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Abstract

In this paper we describe a lower bounds argument for read-once branching programs which
is not just a standard cut-and-paste. The argument is based on a more subtle analysis of the
information flow during the individual computations. Although the same lower bound can be
also obtained by standard arguments, our proof may be promising because (unlike the cut-and-
paste argument) it can potentially be extended to more general models.

1 Introduction

In this paper we consider the classical model of (deterministic) branching programs (b.p., for short).
The task of proving a super-polynomial lower bound on the size of any b.p. computing an explicit
Boolean function is one of the major open problems in complexity theory — such a result would
immediately imply that this function needs more than logarithmic space to be computed by a Turing
machine. A survey of known lower bounds for branching programs can be found, for example, in
[4, 5].

Recall that a branching program for a boolean function f(z1,...,z,) is a directed acyclic graph.
It has one source and its internal nodes have out-degree 2 and are labelled by variables; the two
outgoing edges have labels 0 and 1. The sinks (out-degree 0 nodes) have labels from {0,1}. If a
node has label z; then the test performed at that node is to examine the i-th bit z; of the input,
and the computation proceeds further along the edge, whose label is the value of this bit. The
label of the sink so reached is the value of the function (on that particular input). The size of a
branching program is the number of nodes in it. The program is read-once (1-b.p. for short) if
along each computation no bit is tested more than once.

The only known lower bounds method for (unrestricted) branching programs remains the count-
ing argument proposed by Nechiporuk more than 30 years ago. Unfortunately, this argument cannot
yield more than quadratic lower bounds. It is therefore important to look for alternative, more
subtler arguments. As a step in this direction, we have proposed in [2] to take into account the
dynamics of the amount of the information about a particular input during the computation on it.
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For this purpose we have used the language of so-called windows of individual inputs at different
stages of computation. Roughly speaking, the window of an input a € {0,1}" at a given moment
of computation on it is the input a itself with some bits “closed” or, as we say, “crossed” (+).
Intuitively, the crossed bits are the bits about which the program is uncertain at this moment,
whereas the length of the window (the number of non-crossed bits) captures the amount of already
collected information.

In [2] we used the well-known Kraft’s inequality from information theory to prove that the
program cannot be small if the average length of windows is large (we recall this result below; see
Theorem 2.2). We then used this relation between the average length of windows and the program
size to prove exponential lower bounds on the size of so-called “gentle” branching programs. Besides
that the proof employs a new idea of windows, the bounds themselves are interesting, because (as
shown in [2] and [6]) explicit functions, which are known to be hard for all(!) previously considered
restricted models of branching programs, can be computed by gentle programs of polynomial size.
This fact shows that, apparently, the language of windows captures some aspects of computations
which were hidden for us so far. It therefore makes sense to investigate the combinatorial properties
of windows in different models of branching programs.

If the program is just a decision tree, then the length of the windows increases by one after
each subsequent test. Hence, if the average length of computations is large, the average length of
windows is also large, and (by the above mentioned Kraft-type result) the program must be large.
However, in a general branching program, some already collected information about the values of
some bits may be lost. This may happen when several computation with different values on these
bits meet in a node. Thus, in general, the length of windows is not a monotone function, and it is
important to better understand their dynamics even in restricted models.

In this paper we consider the following “2-multisym” function. Its input is an m x k 0-1 matrix,
and the function accepts this matrix if and only if each pair of its columns contain 00 or 11 on at
least one row (such pairs of bits are “twin-couples”). We show that any 1-b.p., recognizing whether
a given matrix is a 2-multisym or not, has exponential size.

Let us stress that (numerically) the obtained lower bound is not interesting at all — it can be
obtained by using the standard cut-and-paste techniques for 1-b.p.’s. Our main contribution is an
entirely different proof argument, which potentially can be extended to more general models. Our
proof is based on a so-called “forcing lemma” (Lemma 5.1) which formalizes an intuitive idea that
during the computation on every multisym, for every pair of columns, both bits of at least one
twin-couple must appear in the window at the same moment, i.e., the program must “see” both
bits in order to decide whether this couple is a couple of twins or not. Since each multisym has at
least (£) = Q(k?) twin-couples, at some moment of the computation on it, at least h = Q(k?/T)
bits must appear in the window, where 7' is the time (i.e., the maximal number of tests along any
computation). We then apply the Kraft-type result from [2] (we recall it in the next section) saying
that long windows on many inputs imply large program size.

