Single Level Conjecture for Quadratic Functions and Graphs

Stasys Jukna

Lithuanian Academy of Sciences Vilnius, Lithuania

&

University of Frankfurt Frankfurt a.M., Germany

Outline

Graph complexity + motivation ^{1 2}

- ► Monotone I.b.'s for graphs ⇒ non-monotone I.b.'s boolean functions
- Use graphs to violate "largeness" condition of "natural proofs"
- The conjecture:
 - ▶ Single level circuit \Rightarrow only one level of AND gates \Rightarrow depth-3 circuit
 - ► Single level circuits for graphs and quadratic functions are almost optimal
- Disproof of the conjecture for bounded and unbouded fanin circuits

²A. Razborov: Bounded-depth formulae over the basis $\{\&, \oplus\}$ and some combinatorial problem (1988)

¹P. Pudlák, V. Rödl, P. Savický: Graph complexity (1986)

Circuit complexity of a graph – What is this?

- Graph $G = (V, E) \Rightarrow$ boolean functions $f : \{0, 1\}^V \rightarrow \{0, 1\}$
- f(X) represents a graph \iff accepts edges & rejects non-edges:

$$f(0,\ldots,0,\overset{u}{1},0,\ldots,0,\overset{v}{1},0,\ldots,0)=1 \iff uv \in E$$

- ⇒ on inputs with more/less than two 1's can take arbitrary values
 f(x₁, x₂, x₃, x₄) = (x₁ ∨ x₂) ∧ (x₃ ∨ x₄) represents K_{2,2} = 4-cycle C₄
- x_u represents a complete star around u

Quadratic functions instead graphs?

- Quadratic function $f_G(X) = \bigvee_{uv \in E} x_u x_v$ represents G = (V, E)
- But ... many different functions may represent the same graph.
- And ... representation can be exponentially cheaper:
 ∃ graphs G with Circuit⁺(f_G) ≥ 2^{Circuit⁺(G)} (unbounded fanin)
- Perfect matching \Rightarrow Circuit⁺(f_G) = $\Omega(n)$ but Circuit⁺(G) = $O(\log n)$ Saturated extension G of $H \subseteq U \times W$

= two cliques with graph H inbetween

$$f_G(X) = \bigvee_{uv \in H} x_u x_v \lor Th_2^U \lor Th_2^W$$

Observation

G saturated $\Rightarrow f_G(X)$ is the unique monotone function representing G \Rightarrow Circuit⁺(G) = Circuit⁺(f_G) \Rightarrow enough to deal with quadratic functions !

Monotone bounds ... Why interesting?

- Boolean functions $\chi_m(x, y)$ = bipartite graphs $G \subseteq U \times W$ with $U = W = \{0, 1\}^m$ and u and v adjacent in $G \iff \chi(\vec{u}, \vec{v}) = 1$
- Random graph \Rightarrow Circuit⁺(G) = $\Omega(n^2/\log n)$

Magnification Lemma

Circuit $(\chi_m) \ge$ Circuit⁺(G) (unbounded fanin) Circuit $(\chi_m) \ge$ Circuit⁺(G) - 12n (bounded fanin)

- Circuit⁺(G) \geq (12+ ϵ) $n \Rightarrow$ Circuit(χ_m) = $\Omega(n) = \Omega(2^m)$
- Linear monotone bounds for graphs \Rightarrow non-monotone circuit bounds!
- G_n = clique K_{n-1} + isolated vertex u_0 = graph represented by $\neg x_{u_0}$
- lover bound for $Th_2^n \Rightarrow Circuit^+(G_n) \ge 2n O(1)$ [Sgal 1986]

Proof of Magnification Lemma

•
$$\chi_{2m}(y_1,\ldots,y_m,y_{m+1},\ldots,y_{2m})$$

• Literal y_i^{σ} with $i \le m$ accepts vector $uv \in \{0,1\}^{2m} \iff u(i) = \sigma$ \iff the OR $\bigvee_{w:w(i)=\sigma} x_w$ accepts $(0,\ldots,0,\overset{u}{1},0,\ldots,0,\overset{v}{1},0,\ldots,0)$

Theorem (Pudlák–Rödl–Savický 1986)

c · log₂ n boolean sums can be computed with 3cn fanin-2 OR gates

The graph-theoretic approach already works !

