Forschungsbericht Nr. 95-09

On Multiparty Games for Pointer Jumping

Carsten Damm Stasys Jukna
Electronic copies of technical reports are available: Printed copies:
ViaFTP: URL ftp:/ftp.informatik.uni-trier.de/pub/Users-Root/reports Trierer Forschungsberichte
ViaWWW: URL http://www.informatik.uni-trier.de/Reports/Current.html Fachbereich IV -
Viaemail: Send amail to ftpmail @ftp.informatik.uni-trier.de, subject Mathematik / Informatik
"HELP, for detailed instructions Universitat Trier
D-54286 Trier

| SSN 0944-0488

On Multiparty Games for Pointer Jumping

Carsten Damm Stasys Juknal

Department of Theoretical Computer Science
University of Trier
D-54286 Trier, Germany

e-mail: {damm, jukna}Quni-trier.de

Abstract

We consider the multiparty communication complexity of the pointer jumping function
Jump?. Our main results are matching upper and lower bounds of order

C) (n log(k_l) n) for the strong one-way k-party communication complexity of Jump}. The

function itself is important since it simulates many natural occurring functions (e.g. shift-
ing, multiplication of binary numbers, convolution, etc.) but no non-trivial lower bounds
on its one-way communication complexity are known even for the case of k = 4 players.
Our lower bound establishes an exponential gap between the strong one-way and general
multiparty communication complexity. Such a gap was previously known between oblivious
and one-way models. Best previous upper bound for Jump) was O(nloglogn). The work is
motivated by an approach suggested by the results of Yao (1990) and Hastad & Goldmann
(1991) to prove lower bounds for ACC circuits, as well as by the results of Valiant (1977) and
Nisan & Wigderson (1993) to prove super-linear lower bounds for logarithmic depth circuits.

'On leave from Institute of Mathematics, Vilnius, Lithuania. Research supported by DFG grant Me 1077/5-2

1 Introduction

Multiparty games were introduced by Chandra, Furst and Lipton [5] and have found curious
applications ([2], [3], [4], [8] [9], [11]) as a means of proving lower bounds on the computational
complexity of explicit Boolean functions. In the most common model of multiparty commu-
nication, k players wish to compute a function f(vy,...,v;) for which the i-th player sees all
inputs except v;. The players have unlimited computational power. They share a blackboard,
viewed by all players, where they can exchange messages according to a protocol. A message
is a 0-1 string. The objective is to minimize the amount of communication. The cost of a pro-
tocol is the number of bits written on the blackboard for the worst case input. The multiparty
communication complexity of f is the minimum cost of a protocol for f.

In the general model the number of rounds and the order in which players speak is not limited.
In most applications, however, we can find some restrictions, which make, at least potentially,
the task of proving lower bounds easier. The weakest concept is the oblivious communication
complexity. In this model each of the & players sends (independently from the others) one
message to a referee, who sees none of the inputs. The referee then announces the result. Thus,
in the oblivious model no communication between the players is allowed, they act independently;
the twist is that they share some inputs (if £ > 3). In some applications ([3, 4]) we need a more
general — one-way communication — model where communication between players is allowed but
the order in which players can speak is prescribed: first speaks Player 1, then Player 2, etc.

The model of multiparty communication turns out to capture diverse computational models.
In [5] it was used to prove that majority requires superlinear length constant width branching
programs. Babai, Nisan and Szegedy [3] demonstrate that bounds for one-way communication
complexity can be applied to Turing machine, branching program and formulae lower bounds.
Results of Hastad and Goldmann [8] and Yao [13] show that a super-polylogarithmic lower bound
for the oblivious communication complexity of f with super-polylogarithmic number of players
implies that f € ACC, i.e. that f has no polynomial size, bounded depth and unbounded fanin
circuit with AND, OR, NOT and MOD,, gates. Nisan and Wigderson [9] have shown, using a
result of Valiant [12], that a lower bound w(n/loglogn) on a function f in a 3-party oblivious
communication model would imply that f cannot be computed by a circuit of size O(n) and

depth O(logn).

