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Our main result is a combinatorial lower bounds criterion for a general model of monotone
circuits, where we allow as gates: (i) arbitrary monotone Boolean functions whose minterms or
maxterms (or both) have length ≤ d, and (ii) arbitrary real-valued non-decreasing functions on
≤d variables. This resolves a problem, raised by Razborov in 1986, and yields, in a uniform and
easy way, non-trivial lower bounds for circuits computing explicit functions even when d→∞.
The proof is relatively simple and direct, and combines the bottlenecks counting method of Haken
with the idea of finite limit due to Sipser.

We demonstrate the criterion by super-polynomial lower bounds for explicit Boolean func-
tions, associated with bipartite Paley graphs and partial t-designs. We then derive exponential
lower bounds for clique-like graph functions of Tardos, thus establishing an exponential gap be-
tween the monotone real and non-monotone Boolean circuit complexities. Since we allow real
gates, the criterion also implies corresponding lower bounds for the length of cutting planes proof
in the propositional calculus.

1. Introduction

The question of determining how much economy the universal non-monotone basis
of And, Or and Not gates provides over the monotone basis with only And and
Or gates, has been a long standing open problem in Boolean circuit complexity.
The breakthrough in the field was made by Razborov in his seminal paper [20],
where the first super-polynomial lower bound of size nΩ(logn) for the monotone
circuit complexity of the clique function was proved. Shortly after, such (and even
exponential) lower bounds were obtained for different Boolean functions [21, 2, 1,
26, 27], including those whose non-monotone circuits are polynomial [21, 26].

After this impressing progress one principal question still remained unclear: is
there a tractable lower bounds criterion for monotone circuits? Razborov raised
this problem as a candidate for a “final chord” in that direction (see [22], Problem
4). The point is that the combinatorial parts of all the above mentioned lower
bounds proofs depend heavily on specific properties of concrete Boolean functions,
and it was unclear if there are some common combinatorial properties of Boolean
functions that do actually force their hardness.
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In this paper we resolve this problem, and do this in a quite general setting:
we present a very simple combinatorial condition which implies lower bounds for
monotone circuits. Despite its simplicity, this condition applies to a general model
of monotone circuits with large fanin Boolean and real-valued functions as gates.

We first consider a model of d-local Boolean circuits, where as gates we allow
arbitrary monotone Boolean functions whose minterms or maxterms (or both) have
length ≤ d. All previous lower bounds (with an exception of [27], where fanin-nε
circuits were considered) were proved for usual fanin-2 circuits with And and Or
gates. If the original d-local circuit has ` gates then each gate can have at most
`d minterms or maxterms, each of which can be computed with O(logd) And and
Or gates. Thus, if the obtained lower bound for fanin-2 circuits has the form 2α(n)

then it directly implies a lower bound for d-local circuits of the form 2α(n)/d, which
may be still non-trivial as long as d � α(n). Put otherwise, big lower bounds
for fanin-2 circuits may imply non-trivial lower bounds for d-local circuits with
growing d. However, this is not always the case: in Section 3.1 we consider a

Paley-type function and prove a matching lower bound 2Ω((logn)2), which holds for
any d-local circuit computing this function even with d = n1/15� (logn)2. This
demonstrates that (at least in some cases) the bounds for d-local circuits present a
proper generalization of those for fanin-2 circuits.

Our main result is the lower bounds criterion (Theorem 2.1) for monotone
d-local circuits. In a somewhat restricted form it states the following. Let
f(x1, . . . ,xn) be monotone Boolean function all of whose minterms and maxterms
have length at least k. If f can be computed by a monotone d-local circuit of size
` then, for any 1≤s,r≤k there exists an s-CNF C, an r-DNF D and an s-element
set I⊆{1, . . . ,n} such that |C|≤`(dr)s, |D|≤`(ds)r and either

C ≤ f or f ≤ D ∨
(∨
i∈I

xi

)

(or both) hold. This, in particular, implies (see Theorem 3.2) that a monotone
Boolean function cannot be computed by a small monotone circuit if the sets of its
its minterms and maxterms contain partial t-designs with appropriate parameters.

The proof of the criterion is relatively simple and direct. It combines Haken and
Cook’s bottlenecks counting approach [13, 14] (which, as shown in [5], is Razborov’s
approximation argument in disguise) with Sipser’s idea of finite limit [24, 25]. A
vector x is a k-limit for a set of vectors A if on every subset of k coordinates, x
coincides with at least one vector from A. If f(x) = 0 and x is a k-limit for the
set f−1(1) then x is a hard instance for any circuit computing f since the value
f(x) cannot be determined when looking at only k bits of x. The key of the whole
argument is one simple observation (see Lemma 4.4) relating limits to transversals
of set systems. This correspondence implies that no single gate can make too large
progress in classifying such instances. If the function f is such that f−1(0) has
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many k-limits for f−1(1) (and vice versa) then the progress made by the whole
circuit must be large, and hence, there must be many gates.

We then prove that the same criterion holds also for d-local real circuits, i.e. for
circuits with arbitrary non-decreasing real-valued functions of fanin ≤ d as gates.
The proof is a slight modification of that for the Boolean case. This is somewhat
surprising because, as observed in [23], for some monotone Boolean functions (so-
called, slice functions) such circuits (even for d=2) are exponentially more powerful
than Boolean circuits over the universal basis with And, Or and Not gates.

In Section 3 we demonstrate how the criterion works in concrete situations.
We apply the criterion to Paley-type functions and to monotone functions induced
by partial t–(n,k,λ) designs (including the Andreev’s “drawing polynomials” func-
tion). The Paley-type function PALEY(q,t) has recently been shown to be hard
for monotone span programs (see [3, 4, 11]), but its monotone circuit complexity
was not known. We show that this function is hard also for monotone d-local cir-
cuits (Theorem 3.1). Then we derive a general lower bound for Boolean functions
induced by partial t-designs (Theorem 3.2). These functions are particularly inter-
esting because for them the criterion immediately gives large lower bound if the
parameters of the design are good enough. When applied to Andreev’s “drawing
polynomials” function POLY(q,v), this bound extends the (almost optimal) expo-
nential lower bound of Alon and Boppana [1] for this function to the case of general
d-local circuits (Theorem 3.3).

As our last example, we consider clique-like functions Tϕ(m,k) introduced by
Tardos in [26]. Here ϕ(G) is a monotone graph function such that ω(G)≤ϕ(G)≤
χ(G), where ω(G) is the clique number and χ(G) is the chromatic number of G.
The function Tϕ(m,k) accepts a graph G iff ϕ(G)≥k. The conceptual advantage of
these functions is that some of them can be computed by a non-monotone Boolean
circuit of polynomial size. Using our criterion we prove that any clique-like function
Tϕ(m,k) requires d-local monotone (Boolean and real) circuits of size exponential

in Ω(
√
k/d) (Theorem 3.4), thus establishing an exponential gap between non-

monotone Boolean and monotone real circuits. Together with the above mentioned
result of Rosenbloom [23] this implies that (unlike in Boolean case!) the power of
non-monotone Boolean and monotone real circuits is incomparable.

