1 + β) + 2
3(2 + β)k−2

)

≤ e
− kK2 lnn

3(1+β) ≤ e−(k+1) lnn

by (26) since k ≥ 2, D ≥ 1 and K = 8
√

30 > (12 + 48 · 30)1/2.
Now consider the submartingale {M̃+

e } and define for i = 0, . . . , N1 − 1

Z+
M (i + 1) = −E (M̃+

e (i + 1) − M̃+
e (i)|Fi).

Since M̃+
e is a submartingale and M̃−

e is a supermartingale we have

E (M̃+
e (i + 1) − M̃+

e (i)|Fi) − 2(E1(i + 1) − E1(i)) ≤ 0

so
2(E1(i) − E1(i + 1)) ≤ Z+

M (i + 1) ≤ 0. (30)

The sequence

M̂+
e = {M̃+

e (i) +
i∑

j=1

Z+
M (j), i = 0, 1, . . . , N1}
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is a martingale and

P
(
M̃+

e (N1) ≤ −Kk
√

q lnn
)
≤ P

(
−M̂+

e (N1) ≥ Kk
√

q lnn
)
.

Using (28) and (30) the difference −M̂+
e (i + 1) − (−M̂+

e (i)) is

Me(i) −Me(i + 1) + µM (i + 1) − µM (i) + E1(i) − E1(i + 1) − Z+
M (i + 1)

≤ 1 + E1(i + 1) − E1(i) ≤ 1 +
k2β

n
≤ 2 + β.

Furthermore, the conditional variance of −M̂+
e (i + 1) + M̂+

e (i) is the same
as the conditional variance of M−

e (i + 1) − M−
e (i) so v̂ ≤ kq(1 + β). Now

Theorem 3.4 yields

P
(
M̂+

e (N1) ≤ −Kk
√

q lnn
)
≤ e−(k+1) lnn

by the same calculation as in the corresponding bound for M̂−
e .

Now consider the supermartingale {L̃−
c }. Similarly as above, define a

martingale {L̂−
c } = {L̂−

c (i), i = 0, . . . , N1}, where

L̂−
c (i) = L̃−

c (i) +
i∑

j=1

Z−
L (j)

and Z−
L (i + 1) = −E(L̃−

c (i + 1) − L̃−
c (i)|Fi).

Using the fact that L+
c (i) = L−

c (i) + 2E2(i) we obtain similarly as above

0 ≤ Z−
L (i) ≤ 2(E2(i + 1) − E2(i)).

Therefore using (22) and (29) the difference L̂−
c (i + 1) − L̂−

c (i) is

Lc(i + 1) − Lc(i) + µL(i) − µL(i + 1) − E2(i + 1) + E2(i) + Z−
L (i + 1)

≤ k

q
+

2k

q2
+

β

q
≤ k(1 + β)

q
.

Here we used 2k/q ≤ (k − 1)β, since k ≥ 2, q ≥ 3 and β > 8. Now using
Lemma 3.2 and the bounds (24) and (29) for i ∈ {0, . . . , N1 − 1} we get

Var(L̂−
c (i + 1) − L̂−

c (i)|Fi) ≤ max
Bi

Var(Lc(i + 1) − Lc(i)|Bi)

≤ k2 · max
Bi

P(Lc decreases at step i + 1|Bi)

≤ k2

q
+ kR2(i) ≤

k2(1 + β)

q
≤ k(1 + β).
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Hence the maximum sum of conditional variances v̂ satisfies

v̂ ≤ k2(1 + β)N

q
≤ (1 + β)kn. (31)

So by Theorem 3.4, (26) and our choice of K

P
(
L̃−
c (N1) ≥ K

√
kn ln q

)
≤ P

(
L̂−
c (N1) ≥ K

√
kn ln q

)
≤ exp

(
− K2kn ln q

2(1 + β)kn + 2
3k(1 + β)K

√
kn ln q

)

≤ exp

(
− K2 ln q

2(1 + β) + 2
3(1 + β)k−2

)
≤ exp

(
− K2 ln q

3(1 + β)

)
≤ e−2 ln q.

