SOME BOUNDS ON MULTIPARTY
COMMUNICATION COMPLEXITY OF
POINTER JUMPING!

CARSTEN DAMM, STASYS JUKNA
AND JIRI SGALL

Abstract. We introduce the model of conservative one-way multiparty
complexity and prove lower and upper bounds on the complexity of
pointer jumping.

The pointer jumping function takes as its input a directed layered
graph with a starting node and k layers of n nodes, and a single edge
from each node to one node from the next layer. The output is the node
reached by following k£ edges from the starting node. In a conservative
protocol the 7th player can see only the node reached by following the
first ¢ — 1 edges and the edges on the jth layer for each j > 7. This
is a restriction of the general model where the ith player sees edges of
all layers except for the ith one. In a one-way protocol, each player
communicates only once in a prescribed order: first Player 1 writes a
message on the blackboard, then Player 2, etc., until the last player
gives the answer. The cost is the total number of bits written on the
blackboard.

Our main results are the following bounds on k-party conservative
one-way communication complexity of pointer jumping with &k layers:

(1) A lower bound of order Q(n/k?) for any k = O(n'/3-%).

(2) Matching upper and lower bounds of order ©(nlog*=1) n) for
k <log*n.

Key words. Multiparty communication complexity, one-way protocols,
pointer jumping

Subject classifications. 68C25, 68Q99

!©Birkhauser Verlag, Basel. Essentially this paper will be published in Computational
Complexity and is hence subject to copyright restrictions. It is for personal use only.

2 Damm, Jukna & Sgall

1. Introduction

Multiparty games were introduced by Chandra et al. (1983) and have found
applications as a means of proving lower bounds on the computational com-
plexity of explicit Boolean functions. However, in spite of many results since
then, no lower bounds for multiparty games with more than log n players have
been proved. Attacking the barrier of logn is especially interesting, since by
the results of Hastad & Goldmann (1991) such bounds are connected to lower
bounds on AC'C' circuits.

In this paper we introduce a restricted model of conservative one-way proto-
cols, and prove lower bounds for pointer jumping with up to about n'/? players.
Due to the restriction to conservative protocols, our lower bounds do not imply
new lower bounds in circuit complexity. However, they constitute a partial step
in that direction and show the current barriers in lower bound techniques. We
also give optimal conservative protocols for pointer jumping with a constant
number of players. This shows that even the restricted model can perform
nontrivial computations; in fact, our protocols are the best one-way protocols
known.

The pointer jumping function is defined as follows. The input is a directed
layered graph with a starting node and £ layers of n nodes, where each node
(except for the nodes on the last layer) has exactly one outgoing edge (a pointer)
which points to a node from the next layer. The goal is to compute the node on
the last layer which is reached by following k£ pointers from the starting node.
Note that the input of the pointer jumping function has logn + (k — 1)nlogn
bits rather than kn bits.

For multiparty games with k players the input is divided into k& pieces. In
case of pointer jumping the pieces are the layers of pointers: the first piece is
the single pointer from the source to the first layer of nodes, the second piece
consists of the n pointers from the first to the second layer, and so on. Player ¢
sees all pieces of the input except for the ith one. The players have unlimited
computational power. They share a blackboard, viewed by all players, where
they can exchange messages according to a protocol. The objective is to com-
pute the function with as small amount of communication as possible. The
cost of a protocol is the number of bits written on the blackboard for the worst
case input.

In the general model the number of rounds and the order in which players
speak is not limited. However, for many applications, including the bounds

Communication Complexity of Pointer Jumping 3

on AC'C' circuits, it would be sufficient to prove lower bounds on some re-
stricted class of protocols. Of particular interest are one-way (multiparty) pro-
tocols (cf. Papadimitriou & Sipser (1984), Nisan & Wigderson (1993)), where
the players speak in a prescribed order, each of them only once: first speaks
Player 1, then Player 2, and so on, until Player £ gives the answer.

The pointer jumping function is easy to compute in the general model (and,
in fact, in any order of players but the one prescribed above): Player 2 writes
on the blackboard the first part of the input, which has only logn bits, and
Player 1 computes the answer. However, if Player 1 starts, as required in a one-
way protocol, intuitively, without the knowledge of the first pointer he cannot
communicate useful information using only a few bits. It is conjectured that
the one-way communication complexity of pointer jumping is high, however, so
far no nontrivial lower bounds for k& > 3 were proven.

We say that a multiparty protocol for pointer jumping is conservative if
Player ¢ does not have complete information about the first + — 1 layers of
pointers, but only knows which node on the (i — 1)th layer is reachable from
the starting point; he also knows the later layers of pointers and the mes-
sages communicated so far. The notion of conservativeness can be extended to
protocols for computing other functions, see Definition 3.3. The conservative
one-way communication complexity of a function F' is the smallest cost of a
conservative one-way protocol computing F'.

In this paper we prove the following bounds on the conservative one-way
k-party complexity of pointer jumping with & layers.

1. We prove a lower bound of order Q(n/k?) for any k = O((n/logn)'/?).
In particular, this means that no conservative protocol can use only
(log n)o(l) players and n'= bits of communication. This should be com-
pared to the general one-way multiparty communication complexity where
no lower bounds are known for more than logn players.

