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Abstract

The negation width of a Boolean AND, OR, NOT circuit computing a monotone Boolean function
𝑓 measures the “amount of negation” used by the circuit, and is the minimum number 𝑤 such that
the unique formal DNF produced (purely syntactically) by the circuit contains each prime implicant
of 𝑓 extended by at most 𝑤 solely negated variables. The negation width of monotone circuits is
zero. We first show that already a moderate allowed negation width can substantially decrease the
size of monotone circuits. Our main result is a general reduction from non-monotone circuits of
bounded negation width to monotone circuits: if a monotone Boolean function 𝑓 can be computed
by a non-monotone circuit of negation width𝑤 , then 𝑓 can be also computed by a monotone circuit
of size 𝑠 times 4min{𝑤𝑚,𝑚𝑤} log𝑀 , where𝑚 is the maximum length of a prime implicant and𝑀 is
the total number of prime implicants of 𝑓 .

1. Introduction

Understanding the power of negations in computations is one of the most basic tasks in compu-
tational complexity. While strong, even exponential, lower bounds for explicit monotone Boolean
functions are already known for monotone Boolean {∨,∧} circuits, we can currently prove only
depressingly small (linear) lower bounds on the size of {∨,∧,¬} circuits when there are no restric-
tions on the number or the usage of negation gates. So, it is important to understand the power of
negations in Boolean circuits.

It is well known and easy to show that requiring all NOT gates to appear only at input variables is
not a real restriction. Circuits fulfilling this restriction are known asDeMorgan circuits. Such a circuit
uses fanin-2 OR and AND gates, while inputs are variables 𝑥1, . . . , 𝑥𝑛 and their negations 𝑥1, . . . , 𝑥𝑛 ;
to simplify notation, we will sometimes write 𝑥𝑖 instead of ¬𝑥𝑖 . By just doubling the circuit size and
using DeMorgan laws, any circuit over {∨,∧,¬} of size 𝑠 can be converted to a DeMorgan circuit
computing the same function and having size at most 2𝑠 (see, for example, [7, Theorem 3.1]). A
formula is a circuit with all gates of fanout 1 (the underlying graph is a tree). A monotone circuit is
a DeMorgan circuit without negated input variables.

The effect of negations on the size or depth of {∨,∧,¬} circuits was mainly considered by either
restricting the total number of used negation gates, or by restricting the usage of negated input
variables in DeMorgan circuits.

✩Preliminary version appeared in [17].
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There is an extensive literature on the research in the first direction (when the total number of
NOT gates is bounded); here negations can be applied not only to input variables. Markov [23] has
shown that every Boolean function 𝑓 of 𝑛 variables (even any multi-output Boolean function) can
be computed by a circuit using only log𝑛 NOT gates. Fischer [8] has shown that one can always
reduce the number of NOT gates to the Markov log𝑛 bound with only a slight increase in circuit
size. Morizumi [24, 25, 26] proved versions of Markov’s theorem for Boolean formulas, as well as
nondeterministic and probabilistic circuits. Amano and Maruoka [4] have shown that (1/6) log log𝑛
NOT gates are not enough to compute the (𝑛/2)-clique function by a polynomial size circuit. In [15],
a (multi-output) monotone Boolean function is given which can be computed by poly-size circuit
with log𝑛 NOT gates, but requires an exponential size if only log𝑛 − O(log log𝑛) NOT gates are
available; this is by only an additive log log𝑛 factor away from the Markov–Fischer bound. We refer
to [16, Chapter 10] and the papers cited therein for this line of research; see also [33, 5, 11, 10] for
more recent developments in this direction.

Another line of research (which we follow in this paper) was to restrict the “amount of negation”
in DeMorgan circuits; here negations are only applied to input variables. One of the first results in
this direction was proved by Raz andWigderson [29, Theorem 4.1]: if𝑤 ≤ 𝑛2−𝜖 for a constant 𝜖 > 0,
then any DeMorgan circuit with at most 𝑤 negated input variables computing the 𝑠-𝑡 connectivity
function of 𝑛-vertex graphs must have depth Ω(log2 𝑛). Guo et al. [11] have proved that any De-
Morgan circuit with at most 𝑤 negated input variables computing a monotone Boolean function 𝑓
must have depth at least the monotone circuit depth of 𝑓 minus𝑤 . Koroth and Sarma [21] relax this
restriction on the total number of allowed negated input variables, and say that a not necessarily
DeMorgan {∨,∧,¬} circuit has orientation weight 𝑤 if the function computed at each gate is mono-
tone in all but at most 𝑤 variables. Informally, this means that the function computed at any gate
of the circuit must be computable by a DeMorgan circuit using at most 𝑤 negated input variables.
They prove that the depth of a circuit of orientation weight𝑤 computing a monotone function 𝑓 is
at least the minimum depth of a monotone circuit computing 𝑓 divided by 4𝑤 + 1.

In this paper, as the measure of the “amount of negation” in DeMorgan circuits, we consider their
“negation width” (see Definition 1 below). This measure, without giving it a name, was introduced
by Amano and Maruoka [3, Section 4]. They used a modification of Razborov’s Method of Approxi-
mation [31, 32] to show that DeMorgan circuits of small negation width for the Clique function must
still be large; we recall their result more exactly in Section 7.

Our main results (Theorems 1 and 2) give a general and fairly simple reduction of DeMorgan
circuits of bounded negation width to monotone circuits, from which the bound of [3], as well as
new lower bounds, follow (see Section 7).
Notation. We use standard terminology regarding Boolean functions (see, for example, [38]). In
particular, a term is an AND of literals, each being a variable or its negation. The length of a term is
the number of distinct literals in it. A term is a zero term if it contains a variable and its negation. A
DNF (disjunctive normal form) is an OR of terms. An implicant of a Boolean function 𝑓 (𝑥1, . . . , 𝑥𝑛)
is a nonzero term 𝑝 such that 𝑝 ≤ 𝑓 holds, that is, 𝑝 (𝑎) ≤ 𝑓 (𝑎) holds for all 𝑎 ∈ {0, 1}𝑛 . An implicant
𝑝 of 𝑓 is a prime implicant of 𝑓 if no proper subterm 𝑞 of 𝑝 has this property, that is, if 𝑝 ≤ 𝑞 ≤ 𝑓 ,
then 𝑞 = 𝑝 . The set of all prime implicants of 𝑓 will be denoted by 𝑃𝐼 (𝑓 ). A Boolean function 𝑓 is
monotone if 𝑎 ≤ 𝑏 implies 𝑓 (𝑎) ≤ 𝑓 (𝑏). Note that if 𝑓 is monotone, then all prime implicants of 𝑓
are positive, that is, consist solely of not negated variables.

1.1. DeMorgan circuits and their associated DNFs
Our goal is to understand to what extent the usage of negated input variables can decrease the

size or the depth of DeMorgan circuits computing monotone Boolean functions. As a measure of
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the “amount of negation” in DeMorgan circuits, we will use their “negation width.” This measure
is motivated by a simple observation that every DeMorgan circuit 𝐹 not only computes a particular
Boolean function 𝑓 but also produces (purely syntactically) a unique set 𝑇 (𝐹 ) of terms in a natural
way:

◦ if 𝐹 = 𝑧 is an input literal, then 𝑇 (𝐹 ) = {𝑧};

◦ if 𝐹 = 𝐹1 ∨ 𝐹2, then 𝑇 (𝐹 ) = 𝑇 (𝐹1) ∪𝑇 (𝐹2);

◦ if 𝐹 = 𝐹1 ∧ 𝐹2, then 𝑇 (𝐹 ) = {𝑡1 ∧ 𝑡2 : 𝑡𝑖 ∈ 𝑇 (𝐹𝑖), 𝑖 = 1, 2}.

During the production of terms, we use the “shortening” axiom 𝑥 ∧ 𝑥 = 𝑥 , but do not use the
“annihilation” axiom 𝑥 ∧ 𝑥 = 0. So,𝑇 (𝐹 ) can contain zero terms, that is, terms with a variable 𝑥𝑖 and
its negation 𝑥𝑖 .3 Easy induction on the circuit size shows that the Boolean function 𝑓 computed by
a circuit 𝐹 is the function computed as the OR of all produced terms, that is, 𝑓 =

∨
𝑡 ∈𝑇 (𝐹 ) 𝑡 .

For example, the DeMorgan formula 𝐹 = 𝑥𝑦∨ (𝑥 ∨𝑦) (𝑥 ∨𝑦)𝑧 computes the threshold-2 function
𝑓 (𝑥,𝑦, 𝑧) = 𝑥𝑦 ∨ 𝑥𝑧 ∨ 𝑦𝑧 of three variables, and the set of terms produced by the circuit 𝐹 is 𝑇 (𝐹 ) =
{𝑥𝑦, 𝑥𝑦𝑧,𝑦𝑥𝑧, 𝑥𝑥𝑧,𝑦𝑦𝑧}, where the latter two terms are zero terms.

If a circuit 𝐹 computing a monotone Boolean function 𝑓 is monotone (has no negated inputs at
all), then we clearly have 𝑃𝐼 (𝑓 ) ⊆ 𝑇 (𝐹 ), that is, every prime implicant of 𝑓 must then be produced
by the circuit. But even then, the equality 𝑇 (𝐹 ) = 𝑃𝐼 (𝑓 ) does not need to hold: already in 1981,
Okolnishnikova [27] exhibited an explicit monotone Boolean function 𝑓 of 𝑛 variables which can be
computed by a monotone circuit of size O(𝑛), but any monotone circuit 𝐹 satisfying 𝑇 (𝐹 ) = 𝑃𝐼 (𝑓 )
must have 2Ω (𝑛1/4 ) gates.

The situationwhen the function 𝑓 computed by aDeMorgan circuit 𝐹 is monotone, but the circuit
𝐹 itself is not necessarily monotone, is even more subtle: then even the inclusion 𝑃𝐼 (𝑓 ) ⊆ 𝑇 (𝐹 ) does
not need to hold. For example, the circuit 𝐹 = 𝑥𝑦 ∨𝑦 computes the function 𝑓 = 𝑥 ∨𝑦 and produces
the set 𝑇 (𝐹 ) = {𝑥𝑦,𝑦}, whereas 𝑃𝐼 (𝑓 ) = {𝑥,𝑦}. Super-polynomial lower bounds on the size of non-
monotone DeMorgan circuits 𝐹 when 𝑃𝐼 (𝑓 ) ⊈ 𝑇 (𝐹 ) but |𝑇 (𝐹 ) ∩ 𝑃𝐼 (𝑓 ) | ≥ |𝑃𝐼 (𝑓 ) |𝛿 for a constant
𝛿 > 0 were proved in [13] by extending Razborov’s method of approximations.

1.2. Negation width of circuits

In the present paper, we consider the situation when 𝑇 (𝐹 ) ∩ 𝑃𝐼 (𝑓 ) may be even empty, that is,
when even none of the prime implicants is produced by the circuit at all. Our restriction is motivated
by the followingwell-known “folklore” observation; see, for example, the book [6, p. 37]. The positive
factor of a term 𝑡 =

∧
𝑖∈𝑆 𝑥𝑖 ∧

∧
𝑗∈𝑇 𝑥 𝑗 is the AND 𝑡+ =

∧
𝑖∈𝑆 𝑥𝑖 of all its unnegated variables. The

term 𝑡 is nonzero if 𝑆 ∩𝑇 = ∅ holds.

