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Abstract. We consider the size of monotone circuits for quadratic boolean functions, that is,
disjunctions of length-2 monomials. Our motivation is that a good (linear in the number of variables)
lower bound on the monotone circuit size for a certain type of quadratic function would imply a good
(even exponential) lower bound on the general non-monotone circuit size.

To get more insight into the structure of monotone circuits for quadratic functions, we consider
the so-called single level conjecture posed explicitely around 1990. The conjecture claims that mo-
notone single level circuits, that is, circuits which have only one level of AND gates, for quadratic
functions are not much larger than arbitrary monotone circuits. In this paper we disprove the conjec-
ture: there are quadratic functions whose monotone circuits have linear size whereas their monotone
single level circuits require almost quadratic size.
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1. Introduction. A quadratic boolean function is a monotone boolean function
whose all prime implicants have length two. There is an obvious correspondence be-
tween such functions and graphs: every graph G = (V,E) defines a natural quadratic
function

fG(X) =
∨
uv∈E

xuxv,(1.1)

and every quadratic function defines a unique graph. We consider the complexity of
computing such functions by monotone circuits, that is, by circuits over the standard
monotone basis {∨,∧, 0, 1} of fanin-2 AND and OR gates. Single level circuits are
circuits where every path from an input to the output gate contains at most one AND
gate. Note that every quadratic boolean function fG in n variables can be computed
by a trivial monotone single-level circuit with at most n−1 AND gates using the form

∨
u∈S

xu ∧

( ∨
v:uv∈E

xv

)
(1.2)

where S ⊆ V is an arbitrary vertex cover of G, that is, a set of vertices such that
every edge of G is incident with a vertex in S.

Single Level Conjecture: For quadratic functions single level circuits are
almost as powerful as unrestricted ones.
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Here “almost” means “up to a constant factor.” This conjecture—first explicitly
framed as the “single level conjecture” by Lenz and Wegener in [14]—was considered
by several authors, [12, 4, 5, 17, 14, 2] among others. That the conjecture holds for
almost all quadratic functions was shown by Bloniarz [4] more than twenty five years
ago and, so far, no (even constant) gap between the size of general and single level
circuits for quadratic functions was known.

In this paper we disprove the single level conjecture in a strong sense: there are
quadratic functions in n variables whose monotone circuits have linear size whereas
their monotone single level circuits require size Ω(n2/ log3 n). A similar gap is also
shown for boolean formulas. We also discuss the single level conjecture in the case of
monotone circuits with unbounded fanin gates.

Why should we care about monotone circuits for quadratic functions, when we
already can prove high (even exponential) lower bounds for monotone circuits? There
are several reasons for this.

1. Any explicit n-vertex graph G, that cannot be represented (in a sense de-
scribed later in § 3) by a monotone circuit using fewer than cn gates for a sufficiently
large constant c > 0, would give us an explicit exponential lower bound for general
(non-monotone) circuits. Let us briefly sketch how this happens. Every bipartite n×n
graph G ⊆ U ×W with n = 2m and U = W = {0, 1}m gives us a boolean function f
(the characteristic function of G) in 2m variables such that f(uv) = 1 if and only if
uv ∈ G. Suppose now that we have a non-monotone circuit F (y1, . . . , y2m) computing
f whose inputs are variables yi and their negations yi; the rest of the circuit is mono-
tone (consists of AND and OR gates). Then, according to the so-called “magnification
lemma” [10], it is possible to replace its 4m = 4 log n input literals (both positive and
negative) by appropriate boolean sums (ORs) of variables in X = {xv : v ∈ U ∪W}
so that the resulting monotone circuit F+(X) in |X| = 2n variables represents G. It
can be shown (see [21] or Lemma 3.6 below) that all these 4 log n boolean sums can
be simultaneously computed by a monotone circuit of size cn for a constant c. There-
fore, the size of F cannot be much smaller than that of F+: size(F ) ≥ size(F+)− cn.
Hence, a lower bound cn+ nε on the size of monotone circuits representing G would
yield a lower bound nε = 2εm on the non-monotone circuit size of an explicit boolean
function f in 2m variables.

2. Better yet, for some graphs G, fG is the only monotone boolean function
representing G. Such are, in particular, complements of triangle-free graphs (see Ob-
servation 3.5 below). Hence, one could obtain large (even exponential) lower bounds
for general non-monotone circuits by proving a good (but only linear) lower bound
on the monotone circuit size of such quadratic functions.

3. Unlike boolean functions, graphs have been studied for a long time, and
explicit constructions of graphs with very special properties are already known. It
is therefore a hope to design a lower bound proof that is highly specialized for some
particular graph or some small class of graphs. This could (probably) lead to a lower
bound proof which will not fulfill the “largeness” condition in the notion of “natural
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proofs” [23].
4. When applied to quadratic functions, known lower bound arguments for mo-

notone circuits—Razborov’s method of approximations [22] and its modifications—
cannot yield lower bounds larger than n. The reason for this is that these arguments
are lower bounding the minimum of AND gates and that of OR gates needed to com-
pute the function, and (as we already noted above) every quadratic boolean function
fG in n variables can be computed by a trivial monotone single-level circuit with at
most n AND gates.

We therefore need entirely new lower bound arguments for monotone circuits
computing quadratic functions. For this, it is important to better understand the
structure of such circuits. And the (long studied) single level conjecture seems to be
a good starting point in this direction.

2. Results. Let us first introduce some notation. By the size of a circuit we will
always mean the number of gates in it. For a monotone boolean function f , let C(f)
denote the minimum number of gates and C&(f) the minimum number of AND gates
in a monotone circuit computing f . Let also C1(f) and C1

&(f) denote the single level
counterparts of these measures. Further, let L(f) and L1(f) denote the minimum
length of a monotone (resp., of a monotone single level) formula computing f . Recall
that a formula is a circuit where all gates have fanout 1, i.e. the underlying graph is
a tree; the length of the formula is the number of leaves of this tree.

In Table 2.1 we summarize known upper and lower bounds on the maximum
possible complexity of quadratic functions fG over all n-vertex graphs; the upper
bounds here hold for all graphs and the lower bounds for almost all graphs.

Table 2.1
Known bounds on the maximum complexity of quadratic functions

Upper bounds Lower bounds

C1(n) = O(n2/ logn) ([4]) C(n) = Ω(n2/ logn) ([4])

L1(n) = O(n2/ logn) ([26, 5, 21]) L(n) = Ω(n2/ logn)

C1
&(n) ≤ n− blognc+ 1 ([26, 14]) C1

&(n) ≥ n− c logn ([24])

C&(n) = Ω(n/ logn) ([14])

C&(n) = Ω(n) ([2])

In this paper we are interested in the corresponding gaps between general and
single level complexities for individual graphs:

1. circuit gap Gap(G) = C1(fG)/C(fG);
2. multiplicative gap Gap mult(G) = C1

&(fG)/C&(fG);
3. formula gap Gap form(G) = L1(fG)/L(fG).

