Lower Bounds for Tropical Circuits and Dynamic Programs*

Stasys Jukna
University of Frankfurt, Institute of Computer Science, Germany
Vilnius University, Institute of Mathematics and Informatics, Vilnius, Lithuania
jukna@thi.informatik.uni-frankfurt.de

Abstract

Tropical circuits are circuits with Min and Plus, or Max and Plus operations as gates. Their importance stems from their intimate relation to dynamic programming algorithms. The power of tropical circuits lies somewhere between that of monotone boolean circuits and monotone arithmetic circuits. In this paper we present some lower bounds arguments for tropical circuits, and hence, for dynamic programs.

Keywords: Tropical circuits; dynamic programming; monotone arithmetic circuits; lower bounds

1 Introduction

Understanding the power and limitations of fundamental algorithmic paradigms-such as greedy or dynamic programming-is one of the basic questions in the algorithm design and in the whole theory of computational complexity. In this paper we focus on the dynamic programming paradigm.

Our starting point is a simple observation that many dynamic programming algorithms for optimization problems are just recursively constructed circuits over the corresponding semirings. Each such circuit computes, in a natural way, some polynomial over the underlying semiring. Most of known dynamic programming algorithms correspond to circuits over the (min, +) or (max, +) semirings, that is, to tropical circuits. ${ }^{1}$ Thus, lower bounds for tropical circuits show the limitations of dynamic programming algorithms over the corresponding semirings.

The power of tropical circuits (and hence, of dynamic programming) lies somewhere between that of monotone boolean circuits and monotone arithmetic circuits:

$$
\text { monotone boolean } \leqslant \text { tropical } \leqslant \text { monotone arithmetic }
$$

and the gaps may be even exponential (we will show this in Section 7).
Monotone boolean circuits are most powerful among these three models and, for a long time, only linear lower bounds were known for such circuits. First super-polynomial lower bounds for the k-clique function CLIQUE and the perfect matching function PER were proved by Razborov [37, 36] by inventing his method of approximations. At almost about the same time, explicit exponential lower bounds were also proved by Andreev [3, 4]. Alon and Boppana [1] improved Razborov's lower bound for CLIQUE from super-polynomial until exponential. Finally, Jukna [17] gave a general and easy

[^0]to apply lower bounds criterium for monotone boolean and real-valued circuits, yielding strong lower bounds for a row of explicit boolean functions. These lower bounds hold for tropical circuits as well.

On the other hand, monotone arithmetic circuits are much easier to analyze: such a circuit cannot produce anything else but the monomials of the computed polynomial, no "simplifications" (as $x^{2}=x$ or $x+x y=x$) are allowed here. Exponential lower bounds on the monotone arithmetic circuit complexity were proved already by Schnorr [38] (for CLIQUE), and Jerrum and Snir [15] (for PER and some other polynomials). A comprehensive survey on arithmetic (not necessarily monotone) circuits can be found in the book by Shpilka and Yehudayoff [41].

In this paper we summarize our knowledge about the power of tropical circuits. As far as we know, no similar attempt was undertaken in this direction after the classical paper by Jerrum and Snir [15]. The main message of the paper is that not only methods developed for monotone boolean circuits, but (sometimes) even those for a much weaker model of monotone arithmetic circuits can be used to establish limitations of dynamic programming. Although organized as a survey, the paper contains some new results, including:

1. A short and direct proof that tropical circuits for optimization problems with homogeneous target polynomials are not more powerful than monotone arithmetic circuits (Theorem 13). This explains why we do not have efficient dynamic programming algorithms for optimization problems whose target sums all have the same length.
2. A new and simple proof of Schnorr's [38] lower bound on the size of monotone arithmetic circuits computing so-called "separated" polynomials (Theorem 24). A polynomial f is separated if the product of any two of its monomials contains no third monomial of f distinct from these two ones.
3. A new and simpler proof of Gashkov and Sergeev's [10, 12] lower bound on the size of monotone arithmetic circuits computing so-called " k-free" polynomials (Theorem 34). A polynomial is k-free if it does not contain a product of two polynomials, both with more than k monomials. This extend's Schnorr's bound, since every separated polynomial is also 1-free.
4. An easy to apply "rectangle" lower bound (Lemma 42).
5. A truly exponential lower bound for monotone arithmetic circuits using expander graphs (Theorem 48).

2 Semirings and Polynomials

In this section, we introduce the (fairly standard) algebraic terminology we shall subsequently use.
A (commutative) semiring is a system $\mathrm{S}=(S,+, *, 0,1)$, where S is a set, + ("sum") and $*$ ("product") are binary operations on S, and 0 and 1 are elements of S having the following three two properties:
(i) in both $(S,+, 0)$ and $(S, *, 1)$, operation are associative and commutative with identities 0 and 1: $a+0=a$ and $a * 1=a$ hold for all $a \in S ;$
(ii) product distributes over sum: $a *(b+c)=(a * b)+(a * c)$.

Some authors also add the "annihilation axiom" $a * 0=0$ for all $a \in S$; we will not require it to hold. A semiring is additively idempotent if $a+a=a$ holds for all $a \in S$, and is multiplicatively idempotent
if $a * a=a$ holds for all $a \in S$. We will use the common conventions to save parenthesis by writing $a * b+c * d$ instead of $(a * b)+(a * c)$, and replacing $a * b$ by $a b$. Also, a^{n} will stand for $a * a * \cdots * a$ n-times.

In this paper, we will be interested in the following semirings:

- Arithmetic semiring $\mathrm{A}=(\mathrm{N},+, \cdot, 0,1)$.
- Boolean semiring $B=(\{0,1\}, \vee, \wedge, 0,1)$.
- Min semirings $\operatorname{Min}=(\mathrm{N}, \min ,+, \infty, 0)$ and $\operatorname{Min}^{-}=(Z, \min ,+, \infty, 0)$.
- Max semirings $\operatorname{Max}=(\mathrm{N}, \max ,+, 0,0)$ and $\operatorname{Max}^{*}=(\mathrm{N}, \max ,+,-\infty, 0)$.
- Min and Max semirings are called tropical semirings.

Note that all these semirings, but Max, satisfy the annihilation axiom, all but A, are additively idempotent, and none of them, but B , is multiplicatively idempotent. Note also that the only difference of Max* from Max is that Max* contains one additional "annihilating" element $-\infty$ satisfying $\max \{-\infty, a\}=a$ and $-\infty+a=-\infty$ for all $a \in \mathrm{~N}$. The difference of Min^{-}from Min is that Min ${ }^{-}$also contains negative integers.

In arithmetic and in tropical semirings one usually allows rational or even real numbers, not just integers. This corresponds to considering optimization problems with real, not necessarily integral "weights". The point, however, is that lower-bound techniques, we will consider below, work already on smaller domains: it will be enough that Min contains $\{0,1,+\infty\}$, Min^{-}contains $\{-1,0,+\infty\}$, Max contains $\{0,1\}$, and Max* contains $\{0,1,-\infty\}$.

Due to their intimate relation to discrete optimization, we will be mainly interested in tropical semirings, and circuits over these semirings. Lower bounds for such circuits give lower bounds for the number of subproblems used by dynamic programming algorithm.

Let $S=(S,+, *, 0,1)$ be a semiring, and let x_{1}, \ldots, x_{n} be variables ranging over S. A monomial is any product of these variables, where repetitions are allowed. By commutativity and associativity, we can sort the products and write monomials in the usual notation, with the variables raised to exponents. Thus, every monomial $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ is uniquely determined by the vector of exponents $\left(a_{1}, \ldots, a_{n}\right) \in \mathrm{N}^{n}$, where $x_{i}^{0}=1$. (Note that in tropical semirings, monomials are linear combinations $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}$, that is, sums, not products.) The degree, $|p|$, of a monomial is the sum $|p|=a_{1}+\cdots+a_{n}$ of its exponents. A monomial p is multilinear if every exponent a_{i} is either 0 or 1. A monomial $p=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ contains a monomial $q=x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ (or q is a factor of p) if $a_{i} \geqslant b_{i}$ for all $i=1, \ldots, n$, that is, if $p=q q^{\prime}$ for some monomial q^{\prime}.

By a polynomial ${ }^{2}$ we will mean a finite sum of monomials, where repetitions of monomials are allowed. That is, we only consider polynomials with nonnegative integer coefficients. A polynomial is homogeneous if all its monomials have the same degree, and is multilinear if all its monomials are multilinear (no variables of degree >1). For example, $f=x^{2} y+x y z$ is homogeneous but not multilinear, whereas $g=x+y z$ is multilinear but not homogeneous. The sum and product of two polynomials is defined in the standard way. For polynomials f, h and a monomial p, we will write:

- $f=h$ if f and h have the same monomials appearing not necessarily with the same coefficients;
- $f \rightleftharpoons h$ if f and h have the same monomials appearing with the same coefficients;
- $f \subseteq h$ if every monomial of f is also a monomial of h;

[^1]- $p \in f$ if p is a monomial of f;
- $|f|$ to denote the number of distinct monomials in f;
- X_{p} to denote the set of variables appearing in p with non-zero degree;

Every polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ defines a function $\hat{f}: S^{n} \rightarrow S$, whose value $\hat{f}\left(s_{1}, \ldots, s_{n}\right)$ is obtained by substituting elements $s_{i} \in S$ for x_{i} in f. Polynomials f and g are equivalent (or represent the same function) over a given semiring, if $\hat{f}(s)=\hat{h}(s)$ holds for all $s \in S^{n}$. It is important to note that the same polynomial $f(x) \rightleftharpoons \sum_{I \in I} c_{I} \prod_{i \in I} x_{i}^{a_{i}}$ represents different functions over different semirings:

$$
\begin{aligned}
\hat{f}(x)=\sum_{I \in I} c_{I} \prod_{i \in I} x_{i}^{a_{i}} & \text { over A (counting) } \\
\hat{f}(x)=\bigvee_{I \in I} \bigwedge_{i \in I} x_{i} & \text { over B (existence) } \\
\hat{f}(x)=\min _{I \in I} \sum_{i \in I} a_{i} x_{i} & \text { over Min and } \operatorname{Min}^{-} \text {(minimization) } \\
\hat{f}(x)=\max _{I \in I} \sum_{i \in I} a_{i} x_{i} & \text { over Max and Max* (maximization) } \\
\hat{f}(x)=\max _{I \in I} \min _{i \in I} x_{i} & \text { over } \mathrm{B}^{*}=(\mathrm{N} \cup\{+\infty\}, \text { max, min, } 0,+\infty) \text { (bottleneck) }
\end{aligned}
$$

Note that, due to their additive idempotence, in the boolean semiring, bottleneck semiring as well as in all four tropical semirings, the coefficients c_{I} (repetitions of monomials) do not influence the computed value $\hat{f}(x)$, and we can assume that $c_{I}=1$ for all $I \in \mathcal{I}$; this is because, say, $\min \{x, x, y\}=\min \{x, y\}$. The degrees, however, are important: say, $\min \{2 x, y\} \neq \min \{x, y\}$. In boolean and bottleneck semirings, neither coefficients nor degrees are important.

3 Circuits and their Polynomials

A circuit F over a semiring $\mathrm{S}=(S,+, *, 0,1)$ is a usual fanin-2 circuit whose inputs are variables x_{1}, \ldots, x_{n} and constants 0 and 1 . Gates are fanin- $2+$ and $*$. That is, we have a directed acyclic graph with $n+2$ fanin- 0 nodes labeled by $x_{1}, \ldots, x_{n}, 0,1$. At every other node, the sum $(+)$ or the product $(*)$ of its entering nodes is computed; nodes with assigned operations are called gates. The size of F , denoted by $\operatorname{Size}(F)$, is the number of gates in F. The depth is the largest number of edges in a path from an input gate to an output gate.

Like polynomials, circuits are also syntactic objects. So, we can associate with every circuit F the unique polynomial F produced by F inductively as follows: ${ }^{3}$

- If $\mathrm{F}=x_{i}$, then $F \rightleftharpoons x_{i}$.
- If $\mathrm{F}=\mathrm{G}+\mathrm{H}$, then $F \rightleftharpoons \sum_{p \in G} p+\sum_{q \in H} q$.
- If $\mathrm{F}=\mathrm{G} * \mathrm{H}$, then $F \rightleftharpoons \sum_{p \in G} \sum_{q \in H} p q$.

[^2]When producing the polynomial F from a circuit F we only use the generic semiring axioms (i)(iii) to write the result as a polynomial (sum of monomials). For example, if $\mathrm{F}=x *(1+y)$ then $F=x+x y$, even though $\hat{F}=x$ in B and Min, and $\hat{F}=x y$ in Max. It is thus important to note that the produced by a given circuit F polynomial F is the same over any semiring!

A circuit is homogeneous, if polynomials produced at its gates are homogeneous. It is easy to see that a circuit is homogeneous if and only if the polynomial produced by it is homogeneous. A circuit is multilinear, if for every its product gate $u=v * w$, the sets of variables of the polynomials produced at gates v and w are disjoint. Sometimes, multilinear (in our sense) circuits are called also syntactically multilinear.

Definition 1. A circuit F computes a polynomial f if $\hat{F}=\hat{f}$ (F and f coincide as functions). A circuit F produces f if $F=f$ (F and f have the same set of monomials).

We will be interested in the following two complexity measures of polynomials f, where the third measure is only for multilinear polynomials:

- $\mathrm{S}(f)=$ minimum size of a circuit over semiring S computing f.
- $\mathrm{S}[f]=$ minimum size of a circuit over semiring S producing f.
- $\mathrm{S}_{\text {lin }}(f)=$ minimum size of a multilinear circuit over semiring S computing f.

What we are really interested in is the first measure $\mathrm{S}(f)$. The second measure $\mathrm{S}[f]$ is less interesting: it is the same for all semirings S , because the formal polynomial of a given (fixed) circuit is the same over all semirings. In particular, we have that $\mathrm{S}[f]=\mathrm{A}[f]$ holds for every semiring S and every polynomial f.

To illustrate the lower-bounds arguments, we will use the following popular polynomials. Variables x_{e} of considered polynomials correspond to edges e of a complete undirected n-vertex graph K_{n}, a complete bipartite $n \times n$ graph $K_{n, n}$. Thus, monomials $\prod_{e \in E} x_{e}$ correspond to some subgraphs E of K_{n} or $K_{n, n}$. Here are some of the polynomials we will use later:

1. Permanent polynomial $\mathrm{PER}_{n}=$ all perfect matchings in $K_{n, n}$.
2. Hamiltonian cycle polynomial $\mathrm{HC}_{n}=$ all Hamiltonian cycles in K_{n}.
3. k-clique polynomial CLIQUE $n, k=$ all k-cliques in K_{n}.
4. Spanning tree polynomial $\mathrm{ST}_{n}=$ all spanning trees in K_{n} rooted in node 1 .
5. st-connectivity polynomial $\mathrm{STCON}_{n}=$ all paths from $s=1$ to $t=n$ in K_{n}.
6. $s t$-walk polynomial $\mathrm{WALK}_{n}=$ all walks from $s=1$ to $t=n$ of length at most $n-1$ in K_{n}.
7. All-pairs connectivity "polynomial" $\operatorname{APSP}_{n}=$ set of $\binom{n}{2}$ polynomials STCON_{n} corresponding to different pairs of start and target nodes s and t.
8. Matrix product polynomial $\mathrm{MP}_{n}=$ special case of APSP_{n} when only paths of length-2 are considered.
9. The connectivity polynomial $\mathrm{CONN}_{n}=$ product of all polynomials of APSP_{n}.