Fact 1 (Folklore). If the Boolean function 𝑓 computed by a DeMorgan circuit 𝐹 is monotone, then every
prime implicant of 𝑓 is the positive factor of at least one nonzero term produced by 𝐹 .

That is, for every prime implicant 𝑝 of 𝑓 , either 𝑝 itself or some its nonzero extension by solely
negated variables must be produced by the circuit.

3At a “functional” level, zero terms are redundant: they contribute nothing to the values of the computed function.
The only reason to keep them in𝑇 (𝐹 ) is to ensure that “syntactical” changes of circuits (replacements of some input gates
by constants), which we will latter make, do not turn some previously zero terms into nonzero terms.
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Proof. Since the circuit 𝐹 computes 𝑓 , we have 𝑓 =
∨

𝑡 ∈𝑇 (𝐹 ) 𝑡 . Fix a prime implicant 𝑝 =
∧

𝑖∈𝐴 𝑥𝑖
of 𝑓 . Take an input vector 𝑎 ∈ {0, 1}𝑛 with 𝑎𝑖 = 1 for 𝑖 ∈ 𝐴, and 𝑎𝑖 = 0 for 𝑖 ∉ 𝐴. On this
vector, we have 𝑝 (𝑎) = 1 and, hence, also 𝑓 (𝑎) = 1. So, 𝑡 (𝑎) = 1 must hold for some nonzero term
𝑡 =

∧
𝑖∈𝑆 𝑥𝑖 ∧

∧
𝑖∈𝑇 𝑥𝑖 in𝑇 (𝐹 ). This yields the inclusion 𝑆 ⊆ 𝐴. Let 𝑡+ =

∧
𝑖∈𝑆 𝑥𝑖 be the positive factor

of the term 𝑡 . Since the function 𝑓 is monotone, and 𝑡 is an implicant of 𝑓 , 𝑡+ of 𝑡 is also an implicant
of 𝑓 . Since 𝑡+(𝑎) = 1, and since 𝑝 is a prime implicant, 𝑆 = 𝐴 follows. □

If the circuits are only allowed to use at most 𝑤 negated input variables, say 𝑥1, . . . , 𝑥𝑤 (the
restriction considered in [29, 11]), then the extensions 𝑡 = 𝑝𝑥𝑖1 · · · 𝑥𝑖𝑙 of all prime implicants 𝑝 can
only use these negated inputs. We now relax this and allow different subsets of up to 𝑤 negated
inputs out of all 𝑥1, . . . , 𝑥𝑛 to be used for different prime implicants 𝑝 . That is, we only require that
for every prime implicant 𝑝 of 𝑓 , the circuit produces some its nonzero extension 𝑡 = 𝑝𝑥𝑖1 · · · 𝑥𝑖𝑙
with 𝑙 ≤ 𝑤 . For different prime implicants 𝑝 , the produced extensions 𝑡 may have different negated
variables.

Definition 1 (Negation width). The negation width of a DeMorgan circuit 𝐹 computing a monotone
Boolean function 𝑓 is the minimum number𝑤 such that for every prime implicant 𝑝 of 𝑓 , the circuit
produces either 𝑝 or some its nonzero extension by at most𝑤 negated variables.

That is, the circuit 𝐹 has negation width 𝑤 if for every prime implicant 𝑝 =
∧

𝑖∈𝑆 𝑥𝑖 of 𝑓 the
circuit produces (at the output gate) some term 𝑡 =

∧
𝑖∈𝑆 𝑥𝑖 ∧

∧
𝑗∈𝑇 𝑥 𝑗 with 𝑇 ∩ 𝑆 = ∅ and |𝑇 | ≤ 𝑤 .

There are no other restrictions on the remaining produced terms, except the trivial one that the
function computed as the OR of all produced terms must coincide with the function 𝑓 . In particular,
the circuit is allowed to produce terms with muchmore than𝑤 negated variables, as well as arbitrary
zero terms. Important only is that every prime implicant of 𝑓 has at least one extension with at most
𝑤 negated variables.

Note that the negation width 𝑤 of any DeMorgan circuit computing 𝑓 satisfies 0 ≤ 𝑤 ≤ 𝑛 −𝑚,
where 𝑛 is the total number of variables, and 𝑚 is the minimum length of a prime implicant of 𝑓 .
Also, minimal circuits of negation width 𝑤 = 0 are essentially monotone circuits: just replace each
negated input gate 𝑥𝑖 by constant 0.

As we already mentioned, the negation width (without using this term) was already considered
by Amano and Maruoka [3, Sect. 4]. Examples of sufficient (but by far not necessary) conditions for
a circuit to have negation width at most𝑤 are any of the following.

- The circuit has at most𝑤 negated input variables; such circuits were considered, for example,
by Raz and Wigderson [29], and Guo et al.[11].

- No input-output path has more than4 log𝑤 AND gates; such circuits computing quadratic
forms (multi-output functions) were considered in [22].

- No nonzero term produced by the circuit contains more than 𝑤 distinct negated variables.
Note that this restriction is a relaxation of both two previous restrictions.

None of these sufficient conditions is necessary. In particular, the negationwidth restricts neither the
total number of negated input variables nor the length of produced zero terms. Also, at intermediate
gates, the circuit can use any number of negated input variables, can produce very long terms, and
then cancellate them, that is, turn them into zero terms: such terms do not affect the negation width.

4All logarithm in this paper are to the base 2.
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Remark 1. At this point, it is worth tomention that DeMorgan circuits computingmonotone Boolean
functions 𝑓 more efficiently thanmonotone circuitsmust use cancellations (must produce zero terms):
otherwise, we could just replace all negated inputs by constants 1, and the resultingmonotone circuit
would still compute 𝑓 .

1.3. Motivation

Our motivation to consider circuits of bounded negation width𝑤 is that allowance of even mod-
erate negation width𝑤 = 𝑛𝜖 for an arbitrarily small constant 𝜖 > 0 can reduce the size of monotone
circuits (those of negation width 𝑤 = 0). We demonstrate this by three examples. The first two ex-
amples also show that our restriction on the negation width is properly weaker than the restriction
on the total number of allowed negated input variables, as considered in [29, 11]. The third example
shows that the reduction in size can be even super-polynomial.

Example 1 (Threshold functions). The threshold-𝑘 function Th𝑛
𝑘
accepts a Boolean input of length

𝑛 iff it contains at least 𝑘 ones. The smallest known monotone circuits for Th𝑛
𝑘
have size of order

𝑛 log𝑘 (such circuits are constructed in [20] using the AKS sorting network [1]). On the other hand,
for 𝑘 ≤ 𝑛1/3, the function Th𝑛

𝑘
can be computed by a DeMorgan circuit of linear size O(𝑛) if the

negation width𝑤 = 𝑘3 is allowed (see Lemma 6 in Appendix B).
Now, consider a DeMorgan circuit computingTh𝑛

𝑘
and using at most𝑤 = (1− 𝜖)𝑛 negated input

variables, for a constant 𝜖 > 0. Assign the value 0 to all variables whose negations are used by
the circuit. The resulting monotone circuit computes the threshold-𝑘 function for inputs of length
𝑛 − 𝑤 ≥ 𝜖𝑛 and, hence, most likely has size Ω(𝑛 log𝑘). Thus, apparently, DeMorgan circuits for
Th𝑛

𝑘
with almost the maximal number 𝑤 = (1 − 𝜖)𝑛 of allowed negated input gates cannot lead to

substantial speed ups.

Example 2 (Triangle function). The triangle function Clique(𝑛, 3) has
(
𝑛
2
)
variables, one for each edge

of the complete graph 𝐾𝑛 on {1, . . . , 𝑛}, and accepts a subgraph 𝐺 of 𝐾𝑛 iff 𝐺 contains a triangle.
It is known that this function requires monotone circuits of almost cubic size 𝑛3−𝑜 (1) [31, 2]. In
Appendix C we show that, if the negation width 𝑤 = 𝑛𝜖 is allowed, then the triangle function can
already be computed using a sub-cubic number O(𝑛3−𝜖/4) of gates. For example, if the negation
width𝑤 =

√
𝑛 is allowed, then only about 𝑛2.875 gates are enough.

Now, consider a DeMorgan circuit 𝐹 computing Clique(𝑛, 3) and using at most𝑤 = 𝑛2/7 negated
variables. Again set to 0 all the variables whose negations are used by the circuit. The resulting
monotone circuit computes some function 𝑓 ≤ Clique(𝑛, 3) with at least 𝑀 =

(
𝑛
3
)
− 𝑛𝑤 = Ω(𝑛3)

prime implicants (triangles). The argument of Alon and Boppana [2, Lemma 3.14] implies that every
monotone circuit for any such function 𝑓 must use at least about 𝑀/log3 𝑛 = Ω(𝑛3−𝑜 (1) ) gates.
Hence, the circuit 𝐹 must also use at least so many gates. This shows that even if about the maximum
number 𝑤 = 𝑛2/7 of negated inputs is allowed, no DeMorgan circuit can compute Clique(𝑛, 3) in
sub-cubic size.

Example 3 (Logical permanent). The logical permanent function Per𝑚 is a monotone Boolean func-
tion of𝑚2 variables which takes a Boolean𝑚 ×𝑚 matrix 𝑌 as input, and outputs 1 iff 𝑌 contains𝑚
1-entries no two of which lie in the same row or the same column. Let 0 < 𝜖 < 1/2 be an arbitrarily
small constant, and assume for simplicity that both𝑚 = 𝑛𝜖 and 𝑟 = 𝑛1−𝜖 are integers. Consider the
monotone Boolean function 𝑓 (𝑋 ) whose variables are arranged into an 𝑛 × 𝑛 matrix 𝑋 . Split 𝑋 into
𝑟 2 disjoint𝑚×𝑚 submatrices. The function 𝑓 accepts𝑋 iff Per𝑚 (𝑌 ) = 1 holds for at least one of these
submatrices 𝑌 . The monotone circuit complexity of 𝑓 is at least the monotone circuit complexity of
Per𝑚 which, as shown by Razborov [32], is𝑚Ω (log𝑚) = 𝑛Ω (log𝑛) .
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On the other hand, it is well known that Per𝑚 can be computed by a DeMorgan circuit of size
polynomial in 𝑚; see, for example, Hopcroft and Karp [12]. The negation width of such a circuit
is clearly at most the number𝑚2 of its input variables. So, since at OR gates the negation width is
not increased, we obtain a DeMorgan circuit for 𝑓 of size 𝑟 2 ·𝑚O(1) = 𝑛O(1) and negation width
𝑤 ≤ 𝑚2 = 𝑛2𝜖 .

Using the monotone circuit lower bound of Tardos [36] instead of the logical permanent, one
can show that, on some explicit monotone Boolean functions, an even exponential (not only super-
polynomial) gap between the size of monotone circuits and circuits of moderate negation width can
be achieved. We are not aware of any separating examples for restrictions on the use of negations
considered in [29, 21, 11]: restricted number of allowed negated input variables (as in [29, 11]), or
restricted orientation weight (as in [21]).

