Single Level Conjecture for Quadratic Functions and Graphs

Stasys Jukna

Lithuanian Academy of Sciences
Vilnius, Lithuania
\&
University of Frankfurt
Frankfurt a.M., Germany

Outline

(1) Graph complexity + motivation ${ }^{12}$

- Monotone I.b.'s for graphs \Rightarrow non-monotone I.b.'s boolean functions
- Use graphs to violate "largeness" condition of "natural proofs"
(2) The conjecture:
- Single level circuit \Rightarrow only one level of AND gates \Rightarrow depth-3 circuit
- Single level circuits for graphs and quadratic functions are almost optimal
(3) Disproof of the conjecture for bounded and unbouded fanin circuits

[^0]
Circuit complexity of a graph - What is this?

- Graph $G=(V, E) \Rightarrow$ boolean functions $f:\{0,1\}^{V} \rightarrow\{0,1\}$
- $f(X)$ represents a graph \Longleftrightarrow accepts edges \& rejects non-edges:

$$
f(0, \ldots, 0, \stackrel{u}{1}, 0, \ldots, 0, \stackrel{v}{1}, 0, \ldots, 0)=1 \quad \Longleftrightarrow \quad u v \in E
$$

- \Rightarrow on inputs with more/less than two 1's can take arbitrary values!
- $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)$ represents $K_{2,2}=4$-cycle C_{4}
- x_{u} represents a complete star around u

single variable

negated variable

OR gate

Parity gate

Quadratic functions instead graphs?

- Quadratic function $f_{G}(X)=\bigvee_{u v \in E} x_{U} x_{V}$ represents $G=(V, E)$
- But ... many different functions may represent the same graph!
- And ... representation can be exponentially cheaper:
\exists graphs G with Circuit ${ }^{+}\left(f_{G}\right) \geq 2^{\text {Circuit }^{+}(G)}$ (unbounded fanin)
- Perfect matching \Rightarrow Circuit $^{+}\left(f_{G}\right)=\Omega(n)$ but Circuit $^{+}(G)=O(\log n)$

Saturated extension G of $H \subseteq U \times W$
$=$ two cliques with graph H inbetween

$$
f_{G}(X)=\bigvee_{U v \in H} x_{u} x_{v} \vee T h_{2}^{U} \vee T h_{2}^{W}
$$

Observation

G saturated $\Rightarrow f_{G}(X)$ is the unique monotone function representing G \Rightarrow Circuit $^{+}(G)=$ Circuit $^{+}\left(f_{G}\right) \Rightarrow$ enough to deal with quadratic functions

Monotone bounds ... Why interesting?

- Boolean functions $\chi_{m}(x, y)=$ bipartite graphs $G \subseteq U \times W$ with $U=W=\{0,1\}^{m}$ and u and v adjacent in $G \Longleftrightarrow \chi(\vec{u}, \vec{v})=1$
- Random graph $\Rightarrow \operatorname{Circuit}^{+}(G)=\Omega\left(n^{2} / \log n\right)$

Magnification Lemma

$$
\begin{gathered}
\operatorname{Circuit}\left(\chi_{m}\right) \geq \text { Circuit }^{+}(G) \quad \text { (unbounded fanin) } \\
\operatorname{Circuit}\left(\chi_{m}\right) \geq \operatorname{Circuit}^{+}(G)-12 n \quad \text { (bounded fanin) }
\end{gathered}
$$

- Circuit $^{+}(G) \geq(12+\epsilon) n \Rightarrow \operatorname{Circuit}\left(\chi_{m}\right)=\Omega(n)=\Omega\left(2^{m}\right)$
- Linear monotone bounds for graphs \Rightarrow non-monotone circuit bounds!
- $G_{n}=$ clique $K_{n-1}+$ isolated vertex $u_{0}=$ graph represented by $\neg x_{u_{0}}$
- lover bound for $T h_{2}^{n} \Rightarrow$ Circuit $^{+}\left(G_{n}\right) \geq 2 n-O(1)$
[Sgal 1986] !

