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TROPICAL COMPLEXITY, SIDON SETS, AND DYNAMIC
PROGRAMMING∗
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Abstract. Many dynamic programming algorithms for discrete 0-1 optimization problems are
just special (recursively constructed) tropical (min,+) or (max,+) circuits. A problem is homogeneous
if all its feasible solutions have the same number of ones. Jerrum and Snir [J ACM 29 (1982), pp. 874–
897] proved that tropical circuit complexity of homogeneous problems coincides with the monotone
arithmetic circuit complexity of the corresponding polynomials. So, lower bounds on the monotone
arithmetic circuit complexity of these polynomials yield lower bounds on the tropical complexity
of the corresponding optimization problems. But the situation with nonhomogeneous problems
is entirely different: here the gap between their tropical and arithmetic complexities can be even
exponential. In this paper, we improve two classical lower bounds for monotone arithmetic circuits—
Schnorr’s bound and Hyafil–Valiant’s bound—and use these improvements to derive general lower
bounds for the tropical circuit complexity of nonhomogeneous optimization problems. In particular,
we show that optimization problems, whose sets of feasible solutions are cover free, have large tropical
complexity.

Key words. tropical circuits, arithmetic circuits, dynamic programming, cover-free sets, Sidon
sets, lower bounds

AMS subject classifications. 68Q17, 68R05, 05C35

DOI. 10.1137/16M1064738

1. Introduction. Let N = {0, 1, 2, . . .}. Every finite set A ⊂ Nn of vectors (of
feasible solutions) defines two natural optimization problems: given an assignment
x ∈ Nn of nonnegative integer weights, compute the minimum or the maximum weight
〈a, x〉 = a1x1 + · · ·+ anxn of a feasible solution a ∈ A.

For example, if A ⊂ {0, 1}n2

is the set of all characteristic 0-1 vectors of perfect
matchings in a complete bipartite n×n graph Kn,n, then the corresponding optimiza-
tion problem on A is, given an assignment of weights to the edges of Kn,n, compute
the minimum or the maximum weight of a perfect matching.

Every such problem can be solved by a tropical1 (min,+) or (max,+) circuit. Such
a circuit is a directed acyclic graph with n source (indegree zero) nodes x1, . . . , xn.
Every other node (called a gate) has indegree two, and computes either the sum or
minimum/maximum of the values computed at its two predecessors. The size of a
circuit is the total number of its gates. Given a set A ⊂ Nn of feasible solutions,
let Min(A) and Max(A) denote, respectively, the minimum size of a (min,+) and
(max,+) circuit solving the corresponding optimization problem on A. We will refer
to these measures as the tropical complexity of A.

Motivation. Besides being interesting in their own right, the importance of trop-
ical circuits stems form their intimate connection with dynamic programming (DP)
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algorithms. Many of these algorithms are “pure” in that their recursion equations
only use Min and Sum or Max and Sum operations. Prominent examples of pure
DP algorithms are the well-known Bellman–Ford–Moore DP algorithm for the single-
source shortest paths [2, 9, 25], the Floyd–Warshall DP algorithm for the all-pairs
shortest paths problem [8, 35], the Held–Karp DP algorithm for the traveling sales-
man problem [14], and others. It is clear that every pure DP algorithm is just a
special, recursively constructed tropical circuit. So, lower bounds on the size of trop-
ical circuits show limitations of pure DP. For example, the Held–Karp DP algorithm
gives a tropical circuit of size O(n22n) solving the traveling salesman problem. On the
other hand, Jerrum and Snir [17] have shown that Ω(n22n) gates are also necessary in
any such circuit solving this problem. This implies that the Held–Karp DP algorithm
is optimal among all pure DP algorithms for this problem.

Jerrum and Snir [17] observed that tropical complexity is related to a more
tractable measure of Minkowski complexity of vector sets. Recall that the sumset
or the Minkowski sum of two sets X,Y ⊆ Nn of vectors is the set

X + Y = {x+ y : x ∈ X and y ∈ Y } ,

where x+ y = (x1 + y1, . . . , xn + yn) is the componentwise addition of vectors.
A Minkowski circuit is a directed acyclic graph with n source (indegree zero)

nodes holding single-element sets {e1}, . . . , {en}, where ei is a 0-1 vector with exactly
one 1 in the ith position. Every other node, a gate,2 has indegree two, and performs
either the set-theoretic union or the sumset operation on its two inputs (two gates
entering this gate). The Minkowski complexity of a vector set A, which we denote
by L(A), is the minimum number of gates in a Minkowski circuit producing this set.
So, the Minkowski complexity of A is the minimum number of set-theoretic union
X ∪ Y and sumset X + Y operations required to create the set A when starting from
single-element sets {e1}, . . . , {en}.

Remark 1. Minkowski complexity of sets of vectors is intimately related to the
monotone arithmetic (+,×) circuit complexity of monotone multivariate polynomi-
als. There is a natural homomorphism from the semiring of monotone multivariate
polynomials to the semiring (2N

n

, ∪,+) of finite subsets of vectors which maps every
polynomial

(1) f(x1, . . . , xn) =
∑
a∈Af

ca

n∏
i=1

xai
i

with Af ⊂ Nn and positive integer coefficients ca to the set Af of its exponent
vectors. In particular, each variable xi is mapped to Axi

= {ei}. That this is indeed
a homomorphism follows from easily verifiable equalities Af+h = Af ∪Ah and Af ·h =
Af +Ah. This, in particular, implies that the Minkowski complexity L(Af ) is a lower
bound on the number of gates in any monotone arithmetic (+,×) circuit computing
any multivariate polynomial f of the form (1) with arbitrary positive coefficients ca.
In fact, all known lower bounds on the monotone arithmetic (+,×) circuit complexity
of polynomials f , including [29, 31, 34, 17, 11, 33, 30, 12, 28, 15], are lower bounds on
the Minkowski complexity L(Af ) of their sets Af of exponent vectors; see also recent
surveys [32, 3].

2The term “gate” comes from electronic engineering, and is only used to stress that a node has
its associated operation.
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Suppose now we have a tropical circuit solving an optimization problem on a
given set A ⊂ Nn of feasible solutions. If we replace every input variable xi by the
single-element set {ei}, every min/max gate by the union gate, and every sum gate
by the sumset gate, then the resulting Minkowski circuit will create some set B ⊂ Nn.

It is clear that this (unknown to us) set B does not need to coincide with A.
The only information about this set is that it must define the same optimization
problem as the original set A. That is, for every vector x ∈ Nn of weights, the mini-
mum/maximum of 〈b, x〉 over all b ∈ B must coincide with the minimum/maximum
of 〈a, x〉 over all a ∈ A. Still, the following lemma shows that such a set B is not
completely “unknown.”

We say that a vector a ∈ Rn contains a vector b ∈ Rn if a ≥ b holds, that is, if
ai ≥ bi holds for all i = 1, . . . , n. A set A of vectors is an antichain if no vector of A
contains another vector of A. For sets A,B ⊆ Nn of vectors, we say that

- B lies above A if every vector of B contains at least one vector of A;
- B lies below A if every vector of B is contained in at least one vector of A.

Lemma 1 (structural lemma). If A ⊆ {0, 1}n is an antichain, then

Min(A) = min{L(B) : A ⊆ B ⊂ Nn and B lies above A} ;

Max(A) = min{L(B) : A ⊆ B ⊆ {0, 1}n and B lies below A} .

The lemma (for Min(A)) is a special version of a more general result proved by Jerrum
and Snir [17, Theorem 2.8] using a basic separation result in convexity theory—the
Farkas theorem. An elementary proof (without any use of Farkas’ theorem) was given
in [19, Lemmas 6,7]; for completeness, we recall the proof for Min(A) in Appendix A.

The structural lemma implies that, at least in the case of 0-1 optimization prob-
lems (when the underlying set A of feasible solutions consists of 0-1 vectors) their
tropical complexity can be lower bounded by the Minkowski complexity of appropri-
ate subsets of A.

To be more specific, define the degree of a vector a ∈ Nn to be its Manhattan
norm, that is, the sum a1 + · · · + an of its entries. A set of vectors is homogeneous
if all its vectors have the same degree. The lower envelope Ale of a set A is the set
of all vectors in A of minimum degree, and the upper envelope Aue is the set of all
vectors in A of maximum degree. Note that both these sets are homogeneous. Also,
if A itself is homogeneous, then Ale = Aue = A. As observed in [17], by appropriately
discarding some of the edges entering union (∪) gates, one can easily show that

L(A) ≥ max {L(Ale),L(Aue)} .

Using the structural lemma, this observation can be extended to tropical circuits.

Lemma 2 (reduction lemma). If A ⊆ {0, 1}n is an antichain then Min(A) ≥
L(Ale) and Max(A) ≥ L(Aue). In particular, if A itself is homogeneous, then

Min(A) = Max(A) = L(A) .

Indeed, by the structural lemma, we have Min(A) = L(B) for some set B ⊂ Nn of
vectors such that A ⊆ B and B lies above A. These two latter conditions on B
imply that Ble = Ale. Thus, Min(A) = L(B) ≥ L(Ble) = L(Ale). The proof of
Max(A) ≥ L(Aue) is similar.

The second claim of the reduction lemma is important: it shows that pure DP
algorithms for 0-1 optimization problems with homogeneous sets of feasible solutions
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are no more powerful than monotone arithmetic circuits! This explains why we do not
have efficient DP algorithms for homogeneous optimization problems whose arithmetic
complexity is large.

But what about nonhomogeneous optimization problems?
Since we only consider optimization problems with nonnegative weights, the ques-

tion is not trivial: for some nonhomogeneous sets of vectors, the gap between their
tropical and Minkowski complexities can even be exponential.

