
A nondeterministic space-time tradeoff for linear codes

S. Jukna∗†

To appear in IPL

Abstract

We are interested in proving exponential lower bounds on the size of nondeterministic
D-way branching programs computing functions f : Dn → {0, 1} in linear time, that is, in
time at most kn for a constant k. Ajtai has proved such lower bounds for explicit functions
over domains D of size about n, and Beame, Saks and Thathachar for functions over domains

of size about 22k

. We prove an exponential lower bound 2Ω(n/ck) for an explicit function over
substantially smaller domain D of size about 2k. Our function is a universal function of linear
codes.

1 Introduction

We consider functions f : Dn → {0, 1}, where D is a finite domain. A standard model to
compute such functions f(x1, . . . , xn) is that of deterministic branching programs, called also D-
way branching programs. Such a program is a directed acyclic graph with a unique start node.
Each non-sink node is labeled by a variable and the edges out of a node correspond to the possible
values of the variable. Each sink node is labeled by 0 or 1. Executing the program on a given
input corresponds to following a path from the start node using the values of the input variables
to determine the edges to follow. The output of such a computation is the label of the sink node
reached. If D = {0, 1} then the program is called boolean.

The nondeterminism can be introduced by allowing so-called guessing nodes. These nodes are
unlabeled and have an arbitrary out-degree. If a computation reaches such a node, then it can
proceed further by following any of the outgoing edges. Such a program accepts an input vector
if and only if at least one path from the source to a 1-sink is consistent with this input. The size
of a branching program is the number of non-guessing nodes. The logarithm of this number gives
the space required to compute a given function.

If we put no further restrictions on the branching programs, then the best remains the lower
bound Ω(n2/ log2 n) for nondeterministic boolean branching programs proved by Nechiporuk in [9].
Exponential lower bounds were only proved under additional restrictions on the structure of
branching programs; see [11] or the monograph [13] for a comprehensive survey.

In this paper we are interested in proving large lower bounds on the size of branching programs
when the computation time is bounded by kn for some constant k. More precisely, we say that a
program computes a given function f in time T if for every input a ∈ f−1(1) there is a path from
the source to a 1-sink which is consistent with a and along which at most T tests are made.

Important here is that the restriction concerns only consistent paths, that is, paths along
which no two tests xi = d1 and xi = d2 for d1 6= d2 are made. The “syntactic” case, where we
require that along all paths—be they consistent or not—at most kn tests can be made, is easier to
deal with and exponential lower bounds are known even for D = {0, 1} and for nondeterministic
branching programs [10, 5, 6].

The boolean “non-syntactic” case is more difficult. In this case, exponential lower bounds were
first proved for deterministic branching programs working in time T ≤ n+o(n/ log n) [12, 8], then
∗Research supported by a DFG grant SCHN 503/4-1.
†Address: Institute of Mathematics, Akademijos 4, LT-80663 Vilnius, Lithuania

1



for deterministic programs working in time T ≤ n + εn for a very small (but constant!) ε > 0
[3, 7], and finally, for deterministic programs working in time T ≤ kn for any constant k [2]; this
was extended to randomized branching programs in [4].

The situation with nondeterministic branching programs is much worse. In the boolean case,
when D = {0, 1}, no exponential lower bounds are known even for programs working in time
T > n. Such bounds were only proved for functions working on large domains, namely – when
|D| is either linear in n [1], or is about 22k

[3].
In this paper we do this for a substantially smaller domain containing about 2k elements. As

a domain D we take a Galois field GF(q) with q about 2k. The function g(Y, ~x) itself has n2 + n
variables, the first n2 of which are arranged in an n× n matrix Y . The values of the function are
defined by g(Y, ~x) = 1 iff the vector ~x is orthogonal over GF(q) to all rows of Y . In other words,
g(Y, ~x) = 1 iff the vector ~x belongs to a linear code defined by the parity-check matrix Y .

Theorem 1. For every k ≥ 1 and every prime power q ≥ 23k+10, every nondeterministic branching
program computing g(Y, ~x) in time kn must have size exponential in Ω

(
n/k24k

)
.

The time restriction in this theorem concerns only the last n variables—the first n2 variables
from Y can be tested an arbitrary number of times.

Like in [5] and in subsequent papers, our goal is to show that, if the size of a branching program
is small, then it must accept all vectors of a large “rectangle”. Given a set X of variables, an
m-rectangle is a set of vectors R ⊆ DX of the form R = R0 × {w} × R1, where R0 ⊆ DX0

and R1 ⊆ DX1 for some pair of disjoint m-element subsets X0 and X1 of X. Note that every
m-rectangle can have at most |D|2m vectors.

A function f : Dn → {0, 1} is a code function if any two accepted vectors differ in at least two
coordinates. The only property of such functions we will use is that in any branching program
computing such a function, along any accepting computation each variable must be tested at least
once.

The density of f : Dn → {0, 1} is µ(f) = |f−1(1)|/|D|n.

Lemma 1. If a code function f : Dn → {0, 1} can be the computed by a nondeterministic branching
program of size s working in time kn, then for every m ≤ n/2k+1 the function accepts all vectors
of some m-rectangle R = R0 × {w} ×R1 of size

|R| ≥ µ(f)

(2s)r
(

n
m

)2 · |D|2m , (1)

where r = 8k22k.

