
Greedy Can Beat Pure Dynamic Programming

Stasys Jukna1, Hannes Seiwert

Institute of Computer Science, Goethe-University Frankfurt, Robert-Mayer-Str. 11-15, Frankfurt am Main, Germany

Abstract

Many dynamic programming algorithms for discrete 0-1 optimization problems are “pure” in that their
recursion equations only use min/max and addition operations, and do not depend on actual input
weights. The well-known greedy algorithm of Kruskal solves the minimum weight spanning tree
problem on n-vertex graphs using only O(n2 logn) operations. We prove that any pure DP algorithm for
this problem must perform 2Ω(

√
n) operations. Since the greedy algorithm can also badly fail on some

optimization problems, easily solvable by pure DP algorithms, our result shows that the computational
powers of these two types of algorithms are incomparable.

Keywords: Spanning tree; arborescence; arithmetic circuit; tropical circuit; lower bound

1. Introduction and result

A dynamic programming (DP) algorithm is pure if it only uses min or max and addition operations
in its recursion equations, and the equations do not depend on the actual values of the input weights.
Notable examples of such DP algorithms include the Bellman–Ford–Moore algorithm for the shortest
s-t path problem [7, 15, 1], the Floyd–Warshall algorithm for the all-pairs shortest paths problem [6, 18],
the Held–Karp algorithm for the Travelling Salesman Problem [8], and the Dreyfus–Levin–Wagner
algorithm for the weighted Steiner tree problem [3, 14].

It is well known and easy to show that, for some optimization problems, already pure DP algorithms
can be much better than greedy algorithms. Namely, there are a lot of optimization problems which
are easily solvable by pure DP algorithms (exactly), but the greedy algorithm cannot even achieve any
finite approximation factor: maximum weight independent set in a path, or in a tree, the maximum
weight simple s-t path in a transitive tournament problem, etc.

In this paper, we show that the converse direction also holds: for some optimization problems,
greedy algorithms can also be much better than pure dynamic programming. So, the computational
powers of greedy and pure DP algorithms are incomparable. We will show that the gap occurs on the
(undirected) minimum weight spanning tree problem, by first deriving an exponential lower bound on
the monotone arithmetic circuit complexity of the corresponding polynomial.

Let Kn be the complete undirected graph on [n] = {1, . . . ,n}. Assume that edges e have their
associated nonnegative real weights xe, considered as formal variables. Let Tn be the family of all
|Tn|= nn−2 spanning trees T in Kn, each viewed as its set of edges.

Email addresses: stjukna@gmail.com (Stasys Jukna), seiwert@thi.cs.uni-frankfurt.de (Hannes Seiwert)
1Affiliated with the Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics of Vilnius

University, Lithuania. Research supported by the DFG grant JU 3105/1-1 (German Research Foundation).

Preprint submitted to Elsevier May 29, 2018

It is well known that Tn is the family of bases of a matroid, known as graphic matroid; so, on
this family of feasible solutions, both optimization problems (minimization and maximization) can be
solved by standard greedy algorithms. On the other hand, the theorem below states that the polynomial
corresponding to Tn has exponential monotone arithmetic circuit complexity; due to special properties
of this polynomial, the same lower bound also holds on the number of operations used by pure DP
algorithms solving minimization and maximization problems on Tn (see Lemma 1).

The spanning tree polynomial (known also as the Kirchhoff polynomial of Kn) is the following
homogeneous, multilinear polynomial of degree n−1:

fn(x) = ∑
T∈Tn

∏
e∈T

xe .

For a multivariate polynomial f with positive coefficients, let L(f) denote the minimum size of a
monotone arithmetic (+,×) circuit computing f . Our goal is to prove that L(fn) is exponential in n.

Theorem 1.
L(fn) = 2Ω(

√
n) .

