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Monotone Circuits and Local Computations

Stasys Jukna

Let CLIQUE,, ; denote the monotone Boolean function of n = (ZZ) variables which,
given (a binary code of) an m-vertex graph G, computes 1 iff G' contains a clique (i.e. a

complete subgraph) on k vertices.

A. Razborov [1,2] has proved that, for some k, this function has no polynomial-size
circuit over the basis {A,V,0,1}, i.e. CLIQUE can not be effectively computed using fan-

in 2 monotone gates. A. Yao has recently announced in [3] that this remains true even if one

1/100

uses all the monotone gates of fan-in at most n , l.e. as long as the gates perform all

but sufficiently "local” monotone operations, one still needs superpolynomial-size circuits
to compute the clique function.

The aim of this note is to show that the clique function can not be effectively computed
even allowing gates to perform much more complicated monotone operations.

A minterm(magzterm) of a Boolean function f(z1,...,z,) Is a minimal subset of its
variables such that at least one assignment of constants to them determines f to be equal
1 (0), regardless of the values of remaining variables. Denote

A/ln,d:{feﬂ/ln op(f) < d}
where p1( f) stands for the size of the largest minterm of f and M, is the set of all monotone

Boolean functions on n variables.

Definition: A sequence of functions [f,] = {f1, f2,...} is called to be (m,d)-local
(with respect to polynomial-size monotone circuits) if there exists a sequence of circuits

[C] = {C1,Cs, ...} such that, for each n
(i) C, is over the basis M, 4,
(ii) Cp computes f, and
(iil) size(C,) < nOW.

Theorem 1 (Razborov [1,2]): Let k = k(n) — oo and k < n'/*. Then [CLIQUE, x|
is not (2,2)-local.

Theorem 2 (Yao [3]): Let e =1/100 and k = [loglogn]|. Then [CLIQUE, | is not

(n,n®)-local.

Notice that CLIQUE, ; belongs to M,, ; and hence us (n, k)-local. So, one might

believe that this function is (n, k17¢)-local for some small € > 0. The following theorem
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refutes this belief.

Theorem 3 : Let k = [(m/Ilum)?/?] . Then [CLIQUE, §] is (n,k)-local but is not
(n,d)-local iof d = o(k).

The theorem follows fairly easily from the following symmetric version of Razborov’s
argument [1,2] for unbounded fan-in monotone circuits.

Every monotone Boolean function f(z1,...,z,) is uniquely determined by any of the
two hypergraphs min(f) and Maz(f) over X = {x1,...,x,} where min(f) (Maxz(f)) is
the set of all minterms (maxterms) of f. A hypergraph & C 2% is an i-star (1 > 0) if

(N EIl =i
FEeS

For a hypergraph G, let Star(G, ¢) denote the minimum number of ¢-stars covering
G. (Put Star(G,:) = 0 if G cannot be covered by i-stars, i.e. if it contains an edge of
cardinality less than .

Theorem 4: Let C' be a monotone circuit over the basis M,, 4 (d > 1) computing a
function f. Then for any hypergraphs G C min(f) and H C Max(f) the following bound
holds:

size(C) > max min{ d~1r=" star(g,u), (r4+1)"s™"Star(H,r) }

- s>l

where

w=[(s +1)/2d).

Proof (sketch): We need some auxilary notations concerning hypergraphs. For a
hypergraph F, set co— F = {X — A : A € F}. We say that a hypergraph £ covers
a hypergraph F iff each edge of F contains an edge of £. An interval generated by a
hypergraph F is the set of all subsets E C X such that for any A, B € F,

EDANB <« A#B.

A co-interval generated by F is the set of all subsets E C X such that for any A € F,
EnN (A - U B) £ 0.
BEF—{A}

In what follows we will consider intervals and co-intervals generated by hypergraphs
F consisting of r edges each of cardinality at most s.
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Now we turn to the proof of the theorem. Theorem 3 from [4] directly yields the
following lower bound

size(C) > max min{ d~'r~" star(G,u), t(r4+1)7° }

- s>l

where t 1s the minimum number of intervals covering the hypergraph

M(fi)={ECX : A-E#0 for all A e min(f) }.

So, it is enough to prove that

t > s~ "Star(H,r). (1)
One may easily verify the following three facts:
(1) Maz(f) C co— M(f);
(ii) if T is an interval then co— T is a co-interval

(iii) any co-interval J can be covered by at most s” r-stars.

Moreover, Star(7,r) = s" if the underlying hypergraph F consists of r pairwise

( , : ying hypergrap p
disjoint subsets each of cardinality s.)

Now, if M(f) can be covered by t intervals then by (i) and (ii), Maz(f) can be also
covered by at most t co-intervals, each of which, by (iii), has no more than s" r-stars.
Hence, Star(H,r) < ts” for any H C Max(f). This completes the proof of (1), and thus,
the proof of Theorem 4.

Thus, Theorem 4 gives non-trivial lower bounds on the unbounded fan-in monotone
circuit complexity of f if neither min(f) nor Maz(f) can be covered by a small number of
stars, i.e. if f has large ”star complexity”. To obtain the theorem 3 it is sufficient to verify
that CLIQU E,, 1, has super-polynomial star complexity for some r, s < k with s/d — oo.
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