2 Average Length of Windows and the Program Size

In order to capture the flow of information during the computation on a particular input, we have to
somehow formalize what bits of a given input a are already “known” by the program at a particular
stage of the computation comp(a), and which bits are still “unknown” or were “previously known”



but are “forgotten”, etc. We can imagine that, during the computation, some bits are closed (and
we put, say, a cross + on it) and some bits are open for us (we can see them). After that some
already open bits may be closed, and some closed bits may be opened again (after a test on them),
etc. This dynamics can be described using so-called “windows” (see [2]). (Here we use a simplified
version with only one type of crosses.)

Let P be a branching program, e = (u,v) be an edge in P and F' C {0,1}" be an arbitrary
subset of inputs, the computations on which go through this edge.

The window w(a, e, F) of input a € F at e with respect to the set F' is a string of length n in
the alphabet {0, 1, +} which is defined as follows. We assign a cross (+) to the i-th bit of a if there
is a b € F such that b(:) # a(i) and starting from e,

(i) either the computations on a and b follow the same path until a sink (the bit 7 is “forgotten”),

(ii) or the first divergence of these two computations is caused by a test on % (the program was not
certain about the bit 7 and tests it again).

The remaining bits of w(a, e, F') are non-crossed (i.e. specified) and their values are the same as in
a. The length of the window is the number of non-crossed bits.

Remark 2.1 The smaller is F' the larger is the number of non-crossed bits in the windows relative
to F.

We have the following general lower bound on the size of branching programs in terms of the
average length of windows ([2]).

Let P = (V, E) be a branching program, and A C {0,1}" be a set of inputs. A distribution of
A (among the edges of P) is a mapping ¢ : A — E which sends each input a € A to some edge of
the computation comp(a). (To define such a distribution we just stop the computations comp(a)
on particular edges.) Given such a distribution, the average length of windows (of inputs from A)

is the sum .
H(Aa (10) = m Zeaa
acA

where £, is the length of the window w(a, e, F') of a at the edge e = ¢(a) with respect to the set
F:={be A : ¢(b) = e} of all those inputs, which are mapped to the same edge; we call this set
F the class of distribution at e.

Theorem 2.2 ([2]) Let P = (V, E) be a branching program, A C {0,1}" a set of inputs and ¢ be
any distribution of these inputs among the edges of P. Then |E| > |A| - 2H(A®)—n,

Thus, in order to prove that a program must be large it would be enough to distribute a large
set of inputs A and show that the average length of windows H(A, ¢) must be large.

The second task (to force long windows) depends on the computed function f. Intuitively, if
in order to determine the value f(a) we must “know” the values of some h bits of the input a,
then during the computation on this input some of these h bits must all appear in the window. In
general, this intuition may be false, but there are situations where it works. To demonstrate this,
let us consider the following language of “multisyms.”



3 Multisyms

Inputs a € {0,1}" are m x k 0-1 matrices with n = mk. A t-trace (or just a trace if parameter
t is clear from the context) in a is a set of ¢ bits of a lying on the same row. Such a trace is
monochromatic if all its bits have the same value. A matrix o is a t-multisym if every t-tuple of
columns of a contain at least one monochromatic trace.

Intuitively, during the computation on a, for every t-tuple of columns, all ¢ bits of at least one
monochromatic trace on these columns must appear at least once in the window. It is easy to show
that, at least for the case when ¢ = k, this is indeed true.

Let SY M be the characteristic function of k-multisyms. That is, SY M accepts an m X k matrix
iff it has at least one monochromatic row.

Proposition 3.1 Let P be a branching program computing SY M and A be the set of all k-
multisyms. It is possible to distribute the inputs from A among the edges of P so that the average
length of windows is at least k.