A “directed version” of fn is the arborescence polynomial ~fn. An arborescence (known also as
a branching or a directed spanning tree) on the vertex-set [n] is a directed tree with edges oriented
away from vertex 1 such that every other vertex is reachable from vertex 1. Let~Tn be the family of all
arborescences on [n]. Jerrum and Snir [11] have shown that L(~fn) = 2Ω(n) holds for the arborescence
polynomial

~fn(x) = ∑
T∈~Tn

∏
~e∈T

x~e .

Note that here variables xi, j and x j,i are treated as distinct, and cannot both appear in the same monomial.
This dependence on orientation was crucially utilized in the argument of [11, p. 892] to reduce a trivial
upper bound (n−1)n−1 on the number of monomials in a polynomial computed at a particular gate till
a non-trivial upper bound (3n/4)n−1. So, this argument does not apply to the undirected version fn

(where xi, j and x j,i stand for the same variable). To handle the undirected case, we will use an entirely
different argument.

Relation to pure DP algorithms. Every pure DP algorithm is just a special (recursively constructed)
tropical (min,+) or (max,+) circuit, that is, a circuit using only min (or max) and addition operations
as gates; each input gate of such a circuit holds either one of the variables xi or a nonnegative real
number. So, lower bounds on the size of tropical circuits yield the same lower bounds on the number
of operations used by pure DP algorithms. For optimization problems, whose feasible solutions all
have the same cardinality, the task of proving lower bounds on their tropical circuit complexity can be
solved by proving lower bounds on the size of monotone arithmetic circuits.

Recall that a multivariate polynomial is monic if all its nonzero coefficients are equal to 1, mul-
tilinear if no variable occurs with degree larger than 1, and homogeneous if all monomials have the
same degree. Every monic and multilinear polynomial f (x) = ∑S∈F ∏i∈S xi defines two optimization
problems: compute the minimum or the maximum of ∑i∈S xi over all S ∈ F.

Lemma 1 ([11, 12]). If a polynomial f is monic, multilinear and homogeneous, then every tropical
circuit solving the corresponding optimization problem defined by f must have at least L(f) gates.

This fact was proved by Jerrum and Snir [11, Corollary 2.10]; see also [12, Theorem 9] for a simpler
proof. The proof idea is fairly simple: having a tropical circuit, turn it into a monotone arithmetic
(+,×) circuit, and use the homogeneity of f to show that, after removing some of the edges entering
+-gates, the resulting circuit will compute our polynomial f .

2

Greedy can beat pure DP. The (weighted) minimum spanning tree problem MSTn(x) is, given an
assignment of nonnegative real weights to the edges of Kn, compute the minimum weight of a spanning
tree of Kn, where the weight of a graph is the sum of weights of its edges. So, this is exactly the
minimization problem defined by the spanning tree polynomial fn:

MSTn(x) = min
T∈Tn

∑
e∈T

xe .

Since the family Tn of feasible solutions of this problem is the family of bases of the (graphic) matroid,
the problem can be solved by the standard greedy algorithm. In particular, the well-known greedy
algorithm of Kruskal [13] solves MSTn using only O(n2 logn) operations.

On the other hand, since the spanning tree polynomial fn is monic, multilinear and homogeneous,
Theorem 1 together with Lemma 1 implies that any (min,+) circuit solving the problem MSTn must
have at least L(fn) = 2Ω(

√
n) gates and, hence, at least so many operations must be performed by any

pure DP algorithm solving MSTn. This gap between pure DP and greedy algorithms is our main result.

Directed versus undirected spanning trees. The arborescence polynomial ~fn is also monic, multilinear
and homogeneous, so that Lemma 1, together with the above mentioned lower bound on L(~fn) due
to Jerrum and Snir [11], also yields the same lower bound on the size of (min,+) circuits solving the
minimization problem on the family~Tn of arborescences.