The best lower bound for the general model of multiparty complexity is an Q(n/c*) lower bound
of Babai, Nisan and Szegedy [3]. This means that we have no lower bounds at all for £ = Q(logn).
Recently, there was a remarkable progress in understanding the oblivious case. Nisan and
Wigderson [9] gave an Q(y/n) lower bound for & = 3. Pudak, Rédl and Sgall [11] and Babai,
Kimmel and Lokam [2] proved an Q(n'/(**=1)) lower bound for the oblivious communication
complexity of, respectively, the iterated shift function

N n 2 —
shifti(s1, -y 8k=1,%) = T(g, 4etsy_)modn

and the generalized addressing function

GAFn,k(Sla ey Sk—1, f) = T @ Bspq

where @ is the bitwise sum mod 2. In both these functions, s; are log n-bit numbers and ¥ €
{0,1}". Surprising oblivious protocols for shift} were found in [11] which got an
0 (n(loglog n/ log n)k) upper bound for any constant k, and an O(n®/7) bound if k& = Q(logn).
For polylogarithmic number of players the bound was recently improved by Ambainis [1] to
O(n°) for any constant ¢ > 0. Interesting upper bounds were proved also for GAF, j in [2]:
it k = ©(logn) then there is an oblivious protocol for GAF, . in which players send at most
O ((logn)?) bits to the referee. These bounds show that an impression about the simplicity of
this extremely restricted model of communication may be quite wrong, and that it may be hard
to get lower bounds larger than Q(n!/(*=1)) even for constant k.

One function often considered in the context of communication complexity is the pointer jumping
function Jump} (see, e.g. [10, 6, 7, 9, 11]). There are k + 1 copies Ay,..., Apyq of the set
[n] = {1,2,...,n}, and k sets of functions (“pointers”) I; = {f : A; — Aj;1}, 1 =1,...,k.
There is a fixed point @y € A;. Input to Jump} is a string of functions (f1,..., fr) with f; € F;.
The output is

Jumpp(fi,..., fr) = fe(... filar) ..).

This is an important function, since it simulates many natural occurring functions, e.g. shifting,
addressing, multiplication of binary numbers, convolution, etc. In particular, the functions
shift? and GAF, correspond to fi(z) =z 4 s;modn and f;(z) = x @ s;, respectively.

We consider so-called strong one-way k-party-games for pointer jumping: There are k£ players:
Player 1, Player 2, ..., Player k. Player i can see the functions f;y;,..., fr. Additionally he
can see the point a; = f;_1(...fi(a1)...) — the point reached so far'. The players cooperate
to determine the last point ax41 = fr(...fi(a1)...). The twist is that Player ¢ does not see
“his” function f;. Communication is allowed only in one-way order: Player 1 begins; looking at
the string (a1, f2, ..., fr) he writes some message w; on the blackboard. Then Player 2 looking
at the string (ag; fs, ..., fx) and the message wy writes some message wq, etc. The last player,
Player k, looking at the string (a;) and the messages wywsy ... wy_1, writes the answer ag4;. The
cost of the game is the number of bits exchanged between the players for the worst case input.

In this paper we strengthen our knowledge about multiparty communication in the following
ways.

1. We prove that, for any constant k, the function Jumpj requires Q(nlog(k_l) n) bits of
communication in the strong one-way model. Similar bounds hold also for £ = k(n)
such that log(k_l) n — oo as n — 00. Here and throughout log(f) n is the usual iterated
logarithm: log®) n = logn and log!“*1) n = log log®) n.

2. We show how the possibility to communicate the information from one player to others
(even in restricted one-way manner) can be used to get an almost matching upper bound.
We give an explicit strong one-way protocol for Jumpj] which uses only O(nlog(k_l) n)
bits of communication, for any constant £. The bound holds also for any k£ = k(n) such that

!Intuitively this seems to be the only useful information Player i could draw from (fi1, fo, ..., fi—1, *) — however
it is a restriction of the general one-way k-party communication game, where Player ¢ has access to all functions
except fi.

log(k_l) n — oo as n — 0o. We also show that k£ = Q(loglog n) players can compute Jumpj}

using only O(n) bits. The best known upper bound for this function was an O(nloglogn)
bound of [11] in an almost oblivious model (the difference from the oblivious model is that
the last player takes the role of the referee; so he can see all but the last coordinate). This
bound does not decrease with increasing k; the protocols in [11] use colorings of random
graphs and hence are nonconstructive. On the other hand, our protocols are non-oblivious
since every player uses the information conducted so far.