Finally, let us mention that the results in the present paper have also an
application to cutting plane proofs [9] in the propositional calculus. Cutting plane
proofs provide a complete refutation system for unsatisfiable sets of propositional
clauses. They efficiently simulate resolution proofs, and in fact are known to
provide exponentially shorter proofs on some examples (the pigeonhole clauses).
Bonet et al [8] and Pudlák [19] reduced the problem to lower bounds for circuits
with nondecreasing real functions of fanin 2 as gates. Thus, our general lower bound
for such circuits (Theorem 2.1), as well as lower bounds for explicit functions, are
also lower bounds for the length of cutting plane proofs.
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2. The lower bounds criterion

We will consider monotone circuits of rather general form, so let us recall some
standard definitions.

Let Ω be a totally ordered sets containing 0 and 1 with 0<1, and f :{0,1}n→
{0,1} be a Boolean function. A circuit for f over domain Ω is a is a sequence
C = (f1, . . . ,f`) of mappings (called gates) fi : {0,1}n→Ω where f` = f and each
gate has the form fi=φ(h1, . . . ,hm) where φ :Ωm→Ω is some mapping (called the
operation of that gate) and each hj is either a variable or one of the previous gates
f1, . . . ,fi−1. The fanin of the gate is the number m of gates feeding into it. The
gate is monotone if φ is nondecreasing function (with respect to the order of its
domain Ω). The total number t of gates is the size of C. The function computed
by C is the function f` computed by the last gate. In this paper we will consider
only monotone circuits.

In the first part of this paper we will consider Boolean circuits, i.e. circuits over
the domain Ω={0,1}, and then we will show how the results extend to monotone
circuits over the reals Ω=R. The arithmetic structure of real numbers will not be
used for the lower bounds, one can take any totally ordered set Ω instead of R.

A minterm (maxterm) of a monotone Boolean function f(x1, . . . ,xn) is a
minimal set of variables which, if assigned the value 1 (resp., value 0), force the
function to take the value 1 (resp., value 0) regardless of the values assigned to the
remaining variables. The degree of a monotone Boolean function f is the minimal
number d such that either all its minterms or all maxterms (or both) have size ≤d.
For example, unbounded fanin And and Or functions have degree 1. The threshold
function Tmk (x1, . . . ,xm) (which outputs 1 iff the input has at least k 1’s) has degree
d=min{k,m−k}.

Let C be a monotone circuit over a domain Ω. We say that C is a d-local
Boolean circuit if Ω={0,1} and the operations φ of its gates are arbitrary monotone
Boolean functions of degree at most d. By a d-local real circuit we will mean a circuit
over the domain Ω=R, the operations of whose gates are arbitrary nondecreasing
real-valued functions φ :Rm→R on m≤d variables. By a d-local monotone circuit
we will mean a circuit which is either Boolean or real d-local circuit.

To state (and to use) the criterion, it will be convenient to switch to the
set-theoretic language. Namely, we will identify a vector v ∈ {0,1}n with the set
Sv = {i | vi = 1} of its non-zero coordinates, so that every Boolean function f
becomes a set-theoretic predicate, which accepts a set Sv⊆{1, . . . ,n} iff f(v)=1.

A positive (resp., negative) indicator is a subset S ⊆ {1, . . . ,n} such that
f(A) = 1 (resp., f(A) = 0) for some A⊇ S. (Here and throughout, A denotes the
complement of A.) Note that one set can be both positive and negative indicator.
By a positive (resp., negative) input we will mean a positive (negative) indicator S
such that f(S)=1 (resp., f(S)=0). Put otherwise, a positive (negative) input is a
set of variables which, if assigned the value 1 (resp., value 0), force the function to
take the value 1 (resp., value 0) regardless of the values assigned to the remaining
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variables. In particular, minterms and maxterms are the minimal positive and
negative inputs, respectively.

Theorem 2.1. [Criterion] Let f be a monotone Boolean function on n variables.
Suppose that f can be computed by a d-local monotone circuit of size `. Then,
for every integers 1≤ s,r≤n there exist a system of K ≤ `(dr)s+1 s-element sets
S0,S1, . . . ,SK and a system of L ≤ `(ds)r r-element sets R1, . . . ,RL such that at
least one of the following two conditions holds:

1. Every negative input of size at least s contains at least one of the sets
S1, . . . ,SK .

2. Every positive input of size at least r either intersects the set S0 or contains
at least one of the sets R1, . . . ,RL.

The same holds also with positive inputs replaced by negative inputs and vice versa.

In Theorem 2.1 we measure the “size” of bit sets S ⊆ [n]⇀↽ {1, . . . ,n} just as
their cardinality |S|. Although in most cases this works well (see Theorems 3.1, 3.2,
3.3), in some situations (especially, when dealing with Boolean functions defined on
graphs) taking other measures may lead to better lower bounds (see Theorem 3.4).

We say that a mapping S 7→ µ(S) ∈ Z+ is a norm if it is sub-additive:
µ(S ∪ T ) ≤ µ(S) +µ(T ). Given such a norm, the µ-size (or just the size, if the
norm µ is clear from the context) of a set S is the number µ(S). The deviation
of µ is the function D(t) = max{|S| : µ(S) ≤ t}. The defect of µ is the maximal
length c= max{µ({i}) : i ∈ [n]} of a single bit. Since µ is sub-additive, these two
characteristics connect the size µ(S) of a set S with its cardinality: µ(S)≤ c · |S|
and |S|≤D(µ(S)).

We say that a bit-set T respects a norm µ if we cannot add a bit from outside
the set T to any of its subsets without increasing their size, i.e. if µ(S∪{i})≥µ(S)+1
for any subset S⊆T and any bit i 6∈T .

For example, if we take the trivial norm µ(S) = |S|, then c= 1, D(t) = t and
every set respects µ. In case of graphs, bits correspond to edges and one can, for
example, take µ(S) to be the number of vertices incident to at least one edge from
S. In this case c=2, D(t)=

(t
2

)
and only cliques will respect such a norm.

In the criterion below we assume that µ0, µ1 is an arbitrary pair of norms
with deviations D0, D1, and defects c0 and c1, respectively. The size of a negative
(positive) indicator S means here the number µ0(S) (resp., µ1(S)). By a negative
(positive) input we mean a negative (positive) input which respects the norm µ0
(µ1).