In Section 11 we will show that the first four polynomials require Min-circuits of exponential size, whereas the next result shows that the last five polynomials all have Min-circuits of polynomial size. This result—proved independently by Moore [30], Floyd [7], and Warshall [45]-holds for every semiring with the absorption axiom $a+a b=a$, including the boolean and Min semirings.

Theorem 2 ([30, 7, 45]). Over semirings Min and B, the polynomials of APSP_{n} can all be simultaneously computed by a circuit of size $O\left(n^{3}\right)$.

Proof. Inputs for APSP_{n} over the Min semiring are non-negative weights $x_{i j}$ of the edges of K_{n}. For every pair $i<j$ of distinct nodes of K_{n}, the goal is to compute the weight of the lightest path between i and j; the weight of a path is the sum of weights of its edges. The idea is to recursively compute the polynomials $f_{i, j}^{[k]}$ for $k=0,1, \ldots, n$, whose value is the weight of the lightest walk between i and j whose all inner nodes lie in $[k]=\{1, \ldots, k\}$. Then $f_{i, j}^{[0]}=x_{i j}$, and the recursion is: $f_{i, j}^{[k]}=\min \left\{f_{i, j}^{[k-1]}, f_{i, k}^{[k-1]}+f_{k, j}^{[k-1]}\right\}$. The output gates are $f_{i, j}^{[n]}$ for all $i<j$. The total number of gates is $O\left(n^{3}\right)$. Even though the circuit actually searches for weights of lightest walks, it correctly computes APSP because every walk between two nodes i and j also contains a simple path (with no repeated nodes) between these nodes. Since the weights are non-negative, the minimum must be achieved on a simple path. If we replace min-gates by OR-gates, and sum-gates by AND-gates, then the resulting circuit will compute APSP_{n} over the boolean semiring B.

Remark 3. Theorem 2 immediately implies that the polynomials $\mathrm{MP}_{n}, \mathrm{CONN}_{n}$, and STCON_{n} can also be computed by Min-circuits of size $O\left(n^{3}\right)$. Moreover, over the boolean semiring, the spanning tree polynomial ST represents the same boolean function as CONN. Thus, Theorem 2 also gives $\mathrm{B}\left(\mathrm{ST}_{n}\right)=\mathcal{O}\left(n^{3}\right)$.

A dynamic programming algorithm of Bellman [6] and Ford [9] implies that the st-walk polynomial WALK_{n} can even be produced by a small circuit.

Theorem $4([6,9])$. If $f=\mathrm{WALK}_{n}$, then $\mathrm{A}[f]=\mathcal{O}\left(n^{3}\right)$.
Proof. Let $f_{j}^{[k]}$ be a polynomial whose monomials correspond to all walks from 1 to j of length at most k. Hence, $f_{j}^{[1]}=x_{1 j}$ for all $j>1$, and $f_{n}^{[n-1]}=\mathrm{WALK}_{n}$. The polynomial $f_{j}^{[k]}$ is the sum of the polynomial $f_{j}^{[k-1]}$ and all polynomials $x_{i, j} \cdot f_{i}^{[k-1]}$ over all nodes $i \neq j$. The resulting circuit has $O\left(n^{3}\right)$ fanin-2 gates.

Remark 5. Over boolean and Min semirings, the polynomials WALK and STCON compute the same function. But a relatively simple argument implies that $\mathrm{A}[g]=2^{\Omega(n)}$ holds for $g=\mathrm{STCON}_{n}$ (Theorem 45 below). Thus, we have two polynomials f and g such that $\hat{f}=\hat{g}$ over B and Min, but one of them requires exponentially larger circuits to be produced.

In the rest of the paper, we will present various lower bound argument for tropical circuits. Table 1 summarizes the resulting specific bounds obtained by these arguments for the polynomials listed above.

4 Structure of Produced Polynomials

If a circuit F computes some given polynomial f over some semiring S , that is, if $\hat{F}=\hat{f}$ holds over S , what can we say about the structure of the polynomial F produced by the circuit? In this section, we summarize this information for various semirings.

Polynomial f	Bound	Reference
ST_{n}	$\mathrm{~B}(f)=O\left(n^{3}\right), \mathrm{S}(f)=2^{\Omega(n)}$	Rem. 3, Thm. 43
$\operatorname{CONN}_{n}, \mathrm{STCON}_{n}$	$\operatorname{Min}(f)=O\left(n^{3}\right), \mathrm{A}[f] \geqslant \operatorname{Max}(f)=2^{\Omega(n)}$	Rem. 3
$\mathrm{APSP}_{n}, \mathrm{MP}_{n}$	$\operatorname{Min}(f)=\Theta\left(n^{3}\right)$	Cor. 28
$\mathrm{PER}_{n}, \mathrm{HC}_{n}$	$\mathrm{~S}(f)=2^{\Omega(n)}$	Thm. 43
CLIQUE $_{n, k}$	$\mathrm{~S}(f) \geqslant\binom{ n}{k}-1$	Cor. 27

Table 1: Summary of specific bounds; $\mathbf{S}(f)$ stands for any of $\operatorname{Min}(f), \operatorname{Max}(f)$ and $\mathrm{B}_{\operatorname{lin}}(f)$.

In general, neither $F \rightleftharpoons f$ not $F=f$ needs to hold. The arithmetic semiring, as well as tropical semirings Min $^{-}$and Max* are here an exception.

Lemma 6. If a circuit F computes a polynomial f over the arithmetic semiring A , then $F \rightleftharpoons f$.
Proof. There are several ways to prove this fact. We follow an elegant argument suggested by Sergey Gashkov (personal communication). If $\hat{F}=\hat{f}$ but F and f do not coincide as polynomials, the polynomial $g=F-f$ must contain at least one monomial. Let p be a monomial of g of maximum degree. Take all (formal) partial derivatives of g with respect to the variables of p until all they disappear. Since p has maximum degree, we obtain some constant $\neq 0$. But since $\hat{g}=\hat{F}-\hat{f}$ is the zero function, the derivative should be zero, a contradiction.

Lemma 7. If a circuit F computes a multilinear polynomial f over $\mathrm{Max}, \mathrm{Min}^{-}$or Max^{*}, then F must also be multilinear. Moreover, over Min^{-}and Max^{*}, we have $F=f$.

Proof. Let us first show that the polynomial F produced by F must be also multilinear. To see this, assume that F contains a monomial p (sum) in which some variable x_{i} appears more than once. Then, in the semirings Max or Max* , we can set x_{i} to 1 , and set all the remaining variables to 0 . Under this assignment a, we will have $\hat{F}(a) \geqslant 2$ and $\hat{f}(a) \leqslant 1$, a contradiction with $\hat{F}=\hat{f}$. In the Min^{-} semiring, we can set x_{i} to -1 , and set all the remaining variables to 0 . Under this assignment b, we will have $\hat{f}(b) \geqslant-1$, because all monomials of f get value $\geqslant-1$, but $\hat{F}(b) \leqslant-2$ since already the monomial p of F gets value $\leqslant-2$, a contradiction. Thus, both F and f must be multilinear.

Let us now show that $F=f$ must hold over the semiring Min^{-}; the argument for Max* is similar. (This was proved by Jerrum and Snir [15] using the Farkas lemma. We give a direct proof.) We know that $\hat{F}=\hat{f}$, and that both polynomials F and f are multilinear. The main property of multilinear monomials p is that they are uniquely determined by their sets X_{p} of variables: if $X_{p}=X_{q}$, then $p=q$. Thus, $f \nsubseteq F$ can only happen, if there is a monomial $p \in f$ such that, for every monomial $q \in F$, we have that either $X_{q} \nsubseteq X_{p}$ or $X_{q} \subset X_{p}$ (proper inclusion). Let a be an assignment which sets all variables in X_{p} to -1 , and the rest to ∞. Then $\hat{f}(a) \leqslant \hat{p}(a)=-\left|X_{p}\right|$. But for every monomial $q \in F$, we have either $\hat{q}(a)=+\infty$, if $X_{q} \nsubseteq X_{p}$, or $\hat{q}(a) \geqslant-\left|X_{p}\right|+1$, if $X_{q} \subset X_{p}$. In any case, we have that $\hat{F}(a)>\hat{f}(a)$, a contradiction with $\hat{F}=\hat{f}$. This shows $f \subseteq F$. The proof of the converse inclusion $F \subseteq f$ is the same. In the case of the Max* semiring, it is enough to set all variables in X_{p} to 1 , and the rest to $-\infty$.

Remark 8. Note that for non-multilinear polynomials, Lemma 7 needs not to hold. For example, if $F=\min \{x, 2 x, 3 x\}$ and $f=\min \{x, 3 x\}$, then $\hat{F}=\hat{f}$ holds over Min^{-}, but $F \neq f$.

In tropical semirings Min and Max, we only have weaker structural properties. For a polynomial f, let $f_{\min } \subseteq f$ denote the set of all monomials of f not containing any other monomial of f, and $f_{\max } \subseteq f$ denote the set of all monomials of f not contained in any other monomial of f. For example, if $f=\left\{x, x^{2} y, y z\right\}$, then $f_{\min }=\{x, y z\}$ and $f_{\max }=\left\{x^{2} y, y z\right\}$. Note that every monomial of f contains (properly or not) at least one monomial of $f_{\min }$, and is contained in at least one monomial of $f_{\max }$. Note also that $\hat{f}_{\text {min }}=\hat{f}$ holds in Min semirings, and $\hat{f}_{\max }=\hat{f}$ holds in Max semirings.

Lemma 9. If a circuit F computes a polynomial f over Min , and if $f_{\min }$ is multilinear, then $F_{\min }=$ $f_{\text {min }}$.

Proof. Let us first show that every monomial of F must contain at least one monomial of $f_{\text {min }}$. For this, assume that there is a monomial $p \in F$ which contains no monomial of $f_{\min }$. Since $f_{\min }$ is multilinear, this implies that every monomial of $f_{\min }$ must contain a variable not in X_{p}. So, on the assignment a which sets to 0 all variables in X_{p}, and sets to $+\infty$ all the remaining variables, we have that $\hat{f}(a)=\hat{f}_{\text {min }}(a)=+\infty$. But $\hat{F}(a) \leqslant \hat{p}(a)=0$, a contradiction with $\hat{F}=\hat{f}$.

Thus, every monomial of F must contain at least one monomial of $f_{\text {min }}$. Since no monomial in $F_{\min }$ can contain another monomial of F, it remains to show that $f_{\min } \subseteq F$. For this, assume that there is a monomial $q \in f_{\min }$ such that $q \notin F$. Take an assignment a which sets to 1 all variables in X_{q}, and sets to $+\infty$ all the remaining variables. Then $\hat{f}(a) \leqslant \hat{q}(a)=\left|X_{q}\right|$. On the other hand, the assignment a sets to $+\infty$ all monomials $p \in F$ such that $X_{p} \nsubseteq X_{q}$. Each of the remaining monomials $p \in F$ (if there is any) must satisfy $X_{p} \subseteq X_{q}$. But we already know that p must contain some monomial $q^{\prime} \in f_{\min }$, that is, $X_{q^{\prime}} \subseteq X_{p} \subseteq X_{q}$. Since both monomials q and q^{\prime} are multilinear and belong to $f_{\min }$, this implies $q=q^{\prime}$, and hence, also $X_{p}=X_{q}$. Since q is multilinear and $p \neq q$, this means that p must have strictly larger degree $|p|$ than $\left|X_{q}\right|$, and hence, $\hat{p}(a)=|p|>\left|X_{q}\right|=\hat{f}(a)$, a contradiction with $\hat{F}=\hat{f}$.

Remark 10. Note that Lemma 9 needs not to hold, if both polynomials are not multilinear. Say, if $F=\min \{2 x, x+y, 2 y\}$ and $f=\min \{2 x, 2 y\}$, then $\hat{F}=\hat{f}$ holds (because $x+y \geqslant \min \{2 x, 2 y\}$), but $F_{\text {min }}=F \neq f=f_{\text {min }}$.

Lemma 11. If a circuit F computes a multilinear polynomial f over Max, then F is also multilinear, and $F_{\max }=f_{\max }$.

Proof. That F must also be multilinear was already shown in Lemma 7. We claim that every monomial of F must be contained in at least one monomial of f. Indeed, if some monomial $p \in F$ is contained in none of the monomials of f, then every monomial $q \in f$ must miss at least one variable from X_{p}. So, on the assignment $a=a_{p}$ which sets to 1 all variables in X_{p}, and sets to 0 all the remaining variables, we have that $\hat{f}(a) \leqslant\left|X_{p}\right|-1$. But $\hat{F}(a) \geqslant \hat{p}(a)=\left|X_{p}\right|$, a contradiction with $\hat{F}=\hat{f}$. Thus, every monomial of F must be contained in at least one monomial of f.

It remains therefore to show that $f_{\max } \subseteq F$. For this, assume that there is a monomial $p \in f_{\max }$ such that $p \notin F$. Then, on the same assignment $a=a_{p}$, we have that $\hat{f}(a) \geqslant \hat{p}(a)=\left|X_{p}\right|$. On the other hand, every monomial $q \in F$ such that $X_{q} \nsupseteq X_{p}$ gets strictly smaller value $\hat{q}(a) \leqslant\left|X_{p}\right|-1$. So, it remains to show that F cannot have any monomial $q \neq p$ such that $X_{q} \supseteq X_{p}$. Indeed, we already know that every monomial $q \in F$ must be contained in some monomial $p^{\prime} \in f_{\max }$. Hence, $X_{q} \supseteq X_{p}$ would imply $X_{p^{\prime}} \supseteq X_{q} \supseteq X_{p}$. Since both monomials p^{\prime} and p are multilinear and belong to $f_{\max }$, this would imply $p^{\prime}=p$, and hence, also $q=p$ since q is multilinear as well.

The following easy consequence of the structural lemmas above shows the weakness of circuits over Max, Min^{-}and Max* semirings: they behave like monotone arithmetic circuits.

Corollary 12. Let f be a multilinear polynomial. Then:
(i) $\mathrm{S}(f) \leqslant \mathrm{A}[f]$ for every additively idempotent semiring S ;
(ii) $\mathrm{S}(f)=\mathrm{S}_{\mathrm{lin}}(f)$ for $\mathrm{S} \in\left\{\operatorname{Max}, \operatorname{Min}^{-}, \mathrm{Max}^{*}, \mathrm{~A}\right\}$;
(iii) $\operatorname{Min}^{-}(f)=\operatorname{Max}^{*}(f)=\mathrm{A}[f]$.

Proof. Item (i) holds because in an additively idempotent semiring S (where $x+x=x$ holds), the multiplicities of monomials have no effect on the represented function. Item (ii) follows from Lemmas 6 and 7, and the third item follows from (i) and Lemma 7.

