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circuits with smaller thresholds of their gates'
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Abstract

We consider depth-3 unbounded fanin threshold circuits. Gates are usual thresh-
old functions 77" which compute 1 iff at least £ of the inputs are equal to 1; the
minimum min{k,n — k + 1} is the threshold value of this gate. We show that the
function 77 cannot be computed by a small depth-3 threshold circuit with threshold
values of its gates much smaller than k.
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1 Introduction and results

The rth threshold function 77" is the boolean function that takes the value 1
precisely when at least r of all n inputs to this function take value 1. Threshold
functions play an important role in the investigation of the computational
complexity of boolean functions. Their complexity has been studied in various
circuit models (cf. [1,8]). Here we are primarily interested in the following
problem:

o How efficiently can we compute the function T by a depth-3 threshold
circuits with thresholds of their gates smaller than r?
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We will consider usual (unweighted) threshold circuits. Inputs are variables
and their negations together with constants 0 and 1; gates are unbounded
fanin threshold gates T."; here s is the threshold, m —s—+1 is the anti—threshold
and their minimum min{s,m — s + 1} is the threshold value of this gate. We
will say that a circuit is threshold-s circusit if all its gates have threshold value

at most s.

The function 7" has obvious depth-2 threshold-1 circuit (namely — the OR
of ANDs) of size (:) 4+ 1 < er(4m(/7) | Khasin [4] has proved that one can
do better when using depth-3. He proves (via counting argument) that the
function T can be computed by depth-3 threshold-1 circuit of size e'nlnn
and bottom fanin n/r. The desired circuit is defined as the OR of €" copies of
the random circuit

(VieSll'z') A (viESQ-'L'i) VANEIAN (\/z'esr.'L'Z')

where Sy,..., Sk is the random partition of {1,...,n} into r blocks of size
n/r. For small values of r, namely, when r < Inn, this bound was improved

by Radhakrishnan [5] to e¥" ™" nIn n.

Can we do much better using threshold-s gates with s > 17 In this note we
show that (up to some restrictions on the bottom gates, i.e gates next to the
inputs) the answer is no. We will first consider the situation when bottom
gates are arbitrary Boolean functions but their fanin is restricted.

Theorem 1 Letr,s,t andn be positive integers, s < r. Any depth-3 threshold-
s circutt which computes T? and has arbitrary Boolean functions of fanin at

o

/s ) :
rdt) where d is the mazimum

most t at the bottom, must be of size al least (
anti—threshold of a gate on the middle level.

Our second result concerns slightly different model. Namely, we allow at the
bottom level only ANDs or only ORs but do not place any restriction on their
fan-in.

Theorem 2 Any depth-3 threshold-s circuil which computes the majority func-
tion T}, and has only ORs (respectively, only ANDs) atl the bottom, must be

of size exp (Q (,/:—d)) where d is the mazimum anti-threshold (respectively,
threshold) of a gate on the middle level.

We obtain these bounds using the the top-down approach of [3]. It is also
possible to derive similar lower bounds from known bounds on the size of AC°-
circuits for the majority function proved in [2]. However, such a proof would
be based on Switching Lemma which makes the whole argument complicated,
whereas the top-down proof uses only elementary combinatorics.



Let us say few words on the power of the model we are dealing with. Even
with restricted gates on the bottom, depth-3 threshold circuits have somehow
unexpected computational power: Yao in [9] has proved that the whole ACC®
(which consists of functions computable by polynomial-size constant-depth
circuits over the basis {A,V,=, (mod m)} for an arbitrary but fixed m)

is doable by depth-3 threshold circuits of size exp ((log n)o(l)) with AND

gates of fanin at most (logn)®() at the bottom. It is therefore hard to prove
exponential lower bounds even for this restricted model of threshold circuits:
log7) hound proved by Razborov and Wigderson
[6] for a depth-3 threshold circuit computing an explicit ACC? function, under
the restriction that it has either fanin n'~¢ gates, or unbounded fanin AND
gates at the bottom.

the best lower bound is an n‘X

2 The proofs

A vector b € {0,1}" is a k-limil of a set of vectors A C {0,1}" if for every
subset of k coordinates S C [n] = {1,...,n}, |S| = k, there exists a vector
a € A such that a # b but a coincides with b on S; it is a lower limit if
moreover a > b. Let limy(A) denote the set of all lower k-limits of A. Let E}
denote the r-th slice of the cube {0,1}", i.e. the set of all vectors with r ones.

Lemma 3 ([3]) Let A C EI'. If |A] > k" then limg(A) # 0.

Let A, B be two disjoint subsets of {0,1}". We say that a function f separates
A from B if f outputs 1 on all the vectors in A and outputs 0 on all the vectors
in B.

