A nondeterministic space-time tradeoff for linear codes

S. Jukna ${ }^{\text {* }}$
To appear in IPL

Abstract

We are interested in proving exponential lower bounds on the size of nondeterministic D-way branching programs computing functions $f: D^{n} \rightarrow\{0,1\}$ in linear time, that is, in time at most $k n$ for a constant k. Ajtai has proved such lower bounds for explicit functions over domains D of size about n, and Beame, Saks and Thathachar for functions over domains of size about $2^{2^{k}}$. We prove an exponential lower bound $2^{\Omega\left(n / c^{k}\right)}$ for an explicit function over substantially smaller domain D of size about 2^{k}. Our function is a universal function of linear codes.

1 Introduction

We consider functions $f: D^{n} \rightarrow\{0,1\}$, where D is a finite domain. A standard model to compute such functions $f\left(x_{1}, \ldots, x_{n}\right)$ is that of deterministic branching programs, called also D way branching programs. Such a program is a directed acyclic graph with a unique start node. Each non-sink node is labeled by a variable and the edges out of a node correspond to the possible values of the variable. Each sink node is labeled by 0 or 1 . Executing the program on a given input corresponds to following a path from the start node using the values of the input variables to determine the edges to follow. The output of such a computation is the label of the sink node reached. If $D=\{0,1\}$ then the program is called boolean.

The nondeterminism can be introduced by allowing so-called guessing nodes. These nodes are unlabeled and have an arbitrary out-degree. If a computation reaches such a node, then it can proceed further by following any of the outgoing edges. Such a program accepts an input vector if and only if at least one path from the source to a 1 -sink is consistent with this input. The size of a branching program is the number of non-guessing nodes. The logarithm of this number gives the space required to compute a given function.

If we put no further restrictions on the branching programs, then the best remains the lower bound $\Omega\left(n^{2} / \log ^{2} n\right)$ for nondeterministic boolean branching programs proved by Nechiporuk in [9]. Exponential lower bounds were only proved under additional restrictions on the structure of branching programs; see [11] or the monograph [13] for a comprehensive survey.

In this paper we are interested in proving large lower bounds on the size of branching programs when the computation time is bounded by $k n$ for some constant k. More precisely, we say that a program computes a given function f in time T if for every input $a \in f^{-1}(1)$ there is a path from the source to a 1 -sink which is consistent with a and along which at most T tests are made.

Important here is that the restriction concerns only consistent paths, that is, paths along which no two tests $x_{i}=d_{1}$ and $x_{i}=d_{2}$ for $d_{1} \neq d_{2}$ are made. The "syntactic" case, where we require that along all paths - be they consistent or not - at most $k n$ tests can be made, is easier to deal with and exponential lower bounds are known even for $D=\{0,1\}$ and for nondeterministic branching programs $[10,5,6]$.

The boolean "non-syntactic" case is more difficult. In this case, exponential lower bounds were first proved for deterministic branching programs working in time $T \leq n+o(n / \log n)$ [12, 8], then

[^0]for deterministic programs working in time $T \leq n+\epsilon n$ for a very small (but constant!) $\epsilon>0$ $[3,7]$, and finally, for deterministic programs working in time $T \leq k n$ for any constant k [2]; this was extended to randomized branching programs in [4].

The situation with nondeterministic branching programs is much worse. In the boolean case, when $D=\{0,1\}$, no exponential lower bounds are known even for programs working in time $T>n$. Such bounds were only proved for functions working on large domains, namely - when $|D|$ is either linear in $n[1]$, or is about $2^{2^{k}}[3]$.

In this paper we do this for a substantially smaller domain containing about 2^{k} elements. As a domain D we take a Galois field GF (q) with q about 2^{k}. The function $g(Y, \vec{x})$ itself has $n^{2}+n$ variables, the first n^{2} of which are arranged in an $n \times n$ matrix Y. The values of the function are defined by $g(Y, \vec{x})=1$ iff the vector \vec{x} is orthogonal over $\operatorname{GF}(q)$ to all rows of Y. In other words, $g(Y, \vec{x})=1$ iff the vector \vec{x} belongs to a linear code defined by the parity-check matrix Y.
Theorem 1. For every $k \geq 1$ and every prime power $q \geq 2^{3 k+10}$, every nondeterministic branching program computing $g(Y, \vec{x})$ in time $k n$ must have size exponential in $\Omega\left(n / k^{2} 4^{k}\right)$.

The time restriction in this theorem concerns only the last n variables-the first n^{2} variables from Y can be tested an arbitrary number of times.