Thus, allowance of nonzero negation width can decrease the size of monotone circuits. A natural
question therefore is: by how much the monotone circuit size can be decreased? In this paper, we
give an answer: the size of monotone circuits cannot be decreased by a factor larger than 𝛥 (𝑚,𝑤) =
4 · min{𝑤𝑚,𝑚𝑤} · log𝑀 , where 𝑤 is the allowed negation width, 𝑚 is the maximal length of a
prime implicant of the computed monotone Boolean function 𝑓 , and𝑀 is the total number of prime
implicants of 𝑓 .

2. Our results

Our lower bounds will depend on two parameters: 𝑚 ≥ 3 is the maximum length of a prime
implicant of a given monotone Boolean function 𝑓 , and 𝑤 ≥ 1 is the maximum allowed negation
width of DeMorgan circuits computing 𝑓 . Having these two parameters, we define

𝛥 (𝑚,𝑤) := 4 ·min{𝑤𝑚,𝑚𝑤} .

Easy induction shows that 𝑟𝑠 ≥ 𝑠𝑟 holds for all 3 ≤ 𝑟 ≤ 𝑠 (see Claim 1 in Section 3). Hence,
𝛥 (𝑚,𝑤) = 4𝑤𝑚 if𝑤 ≥ 𝑚, and 𝛥 (𝑚,𝑤) = 4𝑚𝑤 if𝑤 ≤ 𝑚.

The first result reduces (non-monotone) DeMorgan circuits of bounded negation width tomono-
tone circuits. A monotone subcircuit of a DeMorgan circuit is obtained by fixing the values of some
variables to constant 0 (so that the corresponding negated input gates of 𝐹 are replaced with constant
1), and replacing the remaining negated input gates of 𝐹 with constant 0.

Theorem 1. Let 𝐹 be a DeMorgan circuit of negation width𝑤 computing a monotone Boolean function
𝑓 , and let𝑚 be the maximum length of a prime implicant of 𝑓 . Then an OR of at most 𝜏 = 𝛥 (𝑚,𝑤) ·
log |𝑃𝐼 (𝑓 ) | monotone subcircuits of 𝐹 also computes 𝑓 .

Our proof is probabilistic. Given a DeMorgan circuit 𝐹 computing a monotone Boolean function,
we will define its random monotone subcircuit 𝑭 + by randomly replacing some of input gates by
constants 0 and 1. When doing this, we will carefully chose the probability distribution in terms
of the parameters 𝑚 and 𝑤 ; see Section 3 for precise definition of 𝑭 +. We then show that every
single prime implicant 𝑝 ∈ 𝑃𝐼 (𝑓 ) is produced by the circuit 𝑭 + with probability at least 𝛥 (𝑚,𝑤)−1 =
1
𝜏
log |𝑃𝐼 (𝑓 ) |. Thus, the probability that the OR of 𝜏 independent copies of 𝑭 + will produce all prime

implicants 𝑝 ∈ 𝑃𝐼 (𝑓 ) is nonzero.
Remark 2. Note thatwe only consider subcircuits of DeMorgan circuits of a very special form: we just
replace some of the input literals by constants 0 and 1 (the structure of circuits remains untouched).
So, the same simulation holds also for other circuit models as DeMorgan formulas, contact schemes,
switching-and-rectifier networks as well as for DeMorgan circuits with unbounded fanin AND and
OR gates.
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Theorem 1 directly yields the following lower bounds on the size and depth of DeMorgan circuits
of bounded negation width. For a monotone Boolean function 𝑓 , let:

𝐶𝑤 (𝑓 ) = minimum size of a DeMorgan circuit of negation width𝑤 computing 𝑓 ;

𝐶+(𝑓 ) = minimum size of a monotone circuit computing 𝑓 .

In the case of DeMorgan formulas, these measures are denoted by 𝐿𝑤 (𝑓 ) and 𝐿+(𝑓 ); in this case, the
size of a formula is the number of leaves of the underlying tree. Let also 𝐷𝑤 (𝑓 ) denote the minimum
depth of a DeMorgan circuit of negation width 𝑤 computing 𝑓 , and let 𝐷+(𝑓 ) denote the minimum
depth of a monotone circuit computing 𝑓 .

Corollary 1. Let 𝑤 ≥ 1 and let 𝑓 be a monotone Boolean function with all prime implicants of length
at most𝑚. Then

𝐶𝑤 (𝑓 ) ≥
𝐶+(𝑓 )
𝜏

− 1 , 𝐿𝑤 (𝑓 ) ≥
𝐿+(𝑓 )
𝜏

and 𝐷𝑤 (𝑓 ) ≥ 𝐷+(𝑓 ) − log𝜏 ,

where 𝜏 = 𝛥 (𝑚,𝑤) · log |𝑃𝐼 (𝑓 ) |.

Remark 3 (Negation width and communication complexity). In Appendix D, we show that a lower
bound 𝐷𝑤 (𝑓 ) ≥ 𝐷+(𝑓 ) − 𝑤 · ⌈log(𝑛 + 1)⌉ on the depth of DeMorgan circuits of negation width 𝑤
can be directly proved using a communication complexity argument. This argument exposes the
meaning of the negation width restriction from the communication point of view.

Remark 4 (AND-depth). The AND-depth of a DeMorgan circuit is the maximum number of AND
gates along an input-output path. Since no circuit of AND-depth 𝑑 can produce any terms with
more than 2𝑑 literals, the negation width𝑤 of any such circuit satisfies𝑤 ≤ 2𝑑 . So, Corollary 1 gives
the same lower bound𝐶+(𝑓 )/𝜏 − 1 on the size of any DeMorgan circuit of AND-depth at most log𝑤 .

Our second result concerns circuits of bounded average negation width. Let 𝐹 be a DeMorgan
circuit computing a monotone Boolean function 𝑓 . The negation width of a prime implicant 𝑝 ∈
𝑃𝐼 (𝑓 ) in the circuit 𝐹 is the minimum number 𝑤 such that 𝑇 (𝐹 ) contains a nonzero extension of 𝑝
by at most 𝑤 negated variables. Hence, the circuit 𝐹 has negation width at most 𝑤 if every prime
implicant of 𝑓 has negation width at most 𝑤 in 𝐹 . Average negation width relaxes this “every”
requirement.

Definition 2 (Average negation width). The average negation width of the circuit 𝐹 is the average,
over all prime implicants 𝑝 ∈ 𝑃𝐼 (𝑓 ), of the negation width of 𝑝 in 𝐹 .

Hence, if𝑤 (𝑓 ) denotes the negation width of a prime implicant 𝑝 ∈ 𝑃𝐼 (𝑓 ) in the circuit 𝐹 , then
the average negation width of the circuit 𝐹 is

𝑤 =
1

|𝑃𝐼 (𝑓 ) |
∑︁

𝑝∈𝑃𝐼 (𝑓 )
𝑤 (𝑝) .

Definition 3. A monotone Boolean function ℎ 𝜏-approximates a monotone Boolean function 𝑓 if
there is an OR 𝑔 of at least |𝑃𝐼 (𝑓 ) |/𝜏 prime implicants of 𝑓 such that 𝑔 ≤ ℎ ≤ 𝑓 holds.

Theorem 2. Let 𝑓 be a monotone Boolean function with all prime implicants of length at most𝑚. Let
𝑤 ≥ 1 and 𝜏 = 2 ·𝛥 (𝑚, 2𝑤). If every monotone circuit 𝜏-approximating 𝑓 requires at least 𝑠 gates, then
every DeMorgan circuit of average negation width𝑤 computing 𝑓 must also have at least 𝑠 gates.
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Remark 5. Note the difference between Corollary 1 and Theorem 2. To apply Corollary 1, one can
directly use known lower bounds on the monotone circuit complexity of the function 𝑓 itself. The-
orem 2 is more general: it applies to circuits when only the average negation width is bounded, and
we do not have the additional log |𝑃𝐼 (𝑓 ) | factor in the “blow down” parameter 𝜏 . However, in order
to apply Theorem 2, one has to show that not only the function 𝑓 itself but also any sufficiently close
approximation of 𝑓 requires large monotone circuits. So, one has to analyze the monotone lower
bound proofs to ensure this latter property; we demonstrate this in the derivation of Corollary 6
in Section 7.

It is well-known that DeMorgan formulas can be balanced: every DeMorgan formula of size 𝑠
can be simulated by a DeMorgan formula of depth at most 𝑐 log 𝑠 for some constant 𝑐 ≥ 1. This was
first proved by Spira [34] with 𝑐 < 3.42. Subsequently, the balance constant 𝑐 was incrementally
decreased by many authors; the best known 𝑐 ≤ 1.73 is due to Khrapchenko [19].

In our context (when the negation width of formulas is bounded), the following natural question
arises: can also DeMorgan formulas of bounded negation width be balanced without increasing the
negation width of the resulting (balanced) formulas? The question is nontrivial because Spira’s
argument, as well as subsequent ones introduce negation gates applied to sub-formulas (not just to
input variables), which may result in a much larger negation width. Our third result answers the
question in the affirmative.

Theorem3. For everymonotone Boolean function 𝑓 , and for every𝑤 ≥ 0, we have𝐷𝑤 (𝑓 ) ≤ 3 log𝐿𝑤 (𝑓 ).

That is, if a monotone Boolean function 𝑓 can be computed by a DeMorgan formula of size 𝑠 and
negation width𝑤 , then 𝑓 can be also computed by a DeMorgan formula of depth at most 3 log 𝑠 and
the same negation width𝑤 . For formulas of negation width𝑤 = 0 (i.e., for monotone formulas), this
was shown by Wegener [37].

Organization. In Section 3, a special type of random subcircuits is introduced. Sections 4, 5 and 6 are
devoted to the proofs of our main results (Theorems 1, 2 and 3); the proofs are fairly simple. In Sec-
tion 7, we give some applications of these results to specific Boolean functions. Appendices include
some surrounding results. Appendix A gives a general argument to decrease the negation width
in non-monotone circuits. Appendix B illustrates this reduction for circuits computing threshold
functions. Appendix C shows that already the circuits of moderate negation width for the triangle
function are of sub-cubic size. Appendix D gives an alternative proof of a lower bound on the depth
of circuits of bounded negation width using communication complexity arguments.

3. Random subcircuits

Let 𝑓 (𝑥1, . . . , 𝑥𝑛) be amonotone Boolean function, and 𝐹 be aDeMorgan circuit of negationwidth
𝑤 computing 𝑓 . The inputs of 𝐹 are the variables 𝑥1, . . . , 𝑥𝑛 and their negations 𝑥1, . . . , 𝑥𝑛 ; the rest
consists of AND and OR gates. Starting from the circuit 𝐹 , our goal is to construct amonotone circuit
computing 𝑓 . Since the circuit 𝐹 has negation width 𝑤 , we know that for every prime implicant
𝑝 of 𝑓 the circuit must produce some nonzero extension 𝑝𝑥𝑖1 · · · 𝑥𝑖𝑙 of 𝑝 by 𝑙 ≤ 𝑤 solely negated
variables.