2 The Upper Bound

Let Pointery[m, F] denote a strong one-way k-party pointer jumping game among k players on
the input space A x F where A C Ay, |A] = m and F C Fy X -+ X Fg, and there is a subset
B C Ay (known to all players) of size at most m such that for each (fi,...,fr) € F holds
fi(A) € B. The original game is a Pointerg[n, I} x - -+ X F;] game.

Suppose the players have to solve a Pointerg[m, F] game. We first demonstrate how the first
two players can communicate to “shrink the input space by t”, for an arbitrary ¢, 1 <t < m.

All players know an m-sized set A C A; containing a; and a set B C Ay of size at most m
that contains ag = fi(ay). Player 1 partitions B into ¢ blocks By, ... B; of size at most m/t and
sends the vector v(1) = (fo(B1),..., fa(B:)) to the others. Only one block of these is relevant
for the outcome of the game — the one containing ay. Player 2 in the first part of his message
announces the index r(1) = j of the relevant block B; containing a;. The remaining players
have enough information to recover the set C'= f;(B;). This set contains at most m/t points.
So Players 2 through k now need only to solve a Pointery_i[m/t, F1] game, where B; and C
play the role of A and B above, F; C F} X -+ X Fj, and F} consists of functions f € F, with
f(A2) C C.

How many bits of communication are needed for this step? For each of the sets fi(B;), ...,
f1(By) there are Z;i/lt (1) < 2"H(E) possibilities, where H(p) = —plogp — (1 — p)log(1 — p)) is
the binary entropy function. So the first player needs at most tnH (;%) bits to send his message.

Observe that lim,_,eo H(1/s)- ;o5 = 1 which means that for large s we have s- H(1/s) ~ log s.

Hence if % — oo we can substitute s = % and obtain that the player communicates less than

t t
ntH <ﬁ> :mn—H<ﬂ) 2m-logn— (1)
nt m nt m

bits to send v(1) if n is large enough. Additionally Player 2 uses log? bits to announce the
index r(1) = j of the relevant block.

We iterate this idea and follow the above scheme for k — 2 steps: in Step ¢ Player ¢ sends the
vector v(i) of images of blocks partitioning the image of the recent relevant block contained
in A;. The next in turn — Player ¢ + 1 — additionally sends in the first part of his message
the index r(7) of the relevant block in this stage. After these k& — 2 steps Players £ — 1 and
k are left with a Pointerg[m, F] game. This game can be solved with m -logn + logn bits of
communication: Suppose A C Ag_y is the set of possible start points and fr—1(A) C B for any

input (fix—1, fx) € F. Then Player k — 1 simply sends the whole table (fx(b) | b € B). Player k,
knowing ar_1, can announce the result.

Theorem 1 Let k = k(n) be such that log*"Yn — 00 asn — oo. Then O(n - log(¥=1) n) bits
of communication are enough for the strong one-way k-party pointer jumping game.

Proof. Recall that the original game is a Pointerg[n, F} X - -+ x Fj] game. Fori=1,...,k — 2,
set t; = log(k_i_l) n. In the first k£ — 2 steps the input space will be shrinked by t1,%s,...,{p_2,
respectively. This means that for i < k& — 2, after the ¢th message has been sent, we have a
Pointery_;[m;, F;] game with Fy = Fy X --- X Fy, F; C Fizq X -+ X Fy, mg = n and m; =

_ n
mi—l/ti T ety

For messages r(1),...,7(k —2) only Y %=2logt; = O(kloglogn) bits are needed.

Message v(i) consists of at most nt; - H (mnlt_l) bits where m”—t_ll =1yt — 00 since t; — 00.

So by (1) message 7 consists of less than

t;
Qmi_l-log<n >:2-L-log(t1---ti):2n-’yi
mi—1 toti—1

bits, where iy = 1 and v; = log(t1-%) It remains to estimate the factors viforo=1,2,...,k—2.

torti_1

It holds 71 = logt; = log(k_l) n. Observe that t,_y = logt; for ¢ > 1. Hence the factor

vy = logti4? tonds to 1 and for 2 < i < k — 2 we have vy; = m which tends to 0.
tq tpeerts

This means messages v(1),7(1),...,v(k —2),7(k — 2) require less than 2nlog®*~") n bits if n is
large enough.