Proof. We use the following “stopping rule”: stop a computation comp(a) on an input a € A at
the edge e, where the last test on a monochromatic row of a is done. Let w(a) denote the window
of a at this edge (with respect to the corresponding class of our distribution). Let ¢ be the index of
the monochromatic row whose bit was tested at the edge e, and assume w.l.o.g. that the edge e is a
1-edge (hence, the i-th row is the all-1 row). We claim that all the bits of this row are (non-crossed)
in the window w(a).

To show this, assume the opposite, i.e. that w(a) has a cross at some bit z; ;. Since, by our
stopping rule, no bit of the i-th row is tested after the edge e, this cross could appear only if there
is another input b € A such that b; ; = 0, the computation comp(b) reaches the edge e and then
follows the computation comp(a) until the sink. Moreover, according to our stopping rule, the test
on z; ; was also the last test on the monochromatic row along comp(b). Since this test was 1-test,
the 4-th row of b should be also all-1 row, a contradiction with b; ; =0. =

We have shown that windows for SY M are long enough, they have length at least k. On
the other hand, this function has a trivial b.p. of size O(n). This does not contradict with our
general lower bound just because the set A of distributed inputs was too small, |A| < 2m2(m Dk =
m2" %+ and hence, the lower bound 2|P| > |E| > |A| - 28" is trivial.

Still, the above example may be suggestive. To increase the size of the distributed set A we
could try to consider ¢-multisyms for some ¢ < k. In particular, easy counting shows that, if ¢ is
such that 1 + log (Iz) < m, then a constant fraction of all 2" inputs are t-multisyms; hence, in this
case |A| > 2"7¢ for some constant c. But the problem of forcing long enough windows in this case
(when t < k) turns to a much more difficult task, and so far we were not able to solve it completely.

4 Read-Once Programs for 2-multisyms

In the rest of the paper we show how this task (of forcing long windows) can be solved for 1-b.p.’s.
We show that for such programs the windows must be long even for the case when ¢t = 2. In this
case the considered language is particularly simple. As before, inputs a € {0,1}" are m x k 0-1



matrices with n = mk. A couple in a is a 2-trace, i.e., a pair (v,v') of bits in one row. A couple
is a twin-couple for an input a if these bits have the same value in q, i.e., if a(v) = a(V'). A pair
of columns I, J of a is covered if it contains at least one twin-couple. A matrix is a 2-multisym (or
just multisym) if each pair of its columns is covered.

We show that any 1-b.p., recognizing whether a given matrix is a 2-multisym or not, has
exponential size. As we already mentioned in the introduction, (numerically) the obtained lower
bound is not interesting — it can be obtained by using the standard cut-and-paste techniques for
1-b.p.’s. However, the proof itself may be promising to approach the general case. The standard
technique for 1-b.p.’s is to stop all the computations after some (fixed in advance) number d of
tests and to show that no two of them could be stopped at the same node; hence, we must have
at least 2% nodes. Almost all lower bounds for 1-b.p’s were obtained using this argument (a nice
exception is an “adversary” argument used in [1]).

In our proof we apply a different argument: we use a more subtle stopping rule, which depends
not just on the number of tested bits but on the form of windows, i.e., on the “form” of already
collected information about the input vector. Then the idea is to show that, for every 2-multisym
a and for every pair of columns, the bits of at least one twin-couple on these columns must appear
both in some window along the computation on a. Hence, the new argument has a potential to be
extended to more general branching programs (cf. Remark 5.2 below).

After that we use the following lemma (which holds for arbitrary branching programs). In what
follows, by a natural window of a multisym a at an edge e we will mean the window w(a,e, F)
with respect to the set F' of all inputs reaching this edge. We say that a couple is non-crossed in a
window if both its bits are non-crossed in that window.

Lemma 4.1 Let P be an arbitrary branching program for multisyms running in time T = T'(n).
Let a be a multisym. If for each pair of columns at least one of its couples is non-crossed in at
least one natural window of a (along comp(a)), then at least one natural window along comp(a) has
length at least (g) /T.

