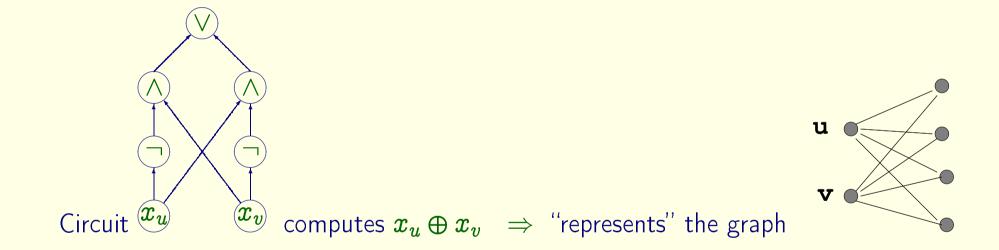
Graphs, Circuits and Communication A possible attack on old problems?

S. Jukna



The Problem

```
C(f_m) = \min \# \text{ of AND, OR, NOT gates to compute } f_m
Ultimate Goal: Prove C(f_m)\geqslant n^{lpha} with lpha
ightarrow\infty for f_m\in\mathsf{NP}
 \Rightarrow P \neq NP and many other good things (security of RSA, etc)
 \Rightarrow 1.000.000,- USD among others ...
''Moderate'' Goal: Prove C(f_m)\geqslant lpha m for lpha
ightarrow\infty
"Minor" Goal: Prove C(f_m)\geqslant lpha m for Log-depth circuits
Parallel time O(\log m) \Rightarrow \text{super-linear } \# \text{ of processors}
> 50 years intensive research \;\Rightarrow\; even C(f_m)\geqslant 5\cdot m not known !
Razborov/Rudich (1994): "Natural" proofs will not work!
"Natural" = proof works for "almost all" functions \Rightarrow largeness condition
```

Idea: Use graphs to avoid this obstacle!

The Plan

- Attack strategy: use graphs to define "complex" functions
- Attack on boolean formulas \Rightarrow the "edge/non-edge" game
- Attack on Log-depth circuits $\Rightarrow \Sigma_3$ circuits!
- The case of Σ_3^{\oplus} circuits cracked!
- ullet How to crack "pure" Σ_3 ? \Rightarrow Graph covering problems
- Disproof of the Single Level Conjecture
- Open problems

The idea

Goal: Define an explicit "complicated" boolean function f

Idea: "complicated" ⇒ complicated graph structure

Graph G=(U,W,E) with $U=W=\{0,1\}^m \;\;\Rightarrow\;\;$ gives boolean function

$$f_{2m}(uv)=1 \quad \Longleftrightarrow \quad uv \in E$$

 \Rightarrow characteristic function of G

Want: Graph G complicated \Rightarrow $C(f_{2m}) \geqslant$ large

Example: "Complicated" = needs many cliques to cover all edges

 \Rightarrow nondeterministic communication complexity of f_{2m}

Graph complexity

Graph G = (U, W, E) complicated := needs large circuits to represent it

Circuits: Inputs = stars Operations \cup , \cap

Variables X= vertices (not edges!) $=\{x_u:u\in V\}$, $V=U\cup W$

Circuit $F: 2^V o \{0,1\} \;\; \Rightarrow \;$ accepts/rejects subsets $S \subseteq V$

Circuit F(X) represents G = (U, W, E) if it accepts all edges and rejects all non-edges:

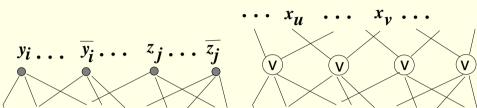
$$F(0,\ldots,0,\stackrel{\pmb{u}}{1},0,\ldots,0,\stackrel{\pmb{v}}{1},0,\ldots,0)=1 \quad\Longleftrightarrow\quad uv\in E$$

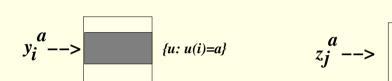
- \Rightarrow on inputs $a \in \{0,1\}^V$ with |a|
 eq 2 can do what it wants
- \Rightarrow needs not to compute $f_G = ee_{uv \in E} \, x_u x_v$!