Note that the single level conjecture claims that Gap(G) = O(1) for all graphs G.
Table 2.1 shows that, for almost all graphs, the conjecture is indeed true.

An even stronger support for the single level conjecture was given by Mirwald and
Schnorr [17]: if we consider circuits over the basis {⊕,∧, 0, 1} computing (algebraic)
quadratic forms

∑
uv∈E xuxv over GF(2) and if we count only AND gates, then every



4 S. JUKNA

optimal (with respect to the number of AND gates) circuit is a single level circuit.
But the case of circuits over the basis {∨,∧, 0, 1} remained unclear.

In the case of formulas, Krichevski [12] has proved that Gap form(Kn) = 1 for
the complete graph Kn on n vertices, even if negation is allowed as an operation.
A graph with Gap form(G) ≥ 8/7 was given by Bublitz [5]. In the case of multiplicative
complexity, a graph with Gap mult(G) ≥ 4/3 was given by Lenz and Wegener [14].
Recently, this gap was substantially enlarged to Gap mult(G) = Ω(n/ log n) by Amano
and Maruoka in [2]; this was implicit also in [10]. Using a construction of Tarjan [25]
(which, in its turn, was used by Tarjan for disproving that AND gates are powerless for
computing boolean sums), Amano and Maruoka [2] have also shown the gap Gap(F) ≥
29/28 for circuits computing a set F of quadratic functions. However, even the
existence of a single graph G with Gap(G) > 1 was not known.

Our main result is the following.
Theorem 2.1. There exist n-vertex graphs G such that C(fG) = O(n) but

C1(fG) = Ω(n2/ log3 n). Hence, Gap(G) = Ω(n/ log3 n).
The graphs used in Theorem 2.1 are saturated extensions of Sylvester-type graphs,

that is, of bipartite graphs whose vertices are particular vectors in GF(2)r, and where
two vertices are adjacent iff their scalar product over GF(2) is 1. The saturated
extension of a bipartite graph H ⊆ U ×W is a (non-bipartite) graph G = (V,E) with
V = U ∪W such that E ∩ (U ×W ) = H and the induced subgraphs of G on U as
well as on W are complete graphs. The reason to consider graphs of this special form
lies in the simple fact (Lemma 3.8 below) that having a small circuit representing H
we can construct a small circuit computing fG.

To disprove the single level conjecture for formulas, we consider a bipartite version
of graphs introduced by Lovász [15] in his famous proof of Kneser’s conjecture [11].
A bipartite Kneser n × n graph is a bipartite graph K ⊆ U ×W where U and W
consist of all n = 2r subsets u of {1, . . . , r}, and uv ∈ K iff u ∩ v = ∅.

Theorem 2.2. If G is the saturated extension of a bipartite Kneser n × n
graph, then L(fG) = O(n log n) but L1(fG) ≥ n1+c for a constant c > 0. Hence,
Gap form(G) = nΩ(1).

Next, we consider the single level conjecture for monotone unbounded fanin cir-
cuits and formulas. Note that in this case single level circuits are precisely the Σ3

circuits: the bottom (next to the inputs) level consists of OR gates, the middle level
consists of AND gates, and the top level consists of a single OR gate. For a monotone
boolean function f , let C∗(f) (resp., L∗(f)) be the minimum size of a monotone un-
bounded fanin circuit (resp., formula) computing f . Let also C1

∗(f) and L1
∗(f) denote

the corresponding measures in a class of monotone Σ3 circuits (i.e. the single level
versions of these measures). Note that, also in the case of formulas, we now count the
number of gates, not the number of leaves.

Single level circuits of unbounded fanin are interesting for at least two reasons.
1. The presence of unbounded fanin gates may exponentially increase the power

of single level circuits: if, say, G is the saturated extension of an n to n matching,
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then C1(fG) = Ω(n) but C1
∗(fG) = O(log n) (by Lemmas 3.8, 3.10 and 3.13 below).

2. By the reduction due to Valiant [27], a lower bound of the form nΩ(1) on the
size of a monotone Σ3 formula representing an explicit n-vertex graph would give us
a super-linear lower bound on non-monotone (fanin-2) circuits of logarithmic depth,
and thus, would resolve an old and widely open problem in circuit complexity (see
[10] for details).

The form (1.2) implies that C1
∗(fG) = O(n) for all n-vertex graphs. On the other

hand, easy counting shows C∗(fG) = Ω(n) for almost all n-vertex graphs: every gate
in a circuit of size t can have at most 2t possible sets of immediate predecessors,
implying an upper bound 2O(t2) on the total number of such circuits. Hence, also in
the case of unbounded fanin circuits, the single level conjecture holds for almost all
quadratic functions. The following theorem gives a stronger result: the conjecture
holds for explicit (and large) classes of quadratic functions.

Recall that a set S ⊆ V is a vertex cover of G = (V,E) if every edge of G is
incident with a vertex in S. Let τ(G) denote the minimum cardinality of a vertex
cover of G. Note that for every n-vertex graph G = (V,E) of maximum degree d we
have |E|/d ≤ τ(G) ≤ n− 1. Let also m(G) denote the maximum possible number m
such thatG contains a matching withm edges as an induced subgraph. Representation
(1.2) gives us the upper bound C1

∗(fG) ≤ L1
∗(fG) ≤ 2τ(G) + 1. On the other hand,

we have the following lower bounds.
Theorem 2.3. For every graph G we have C∗(fG) ≥ m(G) + 1. Moreover,

L1
∗(fG) ≥ τ(G)/d and C1

∗(fG) ≥
√
τ(G)/d, where d is the maximum degree of G.

Hence, if we consider circuits with unbounded fanin gates, then the single level
conjecture is true for all n-vertex graphs containing an induced matching with Ω(n)
edges: for all such graphs we have C∗(fG) = Ω(n) and C1

∗(fG) = O(n).
In the case of multiplicative complexity (where we count only AND gates) we

have the following gap.
Theorem 2.4 ([2]; implicit in [1, 10]). If G is the saturated extension of an n

to n matching, then C&(fG) = O(log n) but C1
&(fG) = Ω(n). Hence, Gap mult(G) =

Ω(n/ log n).
This result was implicit in [10] (and even in [1], cf. Lemma 3.10 below) where

it was shown that an n to n matching M (a bipartite n × n graph consisting of n
vertex disjoint edges) can be represented by a monotone CNF with O(log n) clauses.
The proof in this case is particularly simple, and we include it just for completeness.
Amano and Maruoka [2] have used a somewhat different argument to show the same
gap.