Proof. Let d be the maximal length of a natural window during comp(a). So, at each edge of
comp(a) at most d couples can become newly non-crossed in the window (after the test made at
that edge). Since we have at most T edges in comp(a), d-T > (g) ]

5 The Forcing Lemma for 1-b.p.’s
The main technical lemma is the following “forcing lemma”.

Lemma 5.1 Let P be a 1-b.p. computing multisyms, s(n) be any function such that s(n) < m —
2logn. Let a be a multisym such that each its natural window along comp(a) is shorter than s(n).
Then for every pair of columns of a, at least one couple in these columns is non-crossed in at least
one natural window of a.

Remark 5.2 If proved without the “read-once” assumption, this lemma would imply a superpoly-
nomial lower bound on branching programs running in superlinear time (via the argument used



in the proof of Theorem 5.3 below). Thus, the problem of proving such a lower bound is reduced
to the question of whether also in general the intuition — that (for each pair of columns of each
multisym) the program must at least once “see” both bits of a twin-couple at the same moment —
is correct. This reduction (and not the lower bound itself) is the main message of this paper.

Before we prove this lemma, let us first show how it (together with Theorem 2.2) implies that
multisyms cannot be computed by 1-b.p. of polynomial size.

Theorem 5.3 Fach 1-b.p. computing 2-multisyms has size at least 202(n'/?)

Proof. Let A be the set of all 2-multisyms. By simple counting, the number of m x k matrices
(mk = n) violating this property does not exceed (g) . gm(k—2) (so many possibilities to choose a
pair of “bad” columuns) times 2™ (so many possibilities to choose a value in one of these columns
and to produce the second column with all values changed to the opposite ones). This number does

not exceed 2" - n2/2™, implying that [A| > 2" (1 — ;—;), which is at least 2" ! if m — 1 > 2logn.
So, we can take m := n'/? and s(n) := m — 2logn.

We want to prove that for each multisym a there is at least one natural window (along comp(a))
longer than n/3m?. To show this, assume that, for some multisym a, all its natural windows along
comp(a) have length at most n/3m? < s(n). But then, by Lemma 4.1 and Lemma 5.1, there must
be at least one natural window along comp(a) having length ('29) /n > n/3m?%. A contradiction.

Now we distribute the multisyms by sending each multisym a to the edge of comp(a) at which
natural window is maximal. By Remark 2.1, the windows with respect to this distribution are
not shorter than the natural windows in question. Hence, by Theorem 2.2, 2|P| > |E| > |4] -
2—n+n/3m2 > 2—1—|—n1/3/3. -

6 Proof of the Forcing Lemma

Let a be a multisym and I, J be a pair of its columns, I # J. Suppose that each natural window
along comp(a) is shorter than s(n). Our goal is to show that both bits of at least one couple in
columns I, J appear (i.e., both are non-crossed) in at least one natural window of a. To show this,
assume the opposite that for no couple of a in I, J both its bits appear at the same moment in a
window.

During the computation on a some bits become non-crossed after the tests on them (these
bits appear in the window) but may be crossed (i.e. disappear from the window) later after the
computation comp(a) meets a computation on some other input with a different value on these
bits. Moreover, both bits of at least one (twin-) couple of a in columns I, J must be tested during
the computation on a. Since we assumed that no window of a can contain both these bits, one
of them must be crossed somewhere before the test on the second bit. Thus, we can consider the
following stopping rule.

Stopping rule: Stop the computation comp(a) at the edge e = (u,v) after which, for the first
moment some previously non-crossed bit v from columns I, J disappears from the window (becomes
crossed).



By the definition of crosses, we know that at the node v the computation comp(a’) on some other
input a’ with a'(v) # a(v) joins the computation comp(a). Let b and b’ be the partial assignments
corresponding to the initial parts of computations comp(a) and comp(a’) until the node v. Let
Nask(b) (Nask(b')) be the set of bits in columns I, J which are not specified in b (resp., in V).

Claim 6.1 Nask(b) contains at least 2logn couples in columns I,J and Nask(b) C Nask(b').