2. We prove that for k < log®n — w(1), any conservative one-way protocol
requires at least nlog®*~) n(l — o(1)) bits of communication. (log(z) n
denotes the iterated logarithm and log™ n is the number of iterations until

logV n drops below L)

3. We give a matching construction, namely we construct a conservative one-
way protocol which uses only nlog(k_l) n + O(n) bits of communication,
for any k < log™n. In particular, for log™ n (or more) players the protocol
uses only O(n) bits. No better one-way protocols are known, even without
the restriction to conservative protocols. (In fact, previously no better
protocol than the trivial one using nlogn bits was known.)

4 Damm, Jukna & Sgall

4. We prove that on a certain restricted input space conservative one-way
protocols require more communication than general one-way protocols,

by a factor of at least Q(logn/loglogn).

In Section 3 we introduce our model and notation. Our upper bounds are
proved in Section 4 and lower bounds in Section 5. In Section 6 we demonstrate
the gap between conservative and non-conservative protocols. Open problems
are discussed in Section 7. The lower and upper bounds for small k were also
reported in Damm & Jukna (1995). The preliminary version of this paper
appeared in Damm, Jukna & Sgall (1996).

2. Related work

Our main motivation is the result of Hastad & Goldmann (1991), based on
Yao (1990) (and following also easily from an improvement of Yao (1990) by
Beigel & Tarui (1994)). They show that any function in ACC (i.e., com-
puted by polynomial size, bounded depth and unbounded fan-in circuit with
gates computing AND, OR, NOT, and MOD,, for a fixed m) can be com-
puted by a one-way protocol with polylogarithmic number of players and only
polylogarithmic cost. Thus improving our lower bounds to non-conservative
communication complexity would lead to a proof that pointer jumping is not
in ACC.

In fact, as was noted in Babai ef al. (1995), the result of Hastad & Gold-
mann (1991) implies that it would be sufficient to prove the lower bounds for
simultaneous protocols, instead of one-way protocols. In a simultaneous pro-
tocol each of the k players sends (independently from the others) one message
to a referee, who sees none of the inputs. The referee then announces the re-
sult. Thus, in the simultaneous model no communication between the players
is allowed, they act independently; the twist is that they share some inputs (if
k> 3).

The model of multiparty communication turns out to be connected to
many other computational models. Chandra et al. (1983), who introduced
the model, used it to prove that majority requires superlinear length constant
width branching programs. Babai et al. (1992) demonstrate that bounds for
one-way communication complexity can be applied to Turing machine, branch-
ing program and formulae lower bounds. Nisan & Wigderson (1993) have
shown, using a result of Valiant (1977), that a lower bound w(n/loglogn) on

Communication Complexity of Pointer Jumping)

3-party simultaneous protocols for a function f would imply that f cannot be
computed by a circuit of linear size and logarithmic depth.

Unfortunately, so far we do not have sufficiently good bounds on the mul-
tiparty communication complexity of explicit functions to obtain interesting
consequences in circuit complexity. The best lower bounds for the general,
one-way, or even simultaneous multiparty complexity are Q(n/2*) lower bounds
for the generalized inner product of Babai et al. (1992) and Chung & Tetali
(1993), for the quadratic residue function of Babai et al. (1992), and for the
matrix multiplication of Raz (1995). This means that so far we have no lower
bounds at all for £ > logn. Generalized inner product is in AC'C', and Grol-
musz (1994) showed a matching upper bound O(kn/2%) for it. However, the
other two functions are not believed to be in AC'C' and are good candidates for
multiparty communication complexity lower bounds with many players.

Pointer jumping is also often considered in the context of lower bounds and
communication complexity (e.g. Papadimitriou & Sipser (1984), Duris el al.
(1987), Grigni & Sipser (1991), Nisan & Wigderson (1993), Bollig et al. (1994),
Pudldk et al. (to appear)). This is an important function, since it simulates
many naturally occurring functions, e.g. shifting, addressing, multiplication
of binary numbers, convolution, etc. It is easily seen that pointer jumping is
LOGSPACE-complete (for k = n), which also makes it a good candidate for

lower bounds.

Papadimitriou & Sipser (1984) were the first to investigate the commu-
nication complexity of pointer jumping. They consider the following 2-party
k-round version: we have 2 players, the input consists of pointers from A to
B (known to Player 2) and from B to A (known to Player 1), |A| = |B| = n.
There 1s a fixed starting point ag € A, and the output is given by following
k pointers from this starting point. Player 1 (the “wrong” player) starts, and
only k messages (rounds of communication) are sent. For this game, the first
general lower bound of Q(n/k?) was proved by Duris et al. (1987). Nisan &
Wigderson (1993) improved this to a lower bound of order Q(n) for determinis-
tic protocols. For e-error protocols they prove a lower bound of order Q(n/k?*)
and an upper bound of order O((n/k)logn).

In contrast to the 2-party case with limited number of rounds, very little
is known about k-party one-way complexity of pointer jumping. Wigderson
(1996) observed that similar argument as in Nisan & Wigderson (1993) implies
an Q(y/n) lower bound for pointer jumping in case of 3 players. For k > 3 no
non-trivial bounds are known. Even in the simultaneous case, the best bound
is Q(n'/*=1)) by Babai el al. (1995) and Pudldk et al. (to appear), which

is obtained by an easy information-theoretic argument, and is much smaller

6 Damm, Jukna & Sgall

than the more general bound on the generalized inner product Babai el al.
(1992). These bounds are interesting here because they both work even for the
restrictions of pointer jumping described next.