5 Reduction to the Arithmetic Semiring

By Corollary 12(i), we know that $\mathrm{S}(f) \leqslant \mathrm{A}[f]$ holds in any additively idempotent S . In particular, tropical circuits are not weaker than monotone arithmetic circuits. On the other hand, the later circuits are the easiest to analyze: they cannot produce any "redundant" monomials, those not in f. It is therefore important to know, when the converse inequality $\mathrm{S}(f) \geqslant \mathrm{A}[f]$ holds, that is, when lower bounds on $\mathrm{A}[f]$ imply lower bounds on $\mathrm{S}(f)$. Corollary 12(iii) implies that this definitely happens in the semirings Min $^{-}$and Max^{*} : if f is multilinear, then

$$
\operatorname{Min}^{-}(f)=\operatorname{Max}^{*}(f)=\mathrm{A}[f] .
$$

However, the situation with circuits over tropical semirings $S \in\{\operatorname{Min}, \mathrm{Max}\}$ is completely different: here the gap between $\mathrm{S}(f)$ and $\mathrm{A}[f]$ may be even exponential. To see this, consider the st-connectivity polynomial $f=\operatorname{STCON}_{n}$. For this polynomial, we have $\operatorname{Min}(f)=O\left(n^{3}\right)$ (see Remark 3), but it is relatively easy to show that $\mathrm{A}[f]=2^{\Omega(n)}$ (see Theorem 45 below). We will now show a fact implying that the reason for such a large gap is the non-homogeneity of STCON: for homogeneous multilinear polynomials f, no gap between $\operatorname{Min}(f)$ and $\mathrm{A}[f]$ is possible at all.

Following Jerrum and Snir [15], define the lower envelope of a polynomial f to be the polynomial $f_{\text {le }}$ consisting of all monomials of f of smallest degree. Similarly, the higher envelope, $f_{\text {he }}$, of f consists of all monomials of f of largest degree. Note that both polynomials $f_{\text {le }}$ and $f_{\text {he }}$ are homogeneous, and $f_{\text {le }}=f_{\text {he }}=f$, if f itself is homogeneous.

The following theorem shows that lower bounds for tropical circuits can be obtained by proving lower bounds for monotone arithmetic circuits.

Theorem 13. For every multilinear polynomial f, we have

$$
\mathrm{A}[f] \geqslant \mathrm{B}_{\mathrm{lin}}(f) \geqslant \operatorname{Min}(f) \geqslant \mathrm{A}\left[f_{\mathrm{le}}\right] \text { and } \mathrm{A}[f] \geqslant \operatorname{Max}_{\operatorname{lin}}(f)=\operatorname{Max}(f) \geqslant \mathrm{A}\left[f_{\mathrm{he}}\right]
$$

If f is also homogeneous, then $\mathrm{B}_{\operatorname{lin}}(f)=\operatorname{Min}(f)=\operatorname{Max}(f)=\mathrm{A}[f]$.
Proof. The second claim follows from the first claim and the fact that $f_{\text {le }}=f_{\text {he }}=f$, if f is homogeneous. So, we only have to prove the first claim. To prove that $\mathrm{B}_{\mathrm{lin}}(f) \geqslant \operatorname{Min}(f)$, let F be a multilinear monotone boolean circuit computing f. Since the circuit is multilinear, its produced polynomial F is also multilinear. Since every monotone boolean function has a unique shortest monotone DNF, this implies that $F_{\min }=f_{\min }$. Since f and $f_{\min }$ represent the same function over Min, the circuit F with OR gates replaced by Min gates, and AND gates by Sum gates will compute f over Min.

The equality $\operatorname{Max}_{\operatorname{lin}}(f)=\operatorname{Max}(f)$ follows from Lemma 11 stating that every circuit computing a multilinear polynomial over Max must be multilinear. For the proof of the remaining inequalities $\operatorname{Min}(f) \geqslant \mathrm{A}\left[f_{\text {le }}\right]$ and $\operatorname{Max}(f) \geqslant \mathrm{A}\left[f_{\text {he }}\right]$, we make use of the following simple observation.

Claim 14. If a polynomial F can be produced by a circuit of size s, then both F_{le} and F_{he} can be produced by homogeneous circuits of size s.

Proof. Take a circuit producing F. The desired homogeneous sub-circuit producing the lower or the higher envelope can be obtain by starting with input gates, and removing (if necessary) one of the wires of every sum-gate, at inputs of which polynomials of different degrees are produced.

To prove the inequality $\operatorname{Min}(f) \geqslant \mathrm{A}\left[f_{\mathrm{le}}\right]$, take a minimal circuit F over Min computing f. Claim 14 implies that the lower envelope $F_{\text {le }}$ of the polynomial F produced by F can be also produced by a (homogeneous) circuit of size at most $\operatorname{Size}(F)$. Hence, $\mathrm{A}\left[F_{1 \mathrm{e}}\right] \leqslant \operatorname{Size}(F)=\operatorname{Min}(f)$. On the other hand, Lemma 9 implies that $f_{\text {le }}=F_{\text {le }}$, and we are done. The proof of $\operatorname{Max}(f) \geqslant \mathrm{A}\left[f_{\text {he }}\right]$ is the same by using Lemma 11.

The second claim of Theorem 13 has an important implication concerning the power of dynamic programs, which can be roughly stated as follows:

For optimization problems whose target polynomials are multilinear and homogeneous, dynamic programming is no more powerful than monotone arithmetic circuits!

6 Reduction to the Boolean Semiring

A semiring $S=(S,+, *, 0,1)$ is of zero-characteristic, if $1+1+\cdots+1 \neq 0$ holds for any finite sum of the unity 1 . Note that, with an exception of the Max semiring, all remaining semirings we consider are of zero-characteristic. If F is a circuit over a semiring S , then its boolean version is a monotone boolean circuit obtained by replacing every +-gate by a logical OR, and every *-gate by a logical AND. The following seems to be a "folklore" observation.

Lemma 15. If F is a circuit computing a polynomial f over some semiring S , and if S is of zerocharacteristic, then the boolean version of F computes f over the boolean semiring. In particular, $\mathrm{S}(f) \geqslant \mathrm{B}(f)$.

Proof. Let F be a circuit over S computing a given polynomial f. The circuit must correctly compute f on any subset of the domain S. We choose the subset $S_{+}=\{0, \overline{1}, \overline{2}, \ldots\}$, where $\bar{n}=1+\cdots+1$ is the n-fold sum of the multiplicative unit element 1 . Note that $\bar{n} \neq 0$ holds for all $n \geqslant 1$, because S has zero-characteristic.

Since $\bar{n}+\bar{m}=\overline{n+m}$ and $\bar{n} * \bar{m}=\overline{n \cdot m}, \mathrm{~S}_{+}=\left(S_{+},+, *, 0,1\right)$ is a semiring. Since $S_{+} \subseteq S$, the circuit must correctly compute f over this semiring as well. But the mapping $h: S_{+} \rightarrow\{0,1\}$ given by $h(0)=0$ and $h(\bar{n})=1$ for all $n \geqslant 1$, is a homomorphism from S_{+}into the boolean semiring B with $h(x+y)=h(x) \vee h(y)$ and $h(x * y)=h(x) \wedge h(y)$. So, the boolean version of F computes f over B.

To prove lower bounds in the boolean semiring-and hence, by Lemma 15, also in every semiring of zero characteristic-one can try to use the following general lower bounds criterion proved in [17] (see also [19, Sect. 9.4] for a simplified proof).

For $a \in\{0,1\}$, an a-term of a monotone boolean function is a subset of its variables such that, when all these variables are fixed to the constant a, the function outputs value a, independent of the values of other variables. It is easy to see that every 0 -term must intersect every 1 -term, and vice versa. Say that a family of sets A covers a family of sets B if every set in B contains at least one set of A.

Definition 16. A monotone boolean function f of n variables is t-simple if for all integers $2 \leqslant r, s \leqslant$ n, such that
(i) either the set of all 0 -terms of f can be covered by $t(r-1)^{s} s$-element subsets of variables,
(ii) or the set of all 1-terms of f can be covered by at most $t(s-1)^{r} r$-element subsets of variables plus $s-1$ single variables.

Note that this "asymmetry" between (i) and (ii) (allowing additional $s-1$ single variables in a cover) is important: say, condition (i) is trivially violated, if f contains a 0 -term $T=\left\{x_{1}, \ldots, x_{k}\right\}$ with $k<s$. But then (ii) is satisfied, because T must intersect all 1-terms, implying that the single variables x_{1}, \ldots, x_{k} cover all of them.

Theorem 17 ([17]). If f is not t-simple, then $\mathrm{B}(f)>t$.
Remark 18. One can easily show that, if the input variables can only take boolean values 0 and 1 , then $\operatorname{Min}(f) \leqslant 2 \cdot \mathrm{~B}(f)$ holds for every multilinear polynomial. Indeed, having a (boolean) circuit F for f, just replace each AND gate $u \wedge v$ by a Min gate $\min (u, v)$, and each OR gate $u \vee v$ by $\min (1, u+v)$. The point however is that tropical circuits must work correctly on much larger domain than $\{0,1\}$. This is why lower bounds for tropical circuits do not translate to lower bounds for monotone boolean circuits. And indeed, there are explicit polynomials f, as the spanning tree polynomial $f=\mathrm{ST}_{n}$, such that $\mathrm{B}(f)=O\left(n^{3}\right)$ but $\operatorname{Min}(f)=2^{\Omega(n)}$; the upper bound is shown in Remark 3, and the lower bound will be shown in Theorem 43.

Remark 19. When solving the so-called "bottleneck optimization" problems, one usually works in the bottleneck semiring $\mathrm{B}^{*}=(\mathrm{N} \cup\{+\infty\}$, max, $\min , 0,+\infty)$. Note that over this semiring, degrees of variables are not important: say, a monomial $p=x^{2} y^{3}$ turns to $\min \{x, x, y, y, y\}=\min \{x, y\}$. Thus, $X_{p}=X_{q}$ implies $\hat{p}=\hat{q}$, and $X_{q} \supseteq X_{p}$ implies that $\hat{q} \leqslant \hat{p}$. Since the boolean semiring $\mathrm{B}=(\{0,1\}$, max, $\min , 0,1)$ is a sub-semiring of B^{*}, we always have that $\mathrm{B}^{*}(f) \geqslant \mathrm{B}(f)$. (This also follows from Lemma 15 , because the bottleneck semiring is of zero characteristic.) In fact, we even have an equality $\mathrm{B}^{*}(f)=\mathrm{B}(f)$, that is, even though the domain of B^{*} is much larger, the lower bounds problem for bottleneck circuits is not easier than for monotone boolean circuits.

To see this, take a circuit F computing a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over B , and let F be the polynomial produced by F. Since F must correctly compute f on $\{0,1\}$, we have that: (i) for every monomial $q \in F$, there must exist a monomial $p \in f$ such that $X_{q} \supseteq X_{p}$, and (ii) for every monomial $p \in f$, there must exist a monomial $q \in F$ such that $X_{q}=X_{p}$. (This can be shown by setting all variables of a monomial violating (i) or (ii) to 1 , and the rest to 0 ; juts like in the proof of Lemma 11.) But, over the semiring $\mathrm{B}^{*}, X_{q}=X_{p}$ implies that $\hat{q}=\hat{p}$, and $X_{q} \supseteq X_{p}$ implies that $\hat{q} \leqslant \hat{p}$. Thus, on every input $a \in(\mathrm{~N} \cup\{+\infty\})^{n}$, the maximum will be achieved on a monomial of f, implying that the circuit correctly computes f also over B^{*}.

7 Relative Power of Semirings

The reductions to the boolean and to the arithmetic semirings (Lemma 15 and Theorem 13) give us the following relations for every multilinear polynomial f :

$$
\mathrm{B}(f) \leqslant \operatorname{Min}(f) \leqslant \mathrm{B}_{\operatorname{lin}}(f) \leqslant \operatorname{Min}^{-}(f)=\mathrm{A}[f]
$$

and

$$
\mathrm{B}(f) \leqslant \operatorname{Max}(f)=\operatorname{Max}_{\operatorname{lin}}(f) \leqslant \operatorname{Max}^{*}(f)=\mathrm{A}[f] .
$$

If, additionally, f is also homogeneous, then

$$
\mathrm{B}(f) \leqslant \mathrm{B}_{\operatorname{lin}}(f)=\operatorname{Min}(f)=\operatorname{Max}(f)=\operatorname{Min}^{-}(f)=\operatorname{Max}^{*}(f)=\mathrm{A}[f] .
$$

Moreover, all inequalities are strict: for some polynomials f, one side can be even exponentially smaller than the other. Moreover, the Max/Min and Min/Max gaps can be also exponential.

To show that circuits over the tropical semirings can be exponentially weaker than those over the boolean semiring, consider the spanning tree polynomial $f=\mathrm{ST}_{n}$ and the graph connectivity polynomial $g=\operatorname{CONN}_{n}$. Over the boolean semiring B, these polynomials represent the same boolean function: a graph is connected if and only if it has a spanning tree. This gives $\mathrm{B}(f)=\mathrm{B}(g)$ and $\mathrm{B}_{\operatorname{lin}}(f)=\mathrm{B}_{\operatorname{lin}}(g)$. Moreover, we already know (see Remark 3) that $\mathrm{B}(g)=O\left(n^{3}\right)$ and $\operatorname{Min}(g)=$ $O\left(n^{3}\right)$. On the other hand, a relatively simple argument (the "rectangle bound") yields $\mathrm{A}[f]=2^{\Omega(n)}$ (see Theorem 43 below). Since the polynomial f is homogeneous, Theorem 13 implies that $\operatorname{Min}(f)$, $\operatorname{Max}(f)$ and $\mathrm{B}_{\mathrm{lin}}(f)$ coincide with $\mathrm{A}[f]$, and hence, are also exponential in n. We thus have gaps:

$$
\begin{array}{ll}
\operatorname{Min}(f) / \mathrm{B}(f), \operatorname{Max}(f) / \mathrm{B}(f)=2^{\Omega(n)} & \text { for } f=\mathrm{ST}_{n} ; \\
\mathrm{B}_{\operatorname{lin}}(g) / \operatorname{Min}(g), \mathrm{B}_{\operatorname{lin}}(g) / \mathrm{B}(g)=2^{\Omega(n)} & \text { for } g=\mathrm{CONN}_{n} .
\end{array}
$$

The latter gap $\mathrm{B}_{\operatorname{lin}}(g) / \mathrm{B}(g)=2^{\Omega(n)}$ also shows that there is no "multilinear version" of the FloydWarshall algorithm, even in the boolean semiring.

To show that the remaining gaps can also be exponential, it is enough to take any multilinear and homogeneous polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ such that $\mathrm{A}[f]$ is exponential in n, and to consider its two "saturated" versions f_{*} and f^{*}, where f_{*} is obtained by adding to f all n monomials $x_{1}, x_{2}, \ldots, x_{n}$ of degree 1 , and f^{*} is obtained by adding to f the monomial $x_{1} x_{2} \cdots x_{n}$ of degree n.

Lemma 20. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a multilinear and homogeneous polynomial. Then both $\operatorname{Min}\left(f^{*}\right)$ and $\operatorname{Max}\left(f_{*}\right)$ are at least $\mathrm{A}[f]$, but all $\operatorname{Max}\left(f^{*}\right), \operatorname{Min}\left(f_{*}\right)$ and $\mathrm{B}_{\text {lin }}\left(f_{*}\right)$ are at most n.