Finally, let us bound in exactly the same way the probability that {L̃+
c }

ever attains a large negative value. Define a martingale {L̂+
c } = {L̂+

c (i), i =
0, . . . , N1}, where

L̂+
c (i) = L̃+

c (i) +

i∑
j=1

Z+
L (j)

and Z+
L (i + 1) = −E (L̃+

c (i + 1) − L̃+
c (i)|Fi).

As before, by Lemma 3.3:

2(E2(i) − E2(i + 1)) ≤ Z+
L (i + 1) ≤ 0.

Using (29) we get that the difference (−L̂+
c (i + 1) − (−L̂+

c (i)) is at most

Lc(i) − Lc(i + 1) − µL(i) + µL(i + 1) + E2(i) − E2(i + 1) − Z+
L (i + 1)

≤ k +
β

q
≤ k(1 + β).

The conditional variance of −L̂+
c (i + 1) + L̂+

c (i) is the same as the con-
ditional variance of L̂−

c (i + 1) − L̂−
c (i), so the estimate (31) still holds.

Once again applying Theorem 3.4

P(L̃+
c (N1) ≤ −K

√
kn ln q) ≤ P(−L̂+

c (N1) ≥ K
√

kn ln q) ≤ e−2 ln q,

as in the corresponding bound for {L̂−
c }. 2

Proof of Theorem 1.2 We may assume that ε < 1. Let ε′ be such that
1

1−ε′ = 1 + ε
2 and define

W (ε, k) = 16
√

30k3e240k/ε
′2
ε′−(k+2).
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Let cε > 0 be a constant such that for all k ≥ 2 we have W (ε, k)2 < 1
2e

k/cε

and observe that this implies cε ≤ ε′/8. Suppose (1) holds. Then n ≥ 3,
d̄ ≥ 4 and k

n ≤ ε′

2 ≤ ε
2 . Let

N ′ =

⌈
N

1 − ε′

⌉
and q =

⌈
kN ′

n

⌉
.

Then
d̄ ≤ q ≤ ⌈d̄(1 + ε/2) + k/n⌉ ≤ ⌈(1 + ε)d̄⌉ ≤ 3d̄ ≤ d̄2,

and using the definition of cε and (1)

W (ε, k)2 <
1

2
ek/cε ≤ 1

2
min

(
n

ln d̄
,

d̄

lnn

)
≤ min

(
n

ln q
,

q

lnn

)
.

Setting ω = 8−1(30k)−1/2W (ε, k) we see that

2k2e240k/ε
′2
ε−(k+2) < ω <

1

8
√

30
min

(
n

ln q
,

q

k lnn

)1/2

and so Lemma 3.5 applies for the random colouring process described in
Section 3.3 with N ′ random hyperedges, q colours and n vertices. By that
lemma, the probability that the process hits the stopping time until step
i = N − 1 ≤ ⌊N ′(1− ε′)⌋ is at most 2

q + 2
n . If TS ≥ N − 1, then by (17) and

the definition of the process

Me(N − 1) ≥ µM (N − 1) − (E1(N − 1) + Kk
√

q lnn) ≥ 1

2
µM (N − 1) > 0,

for any edge e ∈
([n]
k

)
. So the N -th edge can be coloured successfully (which

means all of the previous edges have been coloured successfully as well). The
claim follows by a trivial observation, that the random hypergraph obtained
after adding the first N out of N ′ edges has distribution exactly H(k)(n,N).

2

Acknowledgements

We would like to thank all the referees for thorough and helpful comments,
especially for suggesting (3).
Valentas Kurauskas acknowledges partial support of the Lithuanian Re-
search Council grant MIP-067/2013.
Katarzyna Rybarczyk acknowledges partial support of the National Science
Center grant DEC–2011/01/B/ST1/03943.

22



References

[1] N. Alon and J. H. Kim, On the degree, size, and chromatic index of
a uniform hypergraph, J. Combin. Theory Ser. A, 77 (1997), pp. 165–
170.

[2] J. Balogh, T. Bohman and D. Mubayi, Erdős-Ko-Rado in random
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