But this does not separate DP from greedy, because the downward closure of~Tn is not a matroid:
it is only an intersection of two matroids (see Edmonds [4]). So, greedy algorithms are only able
to approximate the minimization problem on ~Tn within the factor 2. Polynomial time algorithms
solving this problem exactly were found by several authors, starting from Edmonds [5]. The fastest
algorithm for the problem is due to Tarjan [16], and solves it in time O(n2 logn), that is, with the same
time complexity as Kruskal’s greedy algorithm for undirected graphs [13]. But these are not greedy
algorithms. So,~Tn does not separate standard, matroid based greedy and pure DP algorithms.

2. Proof of Theorem 1

A rectangle is specified by giving two families A and B of forests in the complete graph Kn on
[n] = {1, . . . ,n} such that for all forests A ∈ A and B ∈ B (viewed as sets of their edges), we have
A∩B = /0 (the forests are edge-disjoint), and A∪B is a spanning tree of Kn. The rectangle itself is the
family

R=A∨B := {A∪B : A ∈A and B ∈B}

of all resulting spanning trees. A rectangle R=A∨B is balanced if (n−1)/3≤ |A|, |B| ≤ 2(n−1)/3
holds for all forests A ∈A and B ∈B; recall that every spanning tree of a graph on n vertices has n−1
edges. Let τ(n) be the minimum number of balanced rectangles whose union gives the family of all
spanning trees of Kn.

Lemma 2. For the spanning tree polynomial fn, we have L(fn)≥ τ(n).

Proof. Let t = L(fn). The spanning tree polynomial fn is multilinear and homogeneous of degree
n−1: every spanning tree T of Kn has |T |= n−1 edges. Since the polynomial fn is homogeneous of
degree n−1, and since fn can be computed by a monotone arithmetic circuit of size t, the well-known
decomposition result, proved by Hyafil [10, Theorem 1] and Valiant [17, Lemma 3], implies that fn can
be written as a sum fn = g1 ·h1 + · · ·+gt ·ht of products of nonnegative homogeneous polynomials,
each of degree at most 2(n−1)/3; a polynomial is nonnegative if it has no negative coefficients.

3

Every monomial of fn is of the form ∏e∈T xe for some spanning tree T . Since the polynomials gi

and hi in the decomposition of fn are nonnegative, there can be no cancellations. This implies that
all the monomials of gi ·hi must be also monomials of fn, that is, must correspond to spanning trees.
Moreover, since the polynomial fn is multilinear, the forests of gi must be edge-disjoint from the forests
of hi. So, if we let Ai be the family of forests corresponding to monomials of the polynomial gi, and Bi

be the family of forests corresponding to monomials of the polynomial hi, then A1∨B1, . . . ,At ∨Bt

are balanced rectangles, and their union gives the family of all spanning trees of Kn. This shows
τ(n)≤ t = L(fn), as desired.

So, it is enough to prove an exponential lower bound on τ(n). When doing this, we will concentrate
on spanning trees of Kn of a special form. Let m and d be positive integer parameters satisfying
(d +1)m = n, m = Θ(

√
n) and m≤ d/32; we will specify these parameters later.

A star is a tree with one vertex, the center, adjacent to all the others, which are leaves. A d-star
is a star with d leaves. A spanning star-tree consists of m vertex-disjoint d-stars whose centers are
joined by a path. A star factor is a spanning forest of Kn consisting of m vertex-disjoint d-stars. Note
that each spanning star-tree contains a unique star factor (obtained by removing edges between star
centers).

Let F be the family of all star factors of Kn. For a rectangle R, let FR denote the family of all star
factors F of Kn contained in at least one spanning tree of R; in this case, we also say that the factor F
is covered by the rectangle R.

Lemma 3. There is an absolute constant c > 0 such that for every balanced rectangle R, we have
|FR| ≤ |F| ·2−c

√
n.