Proof. Since f is the lower envelope of f^{*}, and the higher envelope of f_{*}. Theorem 13 implies that $\operatorname{Min}\left(f^{*}\right) \geqslant \mathrm{A}[f]$ and $\operatorname{Max}\left(f_{*}\right) \geqslant \mathrm{A}[f]$. On the other hand, over the Max semiring, the polynomial f^{*} computes $x_{1}+x_{2}+\cdots+x_{n}$, whereas over the Min semiring, f_{*} computes $\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, and computes $x_{1} \vee x_{2} \vee \cdots \vee x_{n}$ over the boolean semiring. Hence, all $\operatorname{Max}\left(f^{*}\right), \operatorname{Min}\left(f_{*}\right)$ and $\mathrm{B}_{\operatorname{lin}}\left(f_{*}\right)$ are at most n.

Since, there are many linear and homogeneous polynomials requiring monotone arithmetic circuits of exponential size (see, e.g. Table 1), the saturated versions of f immediately give exponential gaps.

Still, the "saturation trick" leads to somewhat artificial examples, and it would be interesting to establish exponential gaps using "natural" polynomials. For example, the Max/Min gap is achieved already on a very natural $s t$-connectivity polynomial $h=\operatorname{STCON}_{n}$. We know that $\operatorname{Min}(h)=O\left(n^{3}\right)$ (Remark 3), but a simple argument (see Theorem 45) shows that $\operatorname{Max}(h)=2^{\Omega(n)}$. Hence,

$$
\operatorname{Max}(h) / \operatorname{Min}(h)=2^{\Omega(n)} \text { for } h=\operatorname{STCON}_{n} .
$$

From now on we concentrate on the lower bound arguments themselves.

8 Lower Bounds for Separated Polynomials

Let $g\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in $n \geqslant 3$ variables. An enrichment of g is a polynomial h in $n-1$ variables obtained by taking some variable x_{k} and replacing it by a sum $x_{i}+x_{j}$ or by a product $x_{i} x_{j}$ of some other two (not necessarily distinct) variables, where $k \notin\{i, j\}$. A progress measure of polynomials is an assignment of non-negative numbers $\mu(g)$ to polynomials g such that
(i) $\mu\left(x_{i}\right)=0$ for each variable x_{i};
(ii) $\mu(h) \leqslant \mu(g)+1$ for every enrichment h of g.

Lemma 21. For every polynomial f, and every progress measure $\mu(f)$, we have $\mathrm{A}[f] \geqslant \mu(f)$.
Proof. Take a monotone arithmetic circuit F with $s=\mathrm{A}[f]$ gates producing f. We argue by induction on s. If $s=0$, then $\mathrm{F}=x_{i}$ is an input variable, and we have $\mathrm{A}[f]=0=\mu(f)$. For the induction step, take one of the first gates $u=x_{i} \circ x_{j}$ of F, where $\circ \in\{+, \cdot\}$. Let $\mathrm{F}^{\prime}\left(x_{1}, \ldots, x_{n}, y\right)$ be the circuit with the gate u replaced by a new variable y. Hence, $\operatorname{Size}\left(\mathrm{F}^{\prime}\right)=\operatorname{Size}(\mathrm{F})-1$ and $F\left(x_{1}, \ldots, x_{n}\right)$ is an enrichment of $F^{\prime}\left(x_{1}, \ldots, x_{n}, y\right)$. By the induction hypothesis, we have that $\operatorname{Size}\left(\mathrm{F}^{\prime}\right) \geqslant \mu\left(F^{\prime}\right)$. Together with $\mu(F) \leqslant \mu\left(F^{\prime}\right)+1$, this yields $\operatorname{Size}(F)=\operatorname{Size}\left(F^{\prime}\right)+1 \geqslant \mu\left(F^{\prime}\right)+1 \geqslant \mu(F)$.

Recall that a monomial p contains a monomial q (as a factor), if $p=q q^{\prime}$ for some monomial q^{\prime}.
Definition 22. A sub-polynomial $P \subseteq f$ is separated if the product $p q$ of any two monomials p and q of P contains no monomial of f distinct from p and q. Let

$$
\operatorname{sep}(f):=\max \{|P|-1: P \subseteq f \text { is separated }\}
$$

Note that we consider separateness within the entire set f of monomials: it is not enough that the product $p q$ contains no third monomial of P-it must not contain any third monomial of the entire polynomial f.

Note also that a multilinear polynomial f of minimum degree m is separated, if every monomial of f is uniquely determined by any subset of $\lceil m / 2\rceil$ its variables. (Being uniquely determined means that no other monomial contains the same subset of variables.) Indeed, if $p * q$ contains some monomial r then r and p (or r and q) must share at least $\lceil m / 2\rceil$ variables, implying that $r=p$ (or $r=q$) must hold.

Example 23. A standard construction of separated polynomials with many monomials is the following. Let $n=q^{2}$ where q is a prime number. The polynomial $f_{n, k}$ has n^{2} variables $x_{i, j}$ with $i, j \in G F(q)$, and is defined by:

$$
f_{n, k}(x)=\sum_{\pi} \prod_{i \in G F(q)} x_{i, \pi(i)},
$$

where the sum is taken over all (one-variable) polynomials $\pi(z)$ of degree at most $k-1$ over $G F(q)$. The polynomial has $q^{k}=n^{k / 2}$ monomials, and each of them is determined by any subset of k variables (since no polynomials of degree $\leqslant k-1$ can have k or more roots). Thus, for every $k \leqslant\lfloor q / 2\rfloor$, the polynomial $f_{n, k}$ is separated, and the following theorem implies that $\mathrm{A}\left[f_{n, k}\right] \geqslant n^{k / 2}-1$. Since the polynomial is linear and homogeneous, the same bound holds for tropical circuits, as well. This is almost tight, because clearly $\mathrm{A}\left[f_{n, k}\right] \leqslant q^{k+1}=n^{k / 2+1}$.

Theorem 24 (Schnorr [38]). For every polynomial f, we have $\mathrm{A}[f] \geqslant \operatorname{sep}(f)$, where

$$
\operatorname{sep}(f):=\max \{|P|-1: P \subseteq f \text { is separated }\}
$$

In particular, $\mathrm{A}[f] \geqslant|f|-1$ if the polynomial f itself is separated.

Proof. It is enough to show that the measure $\operatorname{sep}(f)$ is a progress measure. The first condition (i) is clearly fulfilled, since $\operatorname{sep}\left(x_{i}\right)=1-1=0$. To verify the second condition (ii), let $f\left(x_{1}, \ldots, x_{n}, y\right)$ be a polynomial, and $h\left(x_{1}, \ldots, x_{n}\right)$ be its enrichment. Our goal is to show that $\operatorname{sep}(f) \geqslant \operatorname{sep}(h)-$ 1. We only consider the "hard" case when y is replaced by a sum of variables: $h\left(x_{1}, \ldots, x_{n}\right)=$ $f\left(x_{1}, \ldots, x_{n}, u+v\right)$, where $u, v \in\left\{x_{1}, \ldots, x_{n}\right\}$.

To present the proof idea, we first consider the case when no monomial of f contains more than one occurrence of the variable y. Then every monomial $y p$ of f turns into two monomials $u p$ and $v p$ of h. To visualize the situation, we may consider the bipartite graph $G \subseteq f \times h$, where every monomial $y p \in f$ is connected to two monomials $u p, v p \in h$; each monomial $q \in f$ without y is connected to $q \in h$. Take now a separated subset $P \subseteq h$ such that $|P|-1=\operatorname{sep}(h)$, and let $Q \subseteq f$ be the set of its neighbors in G. Our goal is to show that:
(a) $|Q| \geqslant|P|-1$, and
(b) Q is separated.

Then the desired inequality $\operatorname{sep}(f) \geqslant|Q|-1 \geqslant|P|-2=\operatorname{sep}(h)-1$ follows.
To show item (a), it is enough to show that at most one monomial in Q can have both its neighbors in P. To show this, assume that this holds for some two monomials $y p$ and $y q$ of Q. Then all four monomials $u p, v p, u q, v q$ belong to P. But this contradicts the separateness of P, because the product $u p * v q$ contains the third monomial $u q$ (and $v p$).

To show item (b), assume that the product $p * q$ of some two monomials $p \neq q$ of Q contains some third monomial $r \in h$. Let $p^{\prime}, q^{\prime} \in P$ be some neighbors of p and q lying in P. Then the product $p^{*} * q^{\prime}$ must contain one (of the two) neighbors of r. Since both of these neighbors of r belong to h, we obtain a contradiction with the separateness of P.

In general (if y can have any degrees in f), a monomial $y^{k} p$ of f has $k+1$ neighbors $u^{i} v^{k-i} p$, $i=0,1, \ldots, k$ in h. To show (a), it is again enough to show that at most one monomial in Q can have two neighbors in P. For this, assume that there are two monomials $p \neq q$ such that all four monomials $u^{a} v^{k-a} p, u^{b} v^{k-b} p, u^{c} v^{l-c} q, u^{d} v^{l-d} q$ belong to P. Assume w.l.o.g. that $a=\max \{a, b, c, d\}$. Then the product of $u^{a} v^{k-a} p$ and $u^{c} v^{l-c} q$ contains $u^{a} v^{l-c} q$, and (since $c \leqslant a$) contains the monomial $u^{a} v^{l-a} q$ of h, contradicting the separateness of P. The proof of (b) is similar.

Remark 25. It is not difficult to see that we have a stronger inequality $\operatorname{sep}(f) \geqslant \operatorname{sep}(h)$, if the variable y is replaced by the product $u v$ (instead of the sum $u+v$). Thus, in fact, Theorem 24 gives a lower bound on the number of sum gates.

As a simple application of Schnorr's argument, consider the triangle polynomial

$$
\operatorname{TR}_{n}(x, y, z)=\sum_{i, j, k \in[n]} x_{i k} y_{k j} z_{i j}
$$

This polynomial has $3 n$ variables and n^{3} monomials.
Corollary 26. If $f=\mathrm{TR}_{n}$, then $\operatorname{Min}(f)=\operatorname{Max}(f)=\mathrm{A}[f]=\Theta\left(n^{3}\right)$.

Proof. The equalities $\operatorname{Min}(f)=\operatorname{Max}(f)=\mathrm{A}[f]$ hold by Theorem 13, because f is multilinear and homogeneous. The upper bound $\mathrm{A}[f]=O\left(n^{3}\right)$ is trivial. To prove the lower bound $\mathrm{A}[f]=\Omega\left(n^{3}\right)$, observe that every monomial $p=x_{i k} y_{k j} z_{i j}$ of f is uniquely determined by any choice of any two of its three variables. This implies that p cannot be contained in a union of any two monomials distinct from p. Thus, the polynomial f is separated, and its Schnorr's measure is $\operatorname{sep}(f)=n^{3}-1$. Theorem 24 yields $\mathrm{A}[f] \geqslant \operatorname{sep}(f)=n^{3}-1$, as desired.

Recall that the k-clique polynomial CLIQUE $_{n, k}$ has $\binom{n}{k}$ monomials $\prod_{i<j \in S} x_{i j}$ corresponding to subsets $S \subseteq[n]$ of size $|S|=k$. This is a homogeneous multilinear polynomial of degree $\binom{k}{2}$. Note that TR_{n} is a sub-polynomial of CLIQUE $3_{n, 3}$ obtained by setting some variables to 0 .

By Lemma 15, an exponential lower bound for CLIQUE $_{n, s}$ over the tropical Min follows from Razborov's lower bound for this polynomial over the boolean semiring B [37]. However, the proof over B is rather involved. On the other hand, in tropical semirings such a bound comes quite easily.
Corollary 27. For $f=\operatorname{CLIQUE}_{n, k}, \operatorname{Min}(f), \operatorname{Max}(f)$ and $\mathrm{B}_{\operatorname{lin}}(f)$ all are at least $\binom{n}{k}-1$.
This lower bound on $\mathrm{B}_{\operatorname{lin}}(f)$ was proved by Krieger [24] using different arguments.
Proof. Since f is multilinear and homogeneous, it is enough (by Theorems 13) to show the corresponding lower bound on $\mathrm{A}[f]$. By Theorem 24, it is enough to show that f is separated.

Assume for the sake of contradiction, that the union of two distinct k-cliques A and B contains all edges of some third clique C. Since all three cliques are distinct and have the same number of nodes, C must contain a node u which does not belong to A and a node v which does not belong to B. This already leads to a contradiction because either the node u (if $u=v$) or the edge $\{u, v\}$ (if $u \neq v$) of C would remain uncovered by the cliques A and B.

Recall that the dynamic programming algorithm of Floyd-Warshall implies that the all-pairs shortest path polynomial APSP_{n}, and hence, also the matrix product polynomial MP_{n}, have Min-circuits of size $O\left(n^{3}\right)$; see Theorem 2. On the other hand, using Theorem 24 one can show that this algorithm is optimal: a cubic number of gates is also necessary.

Corollary 28. Both $\operatorname{Min}\left(\mathrm{APSP}_{n}\right)$ and $\operatorname{Min}\left(\mathrm{MP}_{n}\right)$ are $\Theta\left(n^{3}\right)$.
Proof. It is enough to show that $\operatorname{Min}\left(\operatorname{MP}_{n}\right)=\Omega\left(n^{3}\right)$. Recall that $\operatorname{MP}_{n}(x, y)$ is the set of all n^{2} polynomials $f_{i j}=\sum_{k \in[n]} x_{i k} y_{k j}$. Since the triangle polynomial $\mathrm{TR}_{n}=\sum_{i, j \in[n]} z_{i j} f_{i j}$ is just a single-output version of MP_{n}, and its complexity is by at most an additive factor of $2 n^{2}$ larger than that of MP_{n}, the desired lower bound for MP_{n} follows directly from Corollary 26.

Kerr [23] earlier proved $\operatorname{Min}\left(\mathrm{MP}_{n}\right)=\Omega\left(n^{3}\right)$ using a different argument, which essentially employs the fact the Min semiring contains more than two distinct elements. Since this "domaindependent" argument may be of independent interest, we sketch it.

Proof. (Due to Kerr [23]) Let F be a Min-circuit computing all n^{2} polynomials

$$
f_{i j}(x)=\min \left\{x_{i k}+y_{k j}: k=1, \ldots, n\right\} .
$$

By Lemma 9, for each polynomial $f_{i j}$ there must be a gate $u_{i j}$, the polynomial $F_{i j}$ produced at which is of the form $F_{i j}=\min \left\{f_{i j}, G_{i j}\right\}$, where $G_{i j}$ is some set of monomials (sums), each containing at least one monomial of $f_{i j}$.

Assign to every monomial $p=x_{i k}+y_{k j}$ of $f_{i j}$ a sum gate u_{p} with the following two properties: (i) p is produced at u_{p}, and (ii) there is a path from u_{p} to $u_{i j}$ containing no sum gates. Since $a+a=a$ does not hold in Min, at least one such gate must exist for each of the monomials $x_{i k}+y_{k j}$.