If the circuit 𝐹 produces no zero terms (those containing a variable 𝑥𝑖 and its negation 𝑥𝑖 ), then
we can just replace all negated input gates 𝑥𝑖 by constants 1, and the resulting monotone circuit 𝐹+
will also compute 𝑓 . But, in general (when the circuit produces zero terms), we cannot do this: if,
say, 𝐹 produces some zero term 𝑥𝑖𝑥𝑖𝑞, where the term 𝑥𝑖𝑞 is nonzero but is not an implicant of 𝑓 ,
then the resulting monotone circuit will (wrongly) accept some inputs which are rejected by 𝑓 .
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So, to cope with zero terms, we will use the idea suggested in [22]: instead of replacing a negated
input gate 𝑥𝑖 of the circuit 𝐹 by constant 1 give the value 0 to the variable 𝑥𝑖 itself. Note that then
no zero term 𝑡 = 𝑥 𝑗𝑥 𝑗𝑞 produced by the circuit 𝐹 can turn into a nonzero term: if 𝑗 = 𝑖 then 𝑡 turns
into the constant 0, and if 𝑗 ≠ 𝑖 , then the resulting term 𝑥 𝑗𝑥 𝑗𝑞

′ is still a zero term (or constant 0).
More formally, given aDeMorgan circuit 𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑥1, . . . , 𝑥𝑛) and a subset 𝐼 ⊆ [𝑛] := {1, . . . , 𝑥𝑛},

the monotone subcircuit 𝐹+ of 𝐹 (or monotone 𝐼 -subcircuit to mention the used subset 𝐼 ) is obtained
as follows.

1. First, set to 0 the values of all variables 𝑥𝑖 with 𝑖 ∈ 𝐼 . That is, for every 𝑖 ∈ 𝐼 , the unnegated
input gate 𝑥𝑖 is replaced with constant 0, while the negated input gate 𝑥𝑖 is replaced with
constant 1.

2. Then replace with constant 0 each of the remaining negated input gates 𝑥 𝑗 for 𝑗 ∉ 𝐼 .

Finally, eliminate constant input gates through repeated replacements of 0 ∧ 𝑢 by 0, 1 ∨ 𝑢 by 1, and
0 ∨ 𝑢, 1 ∧ 𝑢 by 𝑢. Schematically:

𝐹 (𝑥,𝑦, 𝑥,𝑦)
Step 1
↦→ 𝐹 (𝑥, 0, 𝑥, 1)

Step 2
↦→ 𝐹 (𝑥, 0, 0, 1) ↦→ 𝐹+(𝑥) .

Example 4. Consider the DeMorgan formula 𝐹 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) (𝑥1 ∨ 𝑥2 ∨ 𝑥5) (𝑥3 ∨ 𝑥4 ∨ 𝑥5), and the
set 𝐼 = {1, 4}. After the first step, we obtain the formula (0∨𝑥2 ∨𝑥3) (1∨𝑥2 ∨𝑥5) (𝑥3 ∨ 0∨𝑥5). After
the second step, we obtain the formula (0∨ 𝑥2 ∨ 0) (1∨ 0∨ 𝑥5) (𝑥3 ∨ 0∨ 0) and, after the elimination
of constants, the resulting monotone sub-formula of 𝐹 is 𝐹+ = 𝑥2𝑥3.

Lemma 1. Let 𝐹 be a DeMorgan circuit computing a monotone Boolean function 𝑓 , and 𝑔 be the mono-
tone Boolean function computed by a monotone subcircuit of 𝐹 . Then 𝑃𝐼 (𝑔) ⊆ 𝑃𝐼 (𝑓 ) and, consequently,
𝑔 ≤ 𝑓 .

Proof. Let 𝐹+ be a monotone 𝐼 -subcircuit of 𝐹 for some 𝐼 ⊆ [𝑛], and let 𝑔 be the monotone Boolean
function computed by 𝐹+. Since the circuit 𝐹 computes 𝑓 , the set𝑇 (𝐹 ) of terms produced by 𝐹 has the
following two properties: every prime implicant of 𝑓 is a positive part of at least one nonzero term
in 𝑇 (𝐹 ), and every nonzero term in 𝑇 (𝐹 ) contains at least one prime implicant of 𝑓 as a subterm.

At the 1st step of the construction of 𝐹+, all variables 𝑥𝑖 with 𝑖 ∈ 𝐼 are evaluated to the constant 0
and, hence, all negated input gates 𝑥𝑖 of 𝐹 with 𝑖 ∈ 𝐼 are replaced by constant 1. After this evaluation,
all terms of 𝑇 (𝐹 ) containing at least one unnegated literal 𝑥𝑖 with 𝑖 ∈ 𝐼 disappear from 𝑇 (𝐹 ) (are
evaluated to 0), and the negated literal 𝑥𝑖 with 𝑖 ∈ 𝐼 are removed from all remaining terms (these
literals are evaluated to 1). At the 2nd step, all remaining terms with at least one negated variable
(including the remaining zero terms) are removed. Thus, every term in 𝑇 (𝐹+) is either a prime
implicant or contains some prime implicant of 𝑓 as a subterm. In particular, 𝑃𝐼 (𝑔) ⊆ 𝑃𝐼 (𝑓 ) holds. □

When going from a given DeMorgan circuit 𝐹 computing a given monotone Boolean function 𝑓
to its monotone 𝐼 -subcircuit 𝐹+ we set to 0 all variables 𝑥𝑖 with 𝑖 ∈ 𝐼 . So, all prime implicants of 𝑓
containing at least one of these variables are lost, are no longer produced by 𝐹+. Our goal is to lose
as few prime implicants as possible.

To achieve this, we will set to 0 random subsets of variables. Let 𝜌 be a random restriction which
randomly and independently sets each variable 𝑥𝑖 to 0 with probability 0 < 𝜖 < 1, and leaves 𝑥𝑖 unset
with probability 1 − 𝜖 . Let 𝑡 = ∧

𝑖∈𝑆 𝑥𝑖 ∧
∧

𝑗∈𝑇 𝑥 𝑗 be a term with |𝑆 | ≤ 𝑚 unnegated and |𝑇 | ≤ 𝑤

negated variables, and assume that 𝑡 is a nonzero term, i.e., that 𝑆 ∩𝑇 = ∅ holds. The positive factor
of 𝑡 is the term 𝑡+ =

∧
𝑖∈𝑆 𝑥𝑖 . As observed in [22, Lemma 2], the (random) subterm 𝑡↾𝜌 of 𝑡 resulting

after the restriction 𝜌 satisfies

Prob
{
𝑡↾𝜌 = 𝑡+

}
≥ 𝛼 (𝜖) := 𝜖𝑤 (1 − 𝜖)𝑚 . (1)
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Indeed, the probability that none of the |𝑆 | ≤ 𝑚 unnegated variables of 𝑡 is evaluated to 0 is (1−𝜖) |𝑆 | ≥
(1− 𝜖)𝑚 , while the probability that all |𝑇 | ≤ 𝑤 negated variables of 𝑡 are evaluated to 1 is 𝜖 |𝑇 | ≥ 𝜖𝑤 .

For fixed𝑚 and𝑤 , the maximum value of the function 𝛼 (𝜖) = 𝜖𝑤 (1−𝜖)𝑚 is achieved at the point

𝜖0 =
𝑤

𝑚 +𝑤 = 1 − 𝑚

𝑚 +𝑤 .

Indeed, the first derivative of the function 𝑔(𝜖) = ln𝛼 (𝜖) = 𝑤 ln 𝜖 +𝑚 ln(1 − 𝜖) is 𝑔′(𝜖) = −𝑤/𝜖 +
𝑚/(1−𝜖), and this derivative is zero iff 𝜖 = 𝑤/(𝑚+𝑤). So, themaximal possible “survival” probability
is

𝛼 (𝜖0) =
(
1 − 𝑚

𝑚 +𝑤

)𝑤 (
1 − 𝑤

𝑚 +𝑤

)𝑚
.

By amore careful choice of the probability 𝜖 , depending onwhether there are more negated variables
in the extensions of prime implicants (𝑤 is larger than𝑚) or not, a more handy lower bound on the
“survival” probability 𝛼 (𝜖) = 𝜖𝑤 (1 − 𝜖)𝑚 can be obtained.

Namely, define the random (𝑚,𝑤)-subcircuit of a DeMorgan circuit 𝐹 to be a monotone 𝑰 -
subcircuit of 𝐹 for the random subset 𝑰 ⊆ [𝑛] with each 𝑖 ∈ [𝑛] included in 𝑰 independently with
probability:

𝜖 :=

{
1 − 1

𝑤
if𝑤 ≥ 𝑚,

1
𝑚

if𝑤 < 𝑚.
(2)

Thus, if a we have more negated variables than unnegated in a term (𝑤 ≥ 𝑚), then we evaluate to
0 each variable with a slightly larger then optimal probability (our goal is to evaluate all negated
literals to 1), and if we have more unnegated variables (𝑚 > 𝑤), then we evaluate to 0 each variable
with a slightly smaller then optimal probability (our goal is to keep all these variables untouched).

In the following lemma,𝑚 ≥ 3 and 𝑤 ≥ 1 are integers, and 𝐹 is an arbitrary DeMorgan circuit
of negation width𝑤 . Recall that 𝛥 (𝑚,𝑤) := 4 ·min{𝑤𝑚,𝑚𝑤}.

Lemma 2. Let 𝑝 · 𝑟 be a nonzero term, where 𝑝 consists of ≤ 𝑚 unnegated variables, and 𝑟 consists of
≤ 𝑤 negated variables. Let 𝑭 + be a random (𝑚,𝑤)-subcircuit of 𝐹 . If 𝑝 · 𝑟 ∈ 𝑇 (𝐹 ), then

Prob {𝑝 ∈ 𝑇 (𝑭 +)} ≥ 1/𝛥 (𝑚,𝑤) .

That is, if the term 𝑝 · 𝑟 is produced by the circuit 𝐹 , then its positive factor 𝑝 is produced by the
subcircuit 𝑭 + with probability at least 1/𝛥 (𝑚,𝑤).

Proof. By Eq. (1), we know that Prob {𝑝 ∈ 𝑇 (𝑭 +)} ≥ 𝛼 := 𝜖𝑤 (1 − 𝜖)𝑚 holds for any 0 < 𝜖 < 1 and,
hence also for 𝜖 defined by Eq. (2). To show that 𝛼 ≥ 1/𝛥 (𝑚,𝑤) holds (for this particular choice of
𝜖), we use the following elementary estimates.

Claim 1. For all integers 𝑡 ≥ 2 and 3 ≤ 𝑟 ≤ 𝑠 , we have (1 − 1/𝑡)𝑡 ≥ 1/4 and 𝑟𝑠 ≥ 𝑠𝑟 .