Note that this lemma gives a lower bound τ(n) ≥ 2c
√

n on the minimum number of balanced
rectangles containing all spanning trees of Kn. Indeed, let R1, . . . ,Rt be t = τ(n) balanced rectangles
whose union is the family of all spanning trees of Kn. Every star factor F ∈ F is contained in at
least one spanning tree (in fact, in many of them). So, every star factor F ∈ F must be covered by at
least one of these t rectangles. But Lemma 3 implies that none of these rectangles can cover more
than h := |F| ·2−c

√
n star factors F ∈ F. So, we need τ(n) = t ≥ |F|/h ≥ 2c

√
n rectangles. Together

with Lemma 2, this yields the desired lower bound L(fn)≥ 2c
√

n on the monotone arithmetic circuit
complexity of the spanning tree polynomial fn.

The rest of the paper is devoted to the proof of Lemma 3.

Proof of Lemma 3. We can construct every star factor F ∈ F using the following procedure.

1. Choose a subset of m centers in [n];
(n

m

)
possibilities.

2. Divide the remaining n−m vertices into m blocks of size d, and connect all vertices of the ith
block to the ith largest of the chosen centers; there are

(n−m
d,...,d

)
= (n−m)!

d!m possibilities to do this.

Since different realizations of this procedure lead to different star factors, we have

|F|=
(

n
m

)
(n−m)!

d!m . (1)

Fix a balanced rectangle R=A∨B containing at least one spanning star-tree T0 = A0∪B0 with
A0 ∈A and B0 ∈B, and let c1, . . . ,cm be the centers of stars of T0. Every vertex v ∈ [n]\{c1, . . . ,cm}
is connected in T0 by a unique edge ev to one of the centers c1, . . . ,cm. This gives us a partition U ∪V
of the vertices in [n]\{c1, . . . ,cm} into two sets determined by the forests A0 and B0:

U = {v : ev ∈ A0} and V = {v : ev ∈ B0} .
4

We will concentrate on the bipartite complete subgraph U×V of Kn, and call the edges of Kn lying in
this subgraph crossing edges. Since our rectangle R is balanced, we know that both |A0| and |B0| lie
between (n−1)/3 and 2(n−1)/3. So, since m = o(n), for n large enough, we have

|U |, |V | ≥ 1
3(n−1)−m≥ 1

4 n . (2)

The property that every graph A∪B with A ∈A and B ∈B must be cycle-free (must be a spanning
tree of Kn) gives the following restriction on the rectangle R=A∨B.

Claim 1. For all forests A ∈A and B ∈B, and vertices u ∈U and v ∈V , we have |A∩ ({u}×V)| ≤m
and |B∩ (U×{v})| ≤ m.

That is, no forest A ∈A can contain more than m crossing edges incident to one vertex in U , and
no forest B ∈B can contain more than m crossing edges incident to one vertex in V .

Proof. Assume contrariwise that some vertex u ∈U has l ≥m+1 crossing edges {u,v1}, . . . ,{u,vl} in
the forest A. Since these edges are crossing and u ∈U , all vertices v1, . . . ,vl belong to V . In the (fixed)
spanning star-tree T0 = A0∪B0 (determining the partition U ∪V of vertices in [n]\{c1, . . . ,cm}) each
of these l vertices is joined by an edge of the forest B0 to one of the centers c1, . . . ,cm of stars of T0.

Since l > m, some two of these vertices vi and v j must be joined in B0 to the same center
c ∈ {c1, . . . ,cm}. Since R is a rectangle, the graph A∪B0 must be a (spanning) tree. But the edges
{u,vi},{u,v j} of A together with edges {vi,c},{v j,c} of B0 form a cycle u→ vi → c→ v j → u in
A∪B0, a contradiction.

The proof of the inequality |B∩(U×{v})| ≤m is the same by using the forest A0 instead of B0.

So far, we only used one fixed spanning tree T0 in the rectangle R to define the subgraph U×V of
Kn. We now use the entire rectangle R=A∨B to color the edges of Kn in red and blue. When doing
this, we use the fact that the sets EA :=

⋃
A∈A A and EB :=

⋃
B∈B B of edges of Kn must be disjoint:

• Color an edge e ∈ Kn red if e ∈ EA, and color e blue if e ∈ EB.