- $\Sigma_3^{\oplus} = \Sigma_3$ -circuits with Parity gates on the bottom level
- Only two lower bounds known [Grolmusz 1998, Pudlák–Rödl 2004]
- Using graphs \Rightarrow easy proofs and for many other functions

Theorem (S.J. 2004)

For every
$$n imes n$$
-graph H we have $\Sigma_3^{igoplus}(H) \geq rac{|H|}{n \cdot {
m Clique}(H)}$

- Disjointness Function $DISJ_m(x, y) = 1 \iff \sum_{i=1}^m x_i y_i = 0$
- $DISJ_m$ = adjacency function of $n \times n$ Kneser graph H with $n = 2^m$
 - ▶ vertices = subsets $u \subseteq \{1, ..., m\}$, and u and v adjacent $\iff u \cap v = \emptyset$
- Theorem + Magnification Lemma $\Rightarrow \Sigma_3^{\oplus}(DISJ_m) \ge \Sigma_3^{\oplus}(H) = n^{\Omega(1)} = 2^{\Omega(m)}$

Single level conjecture for unbounded fanin circuits

- Single level circuits = Σ_3^+ -circuits = monotone depth-3 circuits
- Unbounded fanin \Rightarrow quadratic savings: $\Sigma_3^+(f_G) \leq 2n$ for all G:

$$f_G(X) = \bigvee_{u \in V} x_u \wedge \left(\bigvee_{v: uv \in E} x_v\right)$$

Why interesting?

(Valiant 1977 + Magnification Lemma)

 $\Sigma_3^+(G) \ge n^{\epsilon}$ for constant $\epsilon > 0 \implies$ super-linear lower bound for NC^1 !

But ... monotone depth-3 circuits may be quite powerful:

Theorem (S.J. 2005) $\Sigma_3^+(G) = O(\Delta \log n)$ where Δ = maximum degree of *G*

Depth-3 circuits may be too weak!

Problem (Pudlák–Rödl–Savický 1986)

Show that depth-3 circuits for graphs may be far from optimal

Lemma (Magnification Lemma + Lokam 2003)

Depth-3 circuits may be by a factor of $\Omega(\sqrt{\log n})$ worse than optimal ones

Proof.

- Sylvester $n \times n$ graph $H \subseteq \mathbb{F}^r \times \mathbb{F}^r$ with $n = 2^r$ and $uv \in H \iff \langle u, v \rangle = 0$
- $IP_r = \sum_{i=1}^r x_i y_i \pmod{2} \Rightarrow$ characteristic function of *H*
- Circuit⁺(H) \leq Circuit(IP_r) = O(r) = O(log n) (Magnific. Lemma)
- $\Sigma_3^+(H) = \Omega(\log^{3/2} n)$

(Lokam 2003)

• \Rightarrow Gap $(H) = \Omega(\sqrt{\log n})$

Bounded fanin circuits – The Conjecture

• Single level circuit \Rightarrow only one level of AND gates

$$\bigvee_{i=1}^{t} \left(\bigvee_{u \in A_{i}} x_{u}\right) \wedge \left(\bigvee_{v \in B_{i}} x_{v}\right)$$

- # of AND gates = nondeterministic communication complexity
- \Rightarrow graph complexity = generalization of communication complexity

Single Level Conjecture(named so by Lenz and Wegener 1987)Single-level circuits for quadratic functions are almost optimal:

$$Gap(n) := \max_{n \text{-vertex } G} \frac{\text{single-level complexity of } G \text{ or } f_G}{\text{complexity of } G \text{ or } f_G} = O(1).$$

Algebraic version is true \Rightarrow The Conjecture is born!