It remains therefore to show that no other term $x_{a b}+y_{b c}$ can get the same gate u_{p}. To show this, assume the opposite. Then at the gate u_{p} some sum

$$
\min \left\{x_{i k}, \alpha, \ldots\right\}+\min \left\{y_{k j}, \ldots\right\}
$$

is computed, where $\alpha \in\left\{x_{a b}, y_{b c}\right\}$ is a single variable distinct from $x_{i k}$ and $y_{k j}$. Set $\alpha:=0, x_{i k}=$ $y_{k j}:=1$ and set all remaining variables to 2 . Then the first minimum in the sum above evaluates to 0 , and we obtain $\hat{F}_{i j}(x) \leqslant 1$. But $\hat{f}_{i j}(x)=2$ because the term $x_{i k}+y_{k j}$ gets value $1+1=2$, and the remaining terms of $f_{i j}$ get values $\geqslant 2+0=2$. This gives the desired contradiction.

Remark 29. Using more subtle arguments, Paterson [33], and Mehlhorn and Galil [29] succeeded to prove a cubic lower bound $\Omega\left(n^{3}\right)$ for MP_{n} even over the boolean semiring B .

We finish this section by mentioning one important result showing that circuits producing a single polynomial f must, in fact, also produce all partial derivatives of f.

The (formal) partial derivative $\partial f / \partial x_{i}$ of a polynomial is the sum of partial derivatives $\partial p / \partial x_{i}$ of its monomials $p=x_{i}^{a} q$, where $\partial p / \partial x_{i}=0$ if $a=0\left(x_{i}\right.$ does not appear in $\left.p\right)$, and $\partial p / \partial x_{i}=a x_{i}^{a-1} q$ if $a \geqslant 1$. In particular, if f is multilinear, then $\partial f / \partial x_{i}$ is a polynomial obtained from f by removing all monomials not containing x_{i}, and removing x_{i} from all the remaining monomials. The gradient of f is the vector $\nabla f=\left(\partial f / \partial x_{1}, \ldots, \partial f / \partial x_{n}\right)$.

Theorem 30 (Baur and Strassen [5]). For every polynomial $f, \mathrm{~A}[f, \nabla f] \leqslant 4 \cdot \mathrm{~A}[f]$.
This result holds not only for monotone but also for non-monotone arithmetic circuits, where subtractions are allowed. Morgenstern [31] has shown that a slightly worse upper bound (with constant 4 replaced by 5) can be proved by an easy induction using the chain rule for partial derivatives. Some extensions and improvements of Theorem 30 were given by Gashkov and Gashkov [11], and Sergeev [39]. Instead of the chain rule, they use the (simpler) product rule together with the so-called "transposition principle" for linear circuits (those not using product gates).

If the polynomial f is multilinear and homogeneous, then Theorems 30 and 13 imply that $\mathrm{S}(f, \nabla f) \leqslant$ $4 \cdot \mathrm{~S}(f)$ hods for every tropical semiring S . Since the gradient of the triangle polynomial $\mathrm{TR}_{n}=$ $\sum_{i, j \in[n]} z_{i j} f_{i j}$ contains all n^{2} polynomials $f_{i j}=\sum_{k \in[n]} x_{i k} y_{k j}$ of the matrix product polynomial MP_{n}, we in particularly have that $\mathrm{S}\left(\mathrm{TR}_{n}, \mathrm{MP}_{n}\right) \leqslant 4 \cdot \mathrm{~S}\left(\mathrm{TR}_{n}\right)$. Together with a trivial inequality $\mathrm{S}\left(\mathrm{TR}_{n}\right) \leqslant \mathrm{S}\left(\mathrm{MP}_{n}\right)+2 n^{2}$, this implies that computing the matrix product has essentially the same complexity as detecting a triangle; this holds for tropical as well as non-monotone arithmetic circuits. Similar relations between the complexities of detecting triangles and matrix product is given by Vassilevska Williams and Williams in [46].

9 Decompositions and Cuts

Besides the gate-elimination method, most of lower bound arguments for monotone arithmetic circuits follow the following general frame: if a polynomial f can be produced by a circuit of size s, then f can be written as a sum $f=\sum_{i=1}^{t} g_{i}$ of $t=O(s)$ "rectangles" g_{i}. Usually, these "rectangles" g_{i} are products of two (or more) polynomials of particular degrees. Let us first explain, where these "rectangles" come from.

Let F be a circuit over some semiring $\mathrm{S}=(S,+, *, 0,1)$. For a gate u in F , let f_{u} denote the polynomial produced at u, and let $\mathrm{F}_{u=0}$ denote the circuit obtained from F by replacing the gate u by the additive identity 0 . We now assume that $a * 0=0$ holds for all $a \in S$. Hence, the polynomial $F_{u=0}$ produced by $\mathrm{F}_{u=0}$ consists of only those monomials of F which do not "use" the gate u for their production. To avoid trivialities, we will always assume that $F_{u=0} \neq F$, i.e. that there are no "redundant" gates.

Lemma 31. For every gate u in F , the polynomial F produced by F can be written as a sum $F=$ $F_{u}+F_{u=0}$ of two polynomials, the first of which has the form $F_{u}=f_{u} * \bar{f}_{u}$ for some polynomial \bar{f}_{u}.

Proof. If we replace the gate u by a new variable y, the resulting circuit produces a polynomial of the form $y * A+F_{u=0}$ for some polynomial A. It remains to substitute all occurrences of the variable y with the polynomial f_{u} produced at the gate u.

When analyzing circuits, the following concept of "parse graphs" is often useful. A parse-graph G in F is defined inductively as follows: G includes the root (output gate) of F . If u is a sum-gate, then exactly one of its inputs is included in G . If u is a product gate, then both its input gates are included in G. Note that each parse-graph produces exactly one monomial in a natural way, and that each monomial $p \in F$ is produced by at least one parse-graph. If p is multilinear, then each parse-graph for p is a tree.

Remark 32. Roughly speaking, the number $\left|F_{u}\right|$ of monomials in the polynomial F_{u} is the "contribution" of the gate u to the production of the entire polynomial F. Intuitively, if this contribution is small for many gates, then there must be many gates in F. More formally, associate with each monomial $p \in F$ some of its parse-graphs F_{p} in F . Observe that $u \in \mathrm{~F}_{p}$ implies $p \in F_{u}$. Thus, double-counting yields

$$
\operatorname{Size}(\mathrm{F})=\sum_{u \in \mathrm{~F}} 1 \geqslant \sum_{u \in \mathrm{~F}} \sum_{p \in F: u \in \mathrm{~F}_{p}} \frac{1}{\left|F_{u}\right|}=\sum_{p \in F} \sum_{u \in \mathrm{~F}_{p}} \frac{1}{\left|F_{u}\right|} \geqslant|F| \cdot \min _{p \in F} \sum_{u \in \mathrm{~F}_{p}} \frac{1}{\left|F_{u}\right|} .
$$

So, in principle, one can obtain strong lower bounds on the total number of gates in F by showing that this latter minimum cannot be too small.

The polynomial \bar{f}_{u} in Lemma 31 can be explicitly described by associating polynomials with paths in the circuit F . Let π be a path from a gate u to the output gate, u_{1}, \ldots, u_{m} be all product gates along this path (excluding the first gate u, if it itself is a product gate), and w_{1}, \ldots, w_{m} be input gates to these product gates not lying on the path π. We associate with π the polynomial $f_{\pi}:=$ $f_{w_{1}} * f_{w_{2}} \cdots f_{w_{m}}$. Then

$$
\bar{f}_{u}=\sum_{\pi} f_{\pi}
$$

where the sum is over all paths π from u to the output gate.
Lemma 31 associates sub-polynomials $f_{u} * \bar{f}_{u}$ of F with nodes (gates) u of F . In some situations, it is more convenient to associate sub-polynomials with edges. For this, associate with every edge $e=(u, v)$, where $v=u \circ w$ is some gate with $\circ \in\{+, *\}$ of F , the polynomial

$$
\bar{f}_{e}:=A * \bar{f}_{v} \quad \text { where } \quad A= \begin{cases}1 & \text { if } \circ=+ \\ f_{w} & \text { if } \circ=*\end{cases}
$$

That is, $\bar{f}_{e}=\bar{f}_{v}$ if v is a sum gate, and $\bar{f}_{e}=f_{w} * \bar{f}_{v}$ if v is a product gate.

A node-cut in a circuit is a set U of its nodes (gates) such that every input-output path contains a node in U. Similarly, an edge-cut is a set E of edges such that every input-output path contains an edge in E. Recall that, in our notation, " $f=h$ " for two polynomials f and h only means that their sets of monomials are the same-their multiplicities (coefficients) may differ.

Lemma 33. If U is a node-cut and E an edge-cut in a circuit F , then

$$
F=\sum_{u \in U} f_{u} * \bar{f}_{u}=\sum_{e=(u, v) \in E} f_{u} * \bar{f}_{e}
$$

Proof. The fact that all monomials of the last two polynomials are also monomials of F follows from their definitions. So, it is enough to show that every monomial $p \in F$ belongs to both of these polynomials. For this, take a parse graph F_{p} of p. Since U forms a node-cut, the graph F_{p} must contain some node $u \in U$. The monomial p has a form $p=p^{\prime} p^{\prime \prime}$ where p^{\prime} is the monomial produced by the subgraph of F_{p} rooted in u. Hence, $p^{\prime} \in f_{u}$ and $p^{\prime \prime} \in \bar{f}_{u}$. Similarly, since E forms an edge-cut, the graph F_{p} contains some edge $e=(u, v) \in E$. The monomial p has the form $p=p^{\prime} p^{\prime \prime}$ where p^{\prime} is the monomial produced by the subgraph of F_{p} rooted in u. Hence, $p^{\prime} \in f_{u}$ and $p^{\prime \prime} \in \bar{f}_{e}$.

10 Lower Bounds for (k, l)-free Polynomials

A polynomial f is (k, l)-free $(1 \leqslant k \leqslant l)$ if f does not contain a product of two polynomials, one with $>k$ monomials and the other with $>l$ monomials. A polynomial f is f-free if it is (k, k)-free, that is, if

$$
A * B \subseteq f \text { implies } \min \{|A|,|B|\} \leqslant k
$$

Note that this alone gives no upper bound on the total number $|A * B|$ of monomials in the product $A * B$.

Theorem 34. If $a(k, l)$-free polynomial f can be produced by a circuit of size s, then f can be written as a sum of at most $2 s$ products $A \times B$ with $|A| \leqslant k$ and $|B| \leqslant l^{2}$. In particular,

$$
\mathrm{A}[f] \geqslant \frac{|f|}{2 k l^{2}}
$$

Proof. Our argument is a mix of ideas of Gashkov and Sergeev [12], and of Pippenger [34]. Take a minimal circuit F producing f; hence, $F=f$ is (k, l)-free. This implies that every product gate $u=v * w$ in F must have an input, say w, at which a "small" set $A=f_{w}$ of only $|A| \leqslant l$ monomials is produced. We thus can remove the edge (w, u) and replace u by a unary (fanin-1) gate $u=v * A$ of scalar multiplication by this fixed (small) polynomial A. If both inputs produce small polynomials, then we eliminate only one of them. What we achieve by doing this is that input gates remain the same as in the original circuit (variables x_{1}, \ldots, x_{n} and constants 0,1), each product gate has fanin 1 , and for every edge $e=(u, v)$ in the resulting circuit F^{\prime}, we have an upper bound

$$
\begin{equation*}
\left|\bar{f}_{e}\right| \leqslant l \cdot\left|\bar{f}_{v}\right| \tag{1}
\end{equation*}
$$

Say that an edge $e=(u, v)$ in F^{\prime} is legal if both $\left|f_{u}\right| \leqslant k$ and $\left|\bar{f}_{e}\right| \leqslant l^{2}$ hold. Let E be the set of all legal edges; hence, $\operatorname{Size}(F) \geqslant|E| / 2$. By Lemma 33, it remains to show that E forms an edge-cut of F^{\prime}.

To show this, take an arbitrary input-output path P in F^{\prime}, and let $e=(u, v)$ be the last edge of P with $\left|f_{u}\right| \leqslant k$. If v is the output gate, then \bar{f}_{v} is a trivial polynomial 1 , and hence, $\left|\bar{f}_{e}\right| \leqslant l$ by
(1), meaning that e is a legal edge. Suppose now that v is not the output gate. Then $\left|f_{u}\right| \leqslant k$ but $\left|f_{v}\right|>k$. Held also $\left|\bar{f}_{e}\right|>l^{2}$, then (1) would imply that $\left|\bar{f}_{v}\right| \geqslant\left|\bar{f}_{e}\right| / l>l$. Together with $\left|f_{v}\right|>k$ and $f_{v} * \bar{f}_{v} \subseteq F$, this would contradict the (k, l)-freeness of F. Thus, $\left|f_{u}\right| \leqslant k$ and $\left|\bar{f}_{e}\right| \leqslant l^{2}$, meaning that $e=(u, v)$ is a legal edge.

Together with Theorem 13, Theorem 34 yields the following lower bound over tropical semirings for polynomials, whose only lower or higher envelopes are required to be (k, l)-free.

Corollary 35. Let f and g be polynomials such that $f_{\text {le }}$ and $g_{\text {he }}$ are (k, l)-free for some $1 \leqslant k \leqslant l$. Then

$$
\operatorname{Min}(f) \geqslant \frac{\left|f_{\mathrm{le}}\right|}{2 k l^{2}} \text { and } \operatorname{Max}(g) \geqslant \frac{\left|g_{\mathrm{he}}\right|}{2 k l^{2}}
$$

Remark 36. Using a deeper analysis of circuit structure, Gashkov and Sergeev [10, 12] were able to even estimate the numbers of sum and product gates: every monotone arithmetic circuit computing a (k, l)-free polynomial f of n variables must have at least $|f| / K-1$ sum gates, and at least $2 \sqrt{|f| / K}-$ $n-2$ product gates, where $K=\max \left\{k^{3}, l^{2}\right\}$.

Remark 37. Every boolean $n \times n$ matrix $A=\left(a_{i j}\right)$ defines a set $A y=\left(f_{1}, \ldots, f_{n}\right)$ of n linear polynomials $f_{i}(y)=\sum_{j} a_{i j} y_{j}$, as well as a single-output bilinear polynomial $f_{A}(x, y)=\sum_{i} x_{i} f_{i}(y)=$ $\sum_{i, j: a_{i j}=1} x_{i} y_{j}$ on $2 n$ variables. Call a boolean matrix $A(k, l)$-free, if it does not contain any $(k+$ $1, l+1)$ all- 1 submatrix. It is clear that the polynomial f_{A} is (k, l)-free if and only if the matrix A is (k, l)-free.

Results of Nechiporuk [32] (re-discovered later by Mehlhorn [28] and Pippenger [34]) imply that, if A is (k, k)-free, then $\mathrm{B}(A x) \geqslant|A| / 4 k^{3}$, where $|A|$ is the number of 1-entries in A. This, however, does not immediately yield a similar lower bound on $\mathrm{B}\left(f_{A}\right)$ for the single-output version f_{A} and, in fact, no such bound is known so far in the boolean semiring. (A lower bound $\mathrm{B}\left(f_{A}\right) \geqslant|A|$ for (1,1)-free matrices is only known when restricted to circuits with gates of fanout 1, i.e., to formulas; see [19, Theorem 7.2].) On the other hand, Theorem 34 gives such a bound at least for tropical and multilinear boolean circuits: if A is (k, k)-free, then

$$
\operatorname{Min}\left(f_{A}\right)=\operatorname{Max}\left(f_{A}\right)=\mathrm{B}_{\operatorname{lin}}\left(f_{A}\right)=\mathrm{A}\left[f_{A}\right] \geqslant|A| / 2 k^{3}
$$

where the equalities follow from Theorem 13 , because the polynomial f_{A} is homogeneous.