Theorem 2.2. [Criterion Unabridged] Let f(X) be a monotone Boolean function.
Suppose that f can be computed by a d-local monotone circuit of size `. Then, for
every integers 1≤ s≤µ0(X) and 1≤ r≤µ1(X) there exist a negative indicator S0
of size at most s, a system of K≤`·D1(drc1)s negative indicators S1, . . . ,SK of size
at least s and a system of L≤` ·D0(dsc0)r positive indicators R1, . . . ,RL of size at
least r such that at least one of the following two conditions holds:
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1. Every negative input of size at least s contains at least one of the sets
S1, . . . ,SK .

2. Every positive input of size at least r either intersects the set S0 or contains
at least one of the sets R1, . . . ,RL.

The same holds also with positive inputs replaced by negative inputs and vice versa.

3. Some explicit lower bounds

To motivate the proof of the criterion, let us first show how it works in concrete
situations. Below we apply the criterion to Paley-type functions, to monotone
functions induced by partial t-designs and to “clique-like” functions, some of which
have non-monotone Boolean circuits of polynomial size. Some of these lower bounds
are new (like for Paley-type function) some of them extend known lower bounds
to larger class of monotone circuits (with real-valued gates), and it is remarkable
that in all these cases the desired lower bound can be obtained via relatively simple
computations.

3.1. Bipartite Paley graphs

Let q be an odd prime power, congruent to 1 modulo 4. A bipartite Paley graph
G = (V1,V2,E) is defined on the vertex set V1 = V2 = GF(q), where two vertices
x∈V1 and y∈V2 are joined by an edge iff x−y is a non-zero square in GF(q).

It is known that this graph is (q−1)/2-regular, and has the following “uniform
neighbourhood” property: for every two disjoint sets A,B of vertices in the first
part V1 or in the second part V2, with |A|+|B|=k, k<(logq)/4, the number N(k)
of vertices (in the opposite part) adjacent to all vertices in A and nonadjacent to
every vertex in B is very close to q/2k, namely

|N(k)− q/2k| ≤ k√q.
This property was established in [12, 7] (see also [6, Theorem 10 of Chap. 13] for
a short proof) in the case of usual (non-bipartite) Paley graphs; the bound in this
case is even better: |N(k)−q/2k|≤k√q/2+k/2. In the bipartite case one must be
more careful because now we have two copies of GF(q), and hence, no of the edges
(x,x) is present in the graph. Still, with slight modification, the proof carries over
also to bipartite case (with slightly worse bound k

√
q/2+k, which is still ≤k√q for

q≥5); an analysis for the bipartite case is given, for example, in [3, 4].
Define PALEY(q,t) to be the function of n=2q Boolean variables representing

the vertices in V1∪V2, which accepts a set of vertices iff this set contains some t-
element subset A⊆V1 together with the set of its common neighbours Γ(A)⇀↽{y∈
V2 | (x,y)∈E for all x∈A}. Thus, minterms of PALEY(q,t) are all the sets of the
form A∪Γ(A), with A⊆V1, |A|= t.
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To define negative inputs, let Γ̂(B) denote the set of all common non-
neighbours, i.e. Γ̂(B)⇀↽ {y∈V2 | (x,y)∈E for no x∈B}. If t≤ (logq)/6 and q≥ 5
then, by the above mentioned uniform neighbourhood property of Paley graphs,
we have that N(2t)>0, and hence, for any pair of disjoint t-element sets A,B⊆V1
there must be a vertex y∈V2 which is a common neighbour of all the vertices in A

and is isolated from all the vertices in B. Thus, A∩B=∅ iff Γ(A)∩Γ̂(B) 6=∅. This
implies that sets of the form B ∪ Γ̂(B) with B ⊆ V1 and |B|= t, intersect all the
minterms and contain no of them, and hence, are negative inputs for PALEY(q,t).

For t= Θ(logq) the minterms of PALEY(q,t) have size at most t+N(t)≤ q.
Hence, the function can be computed by a trivial monotone circuit using q

(q
t

)
≤

nO(logn) fanin-2 And and Or gates. Is this bound optimal? It was recently proved
in [3, 4, 11] that in the case of, so–called, monotone span programs we cannot do
better: any such program for PALEY(q,t) with t=Θ(logq), requires size nΩ(logn).
We prove that the same holds also in the case of monotone (Boolean and real)
d-local circuits.

Theorem 3.1. Let q ≡ 1(mod4) be a sufficiently large odd prime power,

t = b(logq)/6c and d ≤ q1/14. Then any d-local monotone circuit computing

PALEY(q,t) has size at least nΩ(logn).

Proof. Let ` be the size of a minimal d-local monotone circuit computing
PALEY(q,t). According to Theorem 2.1 we have only two possibilities, depending
on what of the two items in its conclusion holds. For this proof we take s=r⇀↽t.

Suppose that Item 1 holds. Since sets of the form B∪ Γ̂(B) with |B|= t, are
negative inputs, each of them must contain at least one of K ≤ `(dr)s s-element

sets S1, . . . ,SK . Now, if Bi∪ Γ̂(Bi), i= 1, . . . ,m are the negative inputs containing
a fixed s-element set S⊆V1∪V2, then

m⋂
i=1

Bi ⊇ S ∩ V1 and
m⋃
i=1

Bi ⊆ Γ̂(S ∩ V2).

If less than half of the vertices of S lie in V2 then |S ∩V1| ≥ s/2, and hence, m≤(q−s/2
t−s/2

)
≤ qt/2. Otherwise, |S∩V2|≥s/2 and, by the above mentioned universality

property of Paley graphs, m ≤
(N(s/2)

t

)
≤ N(t/2)t ≤ qt(1−ε) for some absolute

constant 0<ε≤1/13. Thus, in both cases one s-element set S can be contained in
at most qt(1−ε) negative inputs. Since the total number of such inputs is

(q
t

)
≥(q/t)t,

we conclude that in this case `≥K ·(dr)−s≥
(q
t

)
q−t(1−ε)(dt)−t≥

(
qε

dt2

)t
≥nΩ(logn).
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Suppose now that Item 2 of Theorem 2.1 holds. That is, every positive input
(i.e. a set of the form A∪Γ(A) with |A|= t) either intersects a fixed s-element set
S0 or contains at least one of L≤`(ds)r r-element sets R1, . . . ,RL. To estimate the
number of positive inputs avoiding the set S0, letAi∪Γ(Ai), i=1, . . . ,m be the inputs
containing a fixed vertex x∈S0. If x∈V1 then clearly, m≤

(q−1
t−1

)
= t
q

(q
t

)
. If x∈V2

then |
⋃m
i=1Ai| cannot exceed the degree (q−1)/2, and hence, m≤

((q−1)/2
t

)
=
(q−b
t

)
,

with b= (q+1)/2. Since
(q−b
t

)/(q
t

)
≤ e−(t/q)b, we have that in both cases at least

1− s · e−t/2 ≥ 1− o(1) fraction of all
(q
t

)
positive inputs avoid the set S0, and

hence, must contain at least one of the sets R1, . . . ,RL. The same argument as for
negative inputs yields that one r-element set R ⊆ V1 ∪V2 can be contained in at

most
(N(r/2)

t

)
≤ qt(1−ε) of positive inputs. Hence, in this case we also have that

`≥nΩ(logn).