Proof of Magnification Lemma

The same circuit !

- $\chi_{2 m}\left(y_{1}, \ldots, y_{m}, y_{m+1}, \ldots, y_{2 m}\right)$
- Literal y_{i}^{σ} with $i \leq m$ accepts vector $u v \in\{0,1\}^{2 m} \Longleftrightarrow u(i)=\sigma$
\Longleftrightarrow the OR $\bigvee x_{w} \operatorname{accepts}(0, \ldots, 0, \stackrel{u}{1}, 0, \ldots, 0, \stackrel{v}{1}, 0, \ldots, 0)$ $w: w(i)=\sigma$

Theorem (Pudlák-Rödl-Savický 1986)

c. $\log _{2} n$ boolean sums can be computed with 3 cn fanin-2 OR gates

The graph-theoretic approach already works!

- $\Sigma_{3}^{\oplus}=\Sigma_{3}$-circuits with Parity gates on the bottom level
- Only two lower bounds known [Grolmusz 1998, Pudlák-Rödl 2004]
- Using graphs \Rightarrow easy proofs and for many other functions !

Theorem (S.J. 2004)

For every $n \times n$-graph H we have $\Sigma_{3}^{\oplus}(H) \geq \frac{|H|}{n \cdot \operatorname{Clique}(H)}$

- Disjointness Function $\operatorname{DISJ} J_{m}(x, y)=1 \Longleftrightarrow \sum_{i=1}^{m} x_{i} y_{i}=0$
- $D I S J_{m}=$ adjacency function of $n \times n$ Kneser graph H with $n=2^{m}$
- vertices $=$ subsets $u \subseteq\{1, \ldots, m\}$, and u and v adjacent $\Longleftrightarrow u \cap v=\emptyset$
- Theorem + Magnification Lemma \Rightarrow

$$
\Sigma_{3}^{\oplus}\left(D I S J_{m}\right) \geq \Sigma_{3}^{\oplus}(H)=n^{\Omega(1)}=2^{\Omega(m)}
$$

Single level conjecture for unbounded fanin circuits

- Single level circuits $=\Sigma_{3}^{+}$-circuits $=$monotone depth -3 circuits
- Unbounded fanin \Rightarrow quadratic savings: $\Sigma_{3}^{+}\left(f_{G}\right) \leq 2 n$ for all G :

$$
f_{G}(X)=\bigvee_{u \in V} x_{u} \wedge\left(\bigvee_{V: u v \in E} x_{v}\right)
$$

> Why interesting? \quad (Valiant $1977+$ Magnification Lemma) $\Sigma_{3}^{+}(G) \geq n^{\epsilon}$ for constant $\epsilon>0 \Rightarrow$ super-linear lower bound for $N C^{1}!$

But ... monotone depth-3 circuits may be quite powerful:

$$
\begin{aligned}
& \text { Theorem (S.J. 2005) } \\
& \Sigma_{3}^{+}(G)=O(\Delta \log n) \text { where } \Delta=\text { maximum degree of } G
\end{aligned}
$$

Depth-3 circuits may be too weak!

Problem (Pudlák-Rödl-Savický 1986)

Show that depth-3 circuits for graphs may be far from optimal

Lemma (Magnification Lemma + Lokam 2003)

Depth-3 circuits may be by a factor of $\Omega(\sqrt{\log n})$ worse than optimal ones

Proof.