To solve the remaining Pointery[my_q, Fr—2] game as described above my_glogn + logn =

tlnﬁ + log n bits are needed. Altogether 3n log(k_]) n bits of communication are sufficient.

Theorem 1 is valid for every fixed number of players k. It is also valid for growing & if log(k_l) n—
oo. If we allow more players, we can get better protocols, as the following theorem shows.

Theorem 2 If k(n) > loglogn + 3 then k(n) players can solve the strong one-way k-party
pointer jumping game with O(n) bits of communication.

Proof. Consider a one-way pointer jumping game with &k players. We show, how [< k players
can shrink the number of start points for the (/ + 1)th pointer to n/2'~" while sending only few
bits. Without loss of generality let n be a power of 2.

The first player knows a1 and the mapping fo. He sends the vector of the last bits of all values
f2(1), f2(2), ..., fa(n). This is Message wy. Player 2 knows a; = fi(ay) and can therefore
compute the last bit of a3 = fy(ay) and the set By C Aj of all points in A3 that agree in the
last bit with as. This is the set of possible start points for the third pointer. Player 2 sends the

last bit of a3 and the last two bits of f3(a) for all @ € Bs. This is Message wy. The next player
knows az and can infer from w; and wy the last two bits of a4y = f3(asz) and the set By C A4 of
all points in A4 that agree with a4 an the last two bits. Message w3 consists of the last two bits
of asq and the last three bits of fs(a) for all @ € Bs. We continue this way until the /th player
has spoken. Observe that |Bs| = n/2, |B4| = n/4, |Bs| = n/8 etc. Hence the /th player can
compute a subset of A4 of size 71/21_1 that contains a;4;. How many bits are needed for these
[rounds? We have |wq| = n, |wo| = 14+2-n/2, |wa3| =2+ 3-n/4, ..., |w|=1-1+1" n/2-1.

=1
Altogether no more than Y \Z1i 4+ 3%, 7. n (%) < 4n + O(I*) bits are communicated.

Now suppose k(n) > loglogn 4+ 3. Let [= loglogn 4+ 1. The first I players follow the above
protocol. The next, (4 1)-th, player computes the set B3 and sends the whole table of values
fix2(a) for all @ € Bj1y. The last player can compute a;y3 from this message and announce the
final result ag4;. The last two messages consist of 77 - logn 4 logn < n bits. 0

Remark 3 Communication complexity of pointer jumping functions has been probably first
introduced in [10]. In particular they consider the following 2-party k-round version: we have 2
players, pointers from A to B (known to Player 2) and from B to A (known to Player 1). There
is a fixed start point a; € A. Player 1 — the “wrong” player — starts, and the number of rounds
is bounded by k. This 2-party k-round game can be regarded as a restricted version of the above
k-party game, where the input space is {(f1,..., fx) @ fiza = fi fori=1,...,k—2} and Player
P; sees (%, fo,*, fo,*, fo,...) if i is odd and (fi,*, fi,*, fi,*,...) if i is even. The first general
lower bound for this game Q(n/k?) was proved in [6]. In [9] this was essentially improved to a
lower bound of order Q(n) for deterministic protocols. For e-error protocols they prove a lower
bound of order Q(n/k?) and an upper bound of order O((n/k)logn). Using the same ideas as in
Theorem 1 and Theorem 2 one can improve these bounds to O(nlog(k_l) n) for constant k > 2,
and to O(n) for k = Q(loglogn) : in round ¢ > 1 the player in turn sends a logn code for the
point a; additional to the message according to the above protocols; the next player then can
compute the next point.

3 The Lower Bound Strategy

Given a finite set © (universe), the density of a subset X in Q is ug(X) = %} If Q is clear

from the context, we will drop the subindex and write u(X). A subset X C is said to be an
a-fraction of Q if p(X) > a.

We again want to consider appropriate “sub-games” of a pointer game. By a Pointery(B,F)
game we will mean a strong one-way k-party game with input space B x F where B C A;
and F C Fy; X -++ X Fy. A protocol solves this game if it outputs the correct value f(b) =
Jr(.. fi(b)...) for every pair (b,f) € B x F. A Pointery(m,a) game is a Pointery(B, F) game
with |B| > m, and u(F) > a. Observe that Pointery(1,1) is exactly the original pointer jumping
game; the input space of this game is {a1} x F with F = F; X -+ X Fj. Since any protocol

for the Pointerg(1,1) game solves also the Pointery(n, 1) game,? it is enough to prove the lower

2All players can see the start point.

bound for the Pointery(n, 1) game.