The rest of the paper is organized as follows. In the next section we collect
some preliminary definitions and technical facts. We then use these facts to prove
Theorems 2.1–2.4 in §§ 4–7. We conclude with several open problems.

3. Preliminaries. In this section we first recall from [10] the notion of graph
representation, expose some properties of quadratic functions of saturated graphs and
recall some results about boolean sums. We then prove some general (graph theoretic)
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Table 2.2
Summary of results concerning the single level conjecture

Known This paper

circuits Gap(F) ≥ 29/28 ([2]) Gap(G) = Ω(n/ log3 n)

(all gates) (for a set of graphs; no known Sylvester-type graphs

gap for a single graph) (main result)

formulas Gap form(Kn) = 1 ([12]) Gap form(G) = nΩ(1)

(all gates) Gap form(G) ≥ 8/7 ([5]) Kneser-type graphs

circuits no gap over GF(2) [17] Gap mult(G) = Ω(n/ logn)

(AND gates) Gap mult(G) ≥ 4/3 ([14]) perfect matchings

Gap mult(G) = O(n/ log logn) ([2]) (also in [2]; implicit in [1, 10])

unbounded fanin C∗(fG) ≥ m(G) + 1

(all gates) τ(G)/d ≤ L1
∗(fG) ≤ 2τ(G) + 1

C1
∗(fG) ≥

√
τ(G)/d

∀ G of maximal degree d

bounds on the circuit complexity of quadratic functions.
We shall use standard graph theory notation. A set of vertices is independent if

no two of its vertices are adjacent. A non-edge is a pair of non-adjacent vertices; if
the graph is bipartite then a non-edge is a pair of non-adjacent vertices from different
parts (color classes), that is, pairs of vertices in one color class are neither edges nor
non-edges. A subgraph (or a spanning subgraph) of a graph is obtained by deleting
its edges. An induced subgraph is obtained by deleting vertices (together with all the
edges incident with them). The main difference between these two types of subgraphs
is that every non-edge of an induced subgraph is also a non-edge of the original graph.
A bipartite clique Ka,b is a complete bipartite graph with color classes of size a and b.

3.1. Graph representation. Every graph G = (V,E) gives us a set of boolean
functions “representing” this graph in the following sense. We associate to each vertex
v a boolean variable xv, and consider boolean functions f(X) with X = {xv : v ∈ V }.
Such a function accepts/rejects a subset of vertices S ⊆ V if it accepts/rejects the
incidence vector of S. We are interested in the behavior of such functions on edges
and non-edges of G, viewed as 2-element sets of their endpoints.

Definition 3.1 ([10]). A boolean function represents a given graph if it accepts
all edges and rejects all non-edges.

Hence, f(X) represents the graph G if for every input vector a ∈ {0, 1}X with
precisely two 1’s in, say, positions u and v, f(a) = 1 if uv is an edge, and f(a) = 0 if
uv is a non-edge of G. If uv is neither an edge nor a non-edge (in the bipartite case)
or if a contains more or less than two 1’s, then the value f(a) may be arbitrary.

Note that the quadratic function fG represents the graph G in a strong sense:
for every subset S ⊆ V , fG(S) = 0 if and only if S is an independent set of G. But,
in general, there may be many other boolean functions representing the same graph,
because they do not need to reject independent sets with more than two vertices.
Hence, there are more chances to design a small circuit representing a given graph
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than to (directly) design a small circuit computing its quadratic function. We will
use this possibility later to upper bound the circuit size of quadratic functions.

A complete star around a vertex u in a graph with n vertices is a set of n−1 edges
sharing u as one of their endpoints. If the graph is bipartite, then a complete star
is a set of edges joining all vertices of one part with a fixed vertex of the other part.
A graph is star-free if it contains no complete stars. The only property of star-free
graphs we will use later is given by the following simple

Observation 3.2. Any monotone boolean function representing a star-free graph
must reject all its single vertices.

This is true because f({u}) = 1 together with the monotonicity of f implies that
f must accept all edges of a complete star around u.

3.2. Saturated graphs. As noted above, besides the quadratic function fG,
there may be many other monotone boolean functions representing G—these functions
may “wrongly” accept some independent sets of G of cardinality larger than two. The
simplest way to exclude this possibility is to “kill off” all such independent sets by
“saturating” the graph, i.e. by adding new edges. This way we come to the following

Definition 3.3. A graph G is saturated if it has no independent sets with more
than two vertices, that is, if the complement of G is a triangle-free graph.

The first interesting property of quadratic functions of saturated graphs is that
these functions belong to a fundamental class of so-called “slice functions” were nega-
tion is almost powerless (see, e.g., [29], §§ 6.13-6.14). Recall that a k-slice function is
a monotone boolean function f such that f(a) = 0 for inputs a with less than k ones,
and f(a) = 1 for inputs a with more than k ones, that is, f = f ∧ Tnk ∨ Tnk+1.

Observation 3.4. If G is a saturated graph, then fG is a 2-slice function.
Proof. Let G = (V,E) be a saturated graph, and S ⊆ V . If |S| < 2 then

fG(S) = 0, by the definition of quadratic functions (they cannot have prime implicants
shorter than 2). If |S| > 2 then S cannot be an independent set since G is saturated;
hence, fG(S) = 1.

The next interesting property of saturated graphs is their unique function repre-
sentation.

Observation 3.5. If G is a saturated star-free graph, then fG is the only mono-
tone boolean function representing G.

Proof. Let f be an arbitrary monotone boolean function representing G. We have
to show that f(S) = fG(S) for all subsets S ⊆ V . If fG(S) = 1 then S contains both
endpoints of some edge. This edge must be accepted by f and, since f is monotone,
f(S) = 1. If fG(S) = 0 then S is an independent set of G, and |S| ≤ 2 since G is
saturated. Hence, S is either a single vertex or a non-edge. In both cases we have
that f(S) = 0 because f must reject all non-edges and, by Observation 3.2, must also
reject all single vertices.

3.3. Boolean sums. We shall also use the following two facts about the mono-
tone complexity of boolean sums. The disjunctive complexity of a collection of boolean
sums

∨
i∈S1

xi, . . . ,
∨
i∈Sm

xi (or of the corresponding family of sets S1, . . . , Sm) is the
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minimum size of a circuit consisting solely of fanin-2 OR gates and simultaneously
computing all these m boolean sums.

Lemma 3.6 (Pudlák–Rödl–Savický [21]). For every m ≥ k ≥ 1, the disjunctive
complexity of any family of m subsets of {1, . . . , n} does not exceed

k(n− 2) + k2dm/ke+1 −m.

In particular, any collection of k log n boolean sums in n variables can be simultane-
ously computed by a circuit consisting solely of at most 3kn fanin-2 OR gates.