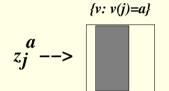
Graph complexity = min. size of a circuit representing a graph

From Graphs to Boolean Functions

F computes $f_{2m}(uv)=1$ iff $uv\in G$ \Rightarrow replace y_i^a by $\bigvee\limits_{u\in U:u(i)=a} {\color{black}x_u}$







 \Rightarrow no negated inputs in F^+ \Rightarrow monotone circuit !

Magnification Lemma: If F computes f then F^+ represents G

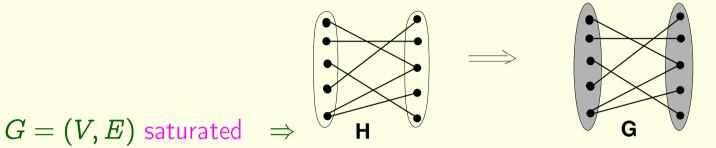
OR or Parity gates on the top \Rightarrow $size(F^+) = size(F)$

$$G$$
 has $n=2^m$ vertices \Rightarrow $size(F^+)\geqslant n^\epsilon \ \Rightarrow \ size(F)\geqslant 2^{\epsilon m} \ \Rightarrow \ ext{exponential in } m$

Graphs and Quadratic Functions

$$G = (V, E) \;\; \Rightarrow \;\; f_G = ee_{uv \in E} \, x_u x_v \;\; \Rightarrow \;\; f_G(S) = 0 \; ext{iff} \; S \; ext{indep. set}$$

F computes $f_G \; \Rightarrow \; F$ represents G. But $eq \;$ in general !



Lemma: F monotone circuit, G saturated graph \Rightarrow

F represents G iff F computes f_G

Proof: F monotone and represents G

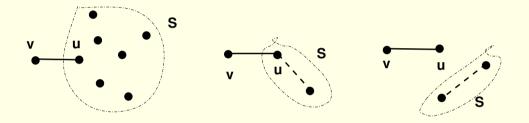
$$f_G(S) = 1 \;\; \Rightarrow \;\; S$$
 contains an edge $uv \;\; \Rightarrow \;\; F(\{uv\}) = 1 \;\; \Rightarrow \;\; F(S) = 1$

$$f_G(S)=0 \;\; \Rightarrow \; S$$
 independent set $\;\; \Rightarrow \;\; S=$ vertex or non-edge $\;\; \Rightarrow \;\; F(S)=0$

Need: Lower bounds for saturated graphs

Attack on formulas \Rightarrow let's play a game!

- ullet Alice gets an ullet $e \in E$
- ullet Bob gets an independent set $S\subseteq V$
- ullet Determine a vertex $v \in e \setminus S$ (Bob must also know v!)



c(G) = comm. complexity (deterministic, two-way)

Bob must know the answer $\Rightarrow c(G) \geqslant \log_2 n$

Alice can send here edge $\Rightarrow c(G) \leqslant \log |E| \leqslant 2 \log n$

Why interesting?

Formula = circuit with all gates of fanout 1

 $L(f_m) = \text{minimal formula over } \{\land, \lor, \neg\}$

Best known: $L(f_m) \geqslant m^3$ [Khrapchenko/Andreev/Hastad]

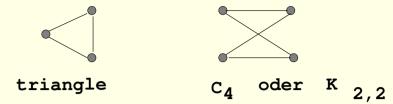
 $c_2(G)=$ when Bob gets a non-edge $\Rightarrow |S|=2$

Lemma: f_m with $m = \log n$ char. funct. of $G \; \Rightarrow \; L(f_m) \geqslant 2^{c_2(G) - m}$

Proof: Magnification lemma + Karchmer-Wigderson

$$c_2(G)\geqslant \log n + k\cdot \log \log n \ \ \Rightarrow \ L(f_m)\geqslant (\log n)^k=m^k$$

Games with large independent sets



Theorem:

No triangles and no 4-cycles in $G = (V, E) \;\; \Rightarrow \; c(G) \geqslant \log |E| - 1$