Given a protocol ® for Pointery(n,1) we will traverse it by keeping the set of inputs, con-
sistent with what the first several players have said so far, as large as possible. Qur main
tool is a “reduction lemma” (Lemma 6 below). Using this lemma we define a sequence of sub-
games Pointery_y(my, ay), Pointery_y(my, ay), ..., Pointer; (my_y, ag_) such that, for each i =
1,...,k, the protocol ®, when started with the i-th player, correctly solves the Pointery_;11(m;, a;)
game. We then show that, if the cost I of the original protocol ® is too small, then at least two
of the remaining ax_1 + n™ functions from Ax to Agy; must differ on at least one point in Ag,
meaning that the last player is forced to make an error.

We will use the following two simple combinatorial facts.

Let T'n(m,n) denote the maximal number r such that for any a-fraction F' of all n™ func-
tions f : [n] — [n] and for any subset B C [n] with |B| = m, there is a b € B for which

{f@) - feF} =

Lemma 4

Ly(m,n) > amn,

Proof. let r = I',(m,n) and assume that there is a set of functions # C {f : [n] — [n]} with
|FF| > an™ and a subset B C [n] such that |B| = m and |[{f(b) : f € F}| < rforall b€ B. Then
an” < |F| < r™n"~"™, which gives the desired bound on r. I

Let U and V be finite sets, and let G C U x V be a bipartite graph of edges between U and V.
Say that a vertex v € V has degree-density 3 if the degree of v is §|U]|. Let V3 denote the set of
all v € V with degree-density at least 3.

Lemma 5

wG) -
Proof. Let kK = |Vg| and v = p(G). There are at most « - |U| edges incident to Vj, and less
that (|V| —) - B|U| edges incident to V' \ Vg. Thus s - |U| + (|V| — &) - B|U| > |G| > v|U| - |V,
which gives the desired bound k(1 — 3) > (v — B)|V|. I

4 The Reduction Step

Our argument is based on the following “reduction lemma”.

Lemma 6 (Reduction Lemma) Let 0 < < a <1 and 1 < m < n. If some Pointerg(m, a)
game has a strong protocol of cost L then there is a Pointery_y(m’,a') game which also has a
strong protocol of cost I. where m’ > I'g(m,n) and

!

o = a—ﬁ

SO m)Ty @)

Proof. Let ® be a strong one-way protocol for a Pointery(m, @) game of cost L. This means
we have sets B C Ay and F C Fy X -+ x Fj, such that |B| = m, u(F) = o and & is correct on
all inputs (b, f) with b € B and f € F. Every player II; is a mapping

=1
It A x By % oex B x ({0,1355) 7 — {0,158,

The protocol is a straight-line program

2 Hl(b;f%"'a.fk)
. Z2 a(f1(b); fas ooy fr321)
=0, f)=1 2 a(fo(f1(D)); far-- -, fas 21, 22)

1

1

2z = Mp(fr—1(o. . f1(b) ..)21, 22,0 00 20m1)

The correctness of a protocol on a set B x F where B C A; and F C F; X -+- X F}, means that
2z = f(b)= fe(...fi(b)...) for any b € B and f € F. We will use essentially the fact that the

first message z; does not depend on the first coordinate of f
Our goal is to construct two sets B’ C Ay and F' C Fy X --- X Fj, with |B'| = m/ and u(F') > o/,

such that for at least one message w, the following claim holds.

Claim 7 There is a mapping v : B' x F' 3 (¢,§) — (b.g,he3) € B X Fy which fulfills, for
every pair (¢,§) € B’ x F', the following three conditions: (i) (b.z,h.7§) € B x F, (ii)
Hl(bcg, h. g, g) = w, and (iii) hez (bc’g‘) =c.

We first finish the proof of the lemma using this claim, and then prove the claim itself.