Example 1. Take any homogeneous set A ⊂ {0, 1}n whose Minkowski complexity
is superpolynomial in n, like those given in Examples 3 and 5. Since the set is homoge-
neous, the reduction lemma implies that then the tropical complexity Min(A) of A is
also superpolynomial. Consider now the extended set B = A∪{e1, . . . , en}. Since A is
the upper envelope of B, the reduction lemma implies that the Minkowski complexity
L(B) ≥ L(A) remains superpolynomial. But the tropical complexity Min(B) drops
down to n: just compute the minimum f(x) = min{x1, . . . , xn}. Since the weight are
nonnegative, f(x) is exactly the minimum of 〈b, x〉 over all vectors b ∈ B.

Example 2. To give a less artificial example of a nonhomogeneous set A exhibiting
an exponential gap between tropical and Minkowski complexities, let A be the set of all
characteristic 0-1 vectors of paths in Kn from node 1 to node n; here and throughout,
Kn denotes the complete undirected graph on nodes 1, . . . , n. As shown in [17], we
have L(A) = 2Ω(n). But the well-known Bellman–Ford DP algorithm for the shortest
s-t path problem yields Min(A) = O(n3).

Our main results are general lower bounds on the size of tropical circuits solving
optimization problems which are not necessarily homogeneous (Theorems C and E).
We obtain these results by extending to tropical circuits two classical lower bounds
for monotone arithmetic circuits—Schnorr’s bound and Hyafil–Valiant’s bound (The-
orems A, B, and D).

Remark 2 (role of the domain). It is clear that the larger the domain D ⊆ R
of allowed weights x1, . . . , xn is, the easier is the task of proving lower bounds on the
tropical complexity of optimization problems. The most difficult case is D = {0, 1}. In
this case, we arrive at monotone boolean (∨,∧) circuits because then x∧y = min{x, y}
and x ∨ y = min{1, x+ y}. For these circuits, only a few nontrivial lower bounds are
known, and their proofs are rather involved (see, for example, [18, Chapter 9]). On
the other hand, if we allow negative weights, say, D = Z, then we arrive at monotone
arithmetic circuits: in this case, both Min(A) and Max(A) coincide with L(A) (see [17,
Corollary 2.7] or [19, Lemma 5]). Thus, tropical circuits over the domains D = {0, 1}
or D = Z do not constitute any new model of computation: we then essentially have
monotone boolean or monotone arithmetic circuits. But the case D = N (considered in
this paper) is already interesting because then tropical circuits can be exponentially
more powerful than arithmetic circuits (Examples 1, 2), and can be exponentially
weaker than monotone boolean circuits [19, section 7].

Motivating Example. In the well-known assignment problem problem, we obtain
an assignment of nonnegative integer weights to the edges of a complete bipartite n×n
graph Kn,n, and the goal is to compute the minimum weight of a perfect matching.
The arithmetic version of this problem is to compute the permanent of an n × n
matrix, and it is long known that its monotone arithmetic complexity is exponential
in n. This was first shown by Jerrum and Snir [17]; see also Example 5 below. Since
the problem is homogeneous (every perfect matching has the same number n of edges)
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the reduction lemma implies that the tropical complexity of the assignment problem
is exponential as well.

Let us now slightly perturb the problem by adding some other subgraphs of Kn,n

with less than n edges as feasible solutions. The arithmetic complexity will then
remain exponential because the upper envelope of the new problem will remain the
same—the set of all perfect matchings. What can then be said about the tropical
complexity of the modified minimization problem? If we add all single edges as
feasible solutions then this complexity drops down from exponential to linear (in the
number n2 of variables): just compute the minimum of weights of single edges.

But what happens if we add, say, 3-stars K1,3 as feasible solutions: will the min-
plus complexity then also drop down exponentially? If n ≥ 4, then the reduction
lemma cannot yield any lower bound larger than n

(
n
3

)
= Θ(n4) since the lower en-

velope of the (modified) problem consists of 3-stars. Still, one of our lower bounds
(Theorem D) implies that the min-plus complexity of the modified problem remains
2Ω(n). And, as we will see, the (somewhat unexpected) reason for this to happen is
that no 3-star can be contained in a union of two perfect matchings.

2. Known results. In this section, we recall the most basic lower bounds on the
Minkowski (and hence, also arithmetic) complexity L(A) of sets of vectors A ⊂ Nn. It
is clear that L(A) ≤ d|A| holds for every set, where d is the maximum degree of (sum
of entries of) a vector in A. So, what sets A have large Minkowski complexity, near
to |A|? The first set of these bounds shows that such are the well-known cover-free
and Sidon sets.

A set A ⊂ Nn of vectors is a Sidon set if it has the following property: if we
know the sum of two vectors of A, we know which vectors were added. That is, if
a+b = c+d holds for some vectors of A then {c, d} = {a, b}. For example, in the case
n = 1, A = {1, 2, 5, 7} is a Sidon set, but B = {1, 2, 4, 5, 7} is not a Sidon set because,
for example, 2 + 4 = 1 + 5. Sidon sets A ⊂ N are also known as Golomb rulers.

The interpretation of Sidon sets in terms of graphs is the following. Associate
with a set A ⊂ Nn of vectors a bipartite graph GA whose nodes are vectors in Nn,
and two nodes x and y are adjacent precisely when x+ y ∈ A. Then A is a Sidon set
if and only if the graph GA contains no copy of a complete bipartite 2× 2 graph; see
Lemma 10 in Appendix B.

The term “Sidon sets” was coined by Erdős in honor of Fourier analyst Simon
Sidon who introduced these sets in order to solve a problem in harmonic analy-
sis. In one of the first papers on these sets, Erdős and Turán [7] have shown that
the maximum size of a Sidon subset of {1 . . . ,m} is asymptotically equal to m1/2.
In larger dimensions, Lindström [24] and Cilleruelo [4] have shown that the maxi-
mum size of a Sidon set in {1, . . . ,m}n is asymptotically equal to mn/2. A com-
prehensive bibliography on Sidon sets and their explicit constructions is given by
O’Bryant [26].

An important special case of Sidon sets are cover-free sets A: if a+b ≥ c holds for
some vectors of A, then c ∈ {a, b}. These sets were first introduced in 1964 by Kautz
and Singleton [20] to investigate nonrandom superimposed binary codes. Cover-free
families have been considered for many cryptographic problems. Erdős, Frankl, and
Füredi [5] have shown that the maximum number m = |A| of vectors in a cover-free
set A ⊆ {0, 1}n satisfies 1.134n < m < 1.25n.

2.1. Schnorr’s combinatorial bound. One of the first (if not the first) general
lower bound on the Minkowski complexity of vector sets (and, hence, also on the
monotone arithmetic circuit complexity of polynomials) was proved by Schnorr [29].
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A set B ⊆ A ⊂ Nn is cover-free inside A if for every a, b ∈ B and c ∈ A, a+ b ≥ c
implies c ∈ {a, b}.

Theorem 1 (Schnorr [29]). If B ⊆ A is cover-free inside A, then L(A) ≥ |B|.
Explicit homogeneous cover-free sets A ⊆ {0, 1}n of size |A| = 2Ω(n) can be

constructed using error-correcting codes; see Appendix C. The next example gives a
smaller but combinatorially “cleaner” explicit cover-free set.

Example 3 (Schnorr [29]). Let n =
(
m
2

)
, and let A ⊂ {0, 1}n be the set of all

|A| =
(
m
k

)
characteristic vectors of k-cliques (complete graphs on k nodes) in Kn;

we view a k-clique as the set of its
(
k
2

)
edges. To show that A is cover free, assume

contrariwise that the union of some two k-cliques contains some third k-clique. Since
all k-cliques have exactly k nodes, the latter clique must then have a node u not in
the first clique and a node v not in the second clique. If u = v then the node u is not
covered, and if u 6= v then the edge {u, v} is not covered by the first two cliques, a
contradiction. Thus, A is cover free. Together with the reduction lemma, Theorem 1
implies that both Min(A) and Max(A) must be at least |A| =

(
m
k

)
. For k = m/2, the

bound has the form 2Ω(
√
n).

Important in Schnorr’s result is that the set A itself does not need to be cover
free: it is enough that some of its large subset is cover free inside A.

Example 4. Consider the following optimization problem: given an assignment of
nonnegative integer weights to the edges of a complete graph Kn on n nodes, find
the minimum (or maximum) weight of a subgraph which is either a triangle or a 3-
matching (a set of three disjoint edges). Let A be the set of characteristic 0-1 vectors
of triangles and 3-matchings; hence, each vector of A has

(
n
2

)
positions (one for each

edge of Kn), and exactly three of them are ones. The set A itself is not cover free
because a union of two 3-matchings may contain a third 3-matching. But the set B
of triangles is already cover free inside A: a union of no two triangles can contain a
3-matching since it contains at most two disjoint edges, and it cannot contain a new
triangle because any two edges of a triangle uniquely determine the triangle. Since
our problem is homogeneous, Schnorr’s theorem and the reduction lemma imply that
its tropical complexity is Ω(n3).

Using different arguments, Gashkov [11] and Gashkov and Sergeev [12] extended
a special case of Schnorr’s bound (when A itself is cover-free) to Sidon sets.