Recently, there was interesting progress in proving non-trivial upper bounds
for special cases of pointer jumping.

The most general is an O(nloglogn) bound of Pudlék & Rodl (1993),
Pudlék et al. (to appear) for k = 3 for the special case of pointer jumping
when the mapping between the first and second layer of nodes is one-to-one.
Intuitively this is the hardest case, but the protocol does not work for general
inputs; also the proof uses colorings of random graphs and hence the protocol
is non-constructive. We get the same bound for general pointer jumping in the
case of k£ = 3. However their requirements on the communication are incompa-
rable with our protocol. Their protocol is almost simultaneous, meaning that
the first and second player communicate simultaneously to the third one who
announces the result; on the other hand their protocol is not conservative.

Babai et al. (1995) and Pudlék et al. (to appear) consider the simultaneous
communication complexity of functions that are special cases of pointer jump-
ing where the first £ — 1 inputs are restricted to n special functions. The th
input, ¢ < k—1 is fully determined by some parameter s; € {0,...,n—1}. The
kth input are arbitrary strings = € {0,1}" (or equivalently, on the last layer of
the graph there are only two nodes, to give a boolean function, cf. Section 6).
Nevertheless, even in such special cases finding good protocols is non-trivial.
For the generalized addressing function defined by GAF(si,...,sk-1,2) =
Toy@-@s,_,» Where & is the bitwise sum modulo 2 (parity), simultaneous proto-
cols given in Babai et al. (1995) use o(n®9?) bits of communication for & = 3 and
O(log® n) bits for logarithmic number of players. For the iterated shift function
shift(sy, ..., sp-1,2) = T(s;4-+s5_1) mod n Simultaneous protocols from Pudlak
et al. (to appear) use O(n(log logn/log n)k) bits for any constant k, and
O(TL6/7) bits for logarithmic number of players. For a polylogarithmic num-
ber of players the bound was recently improved by Ambainis (1996) to O(n®)
for any constant ¢ > 0. All these protocols are non-conservative.

For comprehensive information about communication complexity, see the
upcoming book of Kushilevitz & Nisan (to appear).

3. Definitions and notation

Communication Complexity of Pointer Jumping 7

Throughout the paper we suppose that the sets Ag,..., Ay are fixed so that
|Ag| = 1 and |A;] = n for i = 1,...,k. Fori =1,...,k, F; is the set of all
functions from A;_; to A;, F(1) = F; x ... x Fy, and F = F(1). We denote
the single element of Ay by ag. Given (fi,..., fi) € F, we define recursively

i1 = fi+1 (ai)-

DEFINITION 3.1. The pointer jumping function Jump® : F — Ay, is defined
by

Jumpk(fl,...,fk) = fe(...(fi(ao))...) = ay for {(f1,..., fx) € F.

We will use notation Jump®(ay, fa, . . ., fi) as equivalent to Jump®(fi, ..., fi)
because a; and f; contain the same information, as there is only one starting
point. Also remember that size of the first part fi of the input is [logn] bits
and the size of the other parts of the input is n[logn| bits.

In a k-party protocol for a function F(zy,...,xy), there are k players, each
with unlimited computational power. Player i sees all the inputs except for
z;. Players communicate by “writing on a blackboard” (broadcast). The game
starts with the empty blackboard. For each string on the blackboard, the
protocol either gives the value of the output (in the case the protocol is over),
or specifies which player writes the next bit and what that bit should be as a
function of the inputs this player knows (and the string on the board). The
blackboard is never erased, players simply append their messages.

DEFINITION 3.2. A one-way protocol is a k-party protocol in which each player
writes only one message, in a predetermined order, first Player 1, then Player 2,
..., Player k.

The string on the board still has to determine who speaks next, and hence in
particular for any player and string on the board no message can be a prefix of
another message possible in this context.

DEFINITION 3.3. A conservative protocol is a k-party protocol in which the
access of players to the input is limited so that Player 1 knows the function
F(axy, ... zic1,*,...,%) (with k— i+ 1 unknowns) and the inputs 11, ..., x.

In this definition the “knowledge of the function” should be understood so that
instead of knowing the values x4, ..., z;_1, the player only knows which function

8 Damm, Jukna & Sgall

these values induce on the remaining inputs. For many natural functions,
including pointer jumping, the number of induced functions is small (compared
to the number of values of (zi,...,2;_1)), and hence this is a potentially severe
restriction. The information of Player ¢ together with z; determines the output,
similarly as in the general k-party setting.
For pointer jumping the knowledge of Jump(a, fa, ..., fic1,*,..., %) is equiv-

alent to the knowledge of a,_;. Thus a conservative one-way protocol for pointer
jumping with k players is given by k& mappings

b, : A, X .7'-(2 + 1) X {0, 1}* — {0, 1}*
The players communicate according to the following straight-line program:

Player 1 writes z; = @y (ao; f2,..., [k)
Player 2 writes zo = ®y(as; f5, ..., fr; 21)
Player 3 writes z5 = ®3(ay; fa, ..., fr; 21, 22)

Player k writes zy = ®y(ap_1; 21,22, ..., 25-1)

and z; is the output of the protocol ®.

In a conservative protocol for pointer jumping we can allow Player ¢ to
see ai,. .., a;—1, rather than only a;_y without any significant change in cost:
Player 5 can always communicate a;_1 in addition to other messages, increasing
the complexity by only an additive term of & log n.