- Sylvester $n \times n$ graph $H \subseteq \mathbb{F}^{r} \times \mathbb{F}^{r}$ with $n=2^{r}$ and

$$
u v \in H \Longleftrightarrow\langle u, v\rangle=0
$$

- $I P_{r}=\sum_{i=1}^{r} x_{i} y_{i}(\bmod 2) \Rightarrow$ characteristic function of H
- Circuit $^{+}(H) \leq \operatorname{Circuit}\left(I P_{r}\right)=O(r)=O(\log n)$
- $\Sigma_{3}^{+}(H)=\Omega\left(\log ^{3 / 2} n\right)$
- $\Rightarrow \operatorname{Gap}(H)=\Omega(\sqrt{\log n})$
(Magnific. Lemma)
(Lokam 2003)

Bounded fanin circuits - The Conjecture

- Single level circuit \Rightarrow only one level of AND gates

$$
\bigvee_{i=1}^{t}\left(\bigvee_{u \in A_{i}} x_{u}\right) \wedge\left(\bigvee_{v \in B_{i}} x_{v}\right)
$$

- \# of AND gates = nondeterministic communication complexity
- \Rightarrow graph complexity = generalization of communication complexity !

Single Level Conjecture

(named so by Lenz and Wegener 1987)
Single-level circuits for quadratic functions are almost optimal:

$$
\operatorname{Gap}(n):=\max _{n \text {-vertex } G} \frac{\text { single-level complexity of } G \text { or } f_{G}}{\text { complexity of } G \text { or } f_{G}}=O(1)
$$

Algebraic version is true \Rightarrow The Conjecture is born!

- Quadratic functions over $G F(2): f_{A}(x)=x^{\top} A x$
- Model $=$ circuits over $\{\oplus, \wedge, 1\}$ with fanin-2 gates
- Measure $=$ multiplicative complexity $=$ number of \wedge-gates
- Single level $=$ sum of products of linear forms $=\sum_{i=1}^{t} L_{i, 1} \wedge L_{i, 2}$

Theorem (Mirwald-Schnorr 1987)

All optimal circuits for quadratic functions f_{A} are single level circuits

- \Rightarrow for quadratic functions $\operatorname{Gap}_{\{\oplus, \wedge, 1\}}(n)=1$
- Would hold also for graphs \Rightarrow lower bounds for $\{\oplus, \wedge, 1\}$-circuits !
- But ... for graphs the result does not hold anymore ...

Algebraic version fails for graphs

Theorem (S.J. 2006)

For graphs $\Rightarrow \operatorname{Gap}_{\{\oplus, \wedge, 1\}}(n)=\Omega(n / \log n)$ (perfect matching)

Proof

- Single level circuit = sum of products of linear forms
- Linear form (parity) represents "double-clique" \square \Rightarrow has rank ≤ 2
- \Rightarrow Single Level Circuit ${ }^{+}(G) \geq \frac{1}{4} r k(G)$
- \Rightarrow Single Level Circuit ${ }^{+}\left(M_{n}\right)=\Omega(n)$ for perfect matching $M_{n} \subseteq V_{1} \times V_{2}$
- But Circuit $\left(M_{n}\right)=O(\log n)$:

$$
\begin{align*}
& F(X)=\bigwedge_{i=1}^{r} \bigoplus_{w \in S_{i}} x_{w} \text { with } r=\log n \text { and } \\
& S_{i}=\left\{w: w_{i}=0 \text { if } w \in V_{1} \text {, and } w_{i}=1 \text { if } w \in V_{2}\right\} \\
& \bigoplus_{w \in S_{i}} x_{w} \text { accepts } u v \Longleftrightarrow u_{i}=v_{i} \\
& F(X) \text { accepts } u v \Longleftrightarrow \forall i u_{i}=v_{i} \Longleftrightarrow u=v \Longleftrightarrow u v \in M_{n}
\end{align*}
$$

Boolean version over $\{\vee, \wedge, 0,1\} \Rightarrow$ known results

For quadratic functions:

- Krichevski $1964 \Rightarrow \operatorname{Gap}\left(f_{K_{n}}\right)=1$
- Bloniarz $1979 \Rightarrow \operatorname{Gap}\left(f_{G}\right)=O(1)$ for almost all quadr. functions
- Lenz-Wegener $1987 \Rightarrow \operatorname{Gap}_{\text {mult }}\left(f_{G}\right) \geq 4 / 3$ for multiplicative complexity
- Bublitz $1986 \Rightarrow \operatorname{Gap}_{\text {form }}\left(f_{G}\right) \geq 8 / 7$ for formulas
- Amano-Maruoka $2004 \Rightarrow \operatorname{Gap}\left(\left\{f_{G}\right\}\right) \geq 29 / 28$ for sets of quadr. funct.
- But ... for circuits and single f_{G} even $\operatorname{Gap}\left(f_{G}\right)>1$ remained unknown!