Quadratic function of
$$G=(V,E) \ \Rightarrow \ f_G=\mathop{ee}\limits_{uv\in E} x_ux_v \ \Rightarrow \ L_+(f_G)\leqslant |E|$$

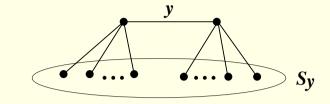
Corollary:

No triangles and no 4-cycles in $G=(V,E) \ \Rightarrow \ L_+(f_G)\geqslant |E|/2$

Plane graph $G=(V,E) \;\;\Rightarrow\; |E|=\Theta(n^{3/2}) \;\;\Rightarrow\; L_+(f_G)=\Omega(n^{3/2})$

10

Proof



 $y \in E \;\; \Rightarrow \;\; S_y = ext{set of proper neighbors of } y$

 C_4 -free \Rightarrow sets $S_y \subseteq V$ are independent sets

Protocol $P(x,S_y)$ outputs some vertex $v \in x \setminus S_y$

New protocol:

$$P'(x,S_y) = \left\{egin{array}{ll} 1 & ext{ if } v \in y \ 0 & ext{ if } v
ot\in y \end{array}
ight.$$

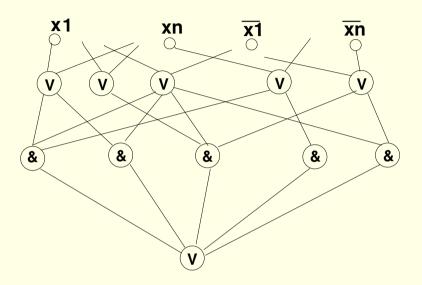
Observation: $P'(x, S_y) = 1 \iff x \cap y \neq \emptyset$

Why? x=uv and $v
ot \in y \quad \Rightarrow \quad u
ot \in y$ Why? Because otherwise $v \in S_v$

Comm. matrix of P'= intersection matrix \Rightarrow has full rank =|E|

 \Rightarrow comm. complexity of P' is $\geqslant \log |E| \Rightarrow$ comm. compl. P is $\geqslant \log |E| - 1$

Σ_3 circuits



= just an OR of CNFs ... so simple! ... why interesting?

Σ_3 and log-depth circuits

Theorem [Valiant 1977]: Lower bound $2^{\alpha m/\log\log m}$ for Σ_3 circuits \Rightarrow super-linear lower bound αm for log-depth circuits.

A lot of progress, but ... known only $\Sigma_3(f_m)\geqslant 2^{\Omega(\sqrt{m})} \;\;\Rightarrow\;\; {\sf too\;weak!}$

Need n imes n graphs G with $\Sigma_3(G) \geqslant n^\epsilon$, $\epsilon = \omega(rac{lpha}{\log\log\log n})$ $(n=2^m)$

Conjecture [Pudlák, Rödl, Savický 1988]: If G is C_4 -free then $\Sigma_3(G)=\Omega(|E|/n)$

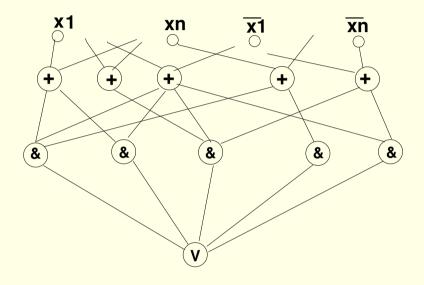
Explicit graphs with $|E| = \Omega(n^{3/2})$ exist (projective planes)

- \Rightarrow would yield $\Sigma_3(G)\geqslant n^\epsilon$ with $\epsilon=1/2$
- \Rightarrow lower bound $\Omega(m \log \log m)$ for log-depth circuits!

But the conjecture remains open!

Conjecture is true for Σ_3^{\oplus} circuits

 Σ_3^{\oplus} circuit = Σ_3 circuit with \oplus -gates on the bottom



Computes a union of affine spaces

Conjecture is true for Σ_3^{\oplus} circuits (cntd.)