Like in [5] and in subsequent papers, our goal is to show that, if the size of a branching program is small, then it must accept all vectors of a large "rectangle". Given a set X of variables, an m-rectangle is a set of vectors $R \subseteq D^{X}$ of the form $R=R_{0} \times\{w\} \times R_{1}$, where $R_{0} \subseteq D^{X_{0}}$ and $R_{1} \subseteq D^{X_{1}}$ for some pair of disjoint m-element subsets X_{0} and X_{1} of X. Note that every m-rectangle can have at most $|D|^{2 m}$ vectors.

A function $f: D^{n} \rightarrow\{0,1\}$ is a code function if any two accepted vectors differ in at least two coordinates. The only property of such functions we will use is that in any branching program computing such a function, along any accepting computation each variable must be tested at least once.

The density of $f: D^{n} \rightarrow\{0,1\}$ is $\mu(f)=\left|f^{-1}(1)\right| /|D|^{n}$.
Lemma 1. If a code function $f: D^{n} \rightarrow\{0,1\}$ can be the computed by a nondeterministic branching program of size s working in time $k n$, then for every $m \leq n / 2^{k+1}$ the function accepts all vectors of some m-rectangle $R=R_{0} \times\{w\} \times R_{1}$ of size

$$
\begin{equation*}
|R| \geq \frac{\mu(f)}{(2 s)^{r}\binom{n}{m}^{2}} \cdot|D|^{2 m}, \tag{1}
\end{equation*}
$$

where $r=8 k^{2} 2^{k}$.

2 Proof of Lemma 1

For each input $a \in f^{-1}(1)$, fix one accepting computation path $\operatorname{comp}(a)$, and split it into r subpaths p_{1}, \ldots, p_{r} of length at most $\ell=k n / r$; the length of a sub-path p_{i} is the number of tests made along it. That is, we have r time segments $1, \ldots, r$, and in the i-th of them the computation on a follows the sub-path p_{i}.

Say that two inputs a and b in $f^{-1}(1)$ are equivalent if the starting nodes of the corresponding sub-paths $\operatorname{comp}(a)=\left(p_{1}, \ldots, p_{r}\right)$ and $\operatorname{comp}(b)=\left(q_{1}, \ldots, q_{r}\right)$ coincide. Since we have at most s nodes in the program, the number of possible equivalence classes does not exceed s^{r}. Fix some largest equivalence class $A \subseteq f^{-1}(1)$; hence,

$$
|A| \geq\left|f^{-1}(1)\right| / s^{r}
$$

We say that a pair of disjoint subsets of variables X_{0} and X_{1} is good for a set of vectors B if there is a coloring of time segments $1, \ldots, r$ in red and blue such that, along each computation $\operatorname{comp}(a)=\left(p_{1}, \ldots, p_{r}\right)$ on a vector $a \in B$, the variables from X_{0} are tested only in red and those from X_{1} only in blue sub-paths.

Claim 1 ([3]). Let $r=8 k^{2} 2^{k}$. Then for every vector $a \in f^{-1}(1)$, at least one pair of disjoint m-element subsets of variables with $m \geq n / 2^{k+1}$ is good for a.
Proof. For a variable $x \in X$, let d_{x} be the number of sub-paths in $\operatorname{comp}(a)=\left(p_{1}, \ldots, p_{r}\right)$ along which this variable is tested. Since the computed function $f(X)$ is a code function, we know that each variable $x \in X$ is tested at least once along $\operatorname{comp}(a)$. Since the program computes $f(X)$ in time $k n$, we also know that at most $k n$ tests can be made along the whole computation $\operatorname{comp}(a)$. Hence, $\sum_{x \in X} d_{x} \leq k n$, implying that average number $\sum_{x \in X} d_{x} / n$ of tests made on a single variable does not exceed k. Finally, we know that each sub-path can make at most $\ell=k n / r$ tests.

Color the sub-paths p_{1}, \ldots, p_{r} red or blue uniformly and independently. Call a variable $x \in X$ red (resp., blue) if all sub-paths testing this variable are red (resp., blue). This way, each variable is red as well as blue with probability $2^{-d_{x}}$. Hence, we can expect

$$
\sum_{x \in X} 2^{-d_{x}} \geq n\left(\prod_{x \in X} 2^{-d_{x}}\right)^{1 / n}=n 2^{-\sum_{x} d_{x} / n} \geq n 2^{-k}
$$

red variables as well as at least $n 2^{-k}$ blue variables. Using the Chebyshev inequality it is not difficult to show (see Lemma 12 in [3]) that then at least one coloring must produce at least $m \geq(1-\delta) n 2^{-k}$ red variables and at least so many blue variables, where $\delta=\sqrt{k \ell 2^{1+k} / n}=$ $\sqrt{k^{2} 2^{1+k} / r}=\sqrt{1 / 4}=1 / 2$.