2 Proof of Lemma 1

For each input a ∈ f−1(1), fix one accepting computation path comp(a), and split it into r sub-
paths p1, . . . , pr of length at most ` = kn/r; the length of a sub-path pi is the number of tests
made along it. That is, we have r time segments 1, . . . , r, and in the i-th of them the computation
on a follows the sub-path pi.

Say that two inputs a and b in f−1(1) are equivalent if the starting nodes of the corresponding
sub-paths comp(a) = (p1, . . . , pr) and comp(b) = (q1, . . . , qr) coincide. Since we have at most s
nodes in the program, the number of possible equivalence classes does not exceed sr. Fix some
largest equivalence class A ⊆ f−1(1); hence,

|A| ≥ |f−1(1)|/sr .

We say that a pair of disjoint subsets of variables X0 and X1 is good for a set of vectors B if
there is a coloring of time segments 1, . . . , r in red and blue such that, along each computation
comp(a) = (p1, . . . , pr) on a vector a ∈ B, the variables from X0 are tested only in red and those
from X1 only in blue sub-paths.

2



Claim 1 ([3]). Let r = 8k22k. Then for every vector a ∈ f−1(1), at least one pair of disjoint
m-element subsets of variables with m ≥ n/2k+1 is good for a.

Proof. For a variable x ∈ X, let dx be the number of sub-paths in comp(a) = (p1, . . . , pr) along
which this variable is tested. Since the computed function f(X) is a code function, we know
that each variable x ∈ X is tested at least once along comp(a). Since the program computes
f(X) in time kn, we also know that at most kn tests can be made along the whole computation
comp(a). Hence,

∑
x∈X dx ≤ kn, implying that average number

∑
x∈X dx/n of tests made on a

single variable does not exceed k. Finally, we know that each sub-path can make at most ` = kn/r
tests.

Color the sub-paths p1, . . . , pr red or blue uniformly and independently. Call a variable x ∈ X
red (resp., blue) if all sub-paths testing this variable are red (resp., blue). This way, each variable
is red as well as blue with probability 2−dx . Hence, we can expect∑

x∈X

2−dx ≥ n
( ∏

x∈X

2−dx

)1/n

= n2−
∑

x
dx/n ≥ n2−k

red variables as well as at least n2−k blue variables. Using the Chebyshev inequality it is not
difficult to show (see Lemma 12 in [3]) that then at least one coloring must produce at least
m ≥ (1 − δ)n2−k red variables and at least so many blue variables, where δ =

√
k`21+k/n =√

k221+k/r =
√

1/4 = 1/2.
We have only 2r possible colorings of time intervals 1, . . . , r, and at most

(
n
m

)2 pairs of disjoint
m-element subsets of variables. Hence, by Claim 1, some of these pairs X0, X1 must be good for
a subset B ⊆ A of size

|B| ≥ |A|
2r
(

n
m

)2 .
We can write each vector a ∈ Dn as a = (a0, w, a1), where a0 is the projection of a onto X0, a1 is
the projection of a onto X1, and w is the projection of a onto X \ (X0∪X1). Say that two vectors
a = (a0, w, a1) and b = (b0, w′, b1) are equivalent if w = w′. Since the sets of variables X0 and X1

are disjoint, each equivalence class is a rectangle.
Let R ⊆ B be a largest equivalence class lying in B; hence

|R| ≥ |B|
|D|n−2m

≥ |A|
2r
(

n
m

)2|D|n−2m

≥ |f−1(1)|
sr2r

(
n
m

)2|D|n−2m
=

µ(f)

(2s)r
(

n
m

)2 · |D|2m .

So, it remains to show that all vectors of the rectangle R are accepted by the program. This is a
direct consequence of the following more general claim.

Claim 2. If both vectors a = (a0, w, a1) and b = (b0, w, b1) belong to B, then the combined vector
(a0, w, b1) belongs to A.

Proof. Let comp(a) = (p1, . . . , pr) be an accepting computation on a = (a0, w, a1), and comp(b) =
(q1, . . . , qr) an accepting computation on b = (b0, w, b1). Consider the combined vector c =
(a0, w, b1). Our goal is to show that then pt(c) ∨ qt(c) = 1 for all t = 1, . . . , r. That is, that for
each t = 1, . . . , r, the combined vector c must be accepted by (must be consistent with) at least
one of the sub-paths pt or qt.

To show this, assume that c is not accepted by pt. Since pt accepts the vector a = (a0, w, a1),
and this vector coincides with the combined vector c = (a0, w, b1) on all the variables outside X1,
this means that at least one variable from X1 must be tested along pt. But then, by the goodness
of the pair X0, X1, no variable from X0 can be tested along the sub-path qt. Since qt accepts the
vector b = (b0, w, b1), and the combined vector c = (a0, w, b1) coincides with this vector on all the
variables outside X0, the sub-path qt must accept the vector c, as desired.

This completes the proof of Claim 2, and thus the proof of Lemma 1.