- Quadratic functions over GF(2): $f_A(x) = x^\top Ax$
- Model = circuits over $\{\oplus, \land, 1\}$ with fanin-2 gates
- Measure = multiplicative complexity = number of ∧-gates
- Single level = sum of products of linear forms = $\sum_{i=1}^{t} L_{i,1} \wedge L_{i,2}$

Theorem (Mirwald–Schnorr 1987)

All optimal circuits for quadratic functions f_A are single level circuits

- \Rightarrow for quadratic functions $Gap_{\{\oplus,\wedge,1\}}(n) = 1$
- Would hold also for graphs \Rightarrow lower bounds for $\{\oplus, \land, 1\}$ -circuits
- But ... for graphs the result does not hold anymore ...

Algebraic version fails for graphs

Boolean version over $\{\lor, \land, 0, 1\} \Rightarrow$ known results

For quadratic functions:

- Krichevski 1964 \Rightarrow Gap $(f_{K_n}) = 1$
- Bloniarz 1979 \Rightarrow Gap $(f_G) = O(1)$ for almost all quadr. functions
- Lenz–Wegener 1987 \Rightarrow Gap_{mult}(f_G) \geq 4/3 for multiplicative complexity
- Bublitz 1986 \Rightarrow Gap_{form} $(f_G) \ge 8/7$ for formulas
- Amano–Maruoka 2004 \Rightarrow Gap $(\{f_G\}) \ge 29/28$ for sets of quadr. funct.
- But ... for circuits and single f_G even $Gap(f_G) > 1$ remained unknown

For graphs:

- Pudlák–Rödl–Savický 1986:
 - Single Level Formula⁺(G) = $\Omega(\frac{n^2}{\log n})$
 - ► Formula_{{ $⊕, \land, 1$}(G) = O(nlog n) \Rightarrow Circuit⁺(G) = O(nlog n)
- \Rightarrow still ... neither Gap(G) > 1 nor $Gap_{form}(G) > 1$ was known !

Monotone bounds ... Why difficult?

- Circuit⁺(f_G) = $\Theta(n^2/\log n)$ for almost all $G \Rightarrow$ counting
- Razborov's method is symmetric \Rightarrow minimum of AND and OR gates
- \Rightarrow cannot yield lower bounds Circuit⁺(f_G) > n:

$$f_{G}(X) = \bigvee_{uv \in E} x_{u} x_{v} = \bigvee_{u \in V} x_{u} \wedge \left(\bigvee_{v: uv \in E} x_{v}\right)$$

Theorem (S.J. 2004)

- G = (V, E) is C_3, C_4 -free \Rightarrow Formula⁺ $(f_G) \ge |E|/2$ For Erdős–Rényi graph $G \Rightarrow$ Formula⁺ $(f_G) = \Omega(n^{3/2})$
 - But ... no such bound for quadratic functions of saturated graphs
 - Would the Conjecture be true \Rightarrow life would be easy! But ...

Disproof of the Conjecture (bounded fanin circuits)

• For all graphs G:

• single-level complexity of
$$f_G = O\left(\frac{n^2}{\log n}\right)$$
 (Bloniarz, 1979)

• unrestricted complexity of $f_G = \Omega(n)$ (constant fanin)

•
$$\Rightarrow$$
 Gap $(n) = O\left(\frac{n}{\log n}\right)$

Theorem:

Circuit gap
$$Gap(n) = \Omega\left(\frac{n}{\log^3 n}\right)$$
 (Sylvester graphs)
Multiplicative gap $Gap_{mult}(n) = \Omega\left(\frac{n}{\log n}\right)$ (perfect matching)
Formula gap $Gap_{form}(n) = n^{\Omega(1)}$ (Kneser graphs)

(trivial)

(constant fanin circuits)

Proof

- Need quadratic lower bound for single level \Rightarrow Razborov cannot help
- What then? \Rightarrow Try a direct argument!