All logarithms in the paper are to base 2. The iterated logarithm log(n
is defined by log®n = n, log™"n = loglog®” n. The largest i such that
log® n > 0 is denoted log"n. The tower function TOWER(i,b) is defined by
TOWER(1,b) = b, TOWER(i + 1,b) = 2TOWER(?),

4. The Upper Bound

The main idea of the protocol for Jump® is that each player will “shrink the
input space” considerably. Suppose that Player 1 communicates b bits of f(a)
for every a € A;. Player 2 sees a; and the message of Player 1, and hence he
knows b bits of a; = f3(a;) from the message of Player 1. This means that
there are now only about n/2° possible values for a,, and if Player 2 repeats
the procedure, he can send 2° bits for each value. We continue this way, each

Communication Complexity of Pointer Jumping 9

player communicating exponentially more bits for each value, until the (k—1)-
st player communicates all logn bits for each possible value. A calculation
shows that we need to start with b = log*~") n bits. Note that in our protocol
the message of Player 1 always depends only on a;_1, fi;y1, and the previous
communication.

THEOREM 4.1. Let k <log*n. Then there is a conservative one-way protocol
for Jump® which uses only nlog(k_l) n 4+ O(n) bits of communication.

PrOOF. Let b = [log"™" n], b; = 0, and b; = TOWER(i — 1,b) +i for i > 1.
Due to our choice of b, we have b > 2, and logn < by < n + k.

Player i, 1 < k, communicates b;41 bits about each fi;1(a) consistent with
previous messages. More precisely, for each 7 > 1, we partition A; into 2% blocks
of size at most [n/2" 7. Let B; be the block of A; containing a;. Player i, < k,
communicates for each @ € B; which block of A;4; the value f;11(a) belongs
to. We have to verify the player has the necessary information, namely he
knows which block is B;. For Player 1 this is trivial, since by = 0 and there is
a single block. For 1 > 1, Player ¢ knows a;_1, by the definition of conservative
protocols, and hence from the message of Player : — 1 he knows which block of
A; the value a; = fi(ai—1) belongs to, and this block is B;.

The last player announces the answer, namely the single element of B,. We
know that there is only one element since by > log n.

Now we compute the total amount of communication. Player 1 commu-
nicates byn = (b + 2)n = nlog(k_l)n + O(n) bits. For 1 < i < k we have
biyr = 257" 4+ i 4+ 1, and Player i communicates b;11|B;| < 2%~ [n/2%] + (i +
DB < n/2" + 2% + (i + 1)|B;| bits. Summing the terms of these bounds
separately we get that the total communication of all players ¢, 1 <1 < k, is
bounded by O(n). Player k communicates only log n bits. Hence the total is
nlog(k_l) n+ O(n), as claimed. O

COROLLARY 4.2. Let k > log"n—O(1). Then there is a conservative one-way
protocol for Jump® which uses only O(n) bits of communication.

The same ideas as in Theorem 4.1 can be used for the two-party model
with limited number of rounds mentioned in Section 2. Nisan & Wigderson
(1993) give e-error randomized k-round protocols with communication com-
plexity O((n/k)logn). Our techniques yield deterministic protocols with com-
munication complexity nlog®™ n + O(n) for k < log™n (and hence O(n) for

10 Damm, Jukna & Sgall

k >log*n — O(1)); this is an improvement over Nisan & Wigderson (1993) as
long as k = o(logn). We only need to make one small technical modification
since the active player in round 2 does not know the previous point a;_; from
his input. We modify the protocol so that each Player ¢ sends also a;—y (in
addition to the message according to our above protocols); then Player ¢ knows
a;—o from the previous communication and can compute a;_;. The extra cost
is only klogn.

5. The lower bound

We reduce conservative one-way protocols for Jump” to protocols for Jump®~".

We let Player 1 speak, and then fix one of his messages w, one of the points of
the first layer a;, and a subset of inputs consistent with the communication so

F=1 with still a large set of inputs

far, leaving the players in a setup for Jump
on which it is supposed to work. For us a large set of inputs will mean that
there is a large set of function tuples g € F(2) such that many initial points a;
are consistent with each g.

Given a finite set Q (the universe), the measure of a subset X is pug(X) =
| X1/]€2]. We usually omit the index 2, as the universe is clear from the context
— we typically use this notation for a set of tuples of functions F' C F (i) or a
set of functions I' C F;.

Given a conservative one-way protocol for Jump®, we say that an input
(a,g) € Ay x F(2) is good, if the protocol answers correctly on that input. A
set G C F(2) is (a,m)-large if u(G) > « and for every g € G there exist m
values a € A; such that the input (a, g) is good. A protocol is called (o, m)-good
if there exists an («, m)-large set.

A protocol working on all inputs is (1,n)-good. No protocol for Jump! is
(a,m)-good if @ > 0 and m > 1, as the only player, Player 1, does not see f;
and has to announce a; = fi(ao).

The following quantity plays an important role in our reduction step. We
prove the necessary bounds on it later.

DEFINITION 5.1. Let y(m, M) denote the measure of the family of all functions
fA{1,...,n} = {1,...,n} such that for at least m values of a, f(a) < M.