By this lemma, boolean sums may not necessarily be computed separately: one
partial sum computed at some OR gate may be used many times. Still, the overlap
of gates cannot be too large if the sums are “disjoint enough”. A family of sets is
(h, k)-disjoint if no h+ 1 of its members share more than k elements in common.

Lemma 3.7 (Wegener [28], Mehlhorn [16]). Any (h, k)-disjoint family S1, . . . , Sm
has disjunctive complexity at least

1
kh

m∑
i=1

|Si| −
m

h
.

Proof sketch. At least |Si|−1 gates are necessary for computation of the i-th sum
and at least |Si|/k − 1 of the functions computed at these gates are boolean sums
of more than k summands. We only count these gates. Since the family is (h, k)-
disjoint, each of these gates can be useful for at most h outputs. Hence, we need at
least

∑m
i=1(|Si|/k − 1)/h gates to compute all m sums.

3.4. Upper bounds for general circuits. An extension of a bipartite graph
H ⊆ U × W is a (non-bipartite) graph G = (V,E) with V = U ∪ W such that
E ∩ (U ×W ) = H. The saturated extension is an extension whose induced subgraphs
on U as well as on W are complete graphs. That is, saturated extensions consist
of two disjoint cliques with some edges between these cliques. A useful property of
such graphs (besides that they are saturated) is that the complexity of computing fG
cannot be much larger than the complexity of representing H: to determine the value
fG(S) it is enough to additionally test whether S has more than two elements.

By the length of a CNF we mean the number of clauses in it.
Lemma 3.8. Let H ⊆ U×W be a bipartite n×n graph, G the saturated extension

of H, and f a monotone boolean function representing H. Then fG = (f ∧ g) ∨ h
where g is a monotone CNF of length 2 and h is an OR of O(log n) monotone CNFs
of length 2. Moreover, if H is star-free then fG = f ∨ h.

Remark: Note that C&(h) = O(log n), L(h) = O(n log n) and C(h) = O(n). The
first two upper bounds are obvious. The third follows from Lemma 3.6.

Proof. Let g =
(∨

u∈U xu
)
∧
(∨

w∈W xw
)

and h = KU ∨KW where KU (S) = 1
iff |S ∩U | ≥ 2, that is, KU is the quadratic function of a complete graph on U . Since
the edges of a complete graph n-vertex graph can be covered by m ≤ dlog ne bipartite
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cliques, each of the functions KU and KW has the form

m∨
i=1

( ∨
u∈Ai

xu

)
∧
( ∨
v∈Bi

xv

)
(3.1)

with m ≤ dlog ne and Ai ∩Bi = ∅ for all i = 1, . . . ,m. Hence, h can be computed by
an OR of m monotone CNFs of length 2. It remains to show that (f ∧g)∨h coincides
with fG.

If fG(S) = 1 then S contains both endpoints of some edge uv of G. This edge
must be accepted either by f ∧ g (if uv ∈ H) or by h (if both u and v are in the same
color class). Since both f ∧ g and h are monotone, the function (f ∧ g)∨ h accepts S.

If fG(S) = 0 then S is an independent set of G, that is, S is either a single vertex
or a non-edge of H. In both cases h(S) = 0 because none of the color classes can
contain more than one vertex from S. Moreover, g(S) = 0 if S is a single vertex, and
f(S) = 0 if S is a non-edge of H. Hence, the function (f ∧ g) ∨ h rejects S.

If H is star-free then the function f alone must reject all single vertices, implying
that in this case fG = f ∨ h.

Lemma 3.8 gives us a simple (but useful) tool to show that a quadratic function
fG of the saturated extension of a bipartite graph H can be computed by a small
monotone circuit: it is enough to represent H by a small circuit. To achieve this last
goal, it is often enough to show that H has small “intersection representation.”

Say that a graph G admits an intersection representation of size r if it is possible
to associate with every vertex u a subset Au of {1, . . . , r} so that Au ∩ Av = ∅ if uv
is an edge, and Au ∩Av 6= ∅ if uv is a non-edge of G. Let int(G) denote the smallest
r for which G admits such a representation.

Let cnf(G) denote the minimum length of a monotone CNF representing the
graph G, and let cov(G) denote the minimum number of independent sets of G cov-
ering all non-edges of G.

Lemma 3.9 ([9, 10]). For every graph G, cnf(G) = int(G) = cov(G).
The first equality was observed in [10], and the second in [9]. Both are easy to

verify. If a graph G = (V,E) can be represented by a CNF
∧r
i=1

∨
v∈Si

xv, then the
sets Au = {i : u 6∈ Si} give the desired intersection representation of G, the r sets
Ii = {u ∈ V : i ∈ Au} are independent and cover all non-edges of G, and the CNF of
the form above with Si = V \ Ii represents the graph G.

Alon [1] used probabilistic arguments to prove that cov(G) = O(d2 log n) for every
n-vertex graph G of maximum degree d. Hence, we have the following general upper
bound.

Lemma 3.10 (Alon [1]). For every n-vertex graph G of maximum degree d, we
have cnf(G) = O(d2 log n).

Another possibility to show that a graph H can be represented by a small mono-
tone circuit is to design a small non-monotone circuit representing H, and then use
the fact that negation is (almost) powerless in the context of graph representation.
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Lemma 3.11. Let H be a bipartite n × n graph. If H can be represented by a
circuit of size L over the basis {∨,∧,¬}, then H can be represented by a monotone
circuit of size at most 2L+O(n).

Proof. The proof is reminiscent of the proof, due to Berkowitz [3], that negation
is (almost) powerless for slice functions (see also Theorem 13.1 in [29]).

Let F be a circuit of size L over the basis {∨,∧,¬} representing a bipartite graph
H ⊆ U ×W . Using DeMorgan rules we can transform this circuit to an equivalent
circuit F ′ of size at most 2L such that negation is used only on inputs. We then replace
each negated input xu with u ∈ U by a boolean sum gu =

∨
v∈U\{u} xv, and replace

each negated input xw with w ∈ W by a boolean sum hw =
∨
v∈W\{w} xv. Since

all these boolean sums can be simultaneously computed by a trivial circuit consisting
of O(n) OR gates (see, e.g. [29], p. 198 for a more general result), the size of the
new circuit F+ does not exceed 2L+O(n). Since the only difference of F+ from the
original circuit F is that negated inputs are replaced by boolean sums, it remains to
show that on arcs ab ∈ U ×W these sums take the same values as the corresponding
inputs.

Take an arbitrary set S = {a, b} with a ∈ U and b ∈ W . The incidence vector
of this set has precisely two 1’s in positions a and b. Hence, gu(S) = 1 iff a 6= u iff
xu(S) = 0 iff xu(S) = 1. Similarly, hw(S) = 1 iff b 6= w iff xw(S) = 0 iff xw(S) = 1.
Hence, on edges and non-edges of H the functions gu and hw take the same values as
the negated variables xu and xw, implying that F+ represents H.