Proof. The first inequality follows from the fact that the sequence 𝑎𝑡 = (1 − 1/𝑡)𝑡 for 𝑡 = 2, 3, . . . is
non-decreasing. Namely, 𝑎𝑡+1/𝑎𝑡 is 𝑡/(𝑡 + 1) times(

𝑡2

𝑡2 − 1

)𝑡
=

(
1 + 1

𝑡2 − 1

)𝑡
≥

(
1 + 1

𝑡2

)𝑡
≥ 1 + 𝑡 · 1

𝑡2
=
𝑡 + 1
𝑡

,

where the second inequality follows from the Bernoulli inequality. So, 𝑎𝑡+1/𝑎𝑡 ≥ 1, implying that
(1 − 1/𝑡)𝑡 ≥ 𝑎2 = 1/4 holds for all integers 𝑡 ≥ 2.
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To see the second inequality, observe that 𝑟𝑠 ≥ 𝑠𝑟 is equivalent to 𝑟 1/𝑟 ≥ 𝑠1/𝑠 . We claim that the
sequence 𝑟 1/𝑟 for 𝑟 = 3, 4, . . . is non-increasing. This can be also shown by induction on 𝑟 . Observe
that the inequality 𝑟 1/𝑟 ≥ (𝑟 + 1)1/(𝑟+1) is equivalent to 𝑟𝑟+1 ≥ (𝑟 + 1)𝑟 , or 𝑟 ≥ (1 + 1/𝑟 )𝑟 . Since
(1 + 1/𝑟 )𝑟 is at most the Euler number e < 3, and since we assumed that 𝑟 ≥ 3, the inequality
follows. □

We can now finish the proof of Lemma 2 as follows. If 𝑤 ≥ 𝑚, then 𝜖 = 1 − 1/𝑤 , and Claim 1
yields

𝛼 = (1 − 1/𝑤)𝑤 (1/𝑤)𝑚 ≥ 1
4𝑤

−𝑚 ≥ 1
4𝑚

−𝑤 .

If 3 ≤ 𝑤 < 𝑚, then 𝜖 = 1/𝑚, and Claim 1 yields

𝛼 = (1/𝑚)𝑤 (1 − 1/𝑚)𝑚 ≥ 1
4𝑚

−𝑤 ≥ 1
4𝑤

−𝑚 .

In both cases, we have 𝛼 ≥ 1
4 max{𝑤−𝑚,𝑚−𝑤} = 1/𝛥 (𝑚,𝑤). It remains to show that 𝛼 ≥ 1/𝛥 (𝑚,𝑤)

holds also for 𝑤 = 1 and for 𝑤 = 2. Recall that the second parameter (the maximum length of a
prime implicant of 𝑓 ) satisfies 𝑚 ≥ 3, and Claim 1 yields (1 − 1/𝑚)𝑚 ≥ 1/4. So, if 𝑤 = 1, then
𝛼 = (1/𝑚)𝑤 (1 − 1/𝑚)𝑚 ≥ 1/(4𝑚) = 1/𝛥 (𝑚, 1), and if𝑤 = 2, then 𝛼 ≥ 1/(4𝑚2) = 1/𝛥 (𝑚, 2). □

4. Proof of Theorem 1: reduction to monotone circuits

Let 𝑓 be amonotone Boolean function with all prime implicants of length at most𝑚, and suppose
that 𝑓 can be computed by a DeMorgan circuit 𝐹 of negation width𝑤 . Our goal is to show that then
there exist at most 𝜏 = 𝛥 (𝑚,𝑤) · log |𝑃𝐼 (𝑓 ) | monotone subcircuits of 𝐹 whose OR also computes 𝑓 .

Let 𝑭 + be a random (𝑚,𝑤)-subcircuit of 𝐹 , and take 𝜏 independent copies 𝑭 1
+, . . . , 𝑭

𝜏
+ of 𝑭 +.

By Lemma 2, we have Prob {𝑝 ∈ 𝑇 (𝑭 +)} ≥ 1/𝜅 for every prime implicant 𝑝 ∈ 𝑃𝐼 (𝑓 ), where 𝜅 =

𝛥 (𝑚,𝑤). Note that 𝜏/𝜅 = log |𝑃𝐼 (𝑓 ) |. Hence, for every prime implicant 𝑝 ∈ 𝑃𝐼 (𝑓 ), we have

Prob
{
𝑝 ∉ 𝑇 (𝑭 𝑖

+) for all 𝑖 = 1, . . . , 𝜏
}
≤ (1 − 1/𝜅)𝜏 ≤ e−𝜏/𝜅 < 2−𝜏/𝜅 = |𝑃𝐼 (𝑓 ) |−1 .

By the union bound, the probability that some prime implicant of 𝑓 is produced by none of the circuits
𝑭 1

+, . . . , 𝑭
𝜏
+ is strictly smaller than 1. Consequently, there must be a sequence 𝐹 1+ , . . . , 𝐹𝜏+ of realizations

of these circuits such that every prime implicant of 𝑓 is produced by at least one of these circuits.
Consider the monotone Boolean function ℎ = ℎ1∨ · · · ∨ℎ𝜏 , where ℎ𝑖 is the function computed by 𝐹 𝑖+.
By Lemma 1, we have ℎ ≤ 𝑓 . On the other hand, the inclusion 𝑃𝐼 (𝑓 ) ⊆ 𝑇 (𝐹 1+ ) ∪ · · · ∪𝑇 (𝐹𝜏+ ) yields
the converse inequality 𝑓 ≤ ℎ. So, the OR of the circuits 𝐹 1+ , . . . , 𝐹𝜏+ computes ℎ = 𝑓 , as desired. □

5. Proof of Theorem 2: average negation width

Let 𝑓 be a monotone Boolean function with all prime implicants of length at most 𝑚. Let 𝐹
be a DeMorgan circuit of average negation width 𝑤 computing 𝑓 . Recall that a monotone Boolean
function ℎ 𝜏-approximates a monotone Boolean function 𝑓 if there is an OR 𝑔 of at least |𝑃𝐼 (𝑓 ) |/𝜏
prime implicants of 𝑓 such that 𝑔 ≤ ℎ ≤ 𝑓 holds. Now suppose that every monotone circuit 𝜏-
approximating 𝑓 for 𝜏 = 2 · 𝛥 (𝑚, 2𝑤) requires at least 𝑠 gates. Our goal is to show that then the
circuit 𝐹 must have at least 𝑠 gates, as well.

Since the average negation width of 𝐹 is 𝑤 , there must be some subset 𝑃 ⊆ 𝑃𝐼 (𝑓 ) of |𝑃 | ≥
1
2 |𝑃𝐼 (𝑓 ) | prime implicants of 𝑓 such that every 𝑝 has negation width at most 2𝑤 in 𝐹 . Let 𝑭 + be a
random (𝑚, 2𝑤)-subcircuit of 𝐹 . By Lemma 2, we have

Prob {𝑝 ∈ 𝑇 (𝑭 +)} ≥ 1/𝛥 (𝑚, 2𝑤) = 2/𝜏
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for every prime implicant 𝑝 ∈ 𝑃 . So, the expected number of prime implicants 𝑝 ∈ 𝑃 produced by
𝑭 + is at least (2/𝜏) |𝑃 | ≥ |𝑃𝐼 (𝑓 ) |/𝜏 .

There must therefore be a realization 𝐹+ of 𝑭 + such that the set 𝑃 ′ = 𝑃∩𝑇 (𝐹+) has |𝑃 ′ | ≥ |𝑃𝐼 (𝑓 ) |/𝜏
terms. Let 𝑔 be the OR of the terms in 𝑃 ′, and ℎ be the monotone Boolean function computed by 𝐹+.
Since 𝑃 ′ ⊆ 𝑇 (𝐹+), we have 𝑔 ≤ ℎ, while the inequality ℎ ≤ 𝑓 follows from Lemma 1. This means that
the circuit 𝐹+ 𝜏-approximates 𝑓 and, by our assumption about the function 𝑓 , the monotone circuit
𝐹+ and, hence, also the original (non-monotone) circuit 𝐹 must have at least 𝑠 gates, as desired. □

6. Proof of Theorem 3: a version of Spira’s theorem

As before, for a DeMorgan circuit or formula 𝐹 , 𝑇 (𝐹 ) denotes the set of terms produced by 𝐹 .
Two formulas are equivalent if they compute the same function. Recall that the size of a formula is
the number of its leaves.

Lemma 3. For every monotone formula 𝐹 of size 𝑠 , there is an equivalent monotone formula 𝐹 ′ of depth
at most 3 log 𝑠 such that 𝑇 (𝐹 ) ⊆ 𝑇 (𝐹 ′).

Here, only the inclusion 𝑇 (𝐹 ) ⊆ 𝑇 (𝐹 ′) is new: that monotone formulas can be balanced was
already shown by Wegener [37]. We will need this additional inclusion in the case of monotone
formulas to balance (non-monotone) DeMorgan formulas of bounded negation width (in the proof
of Theorem 3 below).

Proof. We argue by induction on 𝑠 . The claim is trivially true for 𝑠 = 2 (just take 𝐹 ′ = 𝐹 ). Now
assume that the claim holds for all formulas with fewer than 𝑠 leaves, and prove it for formulas with
𝑠 leaves. Take an arbitrary monotone formula 𝐹 with 𝑠 leaves. By walking from the output-gate of
𝐹 we can find a sub-formula 𝐻 such that 𝐻 has ≥ 𝑠/2 leaves but its left and right sub-formulas each
have < 𝑠/2 leaves. Now replace the sub-formula 𝐻 of 𝐹 by constants 0 and 1, and let 𝐹0 and 𝐹1 be
the resulting formulas. It is clear that then the formula (𝐻 ∧ 𝐹1) ∨ (¬𝐻 ∧ 𝐹0) is equivalent to 𝐹 . The
key observation (already made by and Wegener [37]) is that, due to the monotonicity of 𝐹 , 𝐹0(𝑥) = 1
implies 𝐹1(𝑥) = 1. Thus the formula (𝐻 ∧ 𝐹1) ∨ 𝐹0 is equivalent to 𝐹 : if 𝐹0(𝑥) = 1 but ¬𝐻 (𝑥) = 0,
then 𝐻 (𝑥) ∧ 𝐹1(𝑥) = 1.

The formulas 𝐹0 and 𝐹1 as well as the left and right sub-formulas of 𝐻 each have at most 𝑠/2
leaves. By the induction hypothesis, 𝐹0 and 𝐹1 can be replaced by formulas 𝐹 ′0 and 𝐹

′
1 of depth at

most 3 log(𝑠/2), and the formula 𝐻 can be replaced by a formula 𝐻 ′ of depth at most 1 + 3 log(𝑠/2)
(we take +1 because 3 log(𝑠/2) is the upper bound on the depth of the two sub-formulas of 𝐻 ) such
that

𝑇 (𝐹1) ⊆ 𝑇 (𝐹 ′1) , 𝑇 (𝐹0) ⊆ 𝑇 (𝐹 ′0) and 𝑇 (𝐻 ) ⊆ 𝑇 (𝐻 ′) . (3)

Thus, the resulting entire formula
𝐹 ′ = (𝐻 ′ ∧ 𝐹 ′1) ∨ 𝐹 ′0 (4)

is equivalent to 𝐹 and has depth at most 2 + 1 + 3 log(𝑠/2) = 3 log 𝑠 .
It remains to show that the set 𝑇 (𝐹 ′) of terms produced by the (balanced) formula 𝐹 ′ satisfies

𝑇 (𝐹 ′) ⊇ 𝑇 (𝐹 ). Let 𝐹𝑧 be the formula obtained from 𝐹 by replacing the sub-formula 𝐻 by a new
variable 𝑧. Then the set of terms produced by 𝐹𝑧 has the form 𝑇 (𝐹𝑧) = ({𝑧} ∗ 𝑄) ∪ 𝑅, where 𝑄 is
some set of terms, 𝑅 consists of all terms in 𝑇 (𝐹𝑧) with no occurrences of the variable 𝑧, and 𝑇1 ∗𝑇2
stands for the set of terms {𝑡1 ∧ 𝑡2 : 𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2}. That is, {𝑧} ∗𝑄 is the set of all terms produced
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by 𝐹𝑧 that contain the variable 𝑧, and 𝑅 is the set of all terms produced by 𝐹𝑧 that do not contain this
variable. This yields