This way, the edges of every spanning tree T ∈ R will receive their colors. The remaining edges of Kn

(if there are any) can be colored arbitrarily.
Recall that an edge e of Kn is crossing if e ∈U ×V . Assume that at least half of the crossing

edges is colored in red; otherwise, we can consider blue edges. This assumption implies that the set
Ered ⊆U×V of red crossing edges has |Ered| ≥ 1

2 |U×V | edges. For a vertex u ∈U , the set of its good
neighbors is the set

Vu = {v ∈V : {u,v} ∈ Ered}

of vertices that are connected to u by red crossing edges. Claim 1 gives the following structural
restriction on star factors covered by the rectangle R.

Claim 2. For any star factor F ∈ FR, and for any center z of F, if z ∈U, then |F ∩ ({z}×Vz)| ≤ m.

That is, if a star factor F is covered by the rectangle R, then every star of F centered in some vertex
z ∈U can only have m or fewer (out of all |Vz| possible) red crossing edges.

Proof. Take a star factor F ∈ FR having some star whose center z belongs to U . Since F is covered
by the rectangle R, F ⊆ A∪B holds for some forests A ∈A and B ∈B. By the definition of the edge-
coloring, we have B∩ ({z}×Vz) = /0: all edges in {z}×Vz are red, while those in B are blue. So, all
edges of F ∩ ({z}×Vz) belong to the forest A, and Claim 1 yields |F ∩ ({z}×Vz)| ≤ |A∩ ({z}×Vz)| ≤
m.

5

We call a vertex u of Kn rich if u∈U and at least one quarter of the vertices in V are good neighbors
of u, that is, if |Vu| ≥ 1

4 |V | holds. By (2), every rich vertex u has |Vu| ≥ n/16 good neighbors. Split
the family FR of star factors covered by the rectangle R into the family F1

R of star factors F ∈ FR

with no rich center, and the family F2
R of all star factors F ∈ FR with at least one rich center. We will

upper-bound the number of star factors in F1
R and in F2

R separately.
The intuition behind this splitting is that star factors F ∈ F1

R have the restriction (given by Claim 3
below) that only relatively “few” potential vertices of Kn can be used as centers of stars, while the
restriction for the star factors F ∈ F2

R (given by Claim 2) is that at least one of its stars Sz ⊂ F (centered
in a rich center z) has relatively “few” potential vertices of Kn which can be taken as leaves.

To upper-bound |F1
R|, let us first show that the set U∗ =

{
u ∈U : |Vu| ≥ 1

4 |V |
}

of all rich vertices
is large enough.

Claim 3. There are |U∗| ≥ 1
4 |U | ≥ n/16 rich vertices.

Proof. The second inequality follows from (2). To prove the first inequality, assume contrariwise that
there are only |U∗|< 1

4 |U | rich vertices in U . Since |Vu|< 1
4 |V | holds for every vertex u ∈U \U∗, we

obtain

1
2 |U×V | ≤ |Ered|= ∑

u∈U∗
|Vu|+ ∑

u∈U\U∗
|Vu|< 1

4 |U | · |V |+ |U | ·
1
4 |V |=

1
2 |U×V | ,

a contradiction.

Each star factor in F1
R can be constructed in the same way as we constructed any star factor F ∈ F

above (before (1)), with the difference that centers can only be chosen from [n]\U∗, not from the entire
set [n]. Thus,

|F1
R|
|F|
≤
(

n−|U∗|
m

)
·
(

n
m

)−1

≤ e−|U
∗|·m/n = 2−Ω(m) . (3)

Here we used Claim 3 together with the second of the two simple inequalities holding for all b ≤
b+ x < a: (

a−b− x
a− x

)x

≤
(

a− x
b

)(
a
b

)−1

≤
(

a−b
a

)x

. (4)

To upper bound |F2
R|, we will use the restriction given by Claim 1. Recall that every star factor

F ∈ F2
R has at least one rich center. So, consider the following (nondeterministic) procedure of

constructing a star factor F in F2
R.