3.5. Lower bounds for single level circuits. Given a covering E =
⋃m
i=1Ai×

Bi of the edges of a graph G = (V,E) by bipartite cliques, its size is the number m
of cliques, and its weight is the total number

∑m
i=1(|Ai| + |Bi|) of vertices in these

cliques. Let cc(G) denote the minimum size and ccw(G) the minimum weight of a
bipartite clique covering of G. These measures were first studied by Erdős, Goodman
and Pósa in [9], and now are the subject of an extensive literature. In particular, it is
known that the maximum of cc(G) over all n-vertex graphs is n−Θ(log n) [6, 26, 24],
and that the maximum of ccw(G) is Θ(n2/ log n) [4, 7, 5].

For a graph G, let µ(G) be the minimum of (a+ b)/ab over all pairs a, b ≥ 1 such
that G contains a copy of a complete bipartite a× b graph Ka,b.

Lemma 3.12. For every graph G, C1
&(fG) = cc(G) and L1(fG) ≥ µ(G) · |E|.

Moreover, if G is an extension of a bipartite graph H, then cc(G) ≥ cc(H)/2 and
ccw(G) ≥ ccw(H).

Proof. The equalities C1
&(fG) = cc(G) and L1(fG) = ccw(G) follow immediately

from the fact (shown in [4, 14]) that monotone single level circuits for quadratic
functions have the form (3.1) where m is the number of AND gates in the circuit.

To show that ccw(G) ≥ µ(G) · |E|, let E = A1×B1∪· · ·∪Am×Bm be a bipartite
clique covering of G = (V,E) of minimal weight. Select subsets Ei ⊆ Ai ×Bi so that
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the Eis are disjoint and cover the same set E of edges. Then

ccw(G) =
m∑
i=1

(|Ai|+ |Bi|) =
m∑
i=1

∑
e∈Ei

|Ai|+ |Bi|
|Ei|

≥
m∑
i=1

∑
e∈Ei

µ(G) = µ(G) · |E|.

To prove the last claim, let G = (V,E) be an extension of H ⊆ U × W ; hence,
E ∩ (U ×W ) = H. If Ai × Bi, i = 1, . . . ,m is a bipartite clique covering of G, then
(Ai ∩U)× (Bi ∩W ), (Bi ∩U)× (Ai ∩W ), i = 1, . . . ,m is a bipartite clique covering
of H. The number of bipartite cliques in this new covering is at most twice that in
the original covering, and the total number of vertices in the new covering does not
increase at all.

The case of circuits when we count all gates (not just AND gates) is a bit
more complicated because boolean sums (entering AND gates) may not necessar-
ily be computed separately: one partial sum computed at some OR gate may be
used many times. Still, by Lemma 3.7, we know that the overlap of gates cannot
be too large if the sums are disjoint enough. The disjointness of a collection of
sums

∨
i∈S1

xi, . . . ,
∨
i∈Sm

xi is naturally related to the absence of large cliques in the
incidence m×n graph of this collection where i and j are adjacent iff j ∈ Si: the col-
lection of sums is (h, k)-disjoint precisely when this graph has no copies of Kh+1,k+1.
Amano and Maruoka [2] used this relation to show that C1(fG) ≥ |E| for any graph
G = (V,E) with no copies of K2,2; in this case the corresponding sums are (1, 1)-
disjoint. Their argument can be easily extended to yield a lower bound of the form
C1(fG) ≥ |E|/tO(1) for Kt,t-free graphs. However, we need super-linear lower bounds
on C1(fG) for graphs G which are saturated extensions of bipartite n× n graphs H,
and such graphs already have copies of Kt,t with t = n/4, even if the graph H itself
is K2,2-free.

To get rid of this problem, we use a tighter analysis of single level circuits to prove
a stronger result, namely, a lower bound on the minimum size C1(H) of monotone
single level circuits representing H (recall that such a circuit must behave corectly
only on edges and non-edges of H; on other inputs it may take arbitrary values). If
G is an extension of H then non-edges of H are also non-edges of G, and hence, must
be rejected by fG. This means that every circuit computing fG must also represent
H, implying that C1(fG) ≥ C1(H) for every extension G of H.

Lemma 3.13. Let H ⊆ U ×W be a bipartite star-free n×n graph with no copies
of Kt,t. Then C1(H) = Ω(|H|/t3).

Proof. Take a minimal monotone single level circuit F representing H. The circuit
F has the form

∨m
i=1 gi ∧ hi where

gi =
∨
u∈Si

xu and hi =
∨
v∈Ti

xv

with Si, Ti ⊆ U ∪W are boolean sums computed at the inputs of the i-th AND gate.
Our goal is to show that we need many OR gates to compute these sums. We cannot
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apply Lemma 3.7 directly to these sums because the corresponding families may not
be disjoint enough. Still, we can use the absence of Kt,t in H to show that the
restriction of these families to the left part U or to the right part W of the bipartition
must contain a large enough (t, t)-disjoint subfamily.

First, observe that Si ∩ Ti = ∅ because the graph H is star-free (single variables
represent complete stars). Also, if for some i, both Si and Ti would entirely lie in
the same part of the bipartition, then we could just remove the i-th AND gate—the
resulting circuit would still represent H (recall that on pairs of vertices within one
part of the bipartition the circuit can take arbitrary values). So, we may assume that
this does not happen. Hence, H is the union of bipartite cliques

Ai ×Bi = (Si ∩ U)× (Ti ∩W )
A′i ×B′i = (Ti ∩ U)× (Si ∩W )

for i = 1, . . . ,m. We may assume w.l.o.g. that the union H ′ of cliques Ai × Bi,
i = 1, . . . ,m contains at least |H ′| ≥ |H|/2 edges of H (if not, then take the remaining
bipartite cliques).

Since H ′ has no copies of Kt,t, for every i = 1, . . . ,m, at least one of the sets Ai
and Bi must have fewer than t elements. Hence, if we set I = {i : |Ai| < t} then
|Bi| < t for all i 6∈ I. We may assume that the bipartite graph

H1 =
⋃
i∈I

Ai ×Bi

contains at least |H1| ≥ |H ′|/2 ≥ |H|/4 edges of H (if not, then let H1 be the union
of bipartite cliques Ai ×Bi with i 6∈ I and replace the roles of Ai’s and Bi’s).

This way we obtain a bipartite Kt,t-free graph H1 ⊆ A×B with parts A =
⋃
i∈I Ai

and B =
⋃
i∈I Bi, and with |H1| ≥ |H|/4 edges. We are going to represent this graph

by a monotone (single level) circuit F1 of size not much larger than that of F , and to
apply Lemma 3.7 in order to show that the size of F1 must be large; this will yield
the desired lower bound on size(F ).