 $\omega(G) = \max k$ s.t. G contains complete $k \times k$ subgraph

Theorem: For every $n \times n$ graph $G \subseteq U \times V$

$$\Sigma_3^\oplus(G)\geqslant rac{|G|}{2n\cdot\omega(G)}$$

Plane graph $G \;\;\Rightarrow\;\; |G| = \Theta(n^{3/2})$ and $\omega(G) = 1$

 $\Rightarrow \Sigma_3^{\oplus}(f_m) \geqslant 2^{m/2}$ for plane function f_m

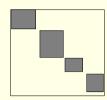
Hadamard graph $G \;\; \Rightarrow \; |G| = \Theta(n^2)$ and $\omega(G) = O(\sqrt{n})$

 \Rightarrow $\Sigma_3^{\oplus}(IP_m)\geqslant 2^{m/2}$ for inner product function

$$IP_m(x_1,\ldots,x_m,y_1,\ldots,y_m)=\sum\limits_{i=1}^m x_iy_i\,(ext{mod }2)$$

15

Proof



Fat matching = collection of vertex-disjoint cliques

$$fat(G) := min\{t \mid G \text{ is a union of } t \text{ fat matchings}\}$$

$$h(X) = igoplus_{v \in A \sqcup B} x_v$$
 represents a fat matching $egin{array}{c|c} A & 1 & 0 \\ \hline ar{A} & 0 & 1 \\ \hline \end{array}$

Observation: Intersection of fat matchings is a fat matching

$$\Rightarrow$$
 $g(X) = igwedge_{i=1}^t igoplus_{v \in S_i} x_v$ represents a fat matching \Rightarrow $\Sigma_3^\oplus(G) \geqslant \mathrm{fat}(G)$

$$H=\cup_{i=1}^t A_i imes B_i\subseteq G$$
 and $I=\{i:|A_i|\leqslant k\}$ \Rightarrow

$$|H| = \sum_{i=1}^{t} |A_i| \cdot |B_i| \leqslant \sum_{i \in I} |B_i| \cdot k + \sum_{i \notin I} |A_i| \cdot k \leqslant 2nk$$

$$\Rightarrow \operatorname{fat}(G) \geqslant |G|/(2nk)$$

Σ_3^{\oplus} with arbitrary threshold gates on the top

Threshold covering number $\operatorname{thr}_{\mathcal{H}}(G) = \min t \text{ s.t. } \exists k \geqslant 0 \text{ and } \exists H_1, \ldots, H_t \in \mathcal{H} \text{ s.t. }$

$$uv \in G \iff uv$$
 belongs to $\geqslant k$ of H_i 's

Discriminator Lemma [Hajnal/Maass/Pudlák/Szegedy/Turán 1993]:

lf

$$\left| rac{|G\cap H|}{|G|} - rac{|\overline{G}\cap H|}{|\overline{G}|}
ight| \leqslant rac{1}{M} \quad ext{for every } H \in \mathcal{H}$$

then

$$ext{thr}_{\mathcal{H}}(G)\geqslant M$$

Theorem:

Any Σ_3^{\oplus} circuit which has an arbitrary threshold gate on the top and represents an $n \times n$ Hadamard graph must have top fanin $\Omega(\sqrt{n})$.

Proof

$$H \in \mathcal{H} = \{ \text{all fat matchings} \} \Rightarrow H = \cup_{i=1}^t A_i \times B_i \Rightarrow$$

$$egin{array}{|c|c|c|c|} |G\cap H| - |\overline{G}\cap H| &=& \sum\limits_{i=1}^t \left| |G\cap (A_i imes B_i)| - |\overline{G}\cap (A_i imes B_i)|
ight| \ &\leqslant & \sum\limits_{i=1}^t \sqrt{a_i b_i n} \quad ext{(Lindsey's lemma)} \ &\leqslant & \sqrt{n} \sum\limits_{i=1}^t rac{a_i + b_i}{2} \quad ext{(arithm./geom. means)} \ &\leqslant & n^{3/2}. \end{array}$$

G is Hadamard graph $\;\Rightarrow\;$ both |G| and $|\overline{G}|$ are $\Theta(n^2)$

$$\Rightarrow \left| rac{|G \cap H|}{|G|} - rac{|\overline{G} \cap H|}{|\overline{G}|}
ight| = O\left(rac{1}{\sqrt{n}}
ight) \;\; \Rightarrow \;\; ext{thr}_{\mathcal{H}}(G) = \Omega(\sqrt{n})$$