Theorem 2 (Gashkov and Sergeev [12]). If A is a Sidon set, then L(A) ≥ |A|.
It is clear that every cover-free set is also a Sidon set, but there are Sidon sets

which are not cover free; see Appendix D for an example.
In fact, Gashkov and Sergeev [12] proved a more general lower bound. For pa-

rameters 1 ≤ k ≤ l, a set A ⊂ Nn is (k, l)-sparse if |X| ≤ k or |Y | ≤ l holds for any
two sets X,Y ⊂ Nn of vectors such that X + Y ⊆ A. In other words, a set A ⊂ Nn

is (k, l)-sparse if given any set X ⊂ Nn of |X| = k + 1 vectors, and any l + 1 distinct
vectors y1, . . . , yl+1 in Nn, at least one of the translates X + yi = {x+ yi : x ∈ X} is
not contained in A.

The interpretation of sparse sets A ⊂ Nn in terms of graphs is the following.
Associate with A a bipartite graph GA whose nodes are vectors in Nn, and two nodes
x and y are adjacent precisely when x+ y ∈ A. Then A is (k, l)-sparse if and only if
the graph GA contains no copy of a complete bipartite (k + 1)× (l + 1) graph.

Sparse sets were introduced by Erdős and Harzheim in [6], and they constitute
a natural generalization of Sidon sets: every Sidon set is (1, 1)-sparse. To see this,
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suppose that a set A is not (1, 1)-sparse. Then {x, x′} + {y, y′} ⊆ A must hold for
some vectors x 6= x′ and y 6= y′. The sum a + b of the two vectors a = x + y and
b = x′ + y′ of A is then equal to the sum c + d of the two vectors c = x + y′ and
d = x′ + y of A. But c 6= a because y 6= y′, and c 6= b because x 6= x′. So, A is then
not a Sidon set.

Thus, Theorem 2 is a special case of the following more general bound.

Theorem 3 (see [12]). If A is (k, l)-sparse then L(A) ≥ |A|/max{k3, l2}.

Remark 3. An important aspect of this more general theorem is that, together
with known constructions of large (k, l)-sparse sets A ⊂ {0, 1}n, it yields an almost
maximal lower bound L(A) ≥ 2n−o(n) on their Minkowski complexity and, hence,
also on the monotone arithmetic circuit complexity of the corresponding multilinear
polynomials. Namely, Kollár, Rónyai, and Szabó [21] used so-called norm graphs to
construct explicit (t, t!)-sparse sets A ⊂ {0, 1}n of size |A| ≥ 2n−n/t; we sketch their
construction in Appendix E.

2.2. Hyafil–Valiant’s bound. Another classical lower bound on the Minkowski
complexity of vector sets is based on the observation that sets of small Minkowski
complexity can be covered by a small number of “balanced” sumsets. This fact (in
the context of arithmetic circuits) was first proved by Hyafil [16]; a different and
elementary proof was given by Valiant [34]. Various versions of this fact (with different
notions of being balanced) were also proved by other authors, including Jerrum and
Snir [17] (implicitly), Raz and Yehudayoff [28], Hrubes and Yehudayoff [15].

A sumset X + Y is balanced if every vector of X has degree between m/3 and
2m/3, where m is the minimum degree of a vector in X+Y . Recall that the degree of
a vector is the sum of its entries, and that a set of vectors is homogeneous of degree
m if all its vectors have the same degree m.

Theorem 4 (Hyafil [16], Valiant [34]). Let A ⊂ Nn be a homogeneous set of
degree m ≥ 2. Then A is a union of at most L(A) balanced sumsets.

Thus, in order to show that L(A) ≥ |A|/h for a homogeneous set A, it is enough to
show that no balanced sumset lying in A can have more than h vectors. There are
many applications of this bound. In particular, Grigoriev and Koshevoy [13] have
recently used it prove a lower bound on the tropical complexity of Schur polynomials.

Example 5. Let us demonstrate this bound right now on an important example
of the assignment problem. Namely, let us show that if A ⊂ {0, 1}n2

is the set
of characteristic vectors of perfect matchings in Kn,n then both Min(A) and Max(A)
are 2Ω(n). Since the set A is homogeneous (of degree n), it is enough (by the reduction
lemma) to show that L(A) = 2Ω(n). By Theorem 4, it is enough to show the following
claim.

• If X + Y is a balanced sumset, and if X + Y ⊆ A, then there is an integer
n/3 ≤ r ≤ 2n/3 such that |X + Y | ≤ n!/

(
n
r

)
.

To show this, fix arbitrary two vectors x ∈ X and y ∈ Y . These vectors correspond
to matchings such that x has r edges for some n/3 ≤ r ≤ 2n/3, and x + y is the
characteristic vector of a perfect matching. Since all vectors in x + Y contain all
ones (edges) of the matching x and must be perfect matchings themselves, we have
|Y | = |x + Y | ≤ (n − r)!. Similarly, since the matching y has n − r edges, we have
|X| = |X + y| ≤ r!. Thus, |X + Y | ≤ |X| · |Y | ≤ r!(n− r)! = n!/

(
n
r

)
, as claimed.

We stress the simplicity of the proof: by using tighter arguments, Jerrum and
Snir [17] have proved that L(A) ≥ n(2n−1 − 1).
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3. Our results. We prove general lower bounds for tropical circuits solving
nonhomogeneous optimization problems. We obtain these bounds by extending the
classical lower bounds on the Minkowski complexity reviewed in the previous section.

3.1. Tropical version of Schnorr’s combinatorial bound. Our first results
(Theorem B and its special case, Theorem A) extend both Schnorr’s and Gashkov–
Sergeev’s results to larger classes of vector sets; these extensions will be essential in
proving over first lower bounds for tropical complexity (see Remark 9).

Say that a subset B ⊆ A of A ⊂ Nn is a Sidon set inside A if a+ b = c+ d with
a, b ∈ B and c, d ∈ A imply {c, d} = {a, b}. That is, now only the sums of vectors in
B must be “unique” within A: sums of other elements of A need not be unique.

Theorem A. If B ⊆ A is a Sidon set inside A then L(A) ≥ |B|/2.
Remark 4. Numerically, our bound is slightly worse than that in Theorem 1

and 2 (by an additional factor of 1/2). However, our bound holds for a more general
Minkowski circuit, where any sets {x} with x ∈ Nn (not only n sets {e1}, . . . , {en})
can be used as inputs. In particular, in this case, L(A) ≤ |A| − 1 is a trivial upper
bound: just take a union of all inputs {x} with x ∈ A.

Theorem A properly extends Theorems 1 and 2 because there are many non-Sidon
sets with large Sidon sets inside them.

Example 6. Let S ⊂ Nn be any Sidon set, and T ⊂ Nn any set which is not a
Sidon set. Assume for simplicity that neither S nor T contains the all-0 vector 0. Let
A = B ∪C be the union of two sets of vectors in N2n, where B consists of all vectors
(x, x) with x ∈ S, and C consists of all vectors (y, 0) with y ∈ T . Then B is a Sidon
set because S is such a set, but the entire set A is not a Sidon set because already T
is not such a set. We claim that B is a Sidon set inside A.

To show this, assume contrariwise that a sum (x, x) + (z, z) of two vectors in B
is equal to a sum of some other two vectors in A. Since B is a Sidon set, at least one
of these two other vectors must belong to C, that is, must be of the form (y, 0) with
y 6= 0. So we have (x, x) + (z, z) = (y, 0) + (u, v). If (u, v) 6∈ B then v = 0, and we
obtain that x + z = 0, which is not possible because x and z are nonzero vectors. If
(u, v) ∈ B then v = u, and we obtain that x+ z = y + u and x+ z = 0 + u, which is
also not possible because y 6= 0.

In fact, what we will prove is an extension of Theorem 3 to sets which themselves
are not sparse enough but contain large sparse subsets. For this, we introduce the
notion of “projection” of sets of vectors onto sumsets.

The projection of a set B ⊂ Nn of vectors onto the first part X of a sumset X+Y
is the set

XB = {x ∈ X : x+ y ∈ B for some y ∈ Y }

of all vectors in X that can be extended to a vector in B by adding some vector
from the second part Y . The projection YB of B onto the second part Y is defined
similarly. Note that the “reduced” sumset XB + YB contains all vectors of B which
belonged to the “larger” sumset X + Y .

For parameters 1 ≤ k ≤ l, call a subset B ⊆ A (k, l)-sparse inside A if for any
two sets X,Y ⊂ Nn, X + Y ⊆ A implies |XB | ≤ k or |YB | ≤ l.

In Appendix B we will show (see Lemma 10) that a set B is (1, 1)-sparse inside A
if and only if B a Sidon set inside A. So, Theorem A is a special case of the following
more general result.

Theorem B. If B is (k, l)-sparse inside A then L(A) ≥ |B|/2lk2.
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Our proof is amazingly simple, and is entirely different from those in [29, 12]. The
idea—inspired by Pippenger’s paper [27]—is to analyze the “progress” made along the
source-output paths of a circuit until particular “bottlenecks” are found. We believe
that the insights in this “bottleneck counting” argument might be of independent
interest.

Our next result is the following extension of Schnorr’s lower bound to tropical
circuits. Call a subset B ⊆ A of a set A ⊂ Nn noncoverable inside A if for all a, b ∈ A
and c ∈ B, a + b ≥ c implies c ∈ {a, b}. Recall that B is cover free inside A if this
implication holds for all a, b ∈ B and c ∈ A.

Theorem C. Let A ⊂ {0, 1}n be an antichain, and B ⊆ A.
(i) If B is cover free inside A, then Min(A) ≥ |B|/2.

(ii) If B is noncoverable inside A, then Max(A) ≥ |B|/2.

Remark 5. Again, these lower bounds hold for a more general model of tropical
circuits, where instead of single variables x1, . . . , xn any linear functions a1x1 + · · ·+
anxn with nonnegative integer coefficients ai can be used as inputs. In this model,
|A| − 1 is a trivial upper bound on both Min(A) and Max(A); cf. Remark 4.