To achieve the first goal, we collect the boolean sums hi, i ∈ I computed in F
into a circuit F1, by the following construction

F1(X) =
∨
u∈A

xu ∧
( ∨
i∈Iu

hi

)
=
∨
u∈A

xu ∧
( ∨
i∈Iu

∨
v∈Ti

xv

)
where Iu = {i ∈ I : u ∈ Ai}. For every vertex u ∈ A, the circuit F1 accepts an arc
uv ∈ A×B iff v ∈ Ti∩W = Bi for some i ∈ I such that u ∈ Ai. Hence, F1 represents
the graph H1. Since all boolean sums hi with i ∈ I are already computed in F , we
need at most ∑

u∈A
|Iu| =

∑
i∈I
|Ai| ≤ t · |I|
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new gates to compute all functions xu ∧
(∨

i∈Iu
hi
)

with u ∈ A. To compute the
disjunction of these functions we need at most |A| ≤

∑
i∈I |Ai| ≤ t · |I| additional OR

gates. Hence, size(F1) ≤ size(F ) + 2t · |I| ≤ 3t · size(F ).
On the other hand, by the construction, the circuit F1 simultaneously computes

all boolean sums
∨
i∈Iu

hi =
∨
v∈Tu

xv with u ∈ A and Tu =
⋃
i∈Iu

Ti using only
fanin-2 OR gates. Hence, size(F1) is at least the disjunctive complexity of the family
T = {Tu : u ∈ A}. This, in its turn, is at least the disjunctive complexity of the
restriction T ′ = {Tu ∩W : u ∈ A} of T to the set W : having a circuit for T we can
get a circuit for T ′ just by setting to 0 all variables xu with u 6∈W . Observe that for
every u ∈ A,

Tu ∩W =
⋃

i:u∈Ai

Ti ∩W =
⋃

i:u∈Ai

Bi

is the set of all neighbors of u in H1. Since H1 has no copies of Kt,t, no t vertices in A
can have t common neighbors. This means that the family T ′ must be (t, t)-disjoint
(in fact, even (t− 1, t− 1)-disjoint). Since |H1| =

∑
u∈A |Tu ∩W |, Lemma 3.7 yields

size(F1) ≥ 1
t2

∑
u∈A
|Tu ∩W | −

|A|
t

=
|H1|
t2
− |A|

t
.

Together with the previous estimate size(F1) ≤ 3t · size(F ) and an obvious estimate
|A| ≤ t · |I| ≤ t · size(F ), this yields

size(F ) ≥ 1
3t
· size(F1) ≥ |H1|

3t3
− |A|

3t2
≥ |H1|

3t3
− size(F ).

Since |H1| ≥ |H|/4, the desired lower bound size(F ) = Ω(|H|/t3) follows.
Now we turn to the actual proof of Theorems 2.1–2.4.

4. Circuits: proof of Theorem 2.1. In order to prove the gap, claimed in
Theorem 2.1, we need (by Lemma 3.13) a bipartite n× n graph which

1. is dense, i.e., has Ω(n2) edges,
2. has no copies of Kt,t with t about log n,
3. can be represented by a small (linear size) monotone circuit.

The existence of graphs, satisfying the first two conditions, is a classical result of
Erdős [8]. However, its proof is probabilistic and gives no idea on how to ensure the
third condition. To get rid of this problem, we just reverse the order of the argument:
we first choose an appropriate graph G whose induced subgraphs satisfy the third
condition. Then we use the probabilistic argument to show that G must contain a
sufficiently large induced subgraph satisfying the first two conditions.

Let F = GF(2) and r be a sufficiently large even integer. With every subset
S ⊆ Fr we associate a bipartite graph HS ⊆ S×S such that two vertices u and v are
adjacent if and only if u · v = 1, where u · v is the scalar product over F. We will need
the following Ramsey-type property of such graphs.
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Lemma 4.1 (Pudlák–Rödl [20]). Suppose every vector space V ⊆ Fr of dimension
b(r + 1)/2c intersects S in less than t elements. Then neither HS nor the bipartite
complement HS contains Kt,t.

Proof sketch. The proof is based on the observation that any copy of Kt,t in HS

would give us a pair of subsets X and Y of S of size t such that x · y = 1 for all
x ∈ X and y ∈ Y . Viewing the vectors in X as the rows of the coefficient matrix
and the vectors in Y as unknowns, we obtain that the sum dim(X ′) + dim(Y ′) of
the dimensions of vector spaces X ′ and Y ′, spanned by X and by Y , cannot exceed
r + 1. Hence, at least one of these dimensions is at most (r + 1)/2, implying that
either |X ′ ∩ S| < t or |Y ′ ∩ S| < t. However, this is impossible because both X ′ and
Y ′ contain subsets X and Y of S of size t.

In the next lemma we use the following versions of Chernoff’s inequality (see,
e.g., [18], § 4.1): if X is the sum of n independent Bernoulli random variables with
the success probability p, then Pr (|X| ≤ (1− c)pn) ≤ e−c

2pn/2 for 0 < c ≤ 1, and
Pr (|X| ≥ cpn) ≤ 2−cpn for c > 2e.

Lemma 4.2. There exists a subset S ⊆ Fr of size |S| = 2r/2 such that neither
HS nor the bipartite complement HS contains a copy of Kr,r.

Proof. Let N = 2r, and let S ⊆ Fr be a random subset where each vector u ∈ Fr
is included in S independently with probability p = 21−r/2 = 2/

√
N . By Chernoff’s

inequality, |S| ≥ pN/2 = 2r/2 with probability at least 1− e−Ω(pN) = 1− o(1).
Let now V ⊆ Fr be a subspace of Fr of dimension b(r + 1)/2c = r/2 (remember

that r is even). Then |V | = 2r/2 =
√
N and we may expect p|V | = 2 elements in

|S ∩ V |. By Chernoff’s inequality, Pr (|S ∩ V | ≥ 2c) ≤ 2−2c holds for any c > 2e.
The number of vector spaces in Fr of dimension r/2 does not exceed

(
r
r/2

)
≤ 2r/

√
r.

We can therefore take c = r/2 and conclude that the set S intersects some r/2-
dimensional vector space V in 2c = r or more elements with probability at most
2r−(log r)/2−r = r−1/2 = o(1). Hence, with probability 1−o(1) the set S has cardinality
at least 2r/2 and |S ∩ V | < r for every r/2-dimensional vector space V . Fix such a
set S′ and take an arbitrary subset S ⊆ S′ of cardinality |S| = 2r/2. By Lemma 4.1,
neither HS nor HS contains a copy of Kr,r.