3.2. Partial t-designs

A partial t–(n,k,λ) design (called also a covering design) is a family D of k-
element subsets (called blocks) of an n-element set X such that every t-element
set is contained in at most λ blocks of D. Every such design D induces the
monotone Boolean function fD on n variables, which accepts a subset A⊆X iff A
contains at least one block of D. Say that a partial t–(n,k,λ) design D is good if
2≤ ln |D|≤k/(6dt).
Theorem 3.2. Let D be a partial t–(n,k,λ) design. If D is good then, for every r,
1 ≤ r ≤ (n ln |D|)/k, any d-local monotone circuit computing fD has size at least

min
{
|D|
/
λ ·(dr)t, ε ·3r

}
, where ε≥0.03.

Proof. We are going to apply Theorem 2.1 with negative inputs replaced by positive
inputs (and vice versa). Let ` be the minimum size of a d-local monotone circuit
computing fD. Blocks of the design D are positive inputs for fD. Thus, if the first
item of Theorem 2.1 (with s⇀↽t) holds, then every block must contain at least one
of K≤`(dr)t t-element subsets of X , and hence, in this case `≥|D|/λ ·(dr)t.

Suppose now that the second item of Theorem 2.1 holds. Take a random subset
A of X where each element of X is included in A independently with probability
p ⇀↽ (2 ln |D|)/k. Let E be the event that the set A is a negative input for fD,
has size at least r and avoids the set S0. The set A is not a negative input with
probability Prob

[
fD(A)=1

]
≤ |D| (1−p)k≤ |D|e−pk ≤ |D|−1≤ e−2, by the choice

of p. The probability that A intersects a fixed t-element set S0 does not exceed
tp≤ 1

3d . Finally, the number |A| is binomially distributed random variable with

expectation pn, and hence, Prob[|A|≥pn/2]≥ 1
2 . Since r≤(n ln |D|)/k≤pn/2, this

implies that Prob[|A|≥r] ≥ 1/2. Therefore, Prob
[
E
]
≤ e−2 + 1

2 + 1
3 ≤ 1− ε. By

Item 2 of Theorem 2.1, with probability at least ε, the set A must contain at least
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one of the r-element sets R1, . . . ,RL, where L≤ (dt)r. Since Prob[A⊇Ri]=pr and

ln |D|≤k/(6dt), we conclude that in this case `≥ε(dtp)−r=ε
(

k
2dt ln|D|

)r
≥ε3r.

3.2.1. The design of polynomials

Unlike (usual) t-designs, partial designs with good parameters can be obtained
quite easily. As an example, consider the following partial designs Dv. Let q be a
prime power and consider the squareX=GF(q)×GF(q). If p(z) is a polynomial over
GF(q), then its graph is the set of q points (a,p(a)) in this square, with a∈GF(q).
Blocks of Dv are graphs of polynomials over GF(q) of degree at most v− 1. For
every 1≤ t < v, this is a partial t–(n,k,λ) design with n= q2, k= q and λ= qv−t;
the number of blocks in this design is |Dv|=qv.

The corresponding monotone Boolean function fDv , denoted also POLY(q,v),
was investigated by Andreev [2] who proved that any circuit with fanin-2 And
and Or gates computing this function (for appropriate values of v) requires size
exponential in Ω(n1/8−ε). Using Razborov’s method of approximations, Alon
and Boppana [1] were able to essentially improve this bound until qΩ(v) for any
v≤(q/ lnq)1/2/2; for maximal possible v, the bound is exponential in Ω(n1/4). This
bound is almost optimal because qv+1 is the trivial upper bound for POLY(q,v)
(this function is an Or of qv monomials, each of length q). Thus, in the case of fanin-
2 Boolean gates we have quite sharp bounds for this function. Using Theorem 3.2
we extend this bound to arbitrary monotone d-local (Boolean and real) circuits.

Theorem 3.3. Let q be a prime power, q≥ 8. If 1≤ d≤ v≤ (q/6lnq)1/2, then any

monotone d-local circuit computing POLY(q,v) has size at least qΩ(v/d).

Proof. Take t⇀↽ dv/de and r⇀↽ dv lnq/de. Since ln |Dv|= v lnq≤ q/(6v)≤ k/(6dt),
the design Dv is good (for this value of t). Since |D|/λ ·(dr)t≥

( q
dr

)t≥qΩ(v/d) and

ε3r≥qΩ(v/d), the desired lower bound follows directly from Theorem 3.2.

3.3. Clique-like problems

A graph function ϕ(G) is clique-like if ω(G)≤ϕ(G)≤χ(G), where ω(G) is the clique
number, i.e. the size of a maximal clique in X , and χ(G) is the chromatic number.
For 2 ≤ k < m, let Tϕ(m,k) denote the monotone Boolean function of n =

(m
2

)
boolean variables encoding the edges of a graph on m vertices, which outputs 1 iff
ϕ(G)≥ k. This function is monotone if the underlying graph function ϕ is such.
For ϕ=ω this is the well-known clique function CLIQUE(m,k) deciding whether a
given graph contains a k-clique.
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Although we always have that ω(G) ≤ χ(G), the gap between these two
quantities can be quite large: results of Erdős [10] imply that the maximum
of χ(G)/ω(G) over all m-vertex graphs G has the order Θ

(
m/(logm)2

)
. So,

at least potentially, the class of clique-like functions Tϕ(m,k) is large enough.
And indeed, Tardos [26] observed that this class includes not only NP-complete
problems (like the clique function) but also some problems from P. Using Lovász-
capacity of graphs, introduced in [18], she defined an explicit clique-like graph
function ϕ, which is monotone and is computable in polynomial time. Hence, the
corresponding monotone Boolean functions Tϕ(m,k) can be computed by (non-
monotone) circuits, with And, Or and Not gates, of polynomial size.

On the other hand, the improvement of Razborov’s lower bound for the clique
function given by Alon and Boppana [1] implies that without Not gates, the func-
tion Tϕ(m,k) requires size exponential in Ω(

√
k). This has demonstrated that in

the Boolean case the gap between monotone and non-monotone complexity is ex-
ponential. Super-polynomial gap was earlier shown by Razborov in [21] using the
perfect matching function.