Example 7. Let 2
√
n ≤ k < n/2 and consider the following minimization problem:

given an assignment of nonnegative integer weights to the edges of Kn, find the
minimum weight of a subgraph which is either a k-clique Kk or a star K1,n−1. Let A

be the set of characteristic 0-1 vectors of these subgraphs. Since n−1 <
(
k
2

)
, the lower

envelope of A is the set of n stars. So, the reduction lemma cannot yield any larger
than n lower bound on Min(A). Still, Theorem B yields an almost optimal lower
bound Min(A) = nΩ(k). For this, it is enough to show that the set of (characteristic
vectors of) k-cliques is cover free inside A.

To show this, take a union of two k-cliques. Since 2(k − 1) < n − 1 and no star
in Kk can have more than k− 1 edges, the union cannot contain a star K1,n−1. Also,
as we have shown in Exercise 3, the union cannot contain a third k-clique. Thus, the
set of k-cliques is cover free inside A, and Theorem C yields Min(A) ≥

(
n
k

)
/2.

Example 8. Let n > 4 be a prime power, and consider the complete bipartite
n × n graph Kn,n with parts U = V = GF(n). The graph of a polynomial g(x) is
a subgraph of Kn,n consisting of n edges (i, g(i)) with i ∈ GF(n). A double star is

a K2,n subgraph of Kn,n. Let A = B ∪ C ⊆ {0, 1}n2

, where B is the set of all nd

characteristic vectors of graphs of polynomials of degree at most d − 1 over GF(n),
and C is the set of all

(
n
2

)
characteristic vectors of double stars. We want to lower

bound Max(A). The upper envelope of A is the set of doubles tars. So, the reduction
lemma cannot yield any larger than an

(
n
2

)
lower bound on Max(A). Still, for every

d ≤ n/2, Theorem B yields an almost optimal lower bound Max(A) = nΩ(d). For
this, it is enough to show that the set B ⊂ A of (characteristic vectors) of graphs of
polynomials is noncoverable inside A.

To show this, suppose a + b ≥ c holds for some a, b ∈ A and c ∈ B. Hence, c is
a (graph of a) polynomial g(x). Since vector c has n ones, it must share at least n/2
ones with at least one of the vectors a and b; let it be vector a. This vector cannot be
the characteristic vector of a double star because every double star has only 2 < n/2
non-isolated nodes in U . So, a must be a graph of some polynomial h(x). Since no two
distinct polynomials of degree at most d− 1 can share d or more values in common,
and since n/2 ≥ d, we have that g = h and, hence, also c = a. Thus, the set B is
noncoverable inside A, and Theorem B yields Max(A) ≥ |B|/2 = nd/2, as desired.
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3.2. Tropical version of Hyafil–Valiant’s bound. By going deeper into the
structure of Minkowski circuits, we will extend Theorem 4 to nonhomogeneous sets.

By a norm measure we will mean any assignment of nonnegative real numbers
to vectors in Nn such that every unit 0-1 vector gets norm at most 1, and the norm
is subadditive in that the norm of a sum of two vectors does not exceed the sum of
their norms. In particular, the degree of vectors (sum of all entries) or their length
(number of nonzero positions) or their standard `p-norms are norm measures.

Theorem D. Let m ≥ 2 and 1/m ≤ ε < 1. Suppose that a set A ⊂ Nn can
be created by a Minkowski circuit with t sumset gates. Then there exist t sumsets
X + Y ⊆ A with the following property:

(∗) for every norm measure µ : Nn → R+, and for every vector a ∈ A of norm
µ(a) ≥ m, at least one of these sumsets X + Y contains vectors x ∈ X and
y ∈ Y such that x+ y = a and εm/2 ≤ µ(x) ≤ εm.

By taking one norm measure for all vectors a ∈ A, we obtain the following handy
version of this theorem. A sumset X + Y is (m, ε)-balanced (with respect to a given
norm measure of vectors) if every vector in X has norm between εm/2 and εm.

Corollary 5. Let m ≥ 2 and 1/m ≤ ε < 1. Suppose that a set A ⊂ Nn can
be created by a Minkowski circuit with t sumset gates. Then there exist at most t
(m, ε)-balanced sumsets X + Y ⊆ A such that every vector in A of norm at least m
belongs to at least one of these sumsets.

Proof. Fix a norm measure, and a set of at most t sumsets X+Y ⊆ A guaranteed
by Theorem D (for this one fixed measure). To make these sumsets (m, ε)-balanced,
remove from X all vectors whose norm is either smaller than εm/2 or is larger than
εm.

The main difference of Corollary 5 from Theorem 4 is that now the set A needs
not be homogeneous (vectors of A do not need to have the same norm), and we still
have information about the norms of individual vectors in one part of the sumsets.

Using Corollary 5, we will prove our second lower bound on tropical complexity.
A sumset R = X+Y is orthogonal if 〈x, y〉 = 0 holds for all vectors x ∈ X and y ∈ Y .
A sumset is strongly (m, ε)-balanced if it is orthogonal, and all vectors in X have the
same length lying between εm/2 and εm. Recall that the length of a vector is the
number of its nonzero entries.

Theorem E. Let m ≥ 2 and 1/m ≤ ε < 1. Let A ⊆ {0, 1}n be an antichain, and
let B ⊆ A be the set of all vectors of A with exactly m ones.

(i) If no vector of A with fewer than m ones is contained in any vector of the
sumset B +B, then B is a union of at most Min(A) strongly (m, ε)-balanced
sumsets.

(ii) If no vector of A with more than m ones shares εm/2 or more ones with any
vector of B, then B is a union of at most Max(A) strongly (m, ε)-balanced
sumsets.

Example 9. Consider the following minimization problem: given an assignment
of nonnegative integer weights to the edges of Kn,n, find the minimum weight of a
subgraph which is either a perfect matching or a 3-star K1,3. Let A be the set of
characteristic 0-1 vectors of these subgraphs. Since the lower envelope of A is the set
of 3-stars, the reduction lemma cannot yield any larger lower bound on Min(A) than
n
(
n
3

)
. On the other hand, since no 3-star can be contained in a union of two perfect

matchings, the first condition (i) of Theorem E—with B being the set of characteristic
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vectors of perfect matchings—is fulfilled. Together with Example 5, Theorem E yields
Min(A) = 2Ω(n).

Example 10. Consider the following maximization problem: given an assignment
of nonnegative integer weights to the edges of Kn,n for n > 6, find the maximum
weight of a subgraph which is either a perfect matching or a double star K2,n. Let A
be the set of characteristic 0-1 vectors of these subgraphs. Since the upper envelope of
A is the set of double stars, the reduction lemma cannot yield any larger lower bound
on Max(A) than

(
n
2

)
. On the other hand, since no double star can share more than

2 < n/3 edges with a perfect matching, the second condition (ii) of Theorem E (with
B being the set of characteristic vectors of perfect matchings) is fulfilled. Together
with Example 5, Theorem E yields Max(A) = 2Ω(n).

4. Structure of Minkowski circuits. The goal of this section is to establish
some basic structural properties of Minkowski (∪,+) circuits. At a node v of a given
Minkowski circuit, some subset Xv ⊂ Nn of vectors is created in a natural way:

• Xv = {ei} if v is an input node holding a set {ei};
• Xv = Xu ∪Xw if v = u ∪ w is a union gate;
• Xv = Xu +Xw if v = u+ w is a sumset gate.

The set created by the entire circuit is the set created at its output gate. The size
of the circuit is the total number of its gates. For a set A ⊂ Nn, L(A) denotes the
minimum size of a Minkowski circuit producing A.

4.1. Contents of nodes and edges. Fix a Minkowski (∪,+) circuit, and let
A ⊂ Nn be the set of vectors created by it. We associate with every node v of the
circuit the following three sets of vectors.

• Xv is the set of vectors created at gate v (as defined above).
• Yv = {y ∈ Nn : x+ y ∈ A for all x ∈ Xv} is the complement of gate v.
• Av = Xv + Yv is the content of gate v.

Note that Xv doesn’t need to lie in A, but at least one of its translates Xv + y must
already lie in A; the complement Yv of node v collects all such vectors y. Speaking
informally, once a vector has been created, it must find its way into the final result A.
This property of Minkowski circuits severely limits their power, and was essentially
exploited in all known proofs of lower bounds on L(A).

At a source node v holding a singleton {ei}, the set Xv is small and Yv is large:
Xv = {ei} and Yv = {a − ei : a ∈ A, ai 6= 0}. At the output gate v, the situation is
just the opposite: then Xv = A is large and Yv = {(0, . . . , 0)} is small. The following
simple lemma describes the “dynamics” of contents of gates as computation proceeds.

Lemma 3 (content lemma).
• If v = u ∪ w is a union gate, then Xv = Xu ∪Xw and Yv = Yu ∩ Yw.
• If v = u+ w is a sumset gate, then Xv = Xu +Xw,

(2) Xw + Yv ⊆ Yu, and Xu + Yv ⊆ Yw .

Proof. Only the inclusions (2) need a certification. To show Xw + Yv ⊆ Yu,
suppose contrariwise that there are vectors x ∈ Xw and y ∈ Yv for which x+ y does
not belong to Yu. By the definition of the complement Yu of gate u, there must be a
vector x′ ∈ Xu for which x′ + (x + y) does not belong to A. But this is impossible
because x′ + x belongs to the set Xv = Xu + Xw created at the gate v, and y is in
the complement Yv of this gate.