How to crack Σ_3 ?

$$\Sigma_3 = \mathsf{OR} \; \mathsf{of} \; \mathsf{CNFs} \; \; g(X) = \left(lave_{u \in S_1} x_u
ight) \wedge \cdots \wedge \left(lave_{u \in S_t} x_u
ight)$$

Clique Covering $\operatorname{cc}(G) = \min t$: $E = A_1 \times B_1 \cup \cdots \cup A_t \times B_t$

Intersection Number $\operatorname{int}(G) = \min t \colon \exists V \ni u \mapsto A_u \subseteq \{1, \ldots, t\}$ s.t.

$$uv \in E \quad \Longleftrightarrow \quad A_u \cap A_v = \emptyset$$

Lemma:
$$\operatorname{cnf}(G) \stackrel{(1)}{=} \operatorname{cc}(\overline{G}) \stackrel{(2)}{=} \operatorname{int}(G)$$

Proof: (1) $\overline{S_1}, \ldots, \overline{S_t}$ indep. sets in $G \Rightarrow$ cliques in \overline{G}

(2): I_1, \ldots, I_t indep. sets in $G \; \Rightarrow \; \mathsf{take} \; A_u = \{i : \; u \in I_i\}$

$$uv \in E \iff \neg \exists j \colon \{u,v\} \subseteq I_j \iff A_u \cap A_v = \emptyset$$

Upper bounds

Lemma: $\Sigma_3(G) \leqslant \min \{ \operatorname{cnf}(G), \operatorname{cnf}(\overline{G}) \}$

Proof: $t = \operatorname{cnf}(\overline{G}) = \operatorname{cc}(G)$

$$\Rightarrow$$
 $E=\cup_{i=1}^t A_i imes B_i$ \Rightarrow OR of t CNFs $(ee_{u\in A_i}x_u)\wedge(ee_{v\in B_i}x_v)$

$$\Rightarrow \Sigma_3(G) \leqslant t$$
.

[Alon 1986]: $d = \max \operatorname{degree} \operatorname{of} G \implies \operatorname{cnf}(G) = \operatorname{cc}(\overline{G}) = O(d^2 \log n)$

Proof: Probabilistic argument

Matching
$$M_n \;\; \Rightarrow \; \operatorname{cnf}(M_n) = O(\log n) \;\; \Rightarrow \; \Sigma_3(\overline{M}_n) = O(\log n)$$

20

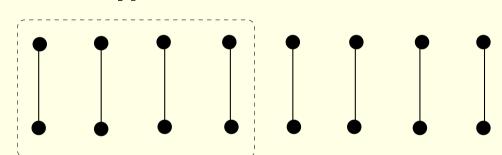
Lower bounds?

Best known: $\Sigma_3(H_n) \geqslant (\log n)^{3/2}$ for Hadamard graph [Lokam 2003]

 \Rightarrow just a bit more than trivial

Matching
$$M_n \;\; \Rightarrow \;\; \Sigma_3(M_n) = \Omega(\log n)$$

Proof: $t = \Sigma_3(M_n) \Rightarrow \exists$ matching with $|H| \geqslant n/t$ edges and



$$\operatorname{cnf}(H) = \operatorname{int}(H) \leqslant t$$

$$\Rightarrow \ \exists u \mapsto A_u \subseteq \{1,\ldots,t\} \ ext{s.t.} \ A_{u_i} \cap A_{v_j} = \emptyset \iff i=j$$

$$\Rightarrow$$
 sets A_{u_1},\ldots,A_{u_k} distinct $\Rightarrow 2^t \geqslant k \geqslant n/t \Rightarrow t = \Omega(\log n)$

For almost all n imes n graphs $G \ \Rightarrow \ \Sigma_3(G) = \Omega(\sqrt{n})$

Why difficult? An easy case

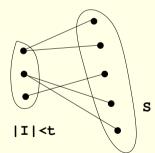
 $G = (V, E) \;\; \Rightarrow \;\; \mathsf{quadratic} \; \mathsf{function} \; f_G = ee_{uv \in E} \, x_u x_v$