What about monotone circuits with real gates? The question is not trivial be-
cause, as we already mentioned in the introduction, there exist monotone Boolean
functions, whose non-monotone Boolean circuit size is exponential, and which can
still be computed by monotone real circuits of polynomial size [23]. It appears that
(unlike in the Boolean case) monotone real circuits and non-monotone Boolean cir-
cuits are, in fact, incomparable: clique-like functions (including Tardos’s function)
remain hard even if we allow non-decreasing real-valued functions as gates:

Theorem 3.4. Let ϕ be a monotone clique-like function and 3≤k≤2
√
m. Then any

d-local monotone circuit computing Tϕ(m,k) requires size exponential in Ω(
√
k/d).

Proof. Let ` be the minimum size of a d-local monotone circuit computing Tϕ(m,k).
To apply Theorem 2.2 must first choose positive and negative inputs for Tϕ(m,k).
With positive inputs the situation is clear: every k-clique G is a positive input
because ϕ(G)≥ω(G) = k. To define the negative inputs, we assign each vertex x
a color h(x) from the set {1, . . . ,k−1}, and then put edges between those pairs of
vertices with the same color. (Two colorings can lead to the same graph but we
consider them as different for counting purposes.) The complement Gh of each such
graph is a complete l-partite graph, for some l≤k−1, and hence, must be rejected
by Tϕ(m,k) because ϕ(Gh)≤χ(Gh)≤k−1.

Next, we have to fix a pair of norms µ0 and µ1. For positive indicators
S, we take µ1(S) ⇀↽ v(S), where v(S) is the number of vertices incident to at
least one edge from S. It is clear that this norm is sub-additive and that every
clique respects it. For negative inputs this is no more true, because, for example,
µ1(Gh ∪{e}) = µ1(Gh) if the ends of the edge e belong to different parts of Gh.
But in this case, the graph Gh ∪ {e} has one connected component fewer. This
suggests the following norm for negative indicators: take µ0(S) ⇀↽ v(S)− κ(S),
where κ(S) is the number of connected components in S. The sub-additivity of
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µ0 can be shown by an easy induction on the number of edges, using the fact that
µ0(S∪{e})=µ0(S) if the edge e connects two vertices in one connected component
of S, and µ0(S∪{e})=µ0(S)+1=µ0(S)+µ0({e}), otherwise. By the same reason,
each negative input Gh=(V,E) respects the norm µ0, because if S⊆E and e 6∈E,
then e cannot connect two vertices in the same connected component of S, and
hence, µ0(S∪{e})=µ0(S)+1.

The defect and the deviation for these norms are: c0 =1, c1 =2, D0(t)≤ t2 and
D1(t)=

(t
2

)
≤ t2. For the rest of the proof we take (with foresee) s⇀↽d(m/(2d2k))1/2e

and r⇀↽d((k−1)/(8d2))1/2e. Our goal is to show that `≥2Ω(r).

Suppose the first item of Theorem 2.2 holds. Each negative input Gh consists
of t1 isolated vertices and t2 mutually disjoint cliques, where 1 ≤ t1 + t2 ≤ k− 1.
Thus, v(Gh) = m− t1 ≥ m− k+ 1 and κ(Gh) = t2 ≤ k− 1, which implies that
µ0(Gh)≥m− 2k+ 2≥ s. Since the graphs Gh respect the norm µ0, we have, by
Item 1, that each of these graphs must contain at least one of the sets of edges

S1, . . . ,SK , where µ0(Si) ≥ s and K ≤ ` ·D1(drc1)s = ` ·
(2dr

2

)s ≤ ` · (2dr)2s. We
have (k−1)m colourings h, and it remains to estimate for how many of them, the
induced graph Gh can contain a fixed set of edges S, with µ0(S)≥ s. If V1, . . . ,Vt
are the sets of vertices of the connected components of S, then by the definition of
the norm µ0, |V1|+ . . .+ |Vt|≥ s+ t. If Gh⊇S, then all the vertices in each of the
classes Vi must get the same colour. Hence, the number of colourings h, for which
Gh⊇S, does not exceed (k−1)t · (k−1)m−(s+t) = (k−1)m−s. Thus, in this case,

`≥(k−1)s
/

(2dr)2s=
(
k−1

4d2r2

)s
≥2s, which is at least 2Ω(r), as long as k≤2

√
m.

Suppose now that Item 2 of Theorem 2.2 holds. Positive inputs are k-cliques.
At least

(m
k

)
− s2

(m−2
k−2

)
≥ 1

2

(m
k

)
of such cliques must avoid a fixed set S0 of

D0(s) ≤ s2 edges. By Item 1, each of these k-cliques must contain at least one
of L≤ ` ·D0(drc0)r ≤ ` · (ds)2r r-cliques R1, . . . ,RL. Since each Ri is contained in(m−r
k−r

)
of k-cliques, we conclude that in this case `≥ 1

2

(
m

d2s2k

)r
≥2Ω(r).

4. Proof of the criterion

Throughout this and the next section, let f = f(x1, . . . ,xn) be an arbitrary
(but fixed) monotone Boolean function, and 1≤s,r≤n be an arbitrary (but fixed)
parameters.
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4.1. Witnesses and finite limits

The combinatorial part of our proof is based on the following simple properties of
finite limits. Let A be a set of vectors and u be a vector in {0,1}n. A witness of
u against A is a subset S ⊆ {1, . . . ,n} of coordinates such that every vector v ∈A
differs from u in at least one coordinate in S. If u does not belong to A then it
has at least one witness S against this set. We say that such a witness is legal if
S⊆I(u) where I(u)⇀↽{i |ui=f(u)}. If u∈f−1(ε) and A⊆f−1(ε⊕1) then, due to
monotonicity of f , the whole set I(u) is a legal witness of u against A. We will be
interested in the minimal possible size of its subset with this property.

Definition 4.1. A k-limit for a set A is a vector u such that |S|≥k+1 for any legal
witness S of u against A.

Lemma 4.2. If A ⊆ B and u is a k-limit for A then u is also a k-limit for B. If
A=A1∪ . . .∪Ad and u is a k-limit for the whole set A then u is a bk/dc-limit for
at least one of the sets A1, . . . ,Ad.

Proof. The first claim is obvious. For the second claim, observe that if u would have
a (legal) witness Si of size bk/dc against Ai, for all i=1, . . . ,d, then S=S1∪. . .∪Sd
would be a (legal) witness of u against the whole set A, and this witness would
have size at most k.

Definition 4.3. A set A⊆f−1(ε) is (a,b)-closed if there exists a set ∅ 6=B⊆f−1(ε⊕1)
such that:

(i) every vector of A is an a-limit for B, and
(ii) no vector of B is a b-limit for A.