An example in Figure 1 shows that the converse inclusions in (2) do not need to
hold.
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{(1, 0, 0)}
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Fig. 1. An example showing that the inclusions in (2) cannot be reversed. The set created by
the circuit is A = {(1, 1, 0), (1, 0, 1)}. Nodes u and w are source nodes. The complements of gates u
and v are Yu = {(0, 1, 0), (0, 0, 1)} and Yv = {(0, 0, 0)}. But the vector (0, 0, 1) of Yu does not belong
to Xw + Yv = {(0, 1, 0)}.

Our definition of the contents Ae of edges e = (u, v) is already “gate sensitive”:
it depends on the operation (union or sumset) associated with its head v.

• If v is a sumset gate, then let Ae = Xv + Yv.
• If v is a union gate, then let Ae = Xu + Yv.

Note that Ae ⊆ A also holds in this latter case because then Yv ⊆ Yu and Au =
Xu + Yu ⊆ A. The reason for this “asymmetry” in our definition of contents of edges
is explained by the following lemma.

Lemma 4 (content propagation lemma). Let v be gate, and a be a vector in its
content.

• If v is a union gate, then vector a belongs to the content of at least one edge
entering v, as well as to the content of the tail of this edge.

• If v is a sumset gate, then vector a belongs to the contents of both edges
entering v, as well as to the contents of the tails of these edges.

Proof. First let v = u ∪ w be a union gate. By our assumption, the vector a
belongs to the content Av = Xv + Yv = (Xu ∪Xw) + Yv of gate v. This immediately
implies that a must belong at least one of the contents Xu + Yv or Xw + Yv of the
edges entering gate v. Also, in this case we have that Yv = Yu ∩ Yw. Thus, a must
then also belong to the content Au = Xu + Yu or Aw = Xw + Yw of the tail u or w of
the corresponding edge.

Now let v = u + w be a sumset gate. Since our vector a belongs to the content
Av of gate v, it must also belong to the contents of both edges entering this gate (just
because these contents coincide with Av in this case). Moreover, (2) yields

Av = Xv + Yv = Xu + (Xw + Yv) ⊆ Xu + Yu = Au

and, similarly, Av ⊆ Aw. Since vector a belongs to Av, this implies that it must also
belong to the contents of both gates entering v.

4.2. Traces of vectors. Take a Minkowski (∪,+) circuit, and let A ⊂ Nn be
the set of vectors created at its output gate. A trace in the circuit is a subgraph of
the underlying directed acyclic graph obtained by removing exactly one edge entering
each union gate (see Figure 2). Traces can be also defined inductively as follows. The
output gate is included in every trace. Let v be a gate already included in a trace.

• If v is a union (∪) gate, then exactly one of its inputs is included in the trace.
• If v is a sumset (+) gate, then both its inputs are included in the trace.

If we add an empty set as a missing input to each union gate in a trace, then
the obtained Minkowski circuit will create exactly one vector. Intuitively, a trace of
a vector charts the creation of this vector by the circuit. If a vector has more than
one trace, this means that this vector was created in more than one way.
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Fig. 2. A Minkowski circuit with three source nodes holding the unit vectors e1 = (1, 0, 0),
e2 = (0, 1, 0), and e3 = (0, 0, 1), and two its traces creating the vectors (2, 0, 3) and (2, 1, 1). The
circuit itself, creates the set A = {(2, 1, 1), (1, 2, 1), (2, 1, 2), (2, 0, 2), (1, 1, 2), (2, 0, 3)}.

Remark 6. The concept of traces was introduced by Jerrum and Snir [17] who
named them “parse trees.” If a vector is a 0-1 vector, then its trace must indeed be
a tree, but this does not need to hold for vectors having entries larger than 1. This is
why we prefer the term “trace.”

We say that a trace in the circuit is a trace of a vector a ∈ A, if this vector
belongs to the contents of all edges and all gates of the trace.

Lemma 5 (trace lemma). If A is the set of vectors created by a Minkowski circuit,
then every vector of A has its trace in the circuit.

Proof. Take a vector a ∈ A. A trace Ta for a can be constructed by using the
content propagation lemma: start at the output gate of the circuit (whose content
coincides with A and, hence, contains vector a), and construct Ta backwards by the
following rule. If a sumset gate v is included in Ta, then both its inputs are included
Ta. If a union gate v is included in Ta, then include in Ta that of its inputs whose
content contains vector a; if vector a belongs to the contents of both inputs, then
include any of them.

Remark 7. By the trace lemma, we can associate with every vector a ∈ A a trace
Ta in the circuit G such that the content Ae of each edge e of this trace contains
vector a. This yields |{a ∈ A : e ∈ Ta}| ≤ |Ae| for every edge e of G. So, if the circuit
G has t edges, then double counting gives

|A| ·min
a∈A

∑
e∈Ta

1

|Ae|
≤
∑
a∈A

∑
e∈Ta

1

|Ae|
=
∑
e∈G

∑
a∈A : e∈Ta

1

|Ae|
≤
∑
e∈G

1 = t .

In particular, if at least one trace of each vector a ∈ A has an edge e with |Ae| ≤ h,
then the circuit must have t ≥ |A|/h edges.

We now have all we need to prove our main results, Theorems B–E.

5. Proof of Theorem B. Let A ⊂ Nn, and let B ⊆ A be (k, l)-sparse inside A.
Take a Minkowski (∪,+) circuit producing the set A. Our goal is to prove that then
the circuit must have t ≥ |B|/2lk2 gates. We can assume that |B| > k, for otherwise
there would be nothing to prove.

The proof idea is to use the sparseness of B inside A to associate with every
vector a ∈ B an edge e in the circuit such that the content Ae of e contains vector a,
but does not contain “too many” vectors of B. This implies that there must be many
edges and, hence, also gates in the circuit.

Recall that the content Ae of an edge e = (u, v) is the sumset Ae = Xu + Yv
if v is a union (∪) gate, and is the sumset Ae = Xv + Yv (the content of gate v) if
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v is a sumset (+) gate. Here, as before, Xv is the set of vectors created at v, and
Yv = {y ∈ Nn : Xv + y ⊆ A} is the complement of gate v.

Call an edge e light if its content Ae contains at most lk2 vectors of B.

Lemma 6. Every vector of B is contained in the content of at least one light edge.

Note that this lemma already yields Theorem B: since the content of no light
edge can have more than lk2 vectors of B, there must be at least |B|/lk2 edges in the
circuit and, hence, at least |B|/2lk2 gates, because each gate has indegree two.

Proof (of Lemma 6). For a gate v, let X ′v and Y ′v be the projections of the set
B onto the corresponding parts of the sumset Xv + Yv. That is, X ′v consists of all
vectors x ∈ Xv such that x+ y ∈ B holds for at least one vector y ∈ Yv, and similarly
for Y ′v . Define the cost of a node v to be the number |X ′v| of vectors in the projection
X ′v of B onto Xv. Call a node cheap if its cost is at most k, and expensive otherwise.

For the ith source node v, we have Xv = {ei}. Since clearly |X ′v| ≤ |Xv| = 1 ≤ k,
every source node is cheap. On the other hand, for the output gate w, we have
Xw = A ⊇ B and Yw = {0}; hence, X ′w = B. Since we assumed that |B| > k, the
output gate is expensive.

Fix now a vector a ∈ B. We have to show that a must belong to the content of at
least one light edge. By the trace lemma, there is a trace in the circuit, the contents
Ae of all whose edges e contain this vector a. So, it is enough to show that at least
one edge of the trace must be light.

Start at the output gate of the trace (which is also the output gate of the entire
circuit), and traverse a path P in the trace by going backwards and using the following
rule, where v is the last already reached gate:

• If v is a union gate, then go to the (unique) gate entering v in the trace.
• If v is a sumset gate, then go to any of its two inputs if they both are expensive

or both are cheap, and go to the expensive input if the second input is cheap.
Since the output gate is expensive and every source node is cheap, we will eventually
reach some source node (in this backward run). Since the first (source) node of
the corresponding source-output path P in the circuit is cheap, and the last one is
expensive, there must be an edge e = (u, v) in P such that |X ′u| ≤ k but |X ′v| > k. It
remains to show that the edge e must be a light edge.

Since Xv + Yv ⊆ A and |X ′v| > k, the (k, l)-sparseness of B inside A implies that
|Y ′v | ≤ l must hold. Thus, we have the following information about the found edge
e = (u, v):

(3) |X ′u| ≤ k and |Y ′v | ≤ l .

We now consider two cases depending on what operation is performed at gate v.

Case 1: v = u∪w is a union gate. In this case, the content of edge e is Ae = Xu +Yv.
By (3), it is enough to show that then B ∩ Ae is contained in the sumset X ′u + Y ′v ,
which yields |B ∩Ae| ≤ |X ′u + Y ′v | ≤ |X ′u| · |Y ′v | ≤ kl, meaning that the edge e is light.

To show the inclusion B ∩ Ae ⊆ X ′u + Y ′v , take a vector a ∈ B which belongs to
the content Ae = Xu + Yv of edge e. Then a = x + y for some x ∈ Xu ⊆ Xv and
y ∈ Yv ⊆ Yu. But then we also have that x ∈ X ′u (since y ∈ Yu) and y ∈ Y ′v (since
x ∈ Xv). Thus, vector a belongs to the reduced content X ′u + Y ′v of the edge e, as
desired.

Case 2: v = u + w is a sumset gate. In this case, the content of edge e is Ae =
Xv + Yv = Xu + Xw + Yv. Since the gate u is cheap (it has |X ′u| ≤ k), step 2



2078 STASYS JUKNA

in the construction of the path implies that the second node w entering v must be
also cheap, that is, |X ′w| ≤ k must hold as well. It remains therefore to show that
B ∩Ae is contained in X ′u +X ′w + Y ′v . Together with (3) and |X ′w| ≤ k, this will yield
|B ∩Ae| ≤ k2l, as desired.