Proof. As e = (u,v) is the first edge after which some previously non-crossed bit gets a cross, at
most one bit from each of the couples in columns I, J can be tested before v (for otherwise some
couple would already appear in the window) and, according to our stopping rule, each of these
tested bits must remain in the window until v. But by our assumption, all the windows of a are
shorter than s(n). Since we have m couples in columns I, J, no bit of at least m — s(n) > 2logn
of them is tested along comp(a) until the node v, implying that | Nask(b)| > 2logn.

To show the inclusions Nask(b) C Nask(b'), assume that there is a bit p € Nask(b) \ Nask(b').
Since u ¢ Nask(b'), this bit was tested along comp(a’) before the node v, and (since our program
is read-once) it cannot be tested after the node v. Moreover, we know that the pair I, J is not
covered by the specified bits of b, for otherwise the corresponding twin-couple would be in the
window of a at the edge e, by the stopping rule. Extend the (partial) input b as follows. On bits
outside I, J take the values of a. On the bit i’ (the second bit of the couple) give the value a(u').
After that assign the couples, both of whose bits are non-specified, the values 01 and 10 so that all
still non-covered pairs of columns I, K and K,J with K # I, J become covered; this is possible,
since we have at least 2logn such pairs. In couples in columns I, J with precisely one specified
bit, except for the couple (u, 1'), we assign the opposite value. This way we obtain a partial input,
in which g is the only unspecified bit, and the pair I, J is still not covered by the specified bits.
Extend this input to two inputs by setting x4 to 0 and to 1. By the construction, both obtained
complete inputs reach the same sink (the bit y is not retested after the node v), but exactly one of
them covers the pair I, J, a contradiction. m

Now take the partial inputs b and o corresponding to initial segments of the computations
compy(a) and comp,(a’). Our goal is to extend them to complete inputs ¢ and ¢ such that
P(c) = P(c') and only c is a multisym; this yields the desired contradiction.

We construct the desired extensions ¢ and ¢’ as follows.

1. On bits outside the columns I,.J, which are not specified in &', we give both ¢ and ¢’ the values
of a; on the bits, where b’ is specified, we give ¢ and ¢’ the corresponding values of a and d’,
respectively.

2. The second bit v/ of the twin-couple (v,7') of a is not specified in b and therefore non-specified
also in b', by Claim 6.1. We set ¢(v') = /(') := a(v). This way the pair I,.J becomes covered
in ¢ but is still uncovered by the (already specified) bits of ¢

3. By Claim 6.1, we have at least 2logn couples in I,J both bits of which are specified neither
in b nor in b'. Using the same argument as in the proof of this claim, we can set these pairs of
bits to 01 and 10 in both ¢ and ¢’ so that all the pairs of columns I, K and K,J with K # I, J,
become covered in ¢ (and in ).
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Figure 1: Specifying the bits in Step 4

4. What remains are the couples (u,u') in columns I,J, precisely one bits of which, say u, is
specified in . By Claim 6.1, the second bit ' is nonspecified in both b and b'. We specify the
unspecified bits in such a way that ¢/ (u') = c(p’) = /(1) ® 1 (see Fig. 1). No twin-couple in ¢’ is
produced.

Now look at the computations comp(c) and comp(c’). By the construction, ¢ is consistent with
b and ¢’ is consistent with o’; so, both these computations reach that node v. Since our program
is read-once, no of the bits on which both b and &' were specified, are tested along comp(c) after
the node v. Since ¢’ can differ from c only in those bits, we have that after the node v both these
computations follow the same path until the sink, implying that the program outputs the same
value on both inputs ¢ and ¢’. The input ¢ is a multisym since all the pairs of colums are covered
by a twin-couples in it; the pair I, J is covered by the twin-couple (v,v') (and, perhaps, by some
other twin-couples, arising in Step 4). But this pair of colums remains uncovered in ¢ because in
Step 4 we produced no twin-couple in ¢/, and ¢'(v) = d'(v) # a(v) = ¢(v'). Thus, the program
wrongly accepts the input ¢’ which is not a multisym.

The obtained contradiction completes the proof of Lemma 5.1. m
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