The setting in which v is used in the next lemma is the following: If for
each a we have a set T'(a), |T'(a)] < M, and we know that for each function f

Communication Complexity of Pointer Jumping 11

in our family there are at least m coordinates a such that f(a) € T'(a), we can
conclude that the measure of this family is at most y(m, M).

LeMMA 5.2. [Reduction Lemma] Suppose there is an («, m)-good protocol for
Jump® with total communication t. Then there exists an integer x < t such
that for 8 = a/(n2*t') and any integer M satisfying v(m, M) < (3 there is a

(B, M)-good protocol for Jump*~" using only t — = bits of communication.

PrROOF. Let G C F(2) be an (a, m)-large set of inputs on which the protocol
works. First we let Player 1 speak. His communication depends only on g € G,
not on a € A;. By the pigeonhole principle there exists a string w which he
communicates on at least 1/2/%l fraction of the inputs in G. (This is true even
in the case when the length of the message is not determined beforehand, since
it has to be determined who writes the next bit on the blackboard, and hence
no message of Player 1 is a prefix of another one.) Fix such a w. Let z = |w)|
and let G be the set of all tuples ¢ € G on which Player 1 outputs w.

Given h € F(3), let F}, be the set of all functions f € F, such that (f,h) €
(. Define H C F(3) as the set of all tuples h for which u(Fj) > o/2°t!. By
counting p(H) > o/2°t. (As u(G) > /27, the measure of pairs (f,h) € G
with pu(Fh) < a/27%" is at most /27t and the remaining pairs from G have
h € H and hence their measure is at most p(H).)

For h € H and a € Ay, define Ty(a) = {f(a) | f € Fr A {a, f,h) is good},
i.e., the set of all images of @ under some function f consistent with a, A and
the protocol so far. Since G is (a, m)-large, for any f € F}, there are at least
m values of a such that (a, f,h) is good, and for each such a, f(a) € Ty(a).
Suppose that for some h € H, |T,(a)| < M for all a. Then the condition in the
definition of 7 is satisfied by the family F}, (more precisely, by an isomorphic
family, cf. the remark after Definition 5.1), and hence p(Fy) < v(m, M), which
contradicts the assumptions of the lemma, since p(Fy) > /2"t > 3. Hence
for every h € H there exists a € Ay such that |T,(a)| > M.

Let H, = {h € H | |Th(a)| > M}. From the last paragraph it follows that
there exist a; € Ay such that p(H,,) > p(H)/n > af/(n2°t") = 5. Fix such an
ai.

Now consider the protocol Players 2 to k use on the inputs with a; as chosen
in the previous paragraph, after Player 1 communicated w. We claim that this
is a well-defined (3, M)-good conservative one-way protocol for Jump® ',

More precisely, suppose that the original protocol ® for Jump® (a1, fa, ..., fi)
works in the following way:

Player 1 writes zy = @4 (ao; fa, ..., [k),

12 Damm, Jukna & Sgall

Player 2 writes zo = ®g(ay; f5, ..., fx; 1),
Player 3 writes z5 = ®3(az; fa, ..., [x; 21, 22),

Player k writes the output z; = ®y(ag—1;21,22,...,2k-1).

The new protocol ¥ computes Jumpk_l(ag,fg, ..y f¥). For convenience we
number its players from 2/ to £/, to avoid renumbering of all the inputs. They
communicate as follows:

Player 2" writes 2z, = Wy(ay; fs, ..., fr) = ®alar; f3, ..., fu; w)
Player 3’ writes z5 = Us(az; fa, ..., fu;25) = Ps(az; fa, ..., fu;w, 25),

Player k' writes the output z;, = Wi(ar—1;25,...,2,_1) =
= (I)k(ak—l; w, Zév R Zl,c—l)'

By inspection, this is a well-defined conservative protocol, as Players 2’ to k'
have access to all the information they need to compute ¥,. To prove that ¥
is (3, M)-good, it is sufficient to verify that H,, is (8, M)-large for U. Since
u(Hy,) > B and for each h € H,,, |Th(a1)| > M, it is sufficient to verify that
U answers correctly on each input (az, h) where a; € Th(a1). Let f € Fj be
such that az = f(ai) and (ay, f,h) is good; such f exists since ay € Th(a1).
It follows that @ is correct on (ay, f,h) and Player 1 (of ®) communicates w
on this input. Let (z},...,2;) be the messages under ¥ on the input (as,h)
and let (w, zy,...,z;) be the messages in ® on the input (ai, f,h). Now we
observe that z! = z;, and hence U outputs the same answer as ®. This answer
is correct, as Jumpk_l(ag,h) = Jumpk(al,f,h) and @ is correct on (ay, f, h).
O

The way in which we will use Lemma 5.2 is the following. Given a protocol
for Jump® with total communication ¢, we construct inductively protocols for
Jump*=i*1 that are (a;,m;)-good for appropriate values of a; and m;, both
decreasing with increasing ¢. We start with oy = 1 and m; = n, i.e., with a
protocol working on all inputs. Our goal is to end up with o > 0 and m; > 1,
which leads to a contradiction as then there exists no (ay, my)-good protocol
for Jump'. Thus we want to keep o; and m; as large as possible. We always
set a;11 = a;/(r2%*1), where x; is the integer z from the ith application of
Lemma 5.2. We can bound «; in terms of ¢, since x; + -+ + z; < ¢ and
a; > 1/2tktkloen The rest of the proofs consists only of setting m; sufficiently
large but still satisfying the condition y(m;, mit1) < ajy1.