Theorem:
$$G$$
 star-free $\Rightarrow \operatorname{cnf}(G) \geqslant |E|/d^2$ $\Rightarrow \Sigma_3(G) \geqslant \sqrt{|E|}/d$

Proof: CNF F of length $t=\operatorname{cnf}(G)$ computes f_G

 \Rightarrow take $F' = F \setminus \{C\}$ where $C = \lor_{u \in S} x_u \Rightarrow F = F' \land (\lor_{u \in S} x_u)$ F accepts all edges $e \in E \Rightarrow \forall e \in E \colon e \cap S \neq \emptyset \Rightarrow |S| \geqslant |E|/d$

F' must make an error \Rightarrow F'(I)=1 for indep. set I of G, $|I|\leqslant t$



C must correct the error \Rightarrow For all u in S exists v in I with uv in E

$$\Rightarrow \exists v \in I: \deg(v) \geqslant |S|/|I| \geqslant |E|/td \Rightarrow t \geqslant |E|/d^2$$

Expander graphs?

Plane graph
$$G=(U,W,E) \;\;\Rightarrow\;\; orall X\subseteq U\colon |N(X)|\geqslant n-rac{n^{3/2}}{|X|} \;\;\Rightarrow\;\; \mathsf{good}$$
 expander!

Adversary must cover all non-edges by few indep. sets

$$S = X imes Y$$
 indep. set $\Rightarrow Y \cap N(X) = \emptyset \Rightarrow |S| \leqslant |X|(n-|N(X)|) \leqslant n^{3/2}$

$$\Rightarrow$$
 need $\frac{n^2 - |E|}{n^{3/2}} \geqslant \sqrt{n}$ indep. sets!

But ... adversary is allowed to remove a 1/t fraction of edges

⇒ expanding property may be destroyed . Why?

Remove
$$\frac{n}{C} imes \frac{n}{C}$$
 clique $S = X imes Y$

 \Rightarrow removed only constant fraction $|S\cap E|\leqslant (n/C)^{3/2}$ edges (due to C_4 -freeness)

But ... very large indep. set
$$|S \cap \overline{E}| \geqslant \left(rac{n}{C}
ight)^2 = \Omega(n^2)$$
 .

The Single-Level Conjecture

Single level circuit \Rightarrow only one level of AND gates

Single level conjecture: $L_1(f_G)/L(f_G)\leqslant const$ for every G

[Krichevski 1964] \Rightarrow holds for $G = K_n$

[Mirwald-Schnorr 1987] \Rightarrow holds in basis $\{\oplus, \land, 0, 1\}$ for $f_G^{\oplus} = \oplus_{uv \in E} x_u x_v$

[Bublitz, Lenz–Wegener 1991] \Rightarrow examples with $L_1(f_G) = L(f_G) + 1$

[Lenz-Wegener 1991] \Rightarrow What about $\{\vee, \wedge, 0, 1\}$?

[S.J.] \Rightarrow For formulas conjecture is even not near to the truth

Theorem

 \exists n-vertex graphs such that $L_1(f_G)/L(f_G)=\Omega(n^\epsilon)$, $\epsilon>0$

Disproof of the Conjecture

 $\mathrm{cc_b}(G) = \min \ \Sigma_{i=1}^t (|A_i| + |B_i|)$ over all covers $E = \cup_{i=1}^t A_i imes B_i$

single level \Rightarrow Σ_3 with ANDs of fanin 2 \Rightarrow $L_1(f_G) = \operatorname{cc_b}(G)$

Theorem: $\operatorname{cc_b}(G) \geqslant \alpha \cdot |E|$ where $\alpha = \min\left\{\frac{a+b}{ab}: \ G \ \text{contains} \ K_{a,b}\right\}$

 $H\subseteq U imes W$ Kneser graph with $U=W=2^{[r]}$ and $uv\in H$ iff $u\cap v=\emptyset$

$$\Rightarrow$$
 no $K_{a,b}$ with $rac{a+b}{ab} < lpha = 2^{-r/2}$

$$\Rightarrow |H| = \sum_{u \in U} d(u) = \sum_{i=0}^{r} {r \choose i} 2^{r-i} = 3^r$$