A family of sets is a-uniform if each its member has exactly a elements. For a
vector u and a set S⊆{1, . . . ,n} of its coordinates, we will write u(S)≡ ε if ui= ε
for all i∈S.

Lemma 4.4. If A⊆ f−1(ε) is (a,b)-closed then there exists an a-uniform family F
such that |F|≤ba and, for every vector u∈A, there is an F ∈F for which u(F )≡ε.

For the proof of this lemma we need the following simple property of transver-
sals. By an a-critical transversal for a sequence S1, . . . ,Sm of sets we will mean a
set T of size ≥a+1 for which there is an index 1≤ i≤m such that T intersects all
the sets S1, . . . ,Si but no its subset of size ≤a does this.

Lemma 4.5. Let S1, . . . ,Sm be a sequence of sets, each of cardinality at most b, and
let T be a family of its a-critical transversals. Then, for every 1≤k≤a, there exists

a k-uniform family Fk such that |Fk| ≤ bk and every T ∈ T contains at least one
F ∈Fk.

Proof. Construct the desired family Fk by induction on k. For k= 1 we can take
as F1 the family of all single element sets {x} with x∈S1. Suppose now that Fk−1
is already constructed. We may assume w.l.o.g. that every member of Fk−1 is
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contained in at least one transversal from T (if not, we just omit the redundant
sets from Fk−1). For each set F ∈Fk−1 choose the first index i such that F∩Si=∅;
such an i exists since |F |=k−1<a and F is a subset of an a-critical transversal.
Put in Fk all the sets F∪{x} with x∈Si. Each of these sets has |F∪{x}|= |F |+1=k

elements, and |Fk|≤|Si| · |Fk−1|≤b ·bk−1 =bk, as desired.

Proof of Lemma 4.4. Let ∅ 6=B⊆f−1(ε⊕1) be a set from Definition 4.3. By Item
(ii), every vector from B has a legal witness of size ≤ b against the set A. That
is, for every v ∈B, there must be a set S=Sv of at most b coordinates such that
v(S)≡ε⊕1 but u(S) 6≡ε⊕1 for all u∈A. This, in particular, means that for every
u∈A, the set I(u)⇀↽{i |ui=ε} intersects all the sets in the family S={Sv |v∈B}.
By Item (i), we have that |I(u)| ≥ a+ 1, because otherwise the set I(u) would be
a legal witness of vector u against B, and hence, u could not be an a-limit for
B. Thus, sets I(u) with u ∈ A, are a-critical transversals for the family S. By
Lemma 4.5, there must be a family F which consist of at most ba a-element sets
and has the following property: for every u∈A there is an S∈F such that I(u)⊇S.
Since clearly, u(S)≡ε (because u is constant ε on I(u)), F is the desired family.

4.2. Proof of Theorem 2.1 (Boolean case)

If S⊆{1, . . . ,n} is a positive (negative) input, then the corresponding positive
(negative) input vector is the vector v ∈ {0,1}n such that vi = 1 (resp., vi = 0)
iff i ∈ S; the size of such an input v is the cardinality of S. Hence, the size of a
positive input vector is the number of 1’s, and the size of a negative input vector
is the number of 0’s in it. Let U0⊆f−1(0) be the set of all negative input vectors
of size at least s, and U1⊆f−1(1) be the set of all positive input vectors of size at
least r.

Let C = (f1, . . . ,f`) be a monotone d-local Boolean circuit, and suppose that
C computes f , i.e. that f`= f . To estimate the size of (i.e. the total number ` of
gates in) C, we will follow the “bottlenecks counting” frame suggested by Haken
[13]. Every gate makes some “progress” towards separating inputs in f−1(0) from
those in f−1(1). The idea now is to send an input vector to the first gate in the
circuit for which this input was a “really hard” instance, i.e. at which certain
amount of progress in classifying the input is made. The measure of progress is the
size of a witness, which intuitively keeps track of how many bits of the input are
actually used by the computation at that gate. Dividing an underestimate of the
size of the mapped set by an overestimate of how many of vectors can be mapped
to one gate, yields the lower bound on the total number of gates.

To capture the progress, made by one gate, let us associate with every gate fi
the set

U0
i × U1

i
⇀↽
{

(u, v) ∈ U0 × U1 | fi(u) = 0 and fi(v) = 1
}
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of all those pairs, which the gate separates correctly (just like the function f does).
If some vector u∈Uεi is a k-limit for the set of all its neighbours Uε⊕1

i , then we can
treat u as a “hard instance” for the gate fi, because this gate correctly separates u
from all its neighbours, even though this requires knowledge of more than k bits.
Formally, we define the hardness of input vectors by exploring the gates f1, . . . ,f`
one-by-one, as follows.

Initially no input is hard. Suppose we already know what input vectors are
hard for the first i−1 gates f1, . . . ,fi−1, i.e. that for every j=1, . . . , i−1 we already
know the sets

Hε
j
⇀↽
{
u ∈ Uεi | u is hard for fj

}
, ε = 0, 1.

To define what inputs from Ui⇀↽U0
i ∪U1

i are hard for the i-th gate fi=φ(h1, . . . ,hm),
we consider two cases, depending on what of the terms (minterms or maxterms) of
its operation φ are short.

All minterms of φ have length ≤d. In this case we first consider the left part
U0
i and declare an input u∈U0

i as being hard for the i-th gate if this input was hard
for no of the previous gates, and is an s-limit for the set of its “easy” neighbours
E1
i
⇀↽U1

i \
(
H1

1 ∪·· ·∪H1
i−1

)
. Having defined the set H0

i , we turn to the right part

U1
i . Namely, we say that an input v∈U1

i is hard for the i-th gate if it was hard for no
of the previous gates, and is an r-limit for the set E0

i
⇀↽U0

i \
(
H0

1 ∪·· ·∪H0
i−1∪H0

i

)
.

Some minterms of φ have length > d. In this case maxterms must be short,
and we define the hardness dually: we start with right part U1

i , and interchange
the parameters s and r.

Let E0 ⊆ U0 and E1 ⊆ U1 be the sets of inputs which were hard for no of
the gates f1, . . . ,f`. Then U0 ⊆ E0 ∪H0

1 ∪ ·· ·H0
` and U1 ⊆ E1 ∪H1

1 ∪ ·· ·H1
` . By

Lemma 4.4, Theorem 2.1 now follows directly from the following two claims.

Claim 4.6. Either E0 = ∅ or there exists an s-element subset S0 of {1, . . . ,n} such

that u(S0) 6≡0 for all vectors u∈E1.