For c € B and § = (¢g1,...,9k-1) € F' consider the protocol

llll(c;g% e '7913—1)
115(g1(¢); 93, - - -, gr—1; 21)

1

!
1

1

!
o' = (c,f) ={ 2

zi_y — W_(gr=2(...q1(c)..); 2, oy 2k y)

where

(e g2, gim1) = (€592, .0, grrsw)
H,Q(gl(c);g&"'vgk—l;zi) = H3(91(C)§937---agk—l;’wazi)
I (gr—2(...g1(e) ..);2h, oo 2p_y) = Mp(gr—2(...g1(c). .)5w,2h, ... 21 _,)

The cost of this protocol is at most L — |w| < L. Protocol ®' is correct on the set B’ x F'.
Indeed, for any (c¢,§) € B’ x F' by Claim 7 there exist b = b, 7 and h = h, z fulfilling (i)-(iii).
Since ® is correct on B x F it correctly produces the output gp—_i(...g1(h(b))...) on (b, h,q),
which by (i) is a legal input for ®. But by (ii) and the definition of the new protocol this is also
the output of ®' on (h(b), 7). Since gr—1(...g1(h(b))...) = gk=1(...g1(c)...) according to (iii),
this is the correct answer. Thus, the protocol @’ solves a Pointery_;(m’, ') game, as desired.

Proof of Claim 7. Say that a pair (b,C') with b € A; and C' C As, is good for a string § € Fy x
coe X Fpif |C| =Tg(m,n),be B and C C {h(b) : h € Hy} where Hy = {h € F\ : (h,§) € F}.
Some strings § have good pairs, some not. We first show that many strings ¢ do have such pairs.

Let G be the set of all strings § € F5 X + -+ X I}, for which p (Hgz) > 8. Applying Lemma 5 with
U=F,V=FX---XF,and G = F, we get
pF) =B _a=p

1-p5 1-p
By Lemma 4, every string § € G has at least one good pair (bs,Cy). Fix a mapping G > § —
(bz,C7), and consider the set of inputs

pG) = pn(Vs) 2

A= {(bsh,§) : he I1,§€Gand (h,§) € F} C B x F.
The first player makes a partition of this set into at most £ = 2"+t! — 1 blocks
Ay = {(bg,h,§) € At Ii(bg, b, §) = w}
with w € {0,1}<". Fix a message w for which the set
Gw=1{G€G : (bsh,§) € A, for some h € Iy}

is maximal. Then p(Gy,) > p(G)/I. Since G, C G, every string § € G, has at least one good
pair. Since there are at most N = m - () good pairs, at least one of them, say (b, C'), must be
good for at least 1/N fraction G’ of strings in G,,. Since |C] = m’ and p(G") > u(Gy,)/N > o, it
remains to define a mapping v : C X G’ — B X F; for which all the three conditions (i), (ii) and

(iii) hold.

Consider the set of inputs A" = {(b,h,§) € Ay, : § € G'}. For every § € G’ there is at least one
h € Fy for which (b, h,§) € A’ (because G’ is a subset of G,,). Since the first player cannot see
the first coordinate h of an input (h, §), he is forced to send the same message on all the inputs
(b, h,§) with (h,§) € F. Hence {b} x Hz x {g} C A/, for every § € G’. On the other hand, the

goodness of the pair (b,C') means that C' C {h(b) : h € Hy}, for every § € G'. Thus, there is a
mapping C' X G' 3 (¢,§) — h.z3 € Hz C Fy such that (b,h. 3 §) € A" and h,z(b) = ¢, for every
c € C and § € G'. Extend this mapping to v : C' x G’ (b. 3, h.7) € B X Fy by setting b, 7 = b
for all (¢,). This mapping satisfies all three conditions: it satisfies (i) since A" C B x F, (ii)
since A" C Ay, and (iii) since h, 3(be7) = hez(b) = c. I

Theorem 8 For any constant k > 2, every one-way protocol for the k-party pointer jumping
game requires Q(nlog(k_l) n) bits of communication.

Proof. lLet L be the cost of an optimal protocol for the one-way k-party pointer jumping game
game. We will use Lemma 6 with § = m, which gives o/ > a2~ where { = L+n+log n.
Fori=0,1,....,k—1,set a; = 27%. By Lemma 6, the sequence of integers my > my > ... > my
defined by the recurrence m; = 'y (n,n) and m;41 = L'y, (mi, n) must end with my < 2. We
will make a rough estimate using the fact that ap = 1 and o; > o = 2=kl for all i.