11 Rectangle Bound

For a polynomial f, let $d(f)$ denote its minimum degree, i.e., the minimum degree of a monomial of f. Various versions of the following fact were observed by several authors including Hyafil [14], Jerrum and Snir [15] and Valiant [43].

Lemma 38 (Sum-of-Products). If a polynomial f of minimum degree at least $m \geqslant 3$ can be produced by a circuit of size s, then f can be written as a sum $f=\sum_{i=1}^{t} g_{i} * h_{i}$ of $t \leqslant s$ products $g_{i} * h_{i}$ of polynomials such that $m / 3<d\left(g_{i}\right) \leqslant 2 m / 3$.

Proof. Let $d=d(f)$ be the minimum degree of f, and let F be a circuit of size s producing f; hence, $F=f$ and $d \geqslant m$. By the degree d_{u} of a gate $u \in \mathrm{~F}$ we will mean the minimum degree of the polynomial produced at u. In particular, the degree of the output gate is d.

Claim 39. For every $\epsilon \in(1 / d, 1)$, there exists a gate u with $\epsilon d / 2<d_{u} \leqslant \epsilon d$.

Proof. Start at the output gate of F, and traverse the circuit (in the reverse order of edges) by always choosing the input of larger degree until a gate v of degree $d_{v}>\epsilon d$ is found such that both its inputs u and w have degrees at most ϵd. Assume w.l.o.g. that $d_{u} \geqslant d_{w}$. Since $d_{v} \leqslant d_{u}+d_{w} \leqslant 2 d_{u}$, the gate u has the desired degree $\epsilon d / 2<d_{u} \leqslant \epsilon d$.

Now, we apply Claim 39 with $\epsilon:=2 m / 3 d$ to find a gate u of degree $m / 3=\epsilon d / 2<d_{u} \leqslant \epsilon d=$ $2 m / 3$. By Lemma 31, we can write F as $F=f_{u} * \bar{f}_{u}+F_{u=0}$ where f_{u} is the polynomial produced at u. Since $d\left(f_{u}\right)=d_{u}$, we have that $m / 3<d\left(f_{u}\right) \leqslant 2 m / 3$. The polynomial $F_{u=0}$ is obtained from F by removing some monomials. If $F_{u=0}$ is empty, then we are done. Otherwise, the polynomial $F_{u=0}$ still has minimum degree at least m, and can be produced by a circuit with one gate fewer. So, we can repeat the same argument for the polynomial $F_{u=0}$, until the empty polynomial is obtained.

Remark 40. Lemma 38 remains true if, instead of the minimum degree measure $d(f)$ of polynomials, one takes the minimum length $l(f)$ of a monomial of f, where the length of a monomial p is defined as the number $\left|X_{p}\right|$ of distinct variables occurring in p. The same argument works because $l\left(F_{u=0}\right) \geqslant$ $l(F)$, as long as the polynomial $F_{u=0}$ is not empty.

To upper-bound the maximal possible number $|A * B|$ of monomials in a product-polynomial $A * B \subseteq$ f, the following measure of factor-density naturally arises: for an integer $r \geqslant 0$, let $\#_{r}(f)$ be the maximum number of monomials in f containing a fixed monomial of degree r as a common factor. This measure tells us how much the monomials of f are "stretched": the faster $\#_{r}(f)$ decreases with increasing r, the more stretched f is. Note that, if d is the maximum degree of f, then

$$
1=\#_{d}(f) \leqslant \#_{d-1}(f) \leqslant \ldots \leqslant \#_{1}(f) \leqslant \#_{0}(f)=|f|
$$

Observation 41. Let A and B be polynomials of maximum degrees a and b. If $A * B \subseteq f$, then $|A * B| \leqslant \#_{a}(f) \cdot \#_{b}(f)$.

Proof. Fix a monomial $p \in A$ of degree $|p|=a$, and a monomial $q \in B$ of degree $|q|=b$. Since $\{p\} * B \subseteq f$, we have that $|B|=|\{p\} * B| \leqslant \#_{|p|}(f)=\#_{a}(f)$. Similarly, since $A *\{q\} \subseteq f$, we have that $|A|=|A *\{q\}| \leqslant \#_{|q|}(f)=\#_{b}(f)$.

Lemma 42 (Rectangle Bound). For every polynomial f of minimum degree at least $m \geqslant 3$, there is an integer $m / 3<r \leqslant 2 m / 3$ such that

$$
\mathrm{A}[f] \geqslant \frac{|f|}{\#_{r}(f) \cdot \#_{m-r}(f)}
$$

Proof. Let F be a minimal monotone arithmetic circuit representing f, and let $s=\operatorname{Size}(\mathrm{F})$. By Lemma 38, the polynomial $F=f$ can be written as a sum of at most s products $A * B$ of polynomials, where the minimum degree $a=d(A)$ of A satisfies $m / 3 \leqslant a \leqslant 2 m / 3$; hence, $d(B) \geqslant m-a$. Observation 41 implies that $|A * B| \leqslant \#_{a}(f) \cdot \#_{m-a}(f)$.

The Rectangle Bound allows one to easily obtain strong lower bounds for some explicit polynomials.

Theorem 43. If $f \in\left\{\operatorname{PER}_{n}, \mathrm{HC}_{n}, \mathrm{ST}_{n}\right\}$, then $\operatorname{Min}(f), \operatorname{Max}(f)$ and $\mathrm{B}_{\operatorname{lin}}(f)$ all are $2^{\Omega(n)}$.

Proof. Since all these three polynomials f are multilinear and homogeneous, it is enough (by Theorem 13) to prove the corresponding lower bounds on $\mathrm{A}[f]$. We will obtain such bounds by applying Lemma 42.

The permanent polynomial $f=\mathrm{PER}_{n}$ has $|f|=n!$ multilinear monomials $x_{1, \pi(1)} x_{2, \pi(2)} \cdots x_{n, \pi(n)}$, one for each permutation $\pi:[n] \rightarrow[n]$. Since at most $(n-r)$! of the permutations can take r predescribed values, we have that $\#_{r}(f) \leqslant(n-r)$!. Lemma 42 gives $\mathrm{A}[f] \geqslant n!/(n-r)!r!=\binom{n}{r}$ for some $n / 3<r \leqslant 2 n / 3$; so, $\mathrm{A}[f]=2^{\Omega(n)}$.

The argument for HC_{n} is almost the same: the only difference is that now the monomials correspond to symmetric, not to all permutations.

The spanning tree polynomial $f=\mathrm{ST}_{n}$ is a homogeneous polynomial of degree $n-1$ with $|f|=n^{n-2}$ monomials $x_{2, \pi(2)} x_{3, \pi(3)} \cdots x_{n, \pi(n)}$ corresponding to the functions $\pi:\{2,3, \ldots, n\} \rightarrow[n]$ such that $\forall i \exists k$: $\pi^{(k)}(i)=1$. Each spanning tree gives a function with this property by mapping sons to their father. Now, if we fix some r edges, then r values of functions π whose spanning trees contain these edges are fixed. Thus, $\#_{r}(f) \leqslant(n-r)^{n-r-2}$, and Lemma 42 gives $\mathrm{A}[f]=2^{\Omega(n)}$.

Remark 44. Fomin et al. [8] have shown that the spanning tree polynomial ST_{n} can be computed by a monotone arithmetic circuit of size $O\left(n^{3}\right)$, if divisions are allowed. The analogue of division x / y in tropical circuits is subtraction $x-y$. Thus, the result implies that, over the tropical semifield (R, max,,+-$)$, the polynomial ST_{n} can be computed by a circuit of size $O\left(n^{3}\right)$. This extends to tropical circuits the result of Valiant [43] stating that subtractions may be exponentially powerful in arithmetic circuits.

The three polynomials in Theorem 43 are homogeneous. To show that the rectangle bound works also for non-homogeneous polynomials, consider the $s t$-connectivity polynomial STCON $_{n}$. We know that this polynomial has Min-circuits of size $O\left(n^{3}\right)$ (Remark 3). But Max-circuits for this polynomial must be of exponential size.

Theorem 45. If $f=\operatorname{STCON}_{n+2}$, then $\operatorname{Max}(f)$ and $\operatorname{Min}^{-}(f)$ are at least $2^{\Omega(n)}$.
Proof. Consider the higher envelope $f_{\text {he }}$ of f. This is a homogeneous polynomial of degree n with $\left|f_{\text {he }}\right|=n$! monomials corresponding to paths in K_{n+2} from $s=0$ to $t=n+1$ with exactly n inner nodes. Since $\#_{r}(f) \leqslant(n-r)$!, Lemma 42 (with $r=n / 3$) gives $\mathrm{A}\left[f_{\text {he }}\right]=2^{\Omega(n)}$. By Theorem 13, the same lower bound holds for $\operatorname{Max}(f)$ and $\operatorname{Min}^{-}(f)$.

12 Truly Exponential Lower Bounds

Note that the lower bounds above have the forms $2^{\Omega(\sqrt{n})}$, where n is the number of variables. Truly exponential lower bounds $\mathrm{A}[f]=\Omega\left(2^{n / 2}\right)$ on the monotone circuit size of multilinear polynomials of n variables were announced by Kasim-Zade [21, 22]. Somewhat earlier, a lower bound $\mathrm{A}[f]=2^{\Omega(n)}$ was announced by Kuznetsov [25]. Then, Gashkov [10] proposed a general lower bounds argument for monotone arithmetic circuits and used it to prove an $\mathrm{A}[f]=\Omega\left(2^{2 n / 3}\right)$ lower bound.

The construction of the corresponding multilinear polynomials in these works is algebraic. Say, the monomials of the polynomial $f(x, y)$ of $2 n$ variables constructed in [21, 22] have the form $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} y_{1}^{b_{1}} \cdots y_{n}^{b_{n}}$ where $a \in G F(2)^{n}$ and $b=a^{3}$ (we view vector a as an element of $G F\left(2^{n}\right)$ when rising it to the 3 rd power). That is, monomials correspond to the points of the cubic parabola $\left\{\left(a, a^{3}\right): a \in G F\left(2^{n}\right)\right\}$. The monomials of the polynomial constructed in [10] are defined using triples (a, b, c) with $a, b, c \in G F\left(2^{n}\right)$ satisfying $a^{3}+b^{7}+c^{15}=1$. The constructed polynomials are (k, l) free for particular constants k and l, and the desired lower bounds follow from general lower bounds
of Gashkov [10], and Gashkov and Sergeev [12] for (k, l)-free polynomials (see Sect. 10 for these bounds).

Without knowing these results, Raz and Yehudayoff [35] have recently used discrepancy arguments and exponential sum estimates to derive a truly exponential lower bound $\mathrm{A}[f]=2^{\Omega(n)}$ for an explicit multilinear polynomial $f\left(x_{1}, \ldots, x_{n}\right)$. Roughly, their construction of f is as follows. Assume that n divided by a particular constant k is a prime number. View a monomial p as a $0 / 1$ vector of its exponents. Split this vector into k blocks of length n / k, view each block as a field element, multiply these elements, and let $c_{p} \in\{0,1\}$ be the first bit of this product. Then include the monomial p in f if and only if $c_{p}=1$.

In this section we use some ideas from [18] to show that truly exponential lower bounds can be also proved using graphs with good expansion properties. Numerically, our bounds (like those in [35]) are worse than the bounds in [21, 22, 10, 12] (have smaller constants), but the construction of polynomials is quite simple (modulo the construction of expander graphs).

Say that a partition $[n]=S \cup T$ is balanced if $n / 3 \leqslant|S| \leqslant 2 n / 3$. Define the matching number $m(G)$ of a graph $G=([n], E)$ as the largest number m such that, for every balanced partition of nodes of G, at least m crossing edges form an induced matching. An edge is crossing if it joins a node in one part of the partition with a node in the other part. Being an induced matching means that no two endpoints of any two edges of the matching are joined by a crossing edge.

Our construction of hard polynomials is based on the following lemma. Associate with every graph $G=([n], E)$ the multilinear polynomial $f_{G}\left(x_{1}, \ldots, x_{n}\right)$ whose monomials are $\prod_{i \in S} x_{i}$ over all subsets $S \subseteq[n]$ such that the induced subgraph $G[S]$ has an odd number of edges of G.

Lemma 46. For every non-empty graph G on n nodes, we have

$$
\mathrm{A}\left[f_{G}\right] \geqslant 2^{m(G)-2}
$$

We postpone the proof of this lemma and turn to its application.
The following simple claim gives us a general lower bound on the matching number $m(G)$. Say that a graph is s-mixed if every two disjoint s-element subsets of its nodes are joined by at least one edge.

Claim 47. If an n-node graph G of maximum degree d is s-mixed, then $m(G) \geqslant(\lfloor n / 3\rfloor-s) /(2 d+1)$.
Proof. Fix an arbitrary balanced partition of the nodes of G into two parts. To construct the desired induced matching, formed by crossing edges, we repeatedly take a crossing edge and remove it together with all its neighbors. At each step we remove at most $2 d+1$ nodes. If the graph is s-mixed, then the procedure will run for m steps as long as $\lfloor n / 3\rfloor-(2 d+1) m$ is at least s.

Thus, we need graphs of small degree that are still s-mixed for small s. Examples of such graphs are expander graphs. A Ramanujan (n, q)-graph is a regular graph G of degree $q+1$ on n nodes such that $\lambda(G) \leqslant 2 \sqrt{q}$, where $\lambda(G)$ is the second largest (in absolute value) eigenvalue of the adjacency matrix of G. Explicit constructions of Ramanujan (n, q)-graphs for every prime $q \equiv 1 \bmod 4$ and infinitely many values of n were given by Margulis [27], Lubotzky, Phillips and Sarnak [26]; these were later extended to the case where q is an arbitrary prime power by Morgenstern [31], and Jordan and Livné [16].

Theorem 48. If $f_{G}\left(x_{1}, \ldots, x_{n}\right)$ is the multilinear polynomial associated with a Ramanujan $(n, 64)$ graph G, then

$$
\mathrm{A}\left[f_{G}\right] \geqslant 2^{0.001 n}
$$

Proof. The Expander Mixing Lemma ([2, Lemma 2.3]) implies that, if G is a d-regular graph on n nodes, and if $s>\lambda(G) \cdot n / d$, then G is s-mixed. Now, every Ramanujan (n, q)-graph G is d-regular with $d=q+1$ and has $\lambda(G) \leqslant 2 \sqrt{q}$. Hence, the graph G is s-mixed for $s=2 n / \sqrt{q}>2 \sqrt{q} n /(q+1)$. In our case (for $q=64$), we have that G is s-mixed for $s=2 n / \sqrt{64}=n / 4$. Lemma 46 gives the desired lower bound.

It remains to prove Lemma 46.
Call polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ a product polynomial, if f is a product of two polynomials on disjoint sets of variables, each of size at least $n / 3$, that is, if $f=g(Y) * h(Z)$ for some partition $Y \cup Z=\left\{x_{1}, \ldots, x_{n}\right\}$ of variables with $|Y|,|Z| \geqslant n / 3$, and some two polynomials g and h on these variables. Note that we do not require that, say, the polynomial $g(Y)$ must depend on all variables in Y : some of them may have zero degrees in g.