We have only 2^{r} possible colorings of time intervals $1, \ldots, r$, and at most $\binom{n}{m}^{2}$ pairs of disjoint m-element subsets of variables. Hence, by Claim 1, some of these pairs X_{0}, X_{1} must be good for a subset $B \subseteq A$ of size

$$
|B| \geq \frac{|A|}{2^{r}\binom{n}{m}^{2}}
$$

We can write each vector $a \in D^{n}$ as $a=\left(a_{0}, w, a_{1}\right)$, where a_{0} is the projection of a onto X_{0}, a_{1} is the projection of a onto X_{1}, and w is the projection of a onto $X \backslash\left(X_{0} \cup X_{1}\right)$. Say that two vectors $a=\left(a_{0}, w, a_{1}\right)$ and $b=\left(b_{0}, w^{\prime}, b_{1}\right)$ are equivalent if $w=w^{\prime}$. Since the sets of variables X_{0} and X_{1} are disjoint, each equivalence class is a rectangle.

Let $R \subseteq B$ be a largest equivalence class lying in B; hence

$$
\begin{aligned}
|R| & \geq \frac{|B|}{|D|^{n-2 m}} \geq \frac{|A|}{2^{r}\binom{n}{m}^{2}|D|^{n-2 m}} \\
& \geq \frac{\left|f^{-1}(1)\right|}{s^{r} 2^{r}\binom{n}{m}^{2}|D|^{n-2 m}}=\frac{\mu(f)}{(2 s)^{r}\binom{n}{m}^{2}} \cdot|D|^{2 m}
\end{aligned}
$$

So, it remains to show that all vectors of the rectangle R are accepted by the program. This is a direct consequence of the following more general claim.
Claim 2. If both vectors $a=\left(a_{0}, w, a_{1}\right)$ and $b=\left(b_{0}, w, b_{1}\right)$ belong to B, then the combined vector $\left(a_{0}, w, b_{1}\right)$ belongs to A.

Proof. Let $\operatorname{comp}(a)=\left(p_{1}, \ldots, p_{r}\right)$ be an accepting computation on $a=\left(a_{0}, w, a_{1}\right)$, and $\operatorname{comp}(b)=$ $\left(q_{1}, \ldots, q_{r}\right)$ an accepting computation on $b=\left(b_{0}, w, b_{1}\right)$. Consider the combined vector $c=$ $\left(a_{0}, w, b_{1}\right)$. Our goal is to show that then $p_{t}(c) \vee q_{t}(c)=1$ for all $t=1, \ldots, r$. That is, that for each $t=1, \ldots, r$, the combined vector c must be accepted by (must be consistent with) at least one of the sub-paths p_{t} or q_{t}.

To show this, assume that c is not accepted by p_{t}. Since p_{t} accepts the vector $a=\left(a_{0}, w, a_{1}\right)$, and this vector coincides with the combined vector $c=\left(a_{0}, w, b_{1}\right)$ on all the variables outside X_{1}, this means that at least one variable from X_{1} must be tested along p_{t}. But then, by the goodness of the pair X_{0}, X_{1}, no variable from X_{0} can be tested along the sub-path q_{t}. Since q_{t} accepts the vector $b=\left(b_{0}, w, b_{1}\right)$, and the combined vector $c=\left(a_{0}, w, b_{1}\right)$ coincides with this vector on all the variables outside X_{0}, the sub-path q_{t} must accept the vector c, as desired.

This completes the proof of Claim 2, and thus the proof of Lemma 1.

3 Proof of Theorem 1

Fix an arbitrary prime power $q \geq 2^{3 k+10}$, and let $d=m+1$ where $m:=\left\lfloor n / 2^{k+1}\right\rfloor$. By the Gilbert-Varshamov bound, linear codes $C \subseteq \operatorname{GF}(q)^{n}$ of distance d and size $|C| \geq q^{n} / V(n, m)$ exist, where

$$
V(n, m)=\sum_{i=0}^{m}(q-1)^{i}\binom{n}{i} \leq d q^{m}\binom{n}{m}
$$

is the number of vectors in a Hamming ball of radius m around a vector in $\operatorname{GF}(q)^{n}$.
Let Y be the parity-check matrix of such a code, and consider the function $f: \operatorname{GF}(q)^{n} \rightarrow\{0,1\}$ such that $f(\vec{x})=1$ iff $Y \cdot \vec{x}=\overrightarrow{0}$. That is, $f(\vec{x})=1$ iff $\vec{x} \in C$. The function $f(\vec{x})$ is a sub-function of $g(Y, \vec{x})$. Hence, if the function $g(Y, \vec{x})$ can be computed by a nondeterministic branching program working in time $k n$, then the size of this program must be at least the size s of a nondeterministic branching program computing $f(\vec{x})$ in time $k n$. To finish the proof of Theorem 1, it remains therefore to show that s must be exponential in m / r, where $r=8 k^{2} 2^{k}$ is from Lemma 1 .

