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Linear codes are hard for oblivious read-once
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We show that the characteristic functions of linear codes are exponentially hard for the
model of oblivious read-once branching programs with parity accepting mode, known also
as Parity OBDDs. The proof is extremely simple, and employs a particular combinatorial
property of linear codes — their universality.
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Introduction Interesting aspect of linear codes is that their characteristic functions appear
to be hard for all known “reading-restricted” models of branching programs: syntactic read-
k times branching programs, where along every path (be it consistent or not) every variable
appears at most k times, and (1, +s)-branching programs, where along every consistent path
at most s variables are tested more than once. Namely, it is known that for some explicit
linear codes C' C {0, 1}", their characteristic functions f¢ require (deterministic [6] and non-
deterministic [2]) syntactic read-k times branching programs and deterministic (1, +s)-b.p.
[4] of super-polynomial size, as long as k = o(logn) or s = o(n/logn).

On the other hand, looking at parity-check matrix of C' we see that each such function
fc is just an And of m < n (negations of) parity functions @, s, #;, for particular subsets
S1,.--38m C {1,...,n}. Because of their intimate relation to Parity, it is natural to ask if
linear codes can be computed more efficiently using the parity accepting mode? So far, this
is open even for read-once parity branching programs (1-p.b.p.).

In this note we answer this question negatively under additional restriction that branch-
ing programs are oblivious. The main contribution, however, is the extreme simplicity of the
proof.

An oblivious read-once parity branching program l (or an oblivious 1-p.b.p. for short)
is a rooted ordered graph whose nodes are partitioned into at most n levels. Edges must go
only from one level to the next, but neither in-degree nor out-degree of nodes is restricted.
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T This model is known in CAD community as a “Parity-OBDD”. Practical interest in this model is stipulated
by the fact that, as a data structure, Parity-OBDDs have similar properties as well-known model of ordered
binary decision diagrams (OBDD), and hence, can be also used for a practical verification of chips (see.

e [1,7]).



All the nodes of one level (except for the last level, whose nodes are sinks) are labelled by
one and the same variable, and different levels have different variables. If an edge leaves a
node labelled by a variable z; then the edge itself is labelled either by z; or by its negation
Z;. Such a graph G computes a Boolean function in the following sense: given an input
a € {0,1}", G(a) = 1 iff the number of paths from the root to a sink, which are consistent
with a, is odd.

General lower bound We will employ one specific property of linear codes which was
already used in [4] to show that linear codes are hard for (1,+s)-b.p.’s.

The minimal distance of a code C' is a minimal Hamming distance between any pair
of distinct vectors in C. It is well known (and easy to show) that minimal distance of C
coincides with the minimum weight of (i.e. the number of 1’s in) a non-zero vector form C.
The dual of C is the set

Ct={z: {(x,y) =0forally € C}

of all those vectors z € {0,1}", which are orthogonal to all the vectors from C; here (z,y) =
Z1Yy1 B - .. ® Ty, is the standard scalar product over GF(2). A set of vectors C' C {0,1}" is
k-universal if for any subset of k coordinates I C {1,...,n} the projection of vectors from
C onto this set I gives the whole cube {0,1}*. A nice property of linear codes is that their
duals are universal.

(*)If C is a linear code of minimal distance k + 1 then its dual C* is k-universal.

Indeed, take a set I C {1,...,n} with |I| < k. The set of all projections of strings in C
onto I is a linear subspace in {0,1}!, and this subspace is proper if and only if all strings
a € C satisfy a non-trivial linear relation ), &;a; = 0 mod 2 whose support {i : & = 1}
is contained in I. But, by definition, C* consists exactly of all relations ¢ satisfied by C,
and its minimal distance is exactly the minimal possible cardinality of a set I for which the
projection of C onto {0,1} is proper.

Theorem: Let C C {0,1}" be a linear code of distance d, and let its dual C* has distance
k+1.Ifd > k+1 then any oblivious 1-p.b.p. computing the characteristic function fo of
C has size at least 2F.

Proof. Let P be an oblivious 1-p.b.p. computing f, and let I C {1,...,n} be the set of
bits tested on the first k = |I| levels of P. Every assignment a : I — {0,1} (treated for this
purpose as a restriction) defines the subfunction f, of f in n—|I| variables which is obtained
from f by setting z; to a(i) for all i € I. Let F be a subspace of the 2"~*-dimensional space
of all Boolean functions on n — k variables, generated by the subfunctions f, of f with
a: I — {0,1}. It is easy to see that size(P) > dim (F). Indeed, if vy, ..., v, are the nodes
at the k-th level of P, then for every assignment a : I — {0,1}, the subfunction f, is a
linear combination of the functions computed by an oblivious 1-p.b.p. ’s with source-nodes
v1,--.,v.. Hence, we need at least r > dim (F) such functions to get all the subfunctions in
F.

Now we can finish the proof as follows. Since the dual of C has distance k + 1, we have by
(%), that the code C itself is k-universal. This, in particular, means that for every assignment
a: I — {0,1} there is an assignment z, : I — {0,1} such that (a,z,) € C. Moreover,
since C' has distance d > k = |I|, we have that (b,z,) ¢ C for every other assignment



b: 1 — {0,1}, b # a. Thus, if we look the subfunctions f,, a : I — {0,1}, as rows of a
2% x 2"~F matrix, then this matrix contains a diagonal 2¥ x 2¥ submatrix with entries f(a, z)
such that f(a,z) = 1iff + = z,. So, the matrix has full row-rank equal 2¥, which means
that the subfunctions in F are linearly independent (over any field, including GF(2)). Thus,
size(P) > dim (F) = |F| > 2*, as desired. O

Ezplicit lower bound Recall that the r-th order binary Reed-Muller code R(r, £) of length
n = 2¢ is the set of graphs of all polynomials in £ variables over GF(2) of degree at most 7.
This code is linear and has minimal distance 2¢—".

Corollary: Let n = 2¢ and r = [(£ — 3)/2|. Then every oblivious 1-p.b.p. computing the
characteristic function of the Reed-Muller code R(r,£) has size at least 2V™) .

Proof. It is known (see, e.g. [5, p. 375]) that the dual of R(r,¢) is R({ —r —1,£). Hence in
the notation of Theorem, we have that 2¢=" = d > k + 1 = 2"+! 4+ 1 = Q(y/n). The desired
bound follows. O
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