Now we turn to the actual proof of Theorem 2.1.
Proof of Theorem 2.1. Let S ⊆ Fr be a subset of cardinality |S| = n = 2r/2

guaranteed by Lemma 4.2. We may assume that u · v = 1 holds for at least half of
the pairs in S (otherwise take the bipartite complement of HS). Hence, H = HS is a
bipartite n×n graph with n = |S| vertices in each part and with |H| ≥ |S|2/2 = n2/2
edges. Moreover, this graph contains no copy of Kr,r where r = 2 log n.

Let now G be the saturated extension of H. By removing the centers of complete
stars, we obtain an induced star-free subgraph H ′ of H. Since the graph H has
no copies of Kr,r, it can have at most 2(r − 1) complete stars, implying that the
resulting subgraph H ′ still has |H ′| ≥ |H| − 2(r − 1)n = Ω(n2) edges. Moreover,
every circuit representing H must also represent H ′, just because edges/non-edges
of H ′ are also edges/non-edges of H (this is a property of induced subgraphs, not
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shared by spanning subgraphs) and every circuit for H must correctly accept/reject
them. Therefore, C1(fG) ≥ C1(H) ≥ C1(H ′) where, by Lemma 3.13, C1(H ′) =
Ω(|H ′|/r3) = Ω(n2/ log3 n). Hence, C1(fG) = Ω(n2/ log3 n).

To get an upper bound on C(fG), let us identify each vector w ∈ S with the set
of 1-coordinates of w. Hence, two vertices u and v are adjacent in H iff |u ∩ v| is
odd. It is not difficult to verify that (for even r) the graph H can be represented by
a depth-2 formula F (X) =

⊕r
i=1

∨
w∈Si

xw with Si = {w ∈ S : i 6∈ w}. Indeed, the
i-th clause

∨
w∈Si

xw accepts an arc uv ∈ S × S iff u ∈ Si or v ∈ Si iff i 6∈ u ∩ v.
Hence, the formula F accepts uv iff uv is accepted by an odd number of clauses iff
|{i : i 6∈ u ∩ v}| = r − |u ∩ v| is odd iff |u ∩ v| is odd iff uv ∈ H.

By Lemma 3.6, all r = 2 log n boolean sums in the formula F (X) above can be
simultaneously computed by a circuit of linear (in n) size. Hence, the graph H can be
represented by a linear size circuit over the basis {∨,∧,¬} and, by Lemma 3.11, can
be represented by a monotone circuit of linear size. Since G is the saturated extension
of H, Lemma 3.8 implies that C(fG) = O(n). Hence, Gap(G) = C1(fG)/C(fG) =
Ω
(
n/ log3 n

)
.

5. Formulas: proof of Theorem 2.2. Let G be the saturated extension of the
bipartite Kneser n× n graph K ⊆ U × V . Recall that in this case U and W consist
of all n = 2r subsets u of {1, . . . , r}, and uv ∈ K iff u ∩ v = ∅. Since log2 3 > 1.58,
the graph K has |K| =

∑
u∈U 2r−|u| = 3r ≥ n3/2+c edges with c ≥ 0.08. Moreover,

the graph K can contain a complete bipartite a × b subgraph ∅ 6= A × B ⊆ K
only if a ≤ 2k and b ≤ 2r−k for some 0 ≤ k ≤ r, because then it must hold that(⋃

u∈A u
)
∩
(⋃

v∈B v
)

= ∅. Since a ≤ a′ and b ≤ b′ imply (a+ b)/ab ≥ (a′ + b′)/a′b′,
we have µ(K) ≥ (2k + 2r−k)/2r ≥ 2−r/2 = n−1/2.

By Lemma 3.12, L1(fG) = ccw(G) ≥ ccw(K) ≥ µ(K) · |K| ≥ n1+c.
On the other hand, by its definition, the graph K admits an intersection repre-

sentation of size r and, by Lemma 3.9, can be represented by a monotone CNF with
int(K) ≤ r = log n clauses, and hence, by a monotone formula with O(n log n) fanin-2
AND and OR gates. Together with Lemma 3.8, this implies that L(fG) = O(n log n).
Hence, Gap form(G) = L1(fG)/L(fG) = Ω(nc/ log n).

6. Unbounded fanin circuits: proof of Theorem 2.3. To prove the lower
bound C∗(fG) ≥ m(G) + 1 we use the communication complexity argument. By an
observation due to Nisan (see [19] or [13], Lemma 11.2), C∗(fG) is at least the deter-
ministic two-party communication complexity of fG under the worst-case partition of
its input variables (this holds for arbitrary, not necessarily quadratic, functions and for
arbitrary, not necessarily monotone, circuits). Let now M be an induced matching in
G with |M | = m(G) edges. By setting to 0 all the variables corresponding to vertices
outside this matching, we obtain that C∗(fG) ≥ C∗(fM ) (recall that M is an induced
subgraph of G). The function fM itself has the form fM =

∨|M |
i=1 xiyi, i.e., is the nega-

tion of the set disjointness function, and its deterministic communication complexity
under the natural partition where one player gets all xi’s and the other gets all yi’s
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is well known to be |M |+ 1. Hence, C∗(fG) ≥ C∗(fM ) ≥ |M |+ 1 = m(G) + 1.
For the proof of the second part of Theorem 2.3 we need the following fact. Let

cnf(fG) denote the minimum length of (i.e. the number of clauses in) a monotone
CNF computing fG.

Lemma 6.1. For every graph G of maximum degree d, cnf(fG) ≥ τ(G)/d.
Proof. Let F be a monotone CNF of length t = cnf(fG) computing fG. Since fG

has no prime implicants of length 1 (by its definition (1.1)), this CNF must contain at
least two clauses. Take any of these clauses C =

∨
u∈S xu and consider the shrinked

CNF F ′ = F \ {C}. Since C must accept all edges of G, each of these edges must
have at least one endpoint in S. Hence, S must be a vertex cover of G, implying that
|S| ≥ τ(G).

Since F is a shortest CNF computing fG, the shrinked CNF F ′ must make an
error, i.e. it must (wrongly) accept some independent set of G. That is, there must
be an independent set I such that every clause of F ′ contains a variable xv with
v ∈ I. Since F ′ has only t − 1 clauses, we may assume that |I| ≤ t − 1. This
error must be corrected by the clause C, implying that every vertex u ∈ S must be
adjacent (in G) with at least one vertex in I, for otherwise F would wrongly accept
the independent set I ∪ {u} of G. Hence, at least one vertex v ∈ I must have at least
|S|/|I| ≥ τ(G)/t neighbors in S. Since the degree of v cannot exceed d, the desired
lower bound t ≥ τ(G)/d follows.