To show the inclusion B ∩Ae ⊆ X ′u +X ′w +Y ′v , take a vector a ∈ B which belongs
to the content Ae = Xv + Yv = Xu + Xw + Yv of edge e. Then a = xu + xw + y for
some xu ∈ Xu, xw ∈ Xw, and y ∈ Yv. By the inclusions (2), we have that xw +y ∈ Yu
and xu + y ∈ Yw. Hence, xu ∈ X ′u and xw ∈ X ′w. Since clearly, xu +xw ∈ Xv, we also
have that y ∈ Y ′v . Thus, the vector a = xu + xw + y belongs to the reduced content
X ′u +X ′w +X ′v of the edge e, as desired.

This completes the proof of Lemma 6 and, thus, also the proof of Theorem B.

Remark 8. Note that we actually proved a stronger result: the lower bound holds
for more general (∪,+) circuits, where any sets X ⊂ Nn of |X| ≤ k vectors can be
used as inputs. This holds because the source nodes are then still cheap.

6. Proof of Theorem C. Let A ⊂ {0, 1}n be an antichain and B ⊆ A. The
proof idea in both cases (minimization and maximization) is similar: the structural
lemma gives us a set F of vectors (with particular structural properties) whose
Minkowski complexity L(F ) coincides with the tropical complexity of A. We then
use the properties of the subset B (cover free inside A or noncoverable inside A) to
show that the set B must be a Sidon set inside F . Theorem A then yields the desired
lower bound L(F ) ≥ |B|/2 on the Minkowski complexity of F and, hence, also on the
tropical complexity of A.

Proof for (min,+) circuits. Suppose that B is cover free inside A, that is, for any
a, b ∈ B and c ∈ A, a + b ≥ c implies c ∈ {a, b}. Our goal is to show that then
Min(A) ≥ |B|/2. By the structural lemma, we know that Min(A) = L(F ) must hold
for some set F ⊂ Nn of vectors such that A ⊆ F and F lies above A. In particular,
we also have B ⊆ F . By Theorem A, it is enough to show that then the set B must
be a Sidon set inside F .

Suppose contrariwise that there are vectors a, b ∈ B and c, d ∈ F such that
a + b = c + d but c, d 6∈ {a, b}. Since F lies above A, there must be vectors x, y ∈ A
such that c ≥ x and d ≥ y. As B is cover free inside A, a + b ≥ c ≥ x implies
x ∈ {a, b}. Assume without loss of generality (w.l.o.g.) that x = a; then c ≥ a. Since
c 6∈ {a, b}, we have that c > a (a proper inequality). Together with a+ b = c+ d, this
yields d < b and, hence, also y ≤ d < b. But then one vector y of A is contained in
another vector b of A, a contradiction with A being an antichain.

Remark 9. Note that B needs not be cover free inside F . Since, by our assump-
tion, B is a cover free inside A, a+ b ≥ c ≥ x with a, b ∈ B, c ∈ F , and x ∈ A imply
that x ∈ {a, b}. But vector c itself doesn’t need to belong to {a, b}: it could then be
any vector satisfying a < c ≤ a + b. Thus, usage of Theorem A was essential: the
Schnorr’s bound itself does not yield Theorem C.

Proof for (max,+) circuits. The argument is similar to that for the (min,+) case.
Suppose that B is noncoverable inside A, that is, for any x, y ∈ A and a ∈ B, x+y ≥ a
implies a ∈ {x, y}. Our goal is to show that then Max(A) ≥ |B|/2. By the structural
lemma, we know that Max(A) = L(F ) must hold for some set F ⊂ {0, 1}n of vectors
such that A ⊆ F and F lies below A. By Theorem A, it is enough to show that then
B must be a Sidon set inside F .

Suppose contrariwise that B is not a Sidon set inside F . Then there are vectors
a, b ∈ B and c, d ∈ F such that a + b = c + d but c, d 6∈ {a, b}. Since F lies below
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A, there must be vectors x, y ∈ A such that c ≤ x and d ≤ y. As B is noncoverable
inside A, x+ y ≥ a implies a ∈ {x, y}. Assume w.l.o.g. that a = x; then a ≥ c. Since
c 6∈ {a, b}, this yields a strong inequality a > c and, hence, also b < d ≤ y. But then
one vector y of A contains another vector b of A, a contradiction with A being an
antichain.

7. Proof of Theorem D. Let m ≥ 2 and 1/m ≤ ε < 1. Suppose that a set
A ⊂ Nn can be created by a Minkowski circuit with t sumset (+) gates. Our goal is
to show that then there exist t sumsets X + Y ⊆ A with the following property:

(∗) for every norm measure µ : Nn → R+, and for every vector a ∈ A of norm
µ(a) ≥ m, at least one of these sumsets X + Y contains vectors x ∈ X and
y ∈ Y such that x+ y = a and εm/2 ≤ µ(x) ≤ εm.

Recall that a function µ : Nn → R+ is a norm measure if µ(ei) ≤ 1 holds for each of
the n unit 0-1 vectors ei, and µ(x+ y) ≤ µ(x) + µ(y) holds for all vectors x, y ∈ Nn.

Fix a Minkowski circuit of size t producing A. This circuit gives us t sumsets
Xv + Yv ⊆ A, the contents of sumset gates v. So, it is enough to show that these
sumsets already have the desired property (∗).

To show this, fix some norm measure µ : Nn → R+, and a vector a ∈ A of norm
µ(a) ≥ m. By the trace lemma, there is a trace Ta in the circuit such that vector a
belongs to the contents Xv + Yv of all nodes v in this trace. That is, for every node
v in Ta, there is a vector x ∈ Xv such that a = x + y for some vector y ∈ Yv. The
decomposition a = x + y may not be unique. So, define the weight of the gate v to
be the maximum norm

lv = max {µ(x) : x ∈ Xv and x+ y = a for some y ∈ Yv}

of a vector x ∈ Xv in such a decomposition of a. We give zero weight lw = 0 to all
nodes w in the circuit whose contents do not contain vector a.

Recall that a trace Ta for a given vector a is constructed by using the content
propagation lemma: start at the output gate of the circuit, and construct Ta back-
wards by the following rule. If a sumset gate v is included in Ta, then both its inputs
are included Ta. If a union gate v is included in Ta, then include in Ta that of its
inputs whose content contains vector a. This latter rule does not specify what to do
when vector a belongs to the contents of both inputs of a union gate. For the current
proof, we will assume that, in such an ambiguous situation, the choice is “greedy”:
that of the two inputs is included whose weight is larger; if both inputs have the same
weight, then any of them can be included in the trace.

Under this proviso, the weight measure of gates has the following properties.

Claim 7. Let v be a gate with inputs u and w in the circuit. Suppose that gate v
belongs to the trace Ta.

• Subadditivity: if v is a sumset gate, then lv ≤ lu + lw.
• Monotonicity: if v is a union gate and gate u is in the trace, then lv ≤ lu.

Proof. First let v be a sumset gate. Then both inputs u and w belong to the
trace. Let x ∈ Xv be a vector of norm µ(x) = lv such that x+ y = a holds for some
y ∈ Yv. Since x belongs to Xv = Xu +Xw, there are vectors xu ∈ Xu and xw ∈ Xw

such that x = xu +xw and, hence, also xu +xw + y = a. By the inclusions (2), vector
xw + y belongs to Yu, and vector xu + y belongs to Yw, implying that µ(xu) ≤ lu and
µ(xw) ≤ lw. Hence, lv = µ(x) = µ(xu + xw) ≤ µ(xu) + µ(xw) ≤ lu + lw .

Now let v be a union gate, and u be its input belonging to the trace. If vector a
does not belong to the content of the second input w of v, then lw = 0. Otherwise,
we still have lu ≤ lw, due to our greedy choice when constructing the trace Ta. Now
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let x ∈ Xv be a vector of norm µ(x) = lv such that x+yx = a holds for some yx ∈ Yv.
Since in this (union gate) case we have Yv = Yu ∩ Yw, vector yx belongs to both Yu
and Yw. Vector x must belong to Xu or to Xw. If x ∈ Xu then lu ≥ µ(x) = lv. If
x ∈ Xw then lw ≥ µ(x) = lv and, hence, also lu ≥ lv, as desired.

Claim 8. There is a sumset gate in Ta whose weight lies between εm/2 and εm.

Proof. The weight of the output gate is the norm µ(a) ≥ m of the vector a itself.
So, the output gate has weight strictly larger than εm (because ε < 1). On the other
hand, the weight of the ith source node is µ(ei) ≤ 1, which is at most εm (because
ε ≥ 1/m). So, we can start at the output gate and traverse the trace backwards until
a (sumset) gate v of weight > εm is found such that the weights of both its inputs
are at most εm; this must be a sumset gate, due to the monotonicity of the weight at
union gates. Since the weight of gate v is > εm, the subadditivity of weight implies
that the weight of at least one of these inputs must be > εm/2, as desired.

This completes the proof of Claim 8 and, hence, also the proof Theorem D.

Remark 10. This “1
3– 2

3 trick” (in the case when ε = 2/3) is standard, and was
already used in the previous proofs of Theorem 4 and its variants [16, 34, 17, 28, 15].
The novelty of our argument is that we applied this trick to traces of individual vectors
a ∈ A in the circuit, not just to the entire circuit. This allowed us to put individual
vectors into their balanced sumsets.