𝑇 (𝐹 ) = [𝑇 (𝐻 ) ∗𝑄] ∪ 𝑅 , 𝑇 (𝐹1) = 𝑄 ∪ 𝑅 and 𝑇 (𝐹0) = 𝑅 . (5)

So,

𝑇 (𝐹 ′) (4)
= [𝑇 (𝐻 ′) ∗𝑇 (𝐹 ′1)] ∪𝑇 (𝐹 ′0)

(3)
⊇ [𝑇 (𝐻 ) ∗𝑇 (𝐹1)] ∪𝑇 (𝐹0)

(5)
= [𝑇 (𝐻 ) ∗ (𝑄 ∪ 𝑅)] ∪ 𝑅 ⊇ [𝑇 (𝐻 ) ∗𝑄] ∪ 𝑅 (5)

= 𝑇 (𝐹 ) ,

as desired. □

Proof of Theorem 3. Let 𝑓 be a monotone Boolean function, and 𝑤 ≥ 0. Suppose that 𝑓 can be
computed by a DeMorgan formula 𝐺 = 𝐺 (𝑥, 𝑥) of size 𝑠 and negation width 𝑤 . Our goal is to show
that then 𝑓 can be also computed by a DeMorgan formula of depth at most 3 log 𝑠 and the same
negation width𝑤 .

Replace all negated input variables 𝑥𝑖 in 𝐺 by new variables 𝑦𝑖 , and consider the monotone
formula 𝐹 = 𝐺 (𝑥,𝑦). Since the formula 𝐺 has negation width 𝑤 , we know that the monotone
formula 𝐹 has the following property:

(∗) for every prime implicant 𝑝 =
∧

𝑖∈𝑆 𝑥𝑖 of 𝑓 there is a term 𝑝 · 𝑟 ∈ 𝑇 (𝐹 ) with 𝑟 =
∧

𝑗∈𝑇 𝑦 𝑗 ,
𝑇 ∩ 𝑆 = ∅ and |𝑇 | ≤ 𝑤 .

Apply Lemma 3 to the monotone formula 𝐹 (𝑥,𝑦). This gives us an equivalent monotone formula
𝐹 ′(𝑥,𝑦) of depth at most 3 log 𝑠 whose set 𝑇 (𝐹 ′) of produced terms contains all terms produced by
the formula 𝐹 . This latter property implies that the (balanced) formula 𝐹 ′ also has property (∗). So, if
we replace back in 𝐹 ′(𝑥,𝑦) the input variables𝑦𝑖 by negated variables 𝑥𝑖 , the obtained (also balanced)
DeMorgan formula 𝐹 ′′(𝑥, 𝑥) computes our function 𝑓 and has negation width𝑤 , as desired. □

7. Explicit lower bounds

Below we demonstrate our general bounds given by Corollary 1 on the clique functions. Such a
function 𝑓 = Clique(𝑛, 𝑘) has

(
𝑛
2
)
variables, one for each edge of the complete graph 𝐾𝑛 on [𝑛] =

{1, . . . , 𝑛}. Every assignment of Boolean values to these variables specifies a subgraph of 𝐾𝑛 , and
the function 𝑓 accepts the assignment iff the specified graph contains a complete graph on 𝑘 or
more vertices; note that (to avoid floorings and ceilings) we do not require 𝑘 to be an integer. Recall
that 𝐶𝑤 (𝑓 ) and 𝐷𝑤 (𝑓 ) denote the minimum size and the minimum depth of a DeMorgan circuit of
negation with ≤ 𝑤 computing 𝑓 . Corollary 1 gives the lower bounds

𝐶𝑤 (𝑓 ) ≥
𝐶+(𝑓 )
𝜏

− 1 and 𝐷𝑤 (𝑓 ) ≥ 𝐷+(𝑓 ) − log𝜏 , (6)

for any𝑤 ≥ 1 and any monotone Boolean function 𝑓 with all prime implicants of length at most𝑚,
where

𝜏 := 𝛥 (𝑚,𝑤) · log |𝑃𝐼 (𝑓 ) | with 𝛥 (𝑚,𝑤) :=
{
4𝑤𝑚 if𝑤 ≥ 𝑚;
4𝑚𝑤 if𝑤 < 𝑚.

. (7)
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7.1. Triangles

The triangle function Clique(𝑛, 3) accepts an input graph iff it contains a triangle. For this func-
tion, we can show an almost optimal lower bound in the class of circuits of bounded negation width.

Corollary 2. Let 𝑓 = Clique(𝑛, 3), and 𝑤 = 𝑛𝜖 for 𝜖 > 0. There are absolute constants 𝑐1, 𝑐2 > 0 such
that, 𝑛3−4𝜖 ≤ 𝐶𝑤 (𝑓 ) ≤ 𝑐2𝑛3−𝜖/4.

Proof. The upper bound is proved in Appendix C. To derive the lower bound, we use the lower bound
𝐶+(𝑓 ) = Ω

(
𝑛3/log3 𝑛

)
on the monotone circuit complexity of 𝑓 proved by Alon and Boppana [2,

Lemma 3.14]. Monomials of 𝑓 have length 𝑚 = 3 ≤ 𝑤 , so 𝛥 (𝑚,𝑤) = 4𝑤𝑚 = 4𝑛3𝜖 . Since 𝑓 has
|𝑃𝐼 (𝑓 ) | =

(
𝑛
3
)
≤ 𝑛3 prime implicants, the parameter 𝜏 in Eq. (7) is at most a constant times 4𝑤𝑚 ·

log |𝑃𝐼 (𝑓 ) | ≤ 12𝑛3𝜖 log𝑛, and Eq. (6) yields the desired lower bound𝐶𝑤 (𝑓 ) ≥ 𝐶+(𝑓 )/𝜏−1 = Ω(𝑛3−4𝜖 ).
□

7.2. Large cliques

For clique functions 𝑓 = Clique(𝑛, 𝑘)with𝑘 = 𝑛2/3, Amano andMaruoka [3, Theorem 4.2] proved
a lower bound𝐶𝑤 (𝑓 ) = 2Ω (𝑛1/3 ) as long as the allowed negation width is𝑤 ≤

√
𝑘/𝑛𝜖 = 𝑛1/3−𝜖 for an

arbitrarily small constant 𝜖 > 0. They obtained this bound via appropriate extension of Razborov’s
method of approximations itself to circuit of bounded negation width.

On the other hand, when combined with our general reduction to monotone circuits, as given
by Corollary 1, the same lower bound can be directly derived from known lower bounds of the
monotone circuit complexity of clique functions. Namely, Alon and Boppana [2, Theorem 3.9] have
shown that 𝐶+(𝑓 ) = 2Ω (

√
𝑘 ) holds for any 3 ≤ 𝑘 ≤ (𝑛 log𝑛)2/3/4. In particular, for the clique

size 𝑘 = 𝑛2/3 considered in [3], we have 𝐶+(𝑓 ) = 2Ω (𝑛1/3 ) . Since 𝑓 has |𝑃𝐼 (𝑓 ) | =
(
𝑛
𝑘

)
≤ 𝑛𝑘 prime

implicants, each of length 𝑚 =
(
𝑘
2
)
≤ 𝑘2, the parameter 𝜏 in Eq. (7) is at most a constant times

𝑘𝑚𝑤 log𝑛 ≤ 𝑘2𝑤+1 log𝑛. Since 𝑤 log𝑘 = O(𝑛1/3−𝜖 log𝑛) = 𝑜 (𝑛1/3), we have 𝜏 ≤ 2𝑜 (𝑛1/3 ) , and the
desired lower bound 𝐶𝑤 (𝑓 ) ≥ 𝐶+(𝑓 )/𝜏 − 1 = 2Ω (𝑛1/3 ) follows.

Note that, in the aforementioned result of [3], the allowed negation width𝑤 is smaller than the
clique size 𝑘 . When combined with the lower bound of Alon and Boppana [2, Theorem 3.16] for
cliques of small (up to logarithmic) size, Corollary 1 directly yields super-polynomial lower bounds
also when the allowed negation width is much larger, even exponential, in the clique size.

Corollary 3. Let 𝑓 = Clique(𝑛, 𝑘) for 𝑘 = (log𝑛)1/3. Then 𝐶𝑤 (𝑓 ) = 𝑛Ω (𝑘 ) for𝑤 = 2𝑘 .

Proof. Let 𝑓 = Clique(𝑛, 𝑘). It is shown in [2, Theorem 3.16] that 𝐶+(𝑓 ) ≥ 𝑛𝑘/(8𝑘2e𝑘 log𝑛)𝑘 holds
for any 3 ≤ 𝑘 ≤ 1

4 log𝑛. In particular, for 𝑘 = (log𝑛)1/3, we have 𝐶+(𝑓 ) = 𝑛Ω (𝑘 ) . On the other
hand, since 𝑓 has |𝑃𝐼 (𝑓 ) | =

(
𝑛
𝑘

)
≤ 𝑛𝑘 prime implicants, each of length𝑚 =

(
𝑘
2
)
≤ 𝑘2, the parameter

𝜏 in Eq. (7) is at most a constant times 𝑤𝑚 · log |𝑃𝐼 (𝑓 ) | ≤ 2𝑘3𝑘 log𝑛 ≤ 𝑛 log2 𝑛, and Eq. (6) yields
𝐶𝑤 (𝑓 ) ≥ 𝐶+(𝑓 )/𝜏 − 1 = 𝑛Ω (𝑘 ) . □

The following lower bound holds for the depth of DeMorgan circuits of bounded negation width.

Corollary 4. Let 𝑓 = Clique(𝑛, 𝑛/2). Then 𝐷𝑤 (𝑓 ) = Ω(𝑛) for𝑤 = 𝑜 (𝑛/log𝑛).

Proof. Raz and Wigderson [30, Corollary 4.1] have proved that 𝐷+(𝑓 ) = Ω(𝑛). Since 𝑓 has |𝑃𝐼 (𝑓 ) | =(
𝑛
𝑛/2

)
≤ 2𝑛 prime implicants, each of length 𝑚 =

(
𝑛/2
2
)
≤ 𝑛2, the logarithm of the parameter 𝜏 in

Eq. (7) is at most a constant times 𝑤 log𝑚 + log log |𝑃𝐼 (𝑓 ) | = O(𝑤 log𝑛). Eq. (6) yields 𝐷𝑤 (𝑓 ) ≥
𝐷+(𝑓 ) − log𝜏 = 𝐷+(𝑓 ) −O(𝑤 log𝑛) = Ω(𝑛), as desired. □
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The following lower bound holds for the size of DeMorgan formulas of bounded negation width.

Corollary 5. Let 𝑓 = Clique(𝑛, 𝑛/2). Then 𝐿𝑤 (𝑓 ) = 2Ω (𝑛) for𝑤 = 𝑜 (𝑛/log𝑛).