Technical Lemma (General Lower Bound)

 $H \subseteq U \times W \Rightarrow$ Single Level Circuit⁺ $(H) \ge \frac{|H|}{\text{Clique}(H)^3}$

Proof (sketch):

• Single level circuits have the form
$$\bigvee_{i=1}^{t} \left(\bigvee_{u \in A_i} x_u \right) \land \left(\bigvee_{v \in B_i} x_v \right)$$

- \Rightarrow relation to disjunktive complexity of boolean sums
- small cliques ⇒ small "overlap" of boolean sums (technical part)
- \Rightarrow need many fanin-2 OR gates [Wegener 1980]

Proof (cntd.)

- Graph is Ramsey graph if $|H| = \Omega(n^2)$ and 3 Clique $(H) = O(\log n)$
- \Rightarrow Single Level Circuit⁺(H) = Ω ($n^2/\log^3 n$)
- \Rightarrow All Ramsey graphs are hard for single level circuits
- Ramsey graphs exist (Erdős, probabilistic argument)
- But ... Circuit(H) = $\Omega(n^2/\log n)$ for most such graphs !
- \Rightarrow Need Ramsey graphs with Circuit⁺(H) = O(n)
- Idea: take an easy graph and force induced Ramsey subgraph in it
- Sylvester $n \times n$ graph H with $n = 2^r$
 - Vertices = vectors $u \in \mathbb{F}^r$ where $\mathbb{F} = GF(2)$
 - Edges = pairs uv with $\langle u, v \rangle = 0$

³... and Clique(\overline{H}) = $O(\log n)$, but we don't need this ...

Proof (end)

Lemma (Pudlák–Rödl–Savický 1986 + Berkowitz 1982)

Sylvester graphs have small monotone circuits

Lemma

Sylvester $n \times n$ graph contains an induced Ramsey $\sqrt{n} \times \sqrt{n}$ graph

Proof (inspired by [Pudlák-Rödl, 2004])

- Probabilistic argument ⇒ ∃S ⊆ F^r s.t. |S| = 2^{r/2} = √n and
 (*) |S ∩ V| < r for all vector spaces V ⊂ F^r with dim(V) < r/2.
- $A \times B$ clique in $H[S] \Rightarrow A \cdot \mathbf{x} = \mathbf{0}$ for all $\mathbf{x} \in B$
- dim(span A) + dim(span B) $\leq r \Rightarrow$ w.l.o.g. dim(span A) $\leq r/2$

•
$$\Rightarrow$$
 $|A| \leq |S \cap \operatorname{span} A| \leq r$ by (*)

• \Rightarrow no cliques $K_{r,r}$ in H[S]

Conclusion

- Graph-theoretic approach to circuit lower bounds?
- \Rightarrow Already works!
- Known methods (Razborov +) do not work for graphs
- Goal: What circuits for graphs look like?
- Most "natural circuits for graphs \Rightarrow single level circuits
- Main message of this talk \Rightarrow single level circuits may be too weak:
 - ▶ No Mirwald–Schnorr phenomenon over $\{\oplus, \land, 1\}$ for graphs
 - ► Single level conjecture badly fails over {∨, ∧, 0, 1}
- Unbounded fanin single level (= monotone Σ_3) \Rightarrow still strong enough
- \Rightarrow can yield super-linear lower bound for NC¹

What next?

- *a*(*G*) := min # of indep. sets covering all non-edges of *G*
- Expander mixing lemma $\Rightarrow a(G) = \Omega(\sqrt{d})$ for *d*-regular Ramanujan graphs
- Need robust expanders G: a(G') ≥ large even if we remove (1 − n^{-ϵ}) fraction of edges
- Are (dense) Ramanujan graphs robust?

A more "prosaic" problem $P(\epsilon)$

If communication matrix of *f* in 2*m* variables has $\geq 2^{(1+\epsilon)m}$ zeroes and has no submatrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ then $NCC(f) = \Omega(m)$? Or at least $DNF(f) = 2^{\Omega(m)}$?

• For $\epsilon = 1/2 \Rightarrow P(\epsilon) =$ true

• If true for some $\epsilon < 1/2 \Rightarrow$ superlinear bound for NC¹ circuits

Thank you!