Take G =saturated version of H

$$\Rightarrow$$
 $L_1(G)=\mathrm{cc_b}(G)\geqslant\mathrm{cc_b}(H)$ $\geqslant lpha\cdot|E|\geqslant 3^r/2^{r/2}\geqslant n^{1+c}$, $c>0$

H can be represented by CNF F of length $|F|=\operatorname{int}(H)=r=\log n$

$$\Rightarrow$$
 $F' = F \lor T_2^U \lor T_2^W$ computes $f_G \Rightarrow L(f_G) = O(n \log n)$

$$\Rightarrow \ L_1(f_G)/L(f_G) = \Omega(n^{1+c}/n\log n) = \Omega(n^\epsilon)$$

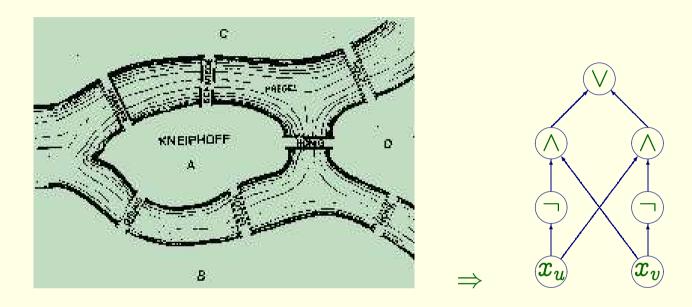
Open problems

- 1. Disprove the SL Conjecture for circuits \Rightarrow not too hard \Rightarrow diploma thesis!
- 2. Find graphs G with $\Sigma_3(G)\gg\Sigma_3(\overline{G})$ \Rightarrow harder \Rightarrow PhD thesis
 - \Rightarrow separation of comm. compl. classes $\Sigma_2^{cc}
 eq \Pi_2^{cc}$
 - \Rightarrow a 20 years old problem!
- 4. Prove $\Sigma_3(G)\geqslant n^{lpha} \Rightarrow \mathsf{hard} \Rightarrow \mathsf{breakthrough}$!
 - $\alpha = \omega(1/\sqrt{\log n}) \Rightarrow \text{ highest LB for } \Sigma_3 \text{ circuits } 2^{\omega(\sqrt{m})}$
 - $\alpha = \omega(1/\log\log\log n)$ \Rightarrow Super-linear LB for Log-depth circuits \Rightarrow 30+ years old problem!
- 5. Prove $c_2(G)\geqslant \log n+k\cdot \log\log n$ for edge/non-edge game \Rightarrow hard ! $\Rightarrow L_{\{\wedge,\vee,\neg\}}(f_m)\geqslant m^k \Rightarrow \text{beat the best LB } L_{\{\wedge,\vee,\neg\}}(f_m)\geqslant m^3$
- 6. Improve Razborov \Rightarrow Monotone LBs also when maxterms are long!
 - Razborov needs: both DNF and CNF "dispersed"
 - Find arguments based only on properties of DNFs
 - ullet Show that DNF $f_G=ladva_{uv\in E}\,x_ux_v$ cannot be compressed s

Conclusion

- ullet Need to consider only monotone circuits $\;\Rightarrow\;$ a hope
- ullet Exist graphs with very special properties \Rightarrow unnatural proofs \Rightarrow a hope
- Something can be already done:
 - \Rightarrow high LBs for Σ_3^\oplus \Rightarrow $\Sigma_3^\oplus(IP_m)\geqslant 2^{m/2}$
 - \Rightarrow even with threshold gates on the top
 - ⇒ first high LBs for quadratic functions
 - ⇒ disproof of the Single Level Conjecture for formulas
- ullet Do this for Σ_3 $\;\Rightarrow\;$ super-linear LB for log-depth circuits

A bridge between Computational Complexity and Graph Theory



Problems for circuits \Rightarrow purely graph-theoretic problems

Graph theory is 250+ years old but very rich lady \Rightarrow a light at the end of tunnel?