1. Choose a rich center z ∈U∗; there are at most |U∗| ≤ |U | ≤ n possibilities to do this.

2. For the center z, do the following:

(a) choose a subset of i≤ m vertices from the set Vz of all good neighbors of z, and connect
these vertices to z by (crossing) edges; for each i≤ m there are

(|Vz|
i

)
possibilities.

(b) choose a subset of d− i vertices in [n]\ (Vz∪{z}) and connect them to z; here we have at
most

(n−|Vz|−1
d−i

)
≤
(n−|Vz|

d−i

)
possibilities.

3. Choose a subset of m−1 distinct centers from the remaining n−d−1 vertices. There are at
most

(n−d−1
m−1

)
≤
(n−1

m−1

)
= m

n

(n
m

)
possibilities to do this.

6

4. Choose a partition of the remaining n−m−d vertices into m−1 blocks of size d, and connect
the ith largest of the m− 1 chosen centers to all vertices in the ith block. There are at most(n−m−d

d,...,d

)
= (n−m−d)!

d!m−1 possibilities to do this.

Claim 4. Every star factor F ∈ F2
R can be produced by the above procedure.

Proof. Take a star factor F ∈FR containing a star Sz⊂ F centered in a rich vertex z∈U∗. The star z can
be picked by Step 1 of the procedure. By Claim 2, the star Sz can only have i := |F ∩ ({z}×Vz)| ≤ m
good neighbors of z (those in Vz) as leaves, and Step 2(a) of our procedure can pick all these i leaves of
Sz. The remaining d− i leaves of the star Sz must belong to the set [n]\ (Vz∪{z}). So, Step 2(b) can
pick these d− i leaves of Sz. Since the remaining two steps 3 and 4 of the procedure can construct any
star factor of Kn \Sz, the rest of the star factor F can be constructed by these steps.

The number of possibilities in Step 2 of our procedure is related to the probability distribution

h(K,n,d, i) := Pr{X = i}=
(K

i

)(n−K
d−i

)(n
d

)
of a hypergeometric random variable X : the probability of having drawn exactly i white balls, when
drawing uniformly at random without replacement d times, from a vase containing K white and n−K
black balls. The number of possibilities in Step 2 of the procedure (for a center z picked in Step 1) is
then at most H(|Vz|,n,d,m) ·

(n
d

)
, where

H(K,n,d,m) := Pr{X ≤ m}=
m

∑
i=0

h(K,n,d, i) ,

is the probability of having drawn at most m white balls. For fixed n,d and m, the function H(K,n,d,m)
is non-increasing in K, implying that the maximum of H(|Vz|,n,d,m) over all rich centers z ∈U∗ is
achieved for K := min{|Vz| : z ∈U∗}. Hence, for every rich center z ∈U∗, the number of possibilities
in Step 2 is at most

H(|Vz|,n,d,m) ·
(

n
d

)
≤ H ·

(
n
d

)
,

where H := H(K,n,d,m). From the first inequality of (4) (applied with x := m, a := n and b := d)
we have

(n
d

)
≤ C ·

(n−m
d

)
, where C =

(n−m
n−d−m

)m ≤ exp
(md

n−d−m

)
is a constant since md = O(n) and

m,d = o(n).
Thus the total number of possibilities in all steps 1–4 and, by Claim 4, also the number |F2

R| of star
factors in F2

R, is at most a constant times

n ·H ·
(

n−m
d

)
︸ ︷︷ ︸

Steps 1 and 2

m
n

(
n
m

)
︸ ︷︷ ︸

Step 3

(n−m−d)!
d!m−1︸ ︷︷ ︸
Step 4

= m ·H ·
(

n
m

)
(n−m)!

d!m︸ ︷︷ ︸
= |F|

.