Let £ = %% so that @ = 27°". We want to estimate the function s = s(n). The sequence
my > mg > ... > my defined by the recurrence m; = I'i(n,n) = n and m;41 = Iy—cn(my, n)
2s+21035
ends with my > n/cy where ¢ = 22* (k—1 times). Therefore mj < 2 only if s+2logs >
5.

(k=1) " —n—logn = (nlog(k_l) n) 0

log n, which gives the the desired lower bound L = 2>

Remark 9 For growing k = k(n) the bound is © (%nlog(l‘:_l) n) as long as log*~" n > (1+¢)k
for some ¢ > 0.

5 Conclusion and open problems

We have proved non-trivial bounds for the strong one-way communication complexity of the
pointer jumping function in the case of more than 3 players. The lower bounds hold for any
constant k£ as well as for slowly growing k. The main open problem remains to find nontrivial
lower bounds for general one-way communication. The pointer jumping function seems to be a
good candidate for a function not in AC'C'. It would be therefore important to understand if this
function can be computed by oblivious or one-way protocols with & = polylog(n) players using
only polylog(n) bits. In order to get more insight, the following two problems should be solved.

We have seen that a constant number of players must use at least Q(n log#=1) n) bits (Theorem 8)
while £ = Q(loglogn) players can compute Jump] with only O(n) bits of communication
(Theorem 2).

Problem 1: Can the upper bound O(n) for Jump} be improved to n® for any constant € > 0,
using more than loglogn players?

In some applications (e.g. to branching programs [3, 4]) we need good lower bounds on the
one-way multiparty communication complexity of a Boolean version jump) of Jump) defined

by
Jumpi(fi, - fo, ©) = w7,

-

where f(ay) = fi(...fi(a1)...) and & € {0,1}" is part of the input, i.e. vector Z is seen by all
k players. This function has an obvious one-way protocol of cost at most n: Player 1 sends the

n-bits string <xfk(...f2(b)...) | b€ A2>,
and Player 2 announces the result, namely — the fi(aq)-th bit of this string.

Problem 2: Can the number of bits be substantially reduced, till say n¢, using logn players?

Acknowledgement

We are thankful to Ran Raz for pointing out to a gap in an earlier version.

10

References

[1] A. Ambainis. Improving the unexpected: upper bounds on communication complexity.
Manuscript, 1995.

[2] L. Babai, P. Kimmel and S. Lokam. Simultaneous messages vs. communication. Proc. 12th
STACS, Lecture Notes in Comput Sci., vol. 900: 361-372, Springer-Verlag, 1995.

[3] L. Babai, N. Nisan and M. Szegedy. Multiparty protocols, pseudorandom generators for
logspace, and time-space trade-offs. Journal of Computer and System Sciences, 45:204-232,
1992.

[4] B. Bollig, M. Sauerhoff, D. Sieling and I. Wegener. On the power of different types of
restricted branching programs. Flectronic Collogium on Computational Complexity, Report
Nr. 94-026, 1994.

[5] A. K. Chandra, M. L. Furst and Lipton R. J. Multi-party protocols. Proc. 15th STOC,
94-99, 1983.

[6] P. Duris, Z. Galil, and G. Schnitger. Lower bounds on communication complexity. Inf. Com-
put., 73(1):1-22, 1987.

[7] M. Grigni and M. Sipser. Monotone separation of Logspace from NC'. Proc. 6¢th Conf. on
Structure in Complexity Theory, 294-298, 1991.

[8] J. Hastad and M. Goldmann. On the power of small-depth threshold circuits. Computational
Complexity, 1:113-129, 1991.

[9] N. Nisan and A. Wigderson. Rounds in communication complexity revisited. SIAM .J.
Comput., 22(1):211-219, 1993.

[10] C.H. Papadimitriou and M. Sipser. Communication complexity. J. Comput. Syst. Sci.,
28(2):260-269, 1984.

[11] P. Pudldk, V. Radl and J. Sgall. Boolean circuits, tensor ranks and communication com-
plexity, submitted, (preliminary version Modified ranks of tensors and the size of circuits

appeared in Proc. 33th FOCS, 1992)

[12] L. G. Valiant. Graph-theoretic arguments in low lewel complexity. Proc. 6th MFCS, Lecture
Notes in Comput Sci., 1977, Springer-Verlag, 162-176, 1977.

[13] A. C. Yao. On ACC and threshold circuits. Proc. 31st FOCS, 619-627, 1990.

11