For graphs:

- Pudlák-Rödl-Savický 1986:
- Single Level Formula ${ }^{+}(G)=\Omega\left(\frac{n^{2}}{\log n}\right)$
- Formula $_{\{\oplus, \wedge, 1\}}(G)=O(n \log n) \Rightarrow$ Circuit $^{+}(G)=O(n \log n)$
- \Rightarrow still ... neither $\operatorname{Gap}(G)>1$ nor $\operatorname{Gap}_{\text {form }}(G)>1$ was known!

Monotone bounds ... Why difficult?

- Circuit ${ }^{+}\left(f_{G}\right)=\Theta\left(n^{2} / \log n\right)$ for almost all $G \Rightarrow$ counting
- Razborov's method is symmetric \Rightarrow minimum of AND and OR gates
- \Rightarrow cannot yield lower bounds Circuit ${ }^{+}\left(f_{G}\right)>n$:

$$
f_{G}(X)=\bigvee_{u v \in E} x_{u} x_{v}=\bigvee_{u \in V} x_{u} \wedge\left(\bigvee_{v: u v \in E} x_{v}\right)
$$

Theorem (S.J. 2004)

$G=(V, E)$ is C_{3}, C_{4}-free \Rightarrow Formula $^{+}\left(f_{G}\right) \geq|E| / 2$
For Erdős-Rényi graph $G \Rightarrow$ Formula $^{+}\left(f_{G}\right)=\Omega\left(n^{3 / 2}\right)$

- But ... no such bound for quadratic functions of saturated graphs!
- Would the Conjecture be true \Rightarrow life would be easy! But ...

Disproof of the Conjecture (bounded fanin circuits)

- For all graphs G :
- single-level complexity of $f_{G}=O\left(\frac{n^{2}}{\log n}\right)$
(Bloniarz, 1979)
- unrestricted complexity of $f_{G}=\Omega(n)$ (constant fanin)
- $\Rightarrow \operatorname{Gap}(n)=O\left(\frac{n}{\log n}\right)$

Theorem:

(constant fanin circuits)
Circuit gap $\operatorname{Gap}(n)=\Omega\left(\frac{n}{\log ^{3} n}\right)$
(Sylvester graphs)
Multiplicative gap $\operatorname{Gap}_{\text {mult }}(n)=\Omega\left(\frac{n}{\log n}\right)$
Formula gap $\operatorname{Gap}_{\text {form }}(n)=n^{\Omega(1)}$
(perfect matching)
(Kneser graphs)

Proof

- Need quadratic lower bound for single level \Rightarrow Razborov cannot help
- What then? \Rightarrow Try a direct argument!

Technical Lemma (General Lower Bound)

$H \subseteq U \times W \Rightarrow$ Single Level Circuit ${ }^{+}(H) \geq \frac{|H|}{\text { Clique }(H)^{3}}$

Proof (sketch):

- Single level circuits have the form $\bigvee_{i=1}^{t}\left(\bigvee_{u \in A_{i}} x_{u}\right) \wedge\left(\bigvee_{v \in B_{i}} x_{v}\right)$
- \Rightarrow relation to disjunktive complexity of boolean sums
- small cliques \Rightarrow small "overlap" of boolean sums (technical part)
- \Rightarrow need many fanin-2 OR gates [Wegener 1980]

Proof (cntd.)