The first theorem shows that we can iterate the Reduction Lemma about
n'/? times. In particular, any protocol with polylogarithmic number of players

Communication Complexity of Pointer Jumping 13

needs almost linear communication, more than n'=° for any ¢ > 0. To prove
this we estimate v(m, M) using Chernoff bounds.

LeMMA 5.3. There exists an absolute constant ¢ > 0 such that if M < m —
cy/sn then y(m, M) < 27%.

Proor. Pick a function f : {1,...,n} — {1,...,n} uniformly at random.
Let X, be the indicator random variable of the event that f(a) < M, and let
S =31 _,X,. We have Prob[X, = 1] < M/n and E[S] < M. The events X,

are independent, and thus we can use Chernoff bounds. We get
y(m, M) = Prob[S > m] = Prob[S > M + ¢\/sn] < e=<sI2 < 95

for a sufficiently large ¢. O

THEOREM 5.4. For k = o((n/log n)'/?), any conservative one-way protocol for
Jump” uses at least Q(n/k?) bits of communication.

PROOF. Suppose that a conservative one-way protocol for Jump® uses ¢ =
o(n/k*) bits of communication. We iterate the Reduction Lemma k — 1 times
as described above. Set s =t 4+ k4 klogn, a1 = 1, and a4 = a;/(n2%+1),

where z; are the integers from Lemma 5.2. Since 1 + -+ + 241 < ¢, we have
a; > 27° for any ¢+ = 1,...,k. Now it is sufficient to choose a sequence of
integers my = n, my, ..., my, so that y(m;,m;41) < 27° and my > 1. We set

my = n and m,;y1 = m; — ¢y/sn, where ¢ is the constant from Lemma 5.3. The
desired bound y(m;, m;y1) < 27° holds due to Lemma 5.3. Our assumptions
on k and ¢ imply that s = o(n/k*). Thus mj > n—o(n) > 1, which means that
the original protocol could not be correct. O

For small &, the lower bound € (n log(k_l) n) was proved in Damm & Jukna

(1995). This bound can be also obtained from the Reduction Lemma using a
better estimate on v because here we use relatively small values of m.

LEMMA 5.5. If n/M > 2°6+0/™ then y(m, M) < 277,

Proor. We count the functions directly, first choosing m values that are
mapped to numbers up to M:

) < T

77”

14 Damm, Jukna & Sgall

THEOREM 5.6. For any k < log" n—w(1), every conservative one-way protocol
for Jump® uses at least (n log(k_l) n)(1 — o(1)) bits of communication.

PROOF. Suppose that we have a conservative one-way protocol with ¢t =
(1-— e)nlog(k_]) n bits of communication for some ¢ > 0. We put s = (¢t + k +
klogn)/n, hence s < clog(k_l) n for some ¢ < 1. We choose m; = n/r;, where r;
is defined recursively by ry = 1, riy1 = 27t By Lemma 5.5, this guarantees
that y(mi,mip1) < 27 < ajy1. A calculation (using s > ¢/n > w(1)) shows
that r; < TOWER(z, s(140(1))). Thus rx < n and the protocol is not correct.
O

Combining the methods used in both theorems we can get a bound that
is slightly better than the bound of Theorem 5.4 for k close to log™ n, namely
Q(n/(k—log™n)*) — in particular every protocol with log™ n+O(1) players uses
Q(n) bits of communication. To do this, we choose a suitable constant ¢ and
first iterate the Reduction Lemma k 4 ¢ — log™ n times as in Theorem 5.4 until
m = n/2 and then continue as in Theorem 5.6 for the remaining log™n — ¢ — 1
iterations.

Remark: Impagliazzo (1995) considered another restriction, namely that
each communicated bit depends on the previous communication and only on
a single layer of pointers chosen among the layers seen by the communicating
player; these may be different layers for different bits even if communicated
by the same player. Let us call such protocols selective protocols. He noted
that any one-way selective protocol needs at least 2(n) bits of communication,
regardless of the number of players.

Our conservative protocols presented in Section 4 can be made selective
by the small modification that each player first communicates a;_;, known to
him from the previous layer and a;_; (communicated before). Thus our upper
bounds are valid also for selective protocols for & < n/log n.

In general, the notion of selective protocols is technically not comparable to
conservative protocols: in conservative protocols the players have unrestricted
access to all the following levels of input simultaneously, but the access to the
previous levels is more restricted than in selective protocols. However, proving
lower bounds for selective protocols seems to be significantly simpler since the
set of inputs consistent with some partial communication can be maintained to
be a Cartesian product of the sets for individual levels. To illustrate this, we
sketch the lower bound of Q(n) for selective protocols below. We note that for

Communication Complexity of Pointer Jumping 15

small & it is possible to improve this proof to yield the same bounds as we get
for conservative protocols; the necessary combinatorics is essentially the same
as in that lower bound.