Lemma 4 Let C be a depth-3 threshold-s circuil of size £ computing T, and
d be the mazximum anti—threshold of a gate on the middle level of C. Then
the OR of at most d botlom gates separates a subset A C E! from some of

its lower k-limits where k = k(n,l,r,s) is the largest integer nol exceeding

/01"

Proof. Since the top gate of (' has threshold value at most s, the AND
[ = Ngeag of some gates on the middle level separates some (f)_l—fraction
A of the r-th slice E from the set B = {b : T*(b) = 0}. This fraction has
more than £ vectors, so by Lemma 3, the set B contains at least one lower
k-limit b of A. Take a gate g € G for which g(b) = 0. Since g(A) = 1, this
gate separates A from b. The gate g is a threshold gate T of fanin m < ¢
and anti—threshold m — p+ 1 < d. That is, g computes 0 if an only if at least
m — p+ 1 of bottom gates feeding in g compute 0. Since g(b) = 0, there must



be a set H of m — p+ 1 < d bottom gates feeding in g such that h(b) = 0 for
all h € H. Since g(a) = 1 for each a € A, on each of these vectors at least one
h € H must compute 1. Thus, the OR Vjpecgh of these gates separates the set
A from its lower k-limit b, as desired. ]

Proof of Theorem 1 By Lemma 4, the OR £ of at most d bottom gates must
separate some set A from some of its its lower k-limits b for k = k(n, l,r,s).
Since bottom gates have fanin at most ¢, the function h depends on at most
dt variables which means that dt > k since otherwise b € limy(A) would imply
that h(a) = h(b) for some a € A. We have therefore that dt > |S| > k(n, £, r, s)
which gives the bound (ﬁ) > (Z) - (dt)™", and hence, the desired lower bound

{> (%)r/s on the size /. |

For the proof of our second theorem we need the following lemma which allows
one to kill large fanin gates at the bottom.

Lemma 5 ([3]) Let F be a family of less than (”"'1 )t subsets of [n] each of

m+1
cardinality more than t. Then there exists a subset T C [n]| such that |T| <

n —m and T intersects every set in F.

Proof of Theorem 2 Let (' be a depth-3 threshold-s circuit which computes
the majority qu/2 and has only ORs or only ANDs at the bottom. Since the
majority function is self-dual, the dual of C' also computes the majority. So,
it is enough to prove the theorem in case of ORs at the bottom.

Let d be the maximum anti—threshold of a gate on the middle level of C'. Let ¢

be the size of C' and suppose that ¢ < (:1‘:1] )t where m and ¢ are parameters to
be specified later. Take F to be the family of the sets of (indices of ) unnegated
inputs to the OR gates at the bottom of C. Then |F| < £ and by Lemma 5,

we can replace at most n — m variables by the constant 1 so that each of

remaining OR gates at the bottom of the resulting circuit C’ has at most ¢
positive literals, i.e all but ¢ variables in each remaining OR must be negated.
This new circuit C' computes the threshold function T with r = m — n/2.

By Lemma 4, the OR h of at most d bottom gates separates some set A from
some of its lower limits b € limy(A) for k = k(m,£,r,s). The function h is
simply an OR of literals. Let S be the set of positive (i.e unnegated) literals in
it. Then |S| < dt. We claim that |S| > k. To verify this, assume that |S| <k,
and let AT (h™) be the OR of all positive (resp. negative) literals in h. Since
b is a k-limit of A and |S| < k, there is a vector @ € A which coincides
with b on all the variables in S, and hence, h*(a) = h*(b) = 0. Moreover,



a > b since b is a lower limit, and hence, h™(a) < h™(b) = 0. Thus, h(a) = 0,
which means that 2 does not separate a from b, a contradiction. Therefore,

dt > S| > k(m,ﬁ, r,s) which gives the bound ¢ > (%)r/s.

It remains to choose appropriate values for the parameters m and ¢. Since r =

%, we would like to take m to be the largest integer such that m —2 < 7,

which would give the bound ¢ > €'/* with r = {m J . So take m = liJ where

edt 20

m —

m+1
¢
must be sure that e"/° < (::_11) . By the choice of m, ;:11 > 2a(t) > 4/3
and, since r < 2 it is enough to ensure that - < #In(4/3), which holds for

edt?

= l ﬁ(‘lﬁ)J . Therefore, the lower bound ¢ > ¢"/* holds with r = le%J =

Q (\/%) , which gives the desired lower bound ¢ > exp (Q ( i)) . I

sd

=a(t)=1- 1. Gi th ter ¢ must fulfill ¢ < (2£L)’
a = a(t) =1 — —. Given m, the parameter ¢ must fu <( ),sowe
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