- Graph is Ramsey graph if $|H|=\Omega\left(n^{2}\right)$ and 3 Clique $(H)=O(\log n)$
- \Rightarrow Single Level Circuit ${ }^{+}(H)=\Omega\left(n^{2} / \log ^{3} n\right)$
- \Rightarrow All Ramsey graphs are hard for single level circuits
- Ramsey graphs exist (Erdős, probabilistic argument)
- But ... Circuit $(H)=\Omega\left(n^{2} / \log n\right)$ for most such graphs !
- \Rightarrow Need Ramsey graphs with Circuit ${ }^{+}(H)=O(n)$
- Idea: take an easy graph and force induced Ramsey subgraph in it
- Sylvester $n \times n$ graph H with $n=2^{r}$
- Vertices = vectors $u \in \mathbb{F}^{r}$ where $\mathbb{F}=G F(2)$
- Edges = pairs $u v$ with $\langle u, v\rangle=0$
${ }^{3} \ldots$ and $\operatorname{Clique}(\bar{H})=O(\log n)$, but we don't need this \ldots

Proof (end)

Lemma (Pudlák-Rödl-Savický 1986 + Berkowitz 1982)

Sylvester graphs have small monotone circuits

Lemma

Sylvester $n \times n$ graph contains an induced Ramsey $\sqrt{n} \times \sqrt{n}$ graph

Proof (inspired by [Pudlák-Rödl, 2004])

- Probabilistic argument $\Rightarrow \exists S \subseteq \mathbb{F}^{r}$ s.t. $|S|=2^{r / 2}=\sqrt{n}$ and
$(*)|S \cap V|<r$ for all vector spaces $V \subseteq \mathbb{F}^{r}$ with $\operatorname{dim}(V) \leq r / 2$.
- $A \times B$ clique in $H[S] \Rightarrow A \cdot \mathbf{x}=\mathbf{0}$ for all $\mathbf{x} \in B$
- $\operatorname{dim}(\operatorname{span} A)+\operatorname{dim}(\operatorname{span} B) \leq r \Rightarrow$ w.l.o.g. $\operatorname{dim}(\operatorname{span} A) \leq r / 2$
- $\Rightarrow|A| \leq|S \cap \operatorname{span} A| \leq r$ by $(*)$
- \Rightarrow no cliques $K_{r, r}$ in $H[S]$

Conclusion

- Graph-theoretic approach to circuit lower bounds?
- \Rightarrow Already works!
- Known methods (Razborov +) do not work for graphs
- Goal: What circuits for graphs look like?
- Most "natural circuits for graphs \Rightarrow single level circuits
- Main message of this talk \Rightarrow single level circuits may be too weak:
- No Mirwald-Schnorr phenomenon over $\{\oplus, \wedge, 1\}$ for graphs
- Single level conjecture badly fails over $\{\mathrm{V}, \wedge, 0,1\}$
- Unbounded fanin single level (= monotone $\left.\Sigma_{3}\right) \Rightarrow$ still strong enough
- \Rightarrow can yield super-linear lower bound for $N C^{1}$!

What next?

- $a(G):=\min \#$ of indep. sets covering all non-edges of G
- Expander mixing lemma $\Rightarrow a(G)=\Omega(\sqrt{d})$ for d-regular Ramanujan graphs
- Need robust expanders $G: a\left(G^{\prime}\right) \geq$ large even if we remove $\left(1-n^{-\epsilon}\right)$ fraction of edges
- Are (dense) Ramanujan graphs robust?

A more "prosaic" problem $P(\epsilon)$

If communication matrix of f in $2 m$ variables has $\geq 2^{(1+\epsilon) m}$ zeroes and has no submatrix $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ then $N C C(f)=\Omega(m)$? Or at least $D N F(f)=2^{\Omega(m)}$?

- For $\epsilon=1 / 2 \Rightarrow P(\epsilon)=$ true
- If true for some $\epsilon<1 / 2 \Rightarrow$ superlinear bound for $N C^{1}$ circuits !

Thank you!

[^0]: ${ }^{1}$ P. Pudlák, V. Rödl, P. Savický: Graph complexity (1986)
 ${ }^{2}$ A. Razborov: Bounded-depth formulae over the basis $\{\&, \oplus\}$ and some combinatorial problem (1988)