3



3 Proof of Theorem 1

Fix an arbitrary prime power q ≥ 23k+10, and let d = m + 1 where m := bn/2k+1c. By the
Gilbert–Varshamov bound, linear codes C ⊆ GF(q)n of distance d and size |C| ≥ qn/V (n,m)
exist, where

V (n,m) =
m∑

i=0

(q − 1)i

(
n

i

)
≤ dqm

(
n

m

)
is the number of vectors in a Hamming ball of radius m around a vector in GF(q)n.

Let Y be the parity-check matrix of such a code, and consider the function f : GF(q)n → {0, 1}
such that f(~x) = 1 iff Y ·~x = ~0. That is, f(~x) = 1 iff ~x ∈ C. The function f(~x) is a sub-function of
g(Y, ~x). Hence, if the function g(Y, ~x) can be computed by a nondeterministic branching program
working in time kn, then the size of this program must be at least the size s of a nondeterministic
branching program computing f(~x) in time kn. To finish the proof of Theorem 1, it remains
therefore to show that s must be exponential in m/r, where r = 8k22k is from Lemma 1.

The function f(~x) has density µ(f) = 1/V (n,m). Hence, by Lemma 1, the code C must
contain an m-rectangle R = R0 × {w} ×R1 of size

|R| ≥ µ(f)

(2s)r
(

n
m

)2 · q2m =
q2m

(2s)r
(

n
m

)2
V (n,m)

≥ qm

(2s)rd
(

n
m

)3 . (2)

On the other hand, since the Hamming distance between any two vectors in C is at least d = m+1,
none of the sets R0 and R1 can have more than one vector. Hence, |R| ≤ 1. Remembering that
m = bn/2k+1c and q ≥ 23k+10 this, together with (2) and(

n

m

)3

≤
(
en

m

)3m

≤ (23k+9)m ≤ (q/2)m ,

implies that (2s)r ≥ 2m/d = 2Ω(m), and the desired lower bound s = 2Ω(m/r) = 2Ω(n/k24k) follows.

4 Conclusion

We have proved an exponential lower bound on the size of nondeterministic branching programs
computing explicit function f : Dn → {0, 1} in time T = o(n log n). Our contribution is that the
bound holds for a function working over much smaller domain D than those considered in [1] and
[3]. However, the boolean case (where D = {0, 1}) remains open: in this case no non-trivial lower
bounds are known even for T ≤ (1 + ε)n for an arbitrary small constant ε > 0.

Even worse, no exponential lower bounds are known for read-once(!) switching networks. A
switching network is just a directed acyclic graph whose edges are labeled by variables and their
negations (see, e.g., [11]). A vector a ∈ {0, 1}n is accepted iff it is consistent with all the labels of
at least one path from the source to a sink. A network is read-once if, along any consistent path
each variable is tested at most once. Important here, again, is that the restriction only concerns
consistent paths—along paths, containing a variable and its negation, each variable may appear
many times. As noted in [8], such networks seem to be the weakest nondeterministic model for
which no nontrivial lower bounds are known.

References

[1] M. Ajtai, Determinism versus non-determinism for linear time RAMs with memory restric-
tions, J. Comput. Syst. Sci. 65 (2002) 2–37.

4



[2] M. Ajtai, A non-linear time lower bound for boolean branching programs, Theory of Comput.
1 (2005) 149–17.

[3] P. W. Beame, T. S. Jayram,1 M. Saks, Time-space tradeoffs for branching programs, J. Com-
put. Syst. Sci. 63(4) (2001) 542–572.

[4] P. Beame, M. Saks, X. Sun, E. Vee, Time-space trade-off lower bounds for randomized com-
putation of decision problems, J. ACM 50(2) (2003) 154–195.

[5] A. Borodin, A. Razborov, R. Smolensky, On lower bounds for read-k-times branching pro-
grams, Comput. Complexity 3 (1993) 1–18.

[6] S. Jukna, A note on read-k-times branching programs, Theoret. Informat. and Appl. 29(1)
(1995) 75–83.

[7] S. Jukna, Expanders and time-restricted branching programs, Theoret. Comput. Sci., DOI
10.1016/j.tcs.2008.09.012.

[8] S. Jukna, A. Razborov, Neither reading few bits twice nor reading illegally helps much,
Discrete Appl. Math. 85 (1998) 223-238.

[9] E. I. Nečiporuk, On a Boolean function, Soviet Math. Doklady 7(4) (1966) 999–1000.

[10] E. A. Okolnishnikova, Lower bounds for branching programs computing characteristic func-
tions of binary codes, Metody discretnogo analiza 51 (1991) 61–83 (in Russian).

[11] A. A. Razborov, Lower bounds for deterministic and nondeterministic branching programs,
in: Lecture Notes in Comput. Sci., vol. 529, Springer, Berlin, 1991, pp. 47–60.

[12] P. Savický, S. Žák, A lower bound on branching programs reading some bits twice, Theor.
Comput. Sci. 172(1-2) (1997) 293-301.

[13] I. Wegener, Branching Programs and Binary Decision Diagrams, SIAM, 2000.

1Formely Jayram S. Thathachar

5