Proof. The desired lower bound follows directly from Corollary 4 and our refinement of Spira’s
depth-reduction given in Theorem 3. □

Remark 6. Recently, Pitassi and Robere [28] gave an explicit monotone Boolean function 𝑓 of 𝑛
variables such that 𝐷+(𝑓 ) = Ω(𝑛). Together with the lower bound in Eq. (6), this implies that any
(non-monotone) DeMorgan circuit of negation width 𝑤 = 𝜖𝑛 for a sufficiently small constant 𝜖 > 0
must have linear depth Ω(𝑛). Together with Theorem 3, this result implies a truly exponential lower
bound 𝐿𝑤 (𝑓 ) = 2Ω (𝑛) on the size of DeMorgan formulas of negation width 𝑤 = 𝜖𝑛. Note that the
ultimate goal is to prove lower bounds for DeMorgan circuits of negation width 𝑤 = 𝑛 (or only
𝑤 = 𝑛 −𝑚, where𝑚 is the minimum length of a prime implicant): these bounds then would hold for
unrestricted circuits.

7.3. Average negation width

We will now give an application of our Theorem 2 concerning DeMorgan circuits of bounded
average negation width. As we already mentioned in Section 2, in order to apply this theorem, we
need lower bounds on the size of monotone circuits that only approximate a givenmonotone Boolean
function (see Definition 3).

Fortunately, known lower bound arguments formonotone circuits work alsowhen themonotone
circuits are only required to produce a large enough subset of prime implicants (not necessarily all
prime implicants). In particular, these arguments yield the following lower bound on the size of
monotone circuits approximating clique functions. A 𝑘-clique is a subgraph of 𝐾𝑛 consisting of a
complete graph on some 𝑘 vertices, and 𝑛 − 𝑘 isolated vertices.

Lemma 4. Let 𝜏 ≥ 1, 3 ≤ 𝑘 ≤
√
𝑛, and let 𝑓 be a monotone Boolean function which rejects all graphs of

chromatic number at most 𝑘 − 1, and accepts a 1/𝜏-fraction of all 𝑘-cliques. Then 𝐶+(𝑓 ) ≥ 2Ω (
√
𝑘 )/𝜏 .

Proof. Set 𝑞 := 𝑘 − 1. Every 𝑞-coloring ℎ : [𝑛] → [𝑞] of the vertices of 𝐾𝑛 defines the graph 𝐺ℎ

whose edges are pairs of vertices receiving the same color. Different colorings may lead to the same
graph, but we treat these graphs as distinct, for the simplicity of counting. Note that the chromatic
number of the complement of every𝐺ℎ does not exceed 𝑞 = 𝑘 − 1; so, the complements of graphs𝐺ℎ

must be rejected by 𝑓 . An 𝑙-forest is a forest with 𝑙 edges. We will need the following simple fact.

Claim 2. For any integer 1 ≤ 𝑠 < 𝑛, at most 𝑞𝑛−𝑠 of the graphs 𝐺ℎ can contain a fixed 𝑠-forest.

Proof. Fix an 𝑠-forest 𝐹 , and let 𝑇1, . . . ,𝑇𝑡 be all its connected components (trees). Hence, 𝐹 touches
𝑚 = |𝐹 | + 𝑡 = 𝑠 + 𝑡 vertices. All vertices in each of these trees must receive the same color. There are
only 𝑞𝑡 possibilities to assign colors to the trees, and only 𝑞𝑛−𝑚 = 𝑞𝑛−𝑠−𝑡 possibilities to color the
vertices outside the forest 𝐹 . So, the number of graphs 𝐺ℎ containing the forest 𝐹 does not exceed
𝑞𝑡𝑞𝑛−𝑚 = 𝑞𝑛−𝑠 . □

As shown in [14, Theorem 3.4], if 𝑓 can be computed by a monotone circuit of size 𝑡 , then for
any integer parameters 1 ≤ 𝑟, 𝑠 ≤ 𝑛 − 1 there exist a family of at most 𝑡 · (2𝑠)2𝑟 𝑟 -cliques, a family of
at most 𝑡 · (2𝑟 )2𝑠 𝑠-forests, and a set 𝐸 of at most 𝑟 2 edges such that at least one of the following two
assertions holds:

(i) every 𝑘-clique accepted by 𝑓 contains at least one of the given 𝑟 -cliques;
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(ii) for every 𝑞-coloring ℎ, the graph 𝐺ℎ either intersects 𝐸 or contains at least one of the given
𝑠-forests.

Now take a monotone circuit 𝐹+ which accepts a 1/𝜏-fraction of all 𝑘-cliques, and rejects all graphs
of chromatic number at most 𝑘 − 1.

Every 𝑟 -clique is contained in
(
𝑛−𝑟
𝑘−𝑟

)
𝑘-cliques. So, under the first alternative (i), the size 𝑡 of the

circuit 𝐹+ must be at least
(
𝑛
𝑘

)
/𝜏 divided by (2𝑠)2𝑟

(
𝑛−𝑟
𝑘−𝑟

)
. Since

(
𝑛
𝑘

)
/
(
𝑛−𝑟
𝑘−𝑟

)
≥ (𝑛/𝑘)𝑟 , this is at least

(𝑛/4𝑘𝑠2)𝑟/𝜏 .
On the other hand, the number of𝑞-coloringsℎ for which𝐺ℎ∩𝐸 = ∅ holds is at least𝑞𝑛−𝑟 2·𝑞𝑛−1 =

𝑞𝑛 (1 − 𝑟 2/𝑞), which is at least 𝑞𝑛/2 as long as 𝑟 ≤ √
𝑞. We have 𝑡 · (2𝑟 )2𝑠 𝑠-forests and, by Claim 2,

for at most 𝑞𝑛−𝑠 𝑞-colorings ℎ the graphs 𝐺ℎ can contain any fixed 𝑠-forest. So, under the second
alternative (ii), the size 𝑡 of the circuit 𝐹+ must be at least (𝑞𝑠/2)/(2𝑟 )2𝑠𝑞𝑛−𝑠 = 1

2 (𝑞/4𝑟
2)𝑠 which, for

any 𝑟 ≤
√︁
(𝑞 − 1)/2 =

√︁
(𝑘 − 2)/2 is at least 1

2 (𝑘/4𝑟
2)𝑠 .

By taking the parameters 𝑟 := ⌊
√︁
𝑘/16⌋ and 𝑠 := ⌊

√︁
𝑛/8𝑘⌋, the first alternative yields a lower

bound 𝑡 ≥ 2𝑟/𝜏 , while the second one yields 𝑡 ≥ 1
24

𝑠 ≥ 2𝑠 . Since our assumption 𝑘 ≤
√
𝑛 yields

𝑠 ≥ 𝑟 , the desired lower bound 𝑡 ≥ 2𝑟/𝜏 ≥ 2Ω (
√
𝑘 )/𝜏 follows. □

Corollary 6. Let 𝑓 = Clique(𝑛, 𝑘) for 3 ≤ 𝑘 ≤
√
𝑛. Then every DeMorgan circuit of average negation

width𝑤 = 𝑜 (
√
𝑘/log𝑘) computing 𝑓 must have 2Ω (

√
𝑘 ) gates.

Proof. Lemma 4 implies that, for every 𝜏 ≥ 1, every monotone circuit 𝜏-approximating 𝑓 requires at
least 𝑡 = 2Ω (

√
𝑘 )/𝜏 gates. The length of prime implicants of 𝑓 is𝑚 =

(
𝑘
2
)
. So, by taking 𝜏 := 8𝑚2𝑤 =

2𝑜 (
√
𝑘 ) , Theorem 2 yields the desired lower bound on the size of any DeMorgan circuit of average

negation width𝑤 computing 𝑓 . □

Appendix A. Reducing negation width via decompositions

An 𝑚-decomposition of a monotone Boolean function 𝑓 is its representation in the form 𝑓 =

𝜑 (𝑓1, . . . , 𝑓𝑙 ), where 𝑓1(𝑋1), . . . , 𝑓𝑙 (𝑋𝑙 ) and 𝜑 (𝑦1, . . . , 𝑦𝑙 ) are monotone Boolean functions, and |𝑋𝑖 | ≤
𝑚 for all 𝑖 . Such a decomposition is semidisjoint if the outer function𝜑 fulfills the following condition:

if both variables 𝑦𝑖 and 𝑦 𝑗 belong to the same prime implicant of 𝜑 , then 𝑋𝑖 ∩ 𝑋 𝑗 = ∅. (A.1)

This condition ensures that the functions 𝑓𝑖 (𝑋𝑖) substituted to the variables𝑦𝑖 of any prime implicant
of𝜑 (𝑦1, . . . , 𝑦𝑙 ) depend on disjoint sets of variables. We say that a DeMorgan circuit 𝐹 simultaneously
computing all Boolean functions 𝑓1(𝑋1), . . . , 𝑓𝑙 (𝑋𝑙 ) is local if, for every 𝑖 , no term produced at a gate
of 𝐹 computing the function 𝑓𝑖 (𝑋𝑖) contains a literal 𝑥 𝑗 or 𝑥 𝑗 for 𝑥 𝑗 ∉ 𝑋𝑖 . Thus, the negation width of
the subcircuit 𝐹𝑖 computing 𝑓𝑖 (𝑋𝑖) is automatically at most |𝑋𝑖 |. Let𝐶 (𝑓1, . . . , 𝑓𝑙 ) denote theminimum
size of a local DeMorgan circuit simultaneously computing all these functions.

Lemma 5. Let 𝑓 = 𝜑 (𝑓1, . . . , 𝑓𝑙 ) be an semidisjoint𝑚-decomposition of a monotone Boolean function 𝑓 ,
and let 𝑘 be the maximum length of a prime implicant of 𝜑 . Then for the negation width 𝑤 = 𝑘𝑚, we
have

𝐶𝑤 (𝑓 ) ≤ 𝐶+(𝜑) +𝐶 (𝑓1, . . . , 𝑓𝑙 ) .

Proof. Let 𝐹 (𝑋 ) be a local DeMorgan circuit of size𝐶 (𝑓1, . . . , 𝑓𝑙 ) simultaneously computing all func-
tions 𝑓1(𝑋1), . . . , 𝑓𝑙 (𝑋𝑙 ) of the 𝑚-decomposition of 𝑓 (𝑋 ); hence, |𝑋𝑖 | ≤ 𝑚. Let 𝑌 = {𝑦1, . . . , 𝑦𝑙 }
be the variables of 𝜑 , and let 𝐻 (𝑌 ) be a monotone circuit of size 𝐶+(𝜑) computing 𝜑 . The circuit

16



𝐹 ′(𝑋 ) = 𝐻 (𝐹 (𝑋 )) computes our function 𝑓 (𝑋 ). The size of this circuit is the size𝐶 (𝑓1, . . . , 𝑓𝑙 ) of the
circuit 𝐹 plus the size 𝐶+(𝜑) of the circuit 𝐻 . So, it remains to show that the negation width of 𝐹 ′
does not exceed 𝑘𝑚.