Claim 49 ([35]). If $\mathrm{F}\left(x_{1}, \ldots, x_{n}\right)$ is a multilinear circuit of size s with $n \geqslant 3$ input variables, then the polynomial F can be written as a sum of at most $s+1$ product polynomials.

Proof. Induction on s. For a gate u, let X_{u} be the set of variables in the corresponding subcircuit of F. Let v be the output gate of F . If v is an input gate, then F itself is a product polynomial, since $n \geqslant 3$. So, assume that v is not an input gate. If $\left|X_{v}\right| \leqslant 2 n / 3$, then the polynomial F itself is a product polynomial, because $F=F * 1$. So, assume that $\left|X_{v}\right|>2 n / 3$. Every gate u in F entered by gates u_{1} and u_{2} admits $\left|X_{u}\right| \leqslant\left|X_{u_{1}}\right|+\left|X_{u_{2}}\right|$. Thus, there exists a gate u in F such that $n / 3 \leqslant\left|X_{u}\right| \leqslant 2 n / 3$. By Lemma 31, we can write F as $F=F_{u}+F_{u=0}$ where $F_{u}=g_{u} * h$ with $n / 3 \leqslant\left|X_{u}\right| \leqslant 2 n / 3$ and some polynomial h. Moreover, since the circuit is multilinear, the set X_{h} of variables in the polynomial h must be disjoint from X_{u}, implying that $\left|X_{h}\right| \geqslant n-\left|X_{u}\right| \geqslant n / 3$. Thus, $g_{u} * h$ is a product polynomial. Since the circuit $F_{u=0}$ has size at most $s-1$, the desired decomposition of F follows from the induction hypothesis.

By the characteristic function of a multilinear polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ we will mean the (unique) boolean function which accepts a binary vector $a \in\{0,1\}^{n}$ if and only if the polynomial f contains the monomial $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}=\prod_{i: a_{i}=1} x_{i}$. (Note that this boolean function needs not to be monotone.) In particular, the characteristic function of our polynomial f_{G} is the quadratic boolean function

$$
\phi(x)=\sum_{\{i, j\} \in E} x_{i} x_{j} \bmod 2 .
$$

That is, $\phi(a)=1$ if the subgraph $G[S]$ induced by the set of nodes $S=\left\{i: a_{i}=1\right\}$ has an odd number of edges. Since $\phi(x)$ is a non-zero polynomial of degree 2 over $G F(2)$, we have that $\left|f_{G}\right|=$ $\left|\phi^{-1}(1)\right| \geqslant 2^{n-2}$.

Claim 50. For every graph G on n nodes, every product sub-polynomial of f_{G} contains at most $2^{n-m(G)}$ monomials.

Proof. Let $G * H$ be a product polynomial contained in f_{G}. This polynomial gives a partition $x=(y, z)$ of the variables into two parts, each containing at least $n / 3$ variables. Let $g(y)$ and $h(z)$ be the characteristic functions of G and H, and $r(x)=g(y) \wedge h(z)$. Then $|G * H|=\left|r^{-1}(1)\right|$, and it is enough to show that $\left|r^{-1}(1)\right| \leqslant 2^{n-m(G)}$. When doing this, we will essentially use the fact that $r \leqslant \phi$, which follows from the fact that all monomials of $G * H$ are also monomials of f_{G}.

By the definition of $m(G)$, some set $M=\left\{y_{1} z_{1}, \ldots, y_{m} z_{m}\right\}$ of $m=m(G)$ crossing edges $y_{i} z_{i}$ forms an induced matching of G. Given an assignment α of constants 0 and 1 to the $n-2 m$ variables outside the matching M, define vectors $a, b \in\{0,1\}^{m}$ and a constant $c \in\{0,1\}$ as follows:

- $a_{i}=1$ iff an odd number of neighbors of y_{i} get value 1 under α,
- $b_{i}=1$ iff an odd number of neighbors of z_{i} get value 1 under α,
- $c=1$ iff the number of edges whose both endpoints get value 1 under α is odd.

Then the subfunction ϕ_{α} of ϕ obtained after restriction α is

$$
\begin{aligned}
\phi_{\alpha}\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{m}\right) & =\sum_{i=1}^{m} y_{i} z_{i}+\sum_{i=1}^{m} y_{i} a_{i}+\sum_{i=1}^{m} b_{i} z_{i}+c \quad \bmod 2 \\
& =I P_{m}(y \oplus b, z \oplus a) \oplus I P_{m}(a, b) \oplus c
\end{aligned}
$$

where $I P_{n}\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{m}\right)=\sum_{i=1}^{m} y_{i} z_{i} \bmod 2$ is the inner product function (scalar product). Since a, b and c are fixed, the corresponding $2^{m} \times 2^{m} \pm 1$ matrix H with entries $H[y, z]=(-1)^{\phi_{\alpha}(y, z)}$ is a Hadamard matrix (rows are orthogonal to each other). Lindsey's Lemma (see, e.g. [19, p. 479]) implies that no monochromatic submatrix of H can have more than $2^{m} 1$-entries.

Now, the obtained subfunction $r_{\alpha}=g_{\alpha}\left(y_{1}, \ldots, y_{m}\right) \wedge h_{\alpha}\left(z_{1}, \ldots, z_{m}\right)$ of $r=g(y) \wedge h(z)$ also satisfies $r_{\alpha}(a, b) \leqslant \phi_{\alpha}(a, b)$ for all $a, b \in\{0,1\}^{m}$. Since the set of all pairs (a, b) for which $r_{\alpha}(a, b)=$ 1 forms a submatrix of H, this implies that r_{α} can accept at most 2^{m} such pairs. Since this holds for each of the $2^{n-2 m}$ assignments α, the desired upper bound $\left|r^{-1}(1)\right| \leqslant 2^{m} \cdot 2^{n-2 m}=2^{n-m}$ follows.

This completes the proof of Claim 50, and hence, the proof of Lemma 46.

13 Bounds on Circuit Depth

So far, we were interested in the size of circuits. Another important measure is the circuit depth, i.e. the maximum number of gates in an input-output path.

13.1 Upper Bounds

If a polynomial f can be produced by a circuit of size s, what is then the smallest depth of a circuit producing f ? Hyafil [14] has shown that then f can be also produced by a circuit of depth proportional to $(\log d)(\log s d)$, where d is the maximum degree of f. (This can be easily shown by induction on the degree using the decomposition given in Lemma 38.) However, the size of the resulting circuit may be as large as $s^{\log d}$. A better simulation, leaving the size polynomial in s, was found by Valiant et al. [44].

Theorem 51 (Valiant et al. [44]). If a polynomial f of maximum degree d can be produced by a circuit of size s, then f can be also produced by a circuit of size $O\left(s^{3}\right)$ and depth $O(\log s \log d)$.

Important is that the proof of Theorem 51 in [44] is constructive: the new (small-depth) circuit can be constructed from a given circuit F. The parameter d is then the maximum degree of the polynomial F produced by F . This has, for example, interesting consequences for the $s t$-connectivity polynomial $f=\operatorname{STCON}_{n}$. Using binary search, one can easily construct a Min-circuit of depth $O\left(\log ^{2} n\right)$ for f. But the size of the resulting circuit will then be $n^{\Omega(\log n)}$. To get a circuit of depth $O\left(\log ^{2} n\right)$ but polynomial size, we can take the circuit F of size $O\left(n^{3}\right)$ resulting from the Bellman-Ford dynamic programming algorithm (see Theorem 4). It is easy to see that the produced polynomial F in this case has maximum degree $d \leqslant n$. Thus, Theorem 51 gives us a Min-circuit for STCON_{n} which simultaneously has depth $O\left(\log ^{2} n\right)$ and size $O\left(n^{9}\right)$.

13.2 Lower Bounds

We now turn to proving lower bounds on the depth of circuits. Lemma 15 implies that the smallest depth of a monotone boolean circuit computing a polynomial f is a lower bound on the depth of any circuit computing f over any semiring of zero characteristic, including the arithmetic semiring A as well as tropical semirings Min, Min ${ }^{-}$and Max*. As shown by Karchmer and Wigderson [20], lower bounds on the depth of monotone (as well as non-monotone) boolean circuit depth can be obtained via communication complexity arguments. However, applications of these arguments for specific polynomials are usually rather involved. On the other hand, lower bounds on the depth of monotone arithmetic circuits are much easier to obtain.

In the previous sections, we have shown that the factor-density measure $\#_{r}(f)$ can be used to lower bound the circuit size. By simplifying previous arguments of Shamir and Snir [40], Tiwari and Tompa [42] have shown that the measure $\#_{r}(f)$ can be used to lower bound the circuit depth as well. The idea was demonstrated in [42] on two applications (Corollaries 54 and 55 below). Here we put their idea in a general frame.

A subadditive weighting of a circuit F is an assignment $\mu: \mathrm{F} \rightarrow \mathrm{R}_{+}$of non-negative weights to the gates of F such that the output gate gets weight $\geqslant 1$, all other gates get weight $\leqslant 1$, and $\mu(v+w) \leqslant \mu(v)+\mu(w)$ holds for every sum gate $v+w$. Given such a weighting, define the decrease K_{u} at a product gate $u=v * w$ as

$$
K_{u}=\frac{\mu(v) \cdot \mu(w)}{\mu(u)} .
$$

Note that, since $\mu(v) \leqslant 1$ holds for every non-output gate v, we have

$$
\mu(u) \leqslant \frac{1}{K_{u}} \cdot \min \{\mu(v), \mu(w)\} .
$$

That is, when entering u from any of its two inputs, the weight must decrease by a factor of at least K_{u}. This explains the use of term "decrease". Let $K_{r, s}=\min _{u} K_{u}$ be the smallest decrease at a product gate u of degree r, one of whose inputs has degree s; by the degree of a gate we mean the minimum degree of the polynomial produced at that gate.

Lemma 52. Let F be a circuit, whose produced polynomial has minimum degree d, and let $m=$ $\left\lfloor\log _{2} d\right\rfloor$. Then, for every subadditive weighting, there is a sequence $d=r_{0}>r_{1}>\ldots>r_{m}=1$ of integers such that $r_{i+1} \geqslant \frac{1}{2} r_{i}$ for all $i=1, \ldots, m$, and the circuit F has depth at least

$$
m+\log _{2} \prod_{i=0}^{m-1} K_{r_{i}, r_{i+1}}
$$

Proof. Construct a path π from the output gate to an input gates as follows: at a sum gate choose the input of greater weight, and at a product gate choose an input of greater degree. Since the produced polynomial has minimum degree d, and since at each product gate we chose an input of greater degree, there must be at least m product gates along π. Let $d=r_{1}>r_{2}>\ldots>r_{m}>r_{m+1}=1$ be the degrees of the product gates (and input node) on path π. Let $k_{i}=K_{r_{i}, r_{i+1}}$ be the decrease of the i-th product gate along π. Note by the construction of π that $r_{i+1} \geqslant \frac{1}{2} r_{i}$.

Let us now view the path π in the reversed order (from input to output). So, we start with some gate of weight $\leqslant 1$ (an input gate). Since the weighting is subadditive, at each edge entering a sum gate the weight can only increase by a factor of at most 2 . So, if s is the number of sum gates along π, then the total increase in weight is by a factor at most 2^{s}. But when entering the i-th product gate,
the weight decreases by a factor at least k_{i}. Thus, the total loss in the weight is by a factor at least $\prod_{i=0}^{m-1} k_{i}$. Since the last (output) gate must have weight $\geqslant 1$, this gives

$$
2^{s} \cdot \prod_{i=0}^{m-1} \frac{1}{k_{i}} \geqslant 1, \text { and hence, } s \geqslant \log _{2} \prod_{i=0}^{m-1} k_{i}
$$

Since the depth of F is at least the length of $m+s$ of the path π, we are done.
We now give a specific weighting, based on the factor-density measure $\#_{r}(f)$. Recall that $\#_{r}(f)$ is the maximum number of monomials in f containing a fixed monomial of degree r as a common factor. For a polynomial f of minimum degree d, and integers $1 \leqslant s<r \leqslant d$, define

$$
K_{f}(r, s)=\frac{\#_{d-r}(f)}{\#_{d-s}(f) \cdot \#_{d-r+s}(f)}
$$

Note that we have already used this measure to lower-bound the size of circuits: if f is a homogeneous polynomial of degree d, then Lemma 42 yields $\mathrm{A}[f] \geqslant K_{f}(d, s)$ for some $d / 3 \leqslant s \leqslant 2 d / 3$.

For a polynomial f, let $\operatorname{Depth}[f]$ denote the smallest possible depth of a circuit producing f.
Lemma 53. Let f be a polynomial of minimum degree d, and $m=\left\lfloor\log _{2} d\right\rfloor$. Then there is a sequence $d=r_{0}>r_{1}>\ldots>r_{m}=1$ of integers such that $r_{i+1} \geqslant \frac{1}{2} r_{i}$ for all $i=1, \ldots, m$, and

$$
\operatorname{Depth}[f] \geqslant m+\log _{2} \prod_{i=0}^{m-1} K_{f}\left(r_{i}, r_{i+1}\right)
$$

Proof. Let F be a circuit producing f; hence, $F=f$. For a gate $u \in \mathrm{~F}$, let d_{u} be the minimum degree of the polynomial produced at u. By Theorem 31, we know that F can be written as a sum $F=f_{u} * \bar{f}_{u}+F_{u=0}$, where f_{u} is the polynomial produced at gate u. Since $f_{u} * \bar{f}_{u} \subseteq f$, and f_{u} has minimum degree d_{u}, the polynomial \bar{f}_{u} must contain a monomial of degree $\geqslant d-d_{u}$. Hence, by Observation 41, we have that $\left|f_{u}\right| \leqslant \#_{d-d_{u}}(f)$. This suggests the following weighting of gates:

$$
\mu(u)=\frac{\left|f_{u}\right|}{\#_{d-d_{u}}(f)}
$$

The output gate v then gets weight $\mu(v)=|f| / \#_{d-d}(f)=1$, whereas all other gates get weights $\leqslant 1$. Moreover, since for every product gate $u=v * w$, we have that $\left|f_{u}\right|=\left|f_{v}\right| \cdot\left|f_{w}\right|$ and $d_{u}=d_{v}+d_{w}$, the decrease $K_{r, s}$ of this weighting coincides with $K_{f}(r, s)$. So, it remains to show that the weighting is subadditive.

To show this, let $u=v+w$ be a sum gate. Then $d_{u}=\min \left\{d_{v}, d_{w}\right\}$, and hence, $d-d_{u}=$ $\max \left\{d-d_{v}, d-d_{w}\right\}$. So,

$$
\mu(v+w)=\frac{\left|f_{v}\right|+\left|f_{w}\right|}{\#_{d-d_{u}}(f)}=\frac{\left|f_{v}\right|+\left|f_{w}\right|}{\max \left\{\#_{d-d_{v}}(f), \#_{d-d_{w}}(f)\right\}} \leqslant \mu(v)+\mu(w)
$$

Corollary 54 ([40, 42]). If $f=\operatorname{PER}_{n}$, then $\operatorname{Depth}[f] \geqslant n+\left\lfloor\log _{2} n\right\rfloor-1$.