8. Proof of Theorem E. Recall that the length |a| of a vector a is the number
of its nonzero entries. Let A ⊆ {0, 1}n be an antichain and B = {a ∈ A : |a| = m} be
the set of all vectors in A of length exactly m; note that the length |a| of a 0-1 vector
is just the number of ones in it.

Let m ≥ 2 and 1/m ≤ ε < 1. Recall that a sumset R = X + Y is orthogonal if
〈x, y〉 = 0 holds for all vectors x ∈ X and y ∈ Y . A sumset is strongly (m, ε)-balanced
if it is orthogonal, and all vectors in X have the same length lying between εm/2 and
εm. Our goal is to prove the following two claims.

(i) If no vector of A with fewer than m ones is contained in any vector of the
sumset B+B, then B is a union of at most Min(A) strongly (m, ε)-balanced
sumsets.

(ii) If no vector of A with more than m ones shares εm/2 or more ones with any
vector of B, then B is a union of at most Max(A) strongly (m, ε)-balanced
sumsets.

To do this, suppose that an optimization problem (minimization or maximization) on
A can be solved by a tropical circuit of size t. Then, by the structural lemma, there
exists a set F ⊂ Nn of vectors such that A ⊆ F , F can be created by a Minkowski
circuit of size at most t, and F either lies above A if we work with (min,+) circuits,
or lies below A if we work with (max,+) circuits.

By Corollary 5 (when we take the length of vectors as their norm measure), there
exist at most t (m, ε)-balanced sumsets X + Y ⊆ F such that every vector in F of
length at least m and, hence, also for every vector a ∈ B (since B ⊆ F ), belongs to
at least one of these sumsets. So fix such an (m, ε)-balanced sumset X +Y ⊆ F . The
theorem will follow from the following claim.

Claim 9. Let a, x ∈ X and b, y ∈ Y be such that both vectors a + b and x + y
belong to B. Then (i) |a| = |x|, (ii) 〈a, y〉 = 0, and (iii) a+ y ∈ B.

Having these three properties, we can obtain the desired strongly (m, ε)-balanced
sumset X ′ + Y ′ by letting X ′ ⊆ X and Y ′ ⊆ Y be the projections of the set B onto
the parts X and Y . That is, X ′ consists of all vectors x ∈ X such that x + y ∈ B
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holds for at least one vector y ∈ Y , and similarly for Y ′. By (i), the sumset X ′ + Y ′

is strongly (m, ε)-balanced and, by (ii), it is orthogonal. Moreover, we have the
inclusions B ∩ (X + Y ) ⊆ X ′ + Y ′ ⊆ B, where the first inclusion is trivial, and the
second follows from property (iii). Since the t original sumsets X + Y contained all
vectors of B, the inclusions imply that B is actually a union of the reduced sumsets
X ′ + Y ′, as desired.

So, it remains to prove Claim 9.
Take any vectors a, x ∈ X and b, y ∈ Y such that both vectors a + b and x + y

belong to B. Since both a+b and x+y must be 0-1 vectors (they belong to B) we have
〈a, b〉 = 〈x, y〉 = 0 (vectors a and b, as well as vectors x and y must be orthogonal).
Hence, we also have |a+ b| = |a|+ |b| = m and |x+ y| = |x|+ |y| = m. Call a vector
short if its length is < m, and long if its length is > m.

Proof for (min,+) circuits. Since the set F in this case must lie above A, and
since the “mixed” vector a+ y belongs to F , there must be a vector c ∈ A such that
a + y ≥ c. Our assumption in this case is that no vector of B + B can contain any
vector of A shorter than m. In particular, this implies that

(4) |a+ y| ≥ |c| ≥ m.

Indeed, were vector a + y short (shorter than m) then vector c would also be short.
But then the sum (a+ b) + (x+ y) of two vectors in B would contain a short vector
c of A, contradicting our assumption.

To prove claim (i), assume contrariwise that |a| < |x|. Then |a+ y| ≤ |a|+ |y| =
|a| + (m − |x|) < m, a contradiction with (4). So, |a| = |x|. Hold now 〈a, y〉 6= 0,
then vectors a and y would share a common nonzero position, implying that |a+y| ≤
|a| + |y| − 1 = |x| + |y| − 1 = m − 1, a contradiction with (4). Hence, claim (ii) also
holds.

By claims (i) and (ii), we have |a+ y| = |a|+ |y| = |x|+ |y| = m. Together with
a+ y ≥ c and |c| ≥ m, we have that a+ y = c and |c| = m. But since B contains all
vectors in A of length m (including vector c) this means that a + y must belong to
B, as desired.

Proof for (max,+) circuits. Since the set F in this case must lie below A, and the
mixed vector a + y belongs to F , there must be a vector c ∈ A such that a + y ≤ c.
So, since a is a 0-1 vector, claim (ii) trivially holds in this case. In particular, we have
|a+ y| = |a|+ |y|. To prove claims (i) and (iii), we will use our assumption that the
scalar product of a vector in B with any long vector in A (if there are any) must be
smaller than εm/2. Since the sumset X + Y was (m, ε)-balanced, and a ∈ X, we also
know that |a| ≥ εm/2.

To prove claim (i), assume contrariwise that |a| > |x|. Then |a+ y| = |a|+ |y| =
|a|+ (m−|x|) > m, meaning that a+ y is a long vector. Since a+ y ≤ c, vector c ∈ A
is then also a long vector. But then the scalar product 〈a+ b, c〉 ≥ 〈a+ b, a+ y〉 ≥
|a| ≥ εm/2 of a vector a+ b in B with a long vector c in A is not smaller than εm/2,
a contradiction.

To prove claim (iii), assume contrariwise that a + y 6∈ B. By claims (i) and (ii),
the vector a + y is a 0-1 vector of length |a| + |y| = |x| + |y| = m. Since B includes
all vectors of A of length m, and since a+ y 6∈ B, the vector c ≥ a+ y of A must be
a long vector. But then, again, we have that the scalar product 〈a+ b, c〉 of a vector
a+ b in B with a long vector c in A is not smaller than εm/2, a contradiction.

Appendix A. Proof of the structural lemma. We will prove this lemma
only in the case of (min, +) circuits; the proof for (max, +) circuits is similar. Our
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Fig. 3. Illustration for Lemma 10. Dashed lines are edges of the graph GA of A, nondashed
are those of its subgraph GB.

goal is to show that for any antichain A ⊂ {0, 1}n, the tropical complexity Min(A)
of A coincides with the minimum of the Minkowski complexity L(F ) of a set F ⊂ Nn

such that A ⊆ F and F lies above A. Since the inequality Min(A) ≤ L(F ) is trivial
(take F = A), it is enough to show that there exists a set F with these two properties
for which Min(A) ≥ L(F ).

Proof. Take a (min,+) circuit of size Min(A) solving the minimization problem
minA(x) = min{〈a, x〉 : a ∈ A} on A. Let F ⊂ Nn be the set of vectors created
by the Minkowski version of this circuit. Hence, L(F ) ≤ Min(A). We known that
minF (x) = minA(x) must then hold for all input weightings x ∈ Nn.

To show that F must lie above A, assume contrariwise that there is a vector b ∈ F
such that b 6≥ a for all vectors a ∈ A. Take an assignment x such that xi = 0 for
all i ∈ Sb, and xi = 1 for all i 6∈ Sb; recall that Sb = {i : bi 6= 0} is the support of
vector b. On this weighting x, we have minF (x) ≤ 〈b, x〉 = 0. But by our assumption,
Sa \ Sb 6= ∅ holds for all vectors a ∈ A, and hence, 〈a, x〉 ≥ 1 > minF (x) holds for all
these vectors, a contradiction with minF (x) = minA(x).

To show that A ⊆ F , suppose contrariwise that there is a vector a ∈ A \ F .
Consider an input weighting x with xi = 1 for i ∈ Sa, and xi = n+1 for i 6∈ Sa. Then
minA(x) ≤ 〈a, x〉 = 〈a, a〉 ≤ n. To get a desired contradiction, it is enough to show
that 〈b, x〉 > 〈a, a〉 holds for all b ∈ F .
Case 1: Sb 6⊆ Sa. Then 〈b, x〉 ≥ n+ 1 > 〈a, a〉.
Case 2: Sb = Sa. Since a is a 0-1 vector and b 6= a, there must be a position i ∈ Sb

where bi ≥ 2. Hence, 〈b, x〉 ≥ 〈a, a〉+ 1 > 〈a, a〉.
Case 3: Sb ⊂ Sa (proper inclusion). We show that this case is impossible. Since F

must lie above A, there must be a vector a′ ∈ A such that a′ ≤ b and, hence,
also Sa′ ⊆ Sb ⊂ Sa. But since both a and a′ are 0-1 vectors, this contradicts
with A being an antichain.

Appendix B. Sidon sets in terms of graphs. Recall that every set A ⊂ Nn

of vectors has its associated bipartite graph GA whose nodes are vectors in Nn, and
two nodes x and y are adjacent precisely when x+ y ∈ A.

Lemma 10. A set B ⊆ A is a Sidon set inside A if and only if no copy of K2,2

in GA contains two disjoint edges of GB.

Proof. (⇒): Suppose GA has a copy of K2,2 with two disjoint edges in GB (see
Figure 3). So, there are vectors a = x+y and b = x′+y′ in B for some vectors x 6= x′

and y 6= y′ in Nn such that the vectors c = x+ y′ and d = x′ + y belong to A. Then
clearly a + b = c + d but neither c = a nor c = b can hold, meaning that B is not a
Sidon set inside A.