Let an a-good selective protocol be a selective protocol which works for
some set of inputs G = A X Gy X -+- X Gy C F such that G; C F;, |A| > n/2
and p(G;) > a for ¢ > 2. We claim that if there exists an a-good protocol
for Jump® with total communication ¢ then there exists an integer and an
a/27-good selective protocol for Jump®~!
long as a/2" > 27"/2. The last condition is always true if we start with a

with total communication ¢ — z, as

1-good selective protocol with total communication at most n/2. No selective
protocol is a-good for Jump' and o > 0, hence the claim proves the Q(n)
lower bound. To prove the claim, we let Player 1 to speak bit by bit, always
choosing the more popular answer; this always reduces size of one Gy, 1 > 2,
by at most one half. After x < ¢ bits Player 1 finishes, and at this point we
have u(G;) > «/2% for 1 > 2. Now we fix a € A such that it can be mapped
to at least n/2 distinct elements of A, by functions in (y; this is possible since
now u(Gy) > a2 > af2t > 27"/% for i > 2. This gives us a product set
on which the rest of the protocol works as an «a/2”-good selective protocol.
It is important here that since we work with products, we can choose one
function in Gy for each point in A, independent of the choice of the input
from Gz X -+ x G,.

6. A gap between conservative and non-conservative
protocols

In this section we give a version of pointer jumping which can be computed
somewhat cheaper by a non-conservative protocol than by a conservative one.

To exhibit the gap, we modify the three-party pointer jumping function
Jump® in two ways. First, we use the boolean version of pointer jumping,
which is also used in many applications, e.g. Babai et al. (1992), Bollig et al.
(1994). To obtain boolean output, we restrict the number of nodes in the last
layer to two. Clearly, this is equivalent to a version of pointer jumping where
the last part of input is a string of n bits and the output is its ax_yth bit. In
particular for 3 players we define

jump(a, f,z) = T f(a)

16 Damm, Jukna & Sgall

where a € {1,...,n}, f:{l,...,n} = {1,....n}, and = € {0,1}". Usually
the distinction between the boolean and general versions of pointer jumping is
not important, as the communication complexity differs at most by a factor of
log n. However, our gap is small and hence the distinction is important for us.

Second, we also demand that f is a permutation. Intuitively this is the
hardest case of pointer jumping, however, the protocol we use to exhibit the
gap does not work for the general case.

THEOREM 6.1. Let us consider the function jump(a, f,) defined above with
the restriction that [is one-to-one. Its general one-way communication com-
plexity is O(nloglogn/logn), while its conservative one-way communication
complexity is Q(n).

PROOF. A one-way protocol with required complexity is given in Pudlak &
R6dl (1993), Pudlék et al. (to appear). Hence we only need to prove that any
conservative protocol needs a linear number of bits. The proof is similar to our
previous lower bounds, and we only sketch it.

Suppose we have a conservative protocol in which the first two players com-
municate less than cn bits each, for some small ¢ > 0. First, choose a message
w sent by Player 1 (seeing f and) on at least 1/2°*~! fraction of inputs. Let X
be the set of z € {0,1}" such on at least a 1/2°" fraction of the one-to-one func-
tions f: {l,...,n} — {1,...,n} Player 1 outputs w when reading the input
(f,z). By counting, X contains a 1/2° fraction of strings z. Fora € {1,...,n}
and = € X, let T,.(a) = {f(a) | Player 1 communicates w on (f,z)}. For each
x € X there exists some a € {1,...,n} for which |T,.(a)| > n(l — d) where
d < 2¢/log n. This way we can associate with each € X a pair (a,T) where
a€e{l,....,n}, T CTya) and |T| = n(1 — d). Choose now a maximal subset
Y C X of strings € X, all of which lead to the same pair (a,T). Choose
further a maximal subset Z C Y such that for each x € Z Player 2 out-
puts the same message if he sees (a,z) after Player 1 communicates w. Then
|Z] > |X|/ (n(ﬁ,') 26”) > 271/2=29) [> 29" for sufficiently small ¢. Thus
there exist x,z" € 7 which differ on at least one coordinate ¢+ € T. Since
i € T CTyla)NTy(a), there exist functions f and f’such that f(a) = f'(a) =1
and the first two players do not distinguish the inputs (a, f,z) and (a, f',z").
However, z; # !, and on one of the inputs the last player’s answer must be
wrong because in a conservative protocol he can see only the point ¢ and the
messages of the first two players. O

It would be interesting to prove any larger gap or any gap on pointer jump-
ing without restrictions. However, even the upper bound we used for this result

Communication Complexity of Pointer Jumping 17

is highly nontrivial.

7. Conclusion and open problems

We have proved non-trivial bounds for the conservative one-way communication
complexity of the pointer jumping function. We feel that for our understanding
of communication complexity it is important to formulate restricted models of
communication complexity and prove lower bounds for them, similarly as it
is important to prove lower bounds for restricted classes of circuits for circuit
complexity.

The main open problem remains to find nontrivial lower bounds for general
one-way, or even simultaneous, communication. The pointer jumping function
seems to be a good candidate for a function not in ACC. It would be therefore
important to understand if this function can be computed by simultaneous
or one-way protocols with k = polylog(n) players using only polylog(n) bits.
However, even the following simpler problems are open.

Open Problem 1: Prove any nontrivial (w(logn)) lower bound on simulta-
neous communication complexity for k£ > log n players.

Also for small number of players we know very little.

Open Problem 2: For some ¢ > 0, prove a lower bound of Q(n'/?+%) on
simultaneous protocols for pointer jumping with 3 players. Prove a lower bound
of Q(n*) for 4 players.

The best protocol we know uses ©(n) bits of communication and log™n
players. We know of no protocol which uses less than n bits, even for more
players and in the general one-way model. In our protocols, Player ¢ uses only
the knowledge of fi41 (in addition to a;_; and previous messages). It is easy
to prove that such protocols need at least n bits, and hence better protocols
would have to use significant new ideas.