Proof. The permanent polynomial $f=\mathrm{PER}_{n}$ is a homogeneous multilinear polynomial of degree $d=n$. Moreover, $\#_{l}(f)=(n-l)!$ holds for any $1 \leqslant l \leqslant d$. Hence,

$$
K_{f}(r, s)=\frac{r!}{s!(r-s)!}=\binom{r}{s}
$$

But $r_{i+1} \geqslant \frac{1}{2} r_{i}$ implies that $\binom{r_{i}}{r_{i+1}} \geqslant 2^{r_{i}-r_{i+1}}$. Hence,

$$
\prod_{i=0}^{m-1} K_{f}\left(r_{i}, r_{i+1}\right)=\prod_{i=0}^{m-1}\binom{r_{i}}{r_{i+1}} \geqslant 2^{r_{0}-r_{m}}=2^{n-1}
$$

This lower bound for $f=$ PER is not very surprising, since Depth $[f]$ is always at least logarithmic in $\mathrm{A}[f]$, and we already know (Theorem 43) that $\mathrm{A}[f]$ is exponential for this polynomial. More interesting, however, is that the argument above allows to prove super-logarithmic depth lower bounds even for polynomials that have circuits of polynomial size.

To demonstrate this, consider the following layered st-connectivity polynomial $f_{n, d}$. The monomials of this polynomial correspond to st-paths in a layered graph. We have $d+1$ disjoint layers, where the first contains only one node s, the last only one node t, and each of the remaining $d-1$ layers contains n nodes. Monomials of $f_{n, d}$ have the form $x_{s, a_{1}} x_{a_{1}, a_{2}} \cdots x_{a_{d-2}, a_{d-1}} x_{a_{d-1}, t}$ with a_{i} belonging to the i-th layer. In other words, this polynomial corresponds to computing the (s, t)-entry of the product of $d-2$ matrices of dimension $n \times n$. Hence, it can be produced by a circuit of depth $O((\log d)(\log n))$.

Corollary $55([40,42]) . \operatorname{Depth}\left[f_{n, d}\right]=\Omega(\log d \cdot \log n)$.
Proof. The polynomial $f=f_{n, d}$ is a multilinear homogeneous polynomial of degree d with $|f|=$ n^{d-1} monomials. To estimate the factor-density $\#_{l}(f)$, let us fix a set E of $|E|=l$ edges. Every edge $e \in E$ constrains either two inner nodes (if $s, t \notin e$) or one inner node. Thus, if we fix l edges, then at least l inner nodes are constrained, implying that only $\#_{l}(f) \leqslant n^{d-1-l}$ paths can contain all these edges. In fact, we have an equality $\#_{l}(f)=n^{d-1-l}$: every monomial $x_{s, a_{1}} x_{a_{1}, a_{2}} \cdots x_{a_{l-1}, a_{l}}$ consisting of initial l edges is a factor of exactly n^{d-1-l} monomials of f. Thus, the decrease in this case is

$$
K_{f}(r, s)=\frac{\#_{d-r}(f)}{\#_{d-s}(f) \cdot \#_{d-(r-s)}(f)}=\frac{n^{r-1}}{n^{s-1} \cdot n^{r-s-1}}=n
$$

for all $1 \leqslant s<r \leqslant d$. Lemma 53 yields Depth $[f] \geqslant \log _{2} d+\log _{2} n^{\left\lfloor\log _{2} d\right\rfloor}$, as desired.
Corollary 55 implies an $\Omega\left(\ln ^{2} n\right)$ lower bound on the depth of monotone arithmetic circuits computing STCON_{n} : this polynomial can be obtained from $f_{m, m-1}$ with $m=\Theta\left(n^{2}\right)$ by setting to 0 some of the variables. Moreover, since $f_{m, m-1}$ is multilinear and homogeneous, Theorem 13 implies that this lower bound holds also in all four tropical semirings.

Note that this bound for STCON is not new: together with Lemma 15, they follow from known lower bounds on the depth of monotone boolean circuits for these polynomials. The lower bound $\Theta\left(\log ^{2} n\right)$ for STCON_{n} was proved by Karchmer and Wigderson [20], and the lower bound $\Omega\left(\ln ^{2} n / \ln \ln n\right)$ for CONN_{n} was proved by Goldmann and Håstad [13]; Yao [47] earlier proved $\Omega\left(\ln ^{3 / 2} n / \ln \ln n\right)$ for this latter polynomial. However, the proofs for boolean circuits are much more involved than the proof for tropical circuits given above.

Bound	Property of f	Ref.
$\mathrm{B}(f)>t$	f is not t-simple (Def. 16)	Thm. 17
$\mathrm{S}(f)=\mathrm{A}[f]$	f is homogeneous and multilinear	Thm. 13
$\mathrm{A}[f] \geqslant\|f\|$	f is separated (Def. 22)	Thm. 24
$\mathrm{~A}[f] \geqslant \frac{\|f\|}{2 k l^{2}}$	$\|f\|$	$A * B \subseteq f$ implies $\|A\| \leqslant l$ or $\|B\| \leqslant k$
$\mathrm{~A}[f] \geqslant \frac{\text { Thm. } 34}{\#_{r}(f) \cdot \#_{d-r}(f)}$	f of minimum degree d	Lem. 42

Table 2: A summary of general lower bounds. Here S is an arbitrary tropical semiring, $\#_{r}(f)$ is the maximum possible number of monomials of f containing a fixed monomial of degree r, and r is some integer $m / 3 \leqslant r \leqslant 2 m / 3$.

14 Conclusion

As mentioned in the introduction, the model of tropical circuits is important because of its intimate relation with dynamic programming. The first goal of this paper was to relate tropical circuits with monotone arithmetic circuits, the later model being one of the most restricted ones. This is done in Theorem 13: if a polynomial f is homogeneous and multilinear, then the smallest size of tropical circuits computing f just coincides with $\mathrm{A}[f]$, the smallest size of a monotone arithmetic circuit producing f. We then presented several known and new methods to prove lower bounds on $\mathrm{A}[f]$ (see Table 1). These allow to relatively easily prove strong lower bounds for tropical circuits; Table 2 gives a short overview.

Still, these arguments seem to fail for non-homogeneous polynomials like CONN or STCON. By Theorem 45, we know that Max- and Min ${ }^{-}$-circuits for these polynomials must have exponential size. But boolean and Min-circuits can compute these polynomials in size $O\left(n^{3}\right)$ (see Theorem 2). So, the main problem left open in this paper is:

$$
\text { Does } \mathrm{B}(f)=\Omega\left(n^{3}\right) \text { or at least } \operatorname{Min}(f)=\Omega\left(n^{3}\right) \text { hold for } f=\operatorname{STCON}_{n} \text { and/or } f=\mathrm{CONN}_{n} \text { ? }
$$

Note that the lower bound $\Omega\left(n^{3}\right)$ for the all-pairs shortest paths polynomial APSP, given in Corollary 28 does not automatically imply the same lower bound for the connectivity polynomial CONN: a circuit for CONN needs not to compute the polynomials of APSP at separate gates.

Even the model of monotone arithmetic circuits remains not well understood. Known methods are able to yield strong lower bounds only for polynomials f that are "resistant against products": no large subset of monomials of f can be represented by a product of two polynomials of sufficiently large degree. These methods, however, automatically fail for polynomials which themselves are products of polynomials. Say, we already know that the triangle polynomial $f(x, y, z)=\sum_{i, j \in[n]} z_{i j} f_{i j}$ with $f_{i j}=\sum_{k \in[n]} x_{i k} y_{k j}$ has $\mathrm{A}[f]=\Theta\left(n^{3}\right)$. Replace now the outer sum by product, and consider the polynomial $g(x, y, z)=\prod_{i, j \in[n]} z_{i j} \sum_{k \in[n]} x_{i k} y_{k j}$, a product of n^{2} polynomials of degree three. Does $\mathrm{A}[g]=\Omega\left(n^{3}\right)$?

Acknowledgements

I am thankful to Dima Grigoriev, Georg Schnitger and Igor Sergeev for interesting discussions.

References

[1] N. Alon and R. Boppana. The monotone circuit complexity of boolean functions. Combinatorica, 7(1):1-22, 1987.
[2] N. Alon and Fan R.K. Chung. Explicit constructions of linear sized tolerant networks. Discrete Math., 72:15-19, 1989.
[3] A.E. Andreev. On a method for obtaining lower bounds for the complexity of individual monotone functions. Soviet Math. Dokl., 31(3):530-534, 1985.
[4] A.E. Andreev. A method for obtaining efficient lower bounds for monotone complexity. Algebra and Logics, 26(1):118, 1987.
[5] W. Baur and V. Strassen. The complexity of partial derivatives. Theoret. Comput. Sci., 22:317-330, 1983.
[6] R. Bellman. On a routing problem. Quarterly of Appl. Math., 16:87-90, 1958.
[7] R.W. Floyd. Algorithm 97, shortest path. Comm. ACM, 5:345, 1962.
[8] S. Fomin, D. Grigoriev, and G.A. Koshevoy. Subtraction-free complexity and cluster transformations. CoRR, abs/1307.8425, 2013.
[9] L.R. Ford. Network flow theory. Technical Report P-923, The Rand Corp., 1956.
[10] S.B. Gashkov. On one method of obtaining lower bounds on the monotone complexity of polynomials. Vestnik MGU, Series 1 Mathematics, Mechanics, 5:7-13, 1987.
[11] S.B. Gashkov and I.B. Gashkov. On the complexity of calculation of differentials and gradients. Discrete Math. Appl., 15(4):327-350, 2005.
[12] S.B. Gashkov and I.S. Sergeev. A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials. Math. Sbornik, 203(10):33-70, 2012.
[13] M. Goldmann and J. Håstad. Monotone circuits for connectivity have depth $\log \mathrm{n}$ to the power (2-o(1)). SIAM J. Comput., 27:1283-1294, 1998.
[14] L. Hyafil. On the parallel evaluation of multivariate polynomials. SIAM J. Comput., 8(2):120-123, 1979.
[15] M. Jerrum and M. Snir. Some exact complexity results for straight-line computations over semirings. J. ACM, 29(3):874-897, 1982.
[16] J.W. Jordan and R. Livné. Ramanujan local systems on graphs. Topology, 36(5):1007-1-24, 1997.
[17] S. Jukna. Combinatorics of monotone computations. Combinatorica, 9(1):1-21, 1999. Preliminary version: ECCC Report Nr. 26, 1996.
[18] S. Jukna. Expanders and time-restricted branching programs. Theoret. Comput. Sci., 409(3):471-476, 2008.
[19] S. Jukna. Boolean Function Complexity: Advances and Frontiers. Springer-Verlag, 2012.
[20] M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-logarithmic depth. SIAM J. Discrete Math., 3:255-265, 1990.
[21] O.M. Kasim-Zade. On arithmetical complexity of monotone polynomials. In Proc. of All-Union Conf. on Theoretical Problems in Cybernetics, volume 1, pages 68-69, 1986. (in Russian).
[22] O.M. Kasim-Zade. On the complexity of monotone polynomials. In Proc. of All-Union Seminar on Discrete Math. and its Appl., pages 136-138, 1986. (in Russian).
[23] L.R. Kerr. The effect of algebraic structure on the computation complexity of matrix multiplications. PhD thesis, Cornell Univ., Ithaca, N.Y., 1970.
[24] M.P. Krieger. On the incompressibility of monotone DNFs. Theory of Comput. Syst., 41(2):211-231, 2007.
[25] S.E. Kuznetsov. Monotone computations of polynomials and schemes without null-chains. In Proc. of 8-th All-Union Conf. on Theoretical Problems in Cybernetics, volume 1, pages 108-109, 1985. (in Russian).
[26] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261-277, 1988.
[27] G.A. Margulis. Explicit constructions of concentrators. Problems of Inf. Transm., pages 323-332, 1975.
[28] K. Mehlhorn. Some remarks on Boolean sums. Acta Informatica, 12:371-375, 1979.
[29] K. Mehlhorn and Z. Galil. Monotone switching circuits and boolean matrix product. Computing, 16(1-2):99-111, 1976.
[30] E.F. Moore. The shortest path through a maze. In Proc. Internat. Sympos. Switching Theory, volume II, pages 285292. Harvard Univ. Press 1959, 1957.
[31] M. Morgenstern. Existence and explicit constructions of $q+1$ regular Ramanujan graphs for every prime power q. J. Comb. Theory Ser. B, 62(1):44-62, 1994.
[32] E.I. Nechiporuk. On the topological principles of self-correction. Problemy Kibernetiki, 21:5-102, 1969. English translation in: Systems Theory Res. 21 (1970), 1-99.
[33] M. Paterson. Complexity of monotone networks for boolean matrix product. Theoret. Comput. Sci., 1(1):13-20, 1975.
[34] N. Pippenger. On another Boolean matrix. Theor. Comput. Sci., 11:49-56, 1980.
[35] R. Raz and A. Yehudayoff. Multilinear formulas, maximal-partition discrepancy and mixed-sources extractors. J. Comput. Syst. Sci., 77(1):167-190, 2011. Preliminary version in: Proc. of 49th FOCS, 2008.
[36] A.A. Razborov. A lower bound on the monotone network complexity of the logical permanent. Math. Notes Acad. of Sci. USSR, 37(6):485-493, 1985.
[37] A.A. Razborov. Lower bounds for the monotone complexity of some boolean functions. Soviet Math. Dokl., 31:354357, 1985.
[38] C.P. Schnorr. A lower bound on the number of additions in monotone computations. Theor. Comput. Sci., 2(3):305315, 1976.
[39] I.S. Sergeev. On the complexity of the gradient of a rational function. J. Appl. and Industrial Math., 2(3):385-396, 2008.
[40] E. Shamir and M. Snir. On the depth complexity of formulas. Math. Syst. Theory, 13:301-322, 1980.
[41] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends in Theoret. Comput. Sci., 5(3-4):207-388, 2009.
[42] P. Tiwari and M. Tompa. A direct version of Shamir and Snir's lower bounds on monotone circuit depth. Inf. Process. Lett., 49(5):243-248, 1994.
[43] L.G. Valiant. Negation can be exponentially powerful. Theor. Comput. Sci., 12:303-314, 1980.
[44] L.G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of polynomials using few processors. SIAM J. Comput., 12(4):641-644, 1983.
[45] S. Warshall. A theorem on boolean matrices. J. ACM, 9:11-12, 1962.
[46] V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix and triangle problems. In Proc. of 51th FOCS.
[47] A.C. Yao. A lower bound for the monotone depth of connectivity. In Proc. of 35th Ann. Symp. on Foundations of Comput. Sci., pages 302-308, 1994.

[^0]: *Research supported by the DFG grant SCHN 503/6-1.
 ${ }^{1}$ There is nothing special about the term "tropical". Simply, this term is used in honor of Imre Simon who lived in Sao Paulo (south tropic). Tropical algebra and tropical geometry are now intensively studied topics in mathematics.

[^1]: ${ }^{2}$ Usually, polynomials of more than one variable are called multivariate, but we will omit this for shortness.

[^2]: ${ }^{3}$ We will always denote circuits as upright letters $\mathrm{F}, \mathrm{G}, \mathrm{H}, \ldots$, and their produced polynomials by italic versions F, G, H, \ldots.