(⇐): Assume that B is not a Sidon set inside A. Then there are vectors a, b ∈ B
and c, d ∈ A such that a + b = c + d but c 6∈ {a, b}. To show that then GA must
contain a copy of K2,2 with two disjoint edges in GB , it is enough to show that
there exist vectors x 6= x′ and y 6= y′ in Nn such that x + y = a, x′ + y′ = b and
{x, x′}+ {y, y′} ⊆ A. We define the desired vectors componentwise.
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If ai < ci then take xi = 0, x′i = ci − ai, yi = ai, and y′i = di (= ai − ci + bi). If
ai ≥ ci then take xi = ai − ci, x′i = 0, yi = ci, and y′i = bi (= ci − ai + di). Then all
four vectors x, x′, y, y′ belong to Nn, vectors x + y = a and x′ + y′ = b belong to B,
and the “cross-vectors,” vectors x + y′ = d and x′ + y = c, belong to A. Moreover,
c 6= a implies x 6= x′ and c 6= b implies y 6= y′.

Appendix C. Cover-free sets of size 2εn. Using ideas of Justesen codes,
Friedman [10] has shown how to construct, for every large (but fixed) constant q and
any sufficiently large m, an explicit code C ⊆ {1, . . . , q}m of |C| = qΩ(m) vectors
(code words) with the minimal Hamming distance d > m/2 between any two distinct
code words. As observed by Alon [1], each triple (x, y, z) of code words must then
have a position j such that xj 6∈ {yj , zj}. Indeed, otherwise the sum of distances of
x from y and from z would not exceed m. But this sum must be at least 2d > m, a
contradiction.

Now replace in each code word each occurrence of the ith symbol by the 0-1
vector of length q with exactly one 1 in the ith position. This gives us an explicit set
A ⊆ {0, 1}n of |C| = qΩ(m) 0-1 vectors of length n = qm. Since each vector of A has
exactly m ones, the set is homogeneous.

To see that A is cover free, take any three distinct vectors a, b, c in A. By the
property d > m/2 of the original code C, the corresponding triple (x, y, z) of code
words must have a position 1 ≤ j ≤ m such that xj 6∈ {yj , zj}. Since distinct symbols
were replaced by distinct unit vectors, there will be a position i in which ai = 1 and
bi = ci = 0. Hence, the set A is cover free.

Appendix D. Sidon sets of size 2n/2. Lindström [24] and Cilleruelo [4]
have shown that the maximum size of a Sidon set in {0, 1}n is asymptotically equal
to 2n/2. On the other hand, an explicit Sidon set A ⊂ {0, 1}n of size |A| = 2n/2 was
earlier constructed by Lindström [23] as follows.

Let n = 2m, and A ⊂ {0, 1}n be the set of all vectors (x, x3) with x ∈ {0, 1}m,
where we view vectors x as elements of GF(2m) when raising them to a power. The
set A is clearly not cover free because it is even not an antichain: say, the all-0 vector
belongs to it. But it is not difficult to verify that A is a Sidon set.

To show this, fix any two vectors c, d ∈ {0, 1}m, and consider the equation (x, x3)+
(y, y3) = (c, c3) + (d, d3). It is enough to show that this equation has at most one
unordered pair {x, y} of 0-1 solutions over the semigroup (N2m,+). If c = d then there
is only one solution x = y = c. So, assume that c 6= d. It is enough to show that then
the equation cannot have more than one solution {x, y} even over the field GF(22m).

The equation is equivalent to the system of two equations x+y = a and x3+y3 = b
with a = c+d 6= 0 and b = c3+d3. Since we are working over a field of characteristic 2,
the identity (x+y)3 = x3+y3+3xy(x+y) turns into axy = (x+y)3+(x3+y3) = a3+b.
Thus, x and y must satisfy x+ y = a 6= 0 and xy = a2 + b/a. By Vieta’s formulas, x
and y are then the roots of the polynomial aX2 + a2X + (a3 + b), and there can be
only one pair of them.

Appendix E. Sets of tropical complexity 2n/2−o(n). Let q be a prime
power, t ≥ 2 an integer, and consider the field F = GF(qt) with qt elements. The norm

is a mapping N : GF(qt) → GF(q) given by N(a) = a · aq · · · aqt−1

= a(qt−1)/(q−1).
Consider the set A = {a ∈ F : N(a) = 1} of all elements of unit norm. It is known
(see, e.g., [22]) that |A| = (qt − 1)/(q − 1).

Kollár, Rónyai, and Szabó [21, Theorem 3.3] proved that, for every t distinct
elements a1, . . . , at of F, the system of equations

N(a1 + x) = 1, N(a2 + x) = 1, . . . , N(at + x) = 1
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has at most t! solutions x ∈ F. Hence, the set A is (t, t!)-sparse over the group (F,+).
Now let q = 2r and m = rt. By viewing elements of GF(2m) as vectors in {0, 1}m,
we obtain a set A ⊆ {0, 1}m of |A| = (2rt − 1)/(2r − 1) ≥ 2r(t−1) = 2m−m/t vectors
which is (t, t!)-sparse over (F,+) and, hence, also over the semigroup (Nn,+).

The constructed set A ⊂ {0, 1}m is not homogeneous, but it can be extended
to a homogeneous set by using the following simple trick (which emerged during the
discussions with Igor Sergeev). Namely, we can extend every set A ⊆ {0, 1}m to a ho-
mogeneous set A∗ = {(a, a) : a ∈ A} ⊆ {0, 1}2m, where a denotes the componentwise
negation of a 0-1 vector a. For example, (1, 1, 0, 1, 0) = (0, 0, 1, 0, 1). Note that the
set A∗ is already homogeneous because every vector has exactly m ones.

Claim 11. If A ⊆ {0, 1}m is (k, l)-sparse then A∗ ⊆ {0, 1}2m is also (k, l)-sparse.

Proof. Assume contrariwise that A∗ is not (k, l)-sparse. Then X + Y ⊆ A∗ holds
for some sets X,Y ⊆ {0, 1}2m with |X| > k and |Y | > l. Let X ′ and Y ′ be the
projections of X and Y onto the first m positions. The sumset X ′ + Y ′ must lie in
the set A. So, it remains to show that |X ′| ≥ |X| and |Y ′| ≥ |Y |, because then A is
also not (k, l)-sparse, and we have the desired contradiction.

To show |X ′| ≥ |X|, assume contrariwise that some two distinct vectors (x, y) 6=
(x′, y′) in X have the same projection on the first m positions, i.e., that x = x′.
Take any vector (u, v) in Y . Since the sumset X+Y lies in A∗, there must be vectors
a, b ∈ A such that (x, y)+(u, v) = (a, a) and (x, y′)+(u, v) = (b, b). But then x+u = a
and x+ u = b imply a = b. From y + v = a and y′ + v = b = a, we then have y = y′.
Together with x = x′, this contradicts (x, y) 6= (x′, y′). The proof of |Y ′| ≥ |Y | is the
same.

Now let B = A∗ ⊆ {0, 1}n with n = 2m be the homogeneous extension of
the norm set A ⊆ {0, 1}m constructed above. By Claim 11, B is (t, t!)-sparse and
has |A| ≥ 2m−m/t vectors. Assuming that

√
m is an integer, take t =

√
m. Then

Theorem 3 and the reduction lemma imply that both Min(B) and Max(B) are at
least

|A|
(t!)2

≥ |A|
t2t
≥ 2m−m/t−2t log t = 2m−

√
m log(2m) ≥ 2n/2−

√
n log n .

To our best knowledge, no larger explicit lower bound on tropical complexity is known.
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[7] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some

related problems, J. Lond. Math. Soc. (2), 16 (1941), pp. 212–215.
[8] R. Floyd, Algorithm 97, shortest path, Comm. ACM, 5 (1962), p. 345.
[9] L. Ford, Network Flow Theory, Technical report P-923, The Rand Corp., 1956.

[10] J. Friedman, Constructing O(n logn) size monotone formulae for the kth elementary sym-
metric polynomial of n boolean variables, in 25th Annual Symposium on Foundations of
Computer Science, IEEE Computer Society, Los Angeles, 1984, pp. 506–515.



TROPICAL COMPLEXITY 2085

[11] S. Gashkov, On one method of obtaining lower bounds on the monotone complexity of poly-
nomials, Vestnik Moskov. Univ., Ser. 1 Math., Mekh, 5 (1987), pp. 7–13.

[12] S. Gashkov and I. Sergeev, A method for deriving lower bounds for the complexity of mono-
tone arithmetic circuits computing real polynomials, Sb. Math., 203 (2012), pp. 1411–1147.

[13] D. Grigoriev and G. Koshevoy, Complexity of tropical Schur polynomials, J. Symbolic Com-
put., 74 (2016), pp. 46–54.

[14] M. Held and R. M. Karp, A dynamic programming approach to sequencing problems, SIAM
J. on Appl. Math., 10 (1962), pp. 196–210.

[15] P. Hrubes and A. Yehudayoff, Homogeneous formulas and symmetric polynomials, Comput.
Complexity, 20 (2011), pp. 559–578.

[16] L. Hyafil, On the parallel evaluation of multivariate polynomials, SIAM J. Comput., 8 (1979),
pp. 120–123.

[17] M. Jerrum and M. Snir, Some exact complexity results for straight-line computations over
semirings, J. ACM, 29 (1982), pp. 874–897.

[18] S. Jukna, Boolean Function Complexity: Advances and Frontiers, Springer, Berlin, 2012.
[19] S. Jukna, Lower bounds for tropical circuits and dynamic programs, Theory Comput. Syst.,

57 (2015), pp. 160–194.
[20] W. Kautz and R. Singleton, Nonrandom binary superimposed codes, IEEE Trans. Inform.

Theory, 10 (1964), pp. 363–377.
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