Take now an arbitrary graph G = (V,E) of maximum degree d, and let F be a
smallest monotone Σ3 circuit computing fG. We first consider the case when F is a
formula, i.e. all gates have fanout 1. This formula is an OR F = F1 ∨ · · · ∨ Fs of
monotone CNFs, and size(F ) ≥

∑s
i=1 ri where ri is the length of the i-th CNF Fi.

The CNFs Fi, i = 1, . . . , s compute quadratic functions of subgraphs Gi = (V,Ei) of
G such that E1 ∪ · · · ∪ Es = E. Note that τ(G) ≤

∑s
i=1 τ(Gi). Since each of these

subgraphs has maximum degree at most d, Lemma 6.1 implies that the entire formula
F must have size at least

∑s
i=1 ri ≥

∑s
i=1 τ(Gi)/d ≥ τ(G)/d. If F is not a formula

(some OR gates on the bottom level have fanout larger than 1), then we still have
that size(F ) ≥ t = max{s, r1, . . . , rs}. Take a CNF Fi for which τ(Gi) ≥ τ(G)/s. By
Lemma 6.1, Fi has length ri ≥ τ(Gi)/d ≥ τ(G)/sd. Since both ri and s do not exceed
t, this yields t2 ≥ τ(G)/d, and the desired lower bound t ≥

√
τ(G)/d on the number

of gates in F follows.

7. Multiplicative complexity: proof of Theorem 2.4. Let G be the satu-
rated extension of an n to n matching M . Then, by Lemma 3.12, C1

&(fG) = cc(G) ≥
cc(M)/2 = n/2. On the other hand, M can be represented by a monotone CNF of
length O(log n). This follows from a more general Lemma 3.10, but can also be shown
directly (see [10]): let r = 2 log n and associate with each vertex ui on the left side its
own r/2-element subset Ai of {1, . . . , r}, and assign to the unique matched vertex vi
on the right side the complement Bi of Ai. It is clear that then Ai ∩Bj = ∅ iff i = j.
Hence, cnf(M) = int(M) ≤ r = 2 log n. Together with Lemma 3.8, this implies that
C&(fG) = O(log n). Hence, Gap mult(G) = Ω(n/ log n).
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8. Concluding remarks and open problems. As we mentioned in § 2, the
unbounded fanin version of the single level conjecture is true for almost all graphs.
Better yet, Theorem 2.3 implies that the conjecture is true for all n-vertex graphs
containing an induced matching with Ω(n) edges. Still, it seems very unlikely that
the conjecture is true for all graphs.

Problem 8.1. Does there exist n-vertex graphs G of maximal degree d with
L∗(fG) = o (τ(G)/d) or C∗(fG) = o(

√
τ(G)/d)?

A next open question is to prove super-linear lower bounds on the size of monotone
(fanin 2) circuits computing explicit quadratic functions in n variables. For formulas
(fanout 1 circuits) lower bounds L(fG) = Ω(n3/2) can be proved using the rank argu-
ment [10]. However, the case of circuits is more complicated because (as mentioned
in the introduction) known lower bounds for monotone circuits—the method of ap-
proximations due to Razborov [22], and its derivatives—cannot yield lower bounds
larger than n.

Problem 8.2. Prove C(fG) ≥ n1+ε for an explicit n-vertex graph G.
What can be said about the single level conjecture in the context of graph rep-

resentation, that is, if we consider circuits representing graphs G instead of circuits
computing their quadratic functions fG? For circuits with fanin-2 gates the ques-
tion is already answered in § 4: the gap between single level and general circuits
is Ω(n/ log3 n) also in this context. But what about circuits with unbounded fanin
gates? For a graph G, let C∗(G) be the minimum size of a monotone unbounded fanin
circuit representing G, and let C1

∗(G) be the single level version of this measure. Note
that, for some graphs G, circuits representing G may be exponentially smaller than
circuits computing the quadratic function fG. If, say, Mn is a matching with n edges,
then cnf(Mn) = O(log n) (by Lemma 3.10) but C∗(fMn) = Ω(n) (by Theorem 2.3).
This also shows that, in the context of graph representation, Lemma 6.1 does not
hold anymore.

Problem 8.3 (Pudlák–Rödl–Savický [21]). Prove that C1
∗(G) may be much larger

than C∗(G).
Easy counting shows that C1

∗(G) = Ω(n) for almost all n-vertex graphs. On the
other hand, as mentioned in § 2, a lower bound nΩ(1) for an explicit graph G would
yield a super-linear lower bound for non-monotone log-depth circuits. Actually, even
a much more moderate lower bound 2α

√
logn with α → ∞ would have interesting

consequences (see [10]).
Problem 8.4. Prove C1

∗(G) ≥ 2α
√

logn for an explicit n-vertex graph G.
Although, as mentioned above, we already can prove lower bounds L(fG) =

Ω(n3/2) for some explicit graphs G, doing this for saturated graphs is a much more dif-
ficult task. Bloniarz [4] used counting arguments to show that C(fG) = Ω(n2/ log n)
for almost all n-vertex graphsG; this remains true also in the class of saturated graphs.
The problem, however, is the explicitness: we want a lower bound for explicitly con-
structed graphs. As mentioned in the introduction, a lower bound C(fG) ≥ cn for a
sufficiently large constant c > 0 would have great consequences in circuit complexity.



18 S. JUKNA

A (potentially) less ambitious problem is to do this for formulas.
Problem 8.5. Exhibit an explicit saturated star-free graph on n vertices with

L(fG) = Ω(n logk n).
Since, by Observation 3.5, for such graphs we have the equality L(G) = L(fG),

this would yield an explicit boolean function in m = Θ(log n) variables requiring
non-monotone formulas of size Ω(mk) (see [10] for details).

Acknowledgments. I am grateful to Georg Schnitger and Ingo Wegener for
interesting discussions, and to the referees for numerous and very helpful suggestions
concerning the presentation.
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Note after the paper was published. The result of Mirwald and Schnorr
(mentioned in the introduction) about the single level circuits over the basis {⊕,∧, 1}
has no analogue in the context of graph representation: here the multiplicative gap
may be as large as Ω(n/ log n); the gap is achieved by an n to n matching. Also, a
partial answer to Problem 8.3 follows from a lower bound C1

∗(H) = Ω((log n)3/2−o(1))
for any Hadamard n×n-graph H, proved by Lokam (S. V. Lokam, Graph complexity
and slice functions, Theory of Comput. Syst., 36(1) (2003) 1–88). Together with the
Magnification Lemma [10], this implies that for a Sylvester graph H, C1

∗(H) may be
by a factor of Ω((log n)1/2−o(1)) larger than C∗(H). This also implies the same gap
for the quadratic function fG of the saturated extension of H.