Known tail inequalities for the hypergeometric distribution (see Hoeffding [9], or Chvátal [2] for a
direct proof) imply that, if m≤ (K/n− ε)d for ε > 0, then

H(K,n,d,m) = Pr{X ≤ m} ≤ e−2ε2d . (5)

Remark. In both papers [9] and [2], this upper bound is only stated for the event X ≥ (K/n+ ε)d, but
using the duality h(K,n,d, i) = h(n−K,n,d,d− i) (count black balls instead of white), the same upper
bound holds also for the event X ≤ (K/n− ε)d.

7

In our case, K = min{|Vz| : z ∈U∗} ≥ 1
4 |V | ≥ n/16. Recall that, so far, we have only used the

conditions (d +1)m = n and m = Θ(
√

n) on the parameters m and d. We now use the last condition
m≤ d/32. For ε = 1/32, we then have m≤ d/32≤ (K/n− ε)d, and (5) yields

H = H(K,n,d,m)≤ Pr{X ≤ d/32} ≤ e−d/512 = 2−Ω(d) .

By taking d := 6
√

n and m := n/(d +1), all three conditions on the parameters m and d are fulfilled,
and we obtain |F2

R| ≤ m|F| ·2−Ω(d). Together with the upper bound (3), the desired upper bound on
|FR| follows:

|FR|
|F|

=
|F1

R|+ |F2
R|

|F|
≤ 2−Ω(m)+m2−Ω(d) = 2−Ω(

√
n) .

Acknowledgement

We thank the referees for useful comments, and especially one of them for catching a bug in the
submitted version. The research of the first author was supported by the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG), grant JU 3105/1-1.

References

[1] Bellman, R., 1958. On a routing problem. Quarterly of Appl. Math. 16, 87–90.
[2] Chvátal, V., 1979. The tail of the hypergeometric distribution. Discrete Math. 25, 285–287.
[3] Dreyfus, S., Wagner, R., 1971. The Steiner problem in graphs. Networks 1 (3), 195–207.
[4] Edmonds, J., 1967. Optimum branchings. J. of Res. of the Nat. Bureau of Standards 71B (4), 233–240.
[5] Edmonds, J., 1973. Edge-disjoint branchings. In: Rustin, B. (Ed.), Combinatorial Algorithms. Academic Press, pp.

91–96.
[6] Floyd, R., 1962. Algorithm 97, shortest path. Comm. ACM 5, 345.
[7] Ford, L., 1956. Network flow theory. Tech. Rep. P-923, The Rand Corp.
[8] Held, M., Karp, R., 1962. A dynamic programming approach to sequencing problems. SIAM J. on Appl. Math. 10,

196–210.
[9] Hoeffding, W., 1963. Probability inequalities for sums of bounded random variables. J. of the Amer. Statistical

Association 58 (301), 13–30.
[10] Hyafil, L., 1979. On the parallel evaluation of multivariate polynomials. SIAM J. Comput. 8 (2), 120–123.
[11] Jerrum, M., Snir, M., 1982. Some exact complexity results for straight-line computations over semirings. J. ACM 29 (3),

874–897.
[12] Jukna, S., 2015. Lower bounds for tropical circuits and dynamic programs. Theory of Comput. Syst. 57 (1), 160–194.
[13] Kruskal, J., 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. of AMS 7,

48–50.
[14] Levin, A., 1971. Algorithm for the shortest connection of a group of graph vertices. Sov. Math. Dokl. 12, 1477–1481.
[15] Moore, E., 1957. The shortest path through a maze. In: Proc. Internat. Sympos. Switching Theory. Vol. II. pp. 285–292.
[16] Tarjan, R., 1977. Finding optimum branchings. Networks 7 (1), 25–35.
[17] Valiant, L., 1980. Negation can be exponentially powerful. Theor. Comput. Sci. 12, 303–314.
[18] Warshall, S., 1962. A theorem on boolean matrices. J. ACM 9, 11–12.

8

	Introduction and result
	Proof of Theorem 1