Claim 4.7. For every i=1, . . . , ` the set H0
i is (s,dr)-closed and H1

i is (r,ds)-closed

Proof of Claim 4.6. If E0 = ∅, there is nothing to do. Suppose therefore that
E0 6=∅ and take an arbitrary vector u∈E0. By the definition of E0, this vector u
was hard for no of the gates, and in particular, was not hard for the last gate f`.
Since our circuit computes the function f we have that f`= f , and hence (by the
definition of hardness), vector u has a legal witness S0 of size |S0|≤ s against the

set f−1(1)\
(
H1

1 ∪·· ·H1
`−1

)
. Since E1 is a subset of this set, S0 is a legal witness

of u also against E1. Since f(u) = 0, the legality of S0 means that u(S0)≡ 0, and
hence, v(S0) 6≡0 for all u∈E1, thus completing the proof of the claim.
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Proof of Claim 4.7. We will prove this claim only for sets H0
i (for sets H1

i the
argument is dual).

If the i-th gate fi is one of the variables xl (1≤ l≤n), then all the pairs (u,v) in
the corresponding set U0

i ×U1
i have the property that ul=0 and vl=1. Therefore,

the one-element set S={l} is a legal witness of all the vectors correctly separated
by this gate, and hence, no of these vectors could be hard for it (because r,s≥1).
Thus, if the i-th gate is a variable then H0

i =∅.
Otherwise, this gate has the form fi = φ(h1, . . . ,hm) where φ is a monotone

Boolean function, all whose minterms or maxterms (or both) have length at most
d. We consider these two cases separately.

Case 1: All minterms of φ have length ≤ d. We claim that in this case the
set H0

i is (s,dr)-closed. Indeed, in this case, every input from H0
i is an s-limit for

the set E1
i =U1

i \
(
H1

1 ∪·· ·∪H1
i−1

)
, by the definition. It remains therefore to show

that no input from E1
i can be a (dr)-limit for the set H0

i . Suppose the opposite,
and let v ∈ E1

i be such a limit for H0
i . Since fi(v) = φ(h1(v), . . . ,hm(v)) = 1 and

the minterms of φ have length at most d, there must be a collection of ≤ d gates
hi1 , . . . ,hid (feeding into fi) all of whom output 1 on v, but on every input u from
U0
i (and hence, from H0

i ), at least one of these gates outputs 0. So, if the input v
would be a (dr)-limit for the whole set H0

i then, by Lemma 4.2, it would be also
an r-limit for the set A⇀↽{u∈H0

i |fj(u)=0}, where fj∈{hi1 , . . . ,hid} is one of the
gates feeding into fi. Since A⊆U0

j ∩H0
i and H0

i ∩(H0
1∪. . .∪H0

j )=∅ (because j<i),

we have that A⊆E0
j =U0

j \(H0
1∪. . .∪H0

j ), and hence, v would be an r-limit for E0
j .

But this means that v would already be hard for at least one of the previous gates
f1, . . . ,fi−1 and hence, v 6∈E1

i , a contradiction.

Case 2: Some minterms of φ have length > d. We claim that in this case
the set H0

i is (s,r)-closed. Indeed, in this case E1
i = U1

i \
(
H1

1 ∪·· ·∪H1
i

)
and

H0
i ⊆E0

i =U1
i \
(
H0

1 ∪·· ·∪H0
i−1

)
. Now, every input from H0

i is an s-limit for E1
i ,

by the definition. On the other hand, no input from E1
i can be an r-limit for H0

i ,
because otherwise it would be an r-limit also for the set E0

i , and hence, would
belong to H1

i , a contradiction.

This completes the proof of Claim 4.7, and thus, the proof of the Criterion in
the case of unbounded fanin Boolean gates.
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4.3. Proof of Theorem 2.1 (real case)

For the case of real-valued gates we use the following “skew version” of closeness.

Definition 4.8. A set A={u1, . . . ,um}⊆f−1(ε) is weakly (a,b)-closed if there exists
a sequence of sets ∅ 6=B1⊆ . . .⊆Bm⊆f−1(ε⊕1) such that, for every k=1, . . . ,m,

(i) input uk is an a-limit for Bk, and
(ii) no input from Bk is a b-limit for the set Ak={uk, . . . ,um}.

Lemma 4.9. If A ⊆ f−1(ε) is weakly (a,b)-closed then there exist an a-uniform

family F such that |F|≤ba and for every vector u∈A there is an F ∈F such that
u(F )≡ε.

Proof. Similar to that of Lemma 4.4. By (ii), every input from Bk has a legal
witness of length at most b against the set Ak⇀↽ {uk, . . . ,um}. That is, for every
input v∈Bk there is a subset of bits Sk,v⊆I(v)⇀↽{i |vi=ε⊕1} such that |Sk,v|≤b
and every input u∈Ak takes the value vi⊕1=ε on at least one bit i∈Sk,v. This,
in particular, means that for every u∈Ak, the set I(u) intersects all the sets in the
sequence Sk={Sk,v :v∈Bi} (with sets Sk,v arranged in arbitrary order). Now, for
each j=1, . . . ,m the input uj belongs to all the sets A1, . . . ,Aj , and hence, the set

I(uj) must intersect all the sets in the sequence Sj = {S1, . . . ,Sj}. On the other
hand, by (i), no a-element subset of I(uj) can do this, since any such subset would
be a legal witness of uj against Bj . Thus, for every j=1, . . . ,m, the set I(uj) is an

a-critical transversal for the sequence Sj , and hence, is such a transversal for the
whole sequence Sm. By Lemma 4.5, there must be a family F which consist of at
most ba a-element sets such that, for every u∈A, the set I(u) contains at least one
member of F . Since u is constant ε on the whole set I(u), F is the desired family.

Now we turn to the actual proof of Theorem 2.1 in the case of real gates.
Let C = (f1, . . . ,f`) be a circuit with arbitrary non-decreasing real-valued

functions as gates, and suppose that C computes f , i.e. that f`=f . Let U0⊆f−1(0)
be the set of all negative input vectors of size at least s, and U1⊆ f−1(1) be the
set of all positive input vectors of size at least r. To capture the progress made by
one gate, we associate with every gate fi the bipartite graph

Gi ⇀↽
{

(u, v) ∈ U0 × U1 | fi(u) < fi(v)
}
.

We define the hardness of input vectors by exploring the gates f1, . . . ,f` one-by-one,
as follows. For a vector u∈U0∪U1, let Gi(u) denote the set of all its neighbours
in the i-th graph Gi.

Initially no input is hard. Suppose we already know what input vectors are
hard for the first i−1 gates f1, . . . ,fi−1, i.e. that for every j=1, . . . , i−1 we already
know the sets Hε

j
⇀↽
{
u∈Uεi | u is hard for fj

}
, ε = 0,1. We say that an input
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vector u∈Uεi is hard for the i-th gate fi is u was hard for no of the previous gates
and is a k-limit for the set

G∗i (u) ⇀↽ Gi(u) \
(
Hε⊕1

1 ∪ . . . ∪Hε⊕1
i−1

)
of all its “easy” neighbours in the i-th graph Gi. If E0⊆U0 and E1⊆U1 denote the
sets of inputs which were hard for no of the gates f1, . . . ,f`, then U0⊆E0∪H0

1∪·· ·H0
`

and U1⊆E1∪H1
1 ∪·· ·H1

` .
Since Claim 4.6 holds also in this case, it remains, by Lemma 4.9, to prove the

analogy of Claim 4.7.