Open Problem 3: Find a one-way protocol for pointer jumping with o(n)
bits of communication and arbitrary number of players.

Acknowledgment

18 Damm, Jukna & Sgall

We are thankful to Noam Nisan, Ran Raz, and Avi Wigderson for useful com-
ments on earlier versions of this paper. We would also like to thank the anony-
mous referees for helpful remarks concerning the presentation.

The second author was supported in part by DFG grant Me 1077/10-1.

The work of the third author was partially supported by grant A119107 of
AV CR. Part of this work was done at Institute of Computer Science, Hebrew
University, Jerusalem, Israel; partially supported by a Golda Meir Postgraduate
Fellowship.

References

A. AMBAINIS, Upper bounds on multiparty communication complexity of shifts. In
Proc. 13th Ann. Symp. on Theor. Aspects of Comput. Sci. Springer Lecture Notes
in Comput. Sci., 1046 (1996), 631-642.

L. BaBar1, N. Nisan, AND M. SZEGEDY, Multiparty protocols, pseudorandom gen-

erators for logspace, and time-space trade-offs. J. Comput. System Sci. 45 (1992),
204-232.

L. BaBai, G. KIMMEL, AND S. V. LOKAM, Simultaneous messages vs. communica-
tion. In Proc. 12th Ann. Symp. on Theor. Aspects of Comput. Sci. Springer Lecture
Notes in Comput. Sci., 900 (1995), 361-372.

R. BEIGEL AND J. Tarul, On ACC. Comput complexity (1994), 350-366.

B. BoLLiG, M. SAUERHOFF, D. SIELING, AND I. WEGENER, On the power of differ-
ent types of restricted branching programs. FElectronic Collogium on Computational
Complexity, Report Nr. TR94-026) 1994. To appear in: Theoretical Comput. Sci.

A. K. CHANDRA, M. L. FursT, aND R. J. LipToN, Multi-party protocols. In
Proc. 15th Ann. ACM Symp. Theory of Computing, 1983, 94-99.

F.R.K. CHUNG AND P. TETALI, Communication complexity and quasi-randomness.
SIAM J. Disc. Math. 6(1) (1993), 110-123.

C. Damm anD S. JUukNaA, On multiparty games for pointer jumping. Tech. Rep.
Forschungsbericht Mathematik/Informatik Nr. 95-09, Universitat Trier, 1995.

C. DamMm, S. JUKNA AND J. SGALL, Some bounds on multiparty communication
complexity of pointer jumping. In Proc. 13th Ann. Symp. on Theor. Aspects of
Comput. Sci., Springer Lecture Notes in Comput. Sci., 1046 (1996), 643—654.

Communication Complexity of Pointer Jumping 19

P. Duris, Z. GALIL, AND G. SCHNITGER, Lower bounds on communication com-
plexity. Inform. and Comput. 73 (1987), 1-22.

M. GRIGNT AND M. SiPsER, Monotone separation of logspace from NC!. In Proc.
6th Structure in Complexity Theory. IEEE, 1991, 294-298.

V. GroLmusz, The BNS Lower Bound for Multi-party Protocols is Nearly Optimal.
Inform. and Comput. 112 (1994), 51-54.

J. HAasTaAD AND M. GOLDMANN, On the power of small-depth threshold circuits.
Comput complexity 1 (1991), 113-129.

R. IMmPAGLIAZZO. Personal communication, 1995.

E. KusHiLeviTZ AND N. NisaN, Communication Complexity. Cambridge University
Press, to appear.

N. Nisan AND A. WIGDERSON, Rounds in communication complexity revisited.
SIAM J. Comput. 22(1) (1993).

C. PAPADIMITRIOU AND M. SipsER, Communication complexity. J. Comput. Sys-
tem Sci. 28 (1984), 260-269.

P. PubLAK anND V. RODL, Modified ranks of tensors and the size of circuits. In
Proc 24th Ann. ACM Symp. Theory of Computing, 1993, 523-531.

P. PubLAK, V. RODL, AND J. SGALL, Boolean circuits, tensor ranks and commu-
nication complexity. SIAM J. Comput. (to appear).

R. Raz, The BNS-Chung criterion for multi-party communication complexity.
Manuscript, 1995.

L. G. VALIANT, Graph-theoretic arguments in low level complexity. In Proc. 6th
Symp. Math. Found. of Comput. Sci., Springer Lecture Notes in Comput. Science
(1977), 162-176.

A. WIGDERSON. Personal communication, 1996.

A. C.-C. Yao, On ACC and threshold circuits. In Proc. 31st Ann. IEEFE Symp.
Found. Comput. Sci., 1990, 619-627.

20 Damm, Jukna & Sgall

Manuscript received March 25, 1996
Revised: August 19, 1996

CARSTEN DAMM STASYS JUKNA
Fachbereich TV — Informatik Institute of Mathematics
Universitat Trier Akademijos 4

D-54286 Trier 2600 Vilnius
damm@uni-trier.de Lithuania

JIRT SGALL Current address of S. JUKNA:
Mathematical Institute, AV CR Fachbereich 1V — Informatik
Zitna 25 Universitat Trier

115 67 Praha 1 D-54286 Trier

Czech Republic jukna@uni-trier.de

sgallj@beba.cesnet.cz