The function $f(\vec{x})$ has density $\mu(f)=1 / V(n, m)$. Hence, by Lemma 1 , the code C must contain an m-rectangle $R=R_{0} \times\{w\} \times R_{1}$ of size

$$
\begin{align*}
|R| & \geq \frac{\mu(f)}{(2 s)^{r}\binom{n}{m}^{2}} \cdot q^{2 m}=\frac{q^{2 m}}{(2 s)^{r}\binom{n}{m}^{2} V(n, m)} \\
& \geq \frac{q^{m}}{(2 s)^{r} d\binom{n}{m}^{3}} \tag{2}
\end{align*}
$$

On the other hand, since the Hamming distance between any two vectors in C is at least $d=m+1$, none of the sets R_{0} and R_{1} can have more than one vector. Hence, $|R| \leq 1$. Remembering that $m=\left\lfloor n / 2^{k+1}\right\rfloor$ and $q \geq 2^{3 k+10}$ this, together with (2) and

$$
\binom{n}{m}^{3} \leq\left(\frac{e n}{m}\right)^{3 m} \leq\left(2^{3 k+9}\right)^{m} \leq(q / 2)^{m}
$$

implies that $(2 s)^{r} \geq 2^{m} / d=2^{\Omega(m)}$, and the desired lower bound $s=2^{\Omega(m / r)}=2^{\Omega\left(n / k^{2} 4^{k}\right)}$ follows.

4 Conclusion

We have proved an exponential lower bound on the size of nondeterministic branching programs computing explicit function $f: D^{n} \rightarrow\{0,1\}$ in time $T=o(n \log n)$. Our contribution is that the bound holds for a function working over much smaller domain D than those considered in [1] and [3]. However, the boolean case (where $D=\{0,1\}$) remains open: in this case no non-trivial lower bounds are known even for $T \leq(1+\epsilon) n$ for an arbitrary small constant $\epsilon>0$.

Even worse, no exponential lower bounds are known for read-once(!) switching networks. A switching network is just a directed acyclic graph whose edges are labeled by variables and their negations (see, e.g., [11]). A vector $a \in\{0,1\}^{n}$ is accepted iff it is consistent with all the labels of at least one path from the source to a sink. A network is read-once if, along any consistent path each variable is tested at most once. Important here, again, is that the restriction only concerns consistent paths -along paths, containing a variable and its negation, each variable may appear many times. As noted in [8], such networks seem to be the weakest nondeterministic model for which no nontrivial lower bounds are known.

References

[1] M. Ajtai, Determinism versus non-determinism for linear time RAMs with memory restrictions, J. Comput. Syst. Sci. 65 (2002) 2-37.
[2] M. Ajtai, A non-linear time lower bound for boolean branching programs, Theory of Comput. 1 (2005) 149-17.
[3] P. W. Beame, T. S. Jayram, ${ }^{1}$ M. Saks, Time-space tradeoffs for branching programs, J. Comput. Syst. Sci. 63(4) (2001) 542-572.
[4] P. Beame, M. Saks, X. Sun, E. Vee, Time-space trade-off lower bounds for randomized computation of decision problems, J. ACM 50(2) (2003) 154-195.
[5] A. Borodin, A. Razborov, R. Smolensky, On lower bounds for read- k-times branching programs, Comput. Complexity 3 (1993) 1-18.
[6] S. Jukna, A note on read-k-times branching programs, Theoret. Informat. and Appl. 29(1) (1995) 75-83.
[7] S. Jukna, Expanders and time-restricted branching programs, Theoret. Comput. Sci., DOI 10.1016/j.tcs.2008.09.012.
[8] S. Jukna, A. Razborov, Neither reading few bits twice nor reading illegally helps much, Discrete Appl. Math. 85 (1998) 223-238.
[9] E. I. Nečiporuk, On a Boolean function, Soviet Math. Doklady 7(4) (1966) 999-1000.
[10] E. A. Okolnishnikova, Lower bounds for branching programs computing characteristic functions of binary codes, Metody discretnogo analiza 51 (1991) 61-83 (in Russian).
[11] A. A. Razborov, Lower bounds for deterministic and nondeterministic branching programs, in: Lecture Notes in Comput. Sci., vol. 529, Springer, Berlin, 1991, pp. 47-60.
[12] P. Savický, S. Žák, A lower bound on branching programs reading some bits twice, Theor. Comput. Sci. 172(1-2) (1997) 293-301.
[13] I. Wegener, Branching Programs and Binary Decision Diagrams, SIAM, 2000.

[^1]
[^0]: *Research supported by a DFG grant SCHN 503/4-1.
 ${ }^{\dagger}$ Address: Institute of Mathematics, Akademijos 4, LT-80663 Vilnius, Lithuania

[^1]: ${ }^{1}$ Formely Jayram S. Thathachar