Claim 4.10. For every i = 1, . . . , t the set H0
i is weakly (s,dr)-closed and H1

i is

weakly (r,ds)-closed

To prove this, we will employ the following specific properties of graphs
G1, . . . ,G`.

Property 4.11. If fi=φ(fi1 , . . . ,fid) then Gi⊆Gi1 ∪ . . .∪Gid .

Indeed, if some edge (u,v) appears in no of the graphs Gi1 , . . . ,Gid then
fij (u) ≥ fij (v) for all j = 1, . . . ,d. Since φ is nondecreasing, this implies that
fi(u)≥fi(v), i.e. that (u,v) 6∈Gi, as desired.

Property 4.12. For every i=1, . . . , t and ε∈{0,1}, it is possible to order the vectors
u1, . . . ,up from Uε so that Gi(u1)⊆Gi(u2)⊆ . . .⊆Gi(up).

To see this, arrange the inputs U0 ={u1, . . . ,up} and U1 ={v1, . . . ,vp} so that
fi(u1)≥fi(u2)≥ . . .≥fi(up) and fi(v1)≤fi(v2)≤ . . .≤fi(vp).

Proof of Claim 4.10. We will prove the claim only for sets H0
i (for sets H1

i the
argument is dual). If the i-th gate fi is one of the variables xl (1 ≤ l ≤ n), then
H0
i = ∅ as before. So, assume that fi = φ(fi1 , . . . ,fid). By Property 4.12 we can

order the vectors u1, . . . ,um from H0
i so that G∗i (u1)⊆G∗i (u2)⊆ . . .⊆G∗i (um). We

are going to show that both the items (i) and (ii) of Definition 4.8 hold with a⇀↽s,
b⇀↽dr, A⇀↽H0

i and Bk⇀↽G∗i (uk) for k=1, . . . ,m.

Item (i) holds by the definition of H0
i . To verify the second item (ii),

suppose the opposite that some input v ∈ Bk is a (dr)-limit for the set
Ak⇀↽ {uk,uk+1, . . . ,um}. Since Bk =G∗i (uk), the vector v is an easy neighbour of
uk, and since G∗i (uk)⊆ . . .⊆G∗i (um), v is also an easy neighbour of all the vectors
in Ak. Thus, Ak is a subset of G∗i (v), and if v would be a (dr)-limit for the set Ak,

it would be also such a limit for G∗i (v). But by Property 4.11, G∗i (v)⊆
⋃d
j=1G

∗
ij

(v),

and by Lemma 4.2, vector v should be an r-limit for at least one of the sets G∗ij (v),

which is impossible since then v would be already hard for some previous gate.
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This completes the proof of Claim 4.7, and thus, the proof of Theorem 2.1 in
the case of real gates.

4.4. Proof sketch for Theorem 2.2

The proof of Theorem 2.2 is similar to that of Theorem 2.1 using more general
notion of finite limit (depending this time on the norm).

Definition 4.13. Let µ be a norm and c be its defect. A k-limit for a set A under µ
is an input u such that µ(S)>k ·c for any legal witness S of u against A.

Since norms are sub-additive, Lemma 4.2 remains true also for this notion of
finite limit. Thus, the only place, where the possible deviation between the norm
µ(S) and the cardinality |S| needs more care, is the lemma about transversals
(Lemma 4.5). Using the estimates µ(S)/c≤|S|≤D(µ(S)) connecting the norm of
sets with their cardinality, one can easily modify the proof of this lemma to the
case of arbitrary norms.

Let µ be a norm and c be its defect. An a-critical transversal for a sequence of
sets S1, . . . ,Sm under the norm µ is a set T , which respects µ and for which there
is an index i such that T intersects all the sets S1, . . . ,Si but no its subset T ′⊆T
with µ(T ′)≤a ·c, does this.

Lemma 4.14. Let S1, . . . ,Sm be a sequence of sets, each of cardinality at most b,

and let T be a family of its transversals which are a-critical under some norm µ.

Then, for every 1≤k≤a, there exists a k-uniform family Fk such that: (i) |Fk|≤bk,
(ii) k≤µ(F )≤ k · c for all F ∈Fk, and (iii) every set from T contains at least one
set F ∈Fk.

Proof. As in the proof of Lemma 4.5, we will construct the desired family Fk by
induction on k. For k= 1 we can choose the first set Si such that µ({x}) 6= 0 for
all x∈Si, and take as F1 the family of all one element sets {x} with x∈Si. This
family has at most |Si| ≤ b sets, each of which has size (under µ) at most c, as
desired. Suppose now that the family Fk−1 is already constructed. For a set of bits
F , let ext(F ) denote the set of all transversals in T containing F . We can assume
w.l.o.g. that ext(F ) 6=∅ for every set F in Fk−1 (if not, just remove such sets). We
construct the family Fk by applying the following procedure to the family Fk−1.

Take a set F in Fk−1 and choose the first index i such that F ∩Si = ∅ but
T ∩Si 6=∅ for all T ∈ ext (F ); such an i exists since µ(F )≤ (k−1)c<ac and F is a
subset of an a-critical under µ transversal. There are two possibilities: either there
is some bit x ∈ Si for which µ(F ∪{x}) = µ(F ), or not. In the first case replace
the set F in Fk−1 by F ∪{x}. Since µ(F ∪{x}) = µ(F ) and all the transversals
in ext (F ) respect the norm µ, we have that ext (F ∪{x}) = ext (F ). Hence, no
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transversal gets lost during this step, and we can repeat the procedure with the
new family. In the second case include in Fk all the sets F∪{x} with x∈Si, remove
F from Fk−1 and repeat the procedure with this smaller family Fk−1\{F}. Since
µ(F∪{x})≤µ(F )+c≤(k−1)c+c≤ac, no a-critical transversal gets lost also during
this step, because every transversal containing F , must contain at least one of the
sets F∪{x} with x∈Si. Moreover, we have that µ(F∪{x})≥µ(F )+1≥(k−1)+1=k,
as desired. Since every set in Fk−1 produces at most |Si|≤b new sets, the resulting
family Fk will have at most b · |Fk−1|≤bk sets, and we are done.

With this lemma instead of Lemma 4.5, the rest of the proof is the same as in
the case of norms µ0(S)=µ1(S)= |S|.
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