To show this, take an arbitrary prime implicant 𝑝 of 𝑓 . This implicant is of the form 𝑝 =
∧

𝑖∈𝑆 𝑝𝑖
for some prime implicant 𝑡 =

∧
𝑖∈𝑆 𝑦𝑖 of 𝜑 and some prime implicants 𝑝𝑖 of the corresponding func-

tions 𝑓𝑖 (𝑋𝑖) with 𝑖 ∈ 𝑆 . Since the decomposition 𝑓 = 𝜑 (𝑓1, . . . , 𝑓𝑙 ) is semidisjoint, all sets 𝑋𝑖 of
variables with 𝑖 ∈ 𝑆 are disjoint. By Fact 1, for every 𝑖 , the circuit 𝐹 must produce some extension
𝑞𝑖 = 𝑝𝑖𝑟𝑖 of the prime implicant 𝑝𝑖 . Since the circuit 𝐹 is local, this extension cannot contain any
literal 𝑧 = 𝑥𝜎

𝑗
with 𝑥 𝑗 ∉ 𝑋𝑖 . Thus, the sets of variables of these extensions are disjoint. This ensures

that the extension 𝑞 =
∧

𝑖∈𝑆 𝑞𝑖 of the prime implicant 𝑝 of 𝑓 is nonzero, i.e. 𝑞 does not contain a
variable together with its negation. Since the circuit 𝐻 (𝑌 ) is monotone, the prime implicant

∧
𝑖∈𝑆 𝑦𝑖

of 𝜑 is produced by this circuit. So, the entire extension
∧

𝑖∈𝑆 𝑞𝑖 of 𝑝 with at most |𝑆 |𝑚 ≤ 𝑘𝑚 negated
variables is produced by the entire circuit 𝐹 ′. □

For example, if 𝑓 (𝑋 ) = 𝑓1(𝑋1) ∨ 𝑓2(𝑋2) ∨ · · · ∨ 𝑓𝑙 (𝑋𝑙 ) for some 𝑤-element subsets 𝑋𝑖 ⊂ 𝑋 and
functions 𝑓𝑖 : {0, 1}𝑋𝑖 → {0, 1}, then 𝐶𝑤 (𝑓 ) ≤ 𝐶 (𝑓1, . . . , 𝑓𝑙 ) + 𝑙 − 1. That is, then the minimum size
of a circuit of negation width 𝑤 for the function 𝑓 is essentially the same as the minimum size of
an unrestricted circuit computing 𝑓1, . . . , 𝑓𝑙 . This follows from Lemma 5 by taking OR as the outer
function 𝜑 . The following upper bound for threshold functions uses a less trivial decomposition.

Appendix B. Upper bound for threshold functions

Recall that the threshold-𝑘 functionTh𝑛
𝑘
accepts a Boolean input vector of length 𝑛 iff this vector

contains at least 𝑘 ones. The smallest known monotone circuits for Th𝑛
𝑘
have size O(𝑛 log𝑘); as

shown by Kochol [20], the circuits of this size can be constructed using the sorting network of Ajtai,
Komlós and Szemerédi [1]. On the other hand, we will now show that Th𝑛

𝑘
can be computed by a

DeMorgan circuit of linear size O(𝑛) if negation width𝑤 = 𝑘3 is allowed.

Lemma 6. If 𝑘 ≤ 𝑛1/3 and𝑤 = 𝑘3, then 𝐶𝑤 (Th𝑛
𝑘
) = O(𝑛).

Proof. For the sake of simplicity of argumentation, assume that the number of variables 𝑛 is divisible
by an integer parameter𝑚 ≥ 𝑘 (to be chosen latter). Divide the sequence 𝑋 of |𝑋 | = 𝑛 Boolean vari-
ables into ℓ := 𝑛/𝑚 consecutive blocks 𝑋1, . . . , 𝑋ℓ , each of length𝑚. For 𝑖 ∈ [ℓ] and 𝑟 ∈ {0, 1, . . . , 𝑘},
let Th𝑚

𝑟 (𝑋𝑖) be the threshold-𝑟 functions on the𝑚 variables in the 𝑖th block 𝑋𝑖 .
It is well known (see, for example, [38, Sect. 3.4]) that all the threshold functionsTh𝑚

1 ,Th
𝑚
2 , . . . ,Th

𝑚
𝑚

on the same set of𝑚 variables can be simultaneously computed by a (non-monotone) DeMorgan cir-
cuit of size O(𝑚). So, for every 𝑖 = 1, . . . , ℓ , all threshold functions Th𝑚

0 (𝑋𝑖),Th𝑚
1 (𝑋𝑖), . . . ,Th𝑚

𝑘
(𝑋𝑖)

can be simultaneously computed by a DeMorgan circuit 𝐹𝑖 (𝑋𝑖) of size O(𝑚). If we put all circuits
𝐹1(𝑋1), . . . , 𝐹ℓ (𝑋ℓ ) side by side, then the obtained circuit 𝐹 (𝑋 ) of sizeO(ℓ𝑚) = O(𝑛) is local (circuits
𝐹𝑖 and 𝐹 𝑗 for 𝑖 ≠ 𝑗 have no common input gates) and simultaneously computes all functionsTh𝑚

𝑟 (𝑋𝑖)
for 𝑖 = 1, . . . , ℓ and 𝑟 = 0, 1, . . . , 𝑘 . On the other hand, we have

Th𝑛
𝑘
(𝑋 ) = OR of all functions

∧
𝑖∈𝑆

Th𝑚
𝑟𝑖
(𝑋𝑖) for 𝑆 ⊆ [ℓ] such that

∑︁
𝑖∈𝑆

𝑟𝑖 = 𝑘 . (B.1)

This suggests to consider the following monotone Boolean function 𝜑 (𝑌 ) of the set of variables 𝑦𝑖,𝑟
for 𝑖 = 1, . . . , ℓ and 𝑟 = 0, 1, . . . , 𝑘 :

𝜑 (𝑌 ) = OR of all terms
∧
𝑖∈𝑆

𝑦𝑖,𝑟𝑖 for 𝑆 ⊆ [ℓ] such that
∑︁
𝑖∈𝑆

𝑟𝑖 = 𝑘 . (B.2)
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By Eq. (B.1), if we substitute the functions Th𝑚
𝑟 (𝑋𝑖) for variables 𝑦𝑖,𝑟 in 𝜑 (𝑌 ), then the obtained

function on the variables in 𝑋 computes the threshold-𝑘 function Th𝑛
𝑘
(𝑋 ). So, we have an 𝑚-

decomposition Th𝑛
𝑘
(𝑋 ) = 𝜑 (Th𝑚

𝑟 (𝑋𝑖) : 𝑖 = 1, . . . , ℓ, 𝑟 = 0, 1, . . . , 𝑘) of Th𝑛
𝑘
(𝑋 ), where all the functions

Th𝑚
𝑟 can be simultaneously computed by a local DeMorgan circuit of size O(ℓ𝑚) = O(𝑛). By the

definition, no prime implicant of 𝜑 (𝑌 ) contains two variables 𝑦𝑖,𝑟 and 𝑦 𝑗,𝑠 with 𝑖 = 𝑗 . So, the sets 𝑋𝑖

of variables of functions Th𝑚
𝑟 (𝑋𝑖) corresponding to variables 𝑦𝑖,𝑟 in any one single prime implicant

of 𝜑 are disjoint, meaning that the decomposition is semidisjoint.
Since prime implicants of the function ℎ have length at most 𝑘 , Lemma 5 implies that Th𝑛

𝑘
can

be computed by a DeMorgan circuit of negation width𝑤 ≤ 𝑘𝑚 and size at most𝐶+(𝜑) +O(𝑛). So, it
remains to show that the function 𝜑 can be computed by a monotone circuit of size O(𝑛). This can
be done by an easy dynamic programming. Equation (B.2) suggests the following subproblems:

𝑃
𝑗
𝑟 = OR of all terms

∧
𝑖∈𝑆

𝑦𝑖,𝑟𝑖 for 𝑆 ⊆ [ 𝑗] such that
∑︁
𝑖∈𝑆

𝑟𝑖 = 𝑟 .

By letting 𝑃0𝑟 = 𝑦0,𝑟 ≡ 1 for all 𝑟 = 0, 1, . . . , 𝑘 , these functions can be computed by the recursion

𝑃
𝑗+1
𝑟 =

𝑟∨
𝑢=0

𝑃
𝑗
𝑟−𝑢 ∧ 𝑦 𝑗+1,𝑢 for 𝑟 = 0, 1, . . . , 𝑘 .

It is easy to see that 𝑃 ℓ
𝑘
is our target function 𝜑 . To compute 𝑃𝑖+1𝑟 for all 𝑟 = 0, 1, . . . , 𝑘 from already

known values, we need only O(𝑘2) new gates. So, the entire monotone circuit computing 𝜑 = 𝑃 ℓ
𝑘

has only O(ℓ𝑘2) = O((𝑛/𝑚)𝑘2) gates. If we take𝑚 := 𝑘2, this is O(𝑛) gates, as desired. □

Appendix C. Upper bound for the triangle function

Let 𝑓 = Clique(𝑛, 3) be the triangle function, and let 𝑤 = 𝑛𝜖 for 𝜖 > 0. Our goal is to prove that
this function can be computed by a DeMorgan circuit of negation width 𝑤 and size O(𝑛3−𝜖/4), as
claimed in Corollary 2.

Recall that the triangle function 𝑓 has
(
𝑛
2
)
variables 𝑥𝑖, 𝑗 , one for each edge {𝑖, 𝑗} of 𝐾𝑛 , and is

the OR of all
(
𝑛
3
)
terms 𝑥𝑖,𝑙𝑥𝑙, 𝑗𝑥𝑖, 𝑗 for 𝑖 < 𝑙 < 𝑗 . Let 𝑌 = (𝑦𝑖, 𝑗 ) be the 𝑛 × 𝑛 matrix with 𝑦𝑖,𝑖 = 0 and

𝑦𝑖, 𝑗 = 𝑦 𝑗,𝑖 = 𝑥𝑖, 𝑗 for 𝑖 ≠ 𝑗 . Let 𝑍 = (𝑧𝑖, 𝑗 ) be the Boolean product 𝑍 = 𝑌 2 of matrix 𝑌 with itself. Note
that, for every 𝑖 ≠ 𝑗 , 𝑧𝑖, 𝑗 = 1 iff there is an 𝑙 ∉ {𝑖, 𝑗} such that 𝑥𝑖,𝑙 = 𝑥𝑙, 𝑗 = 1. So, 𝑓 =

∨
𝑖< 𝑗 𝑧𝑖, 𝑗 · 𝑥𝑖, 𝑗 . It

therefore remains to show that the entries 𝑧𝑖, 𝑗 of the matrix 𝑍 can be simultaneously computed by
a DeMorgan circuit of negation width 𝑤 = 𝑛𝜖 and size O(𝑛3−𝜖/4). We will apply Lemma 5 with a
trivial decomposition where the outer function 𝜑 is the OR function, and all blocks of variables are
disjoint.

Set 𝑚 := 1
2𝑛

𝜖/2, and assume for the sake of simplicity that both 𝑚 and 𝑟 := 𝑛/𝑚 are integers.
Partition the 𝑛×𝑛 matrix 𝑌 into disjoint𝑚×𝑚 submatrices 𝑌𝑖, 𝑗 , for 𝑖, 𝑗 = 1, . . . , 𝑟 . The corresponding
𝑚 × 𝑚 submatrix of the product matrix 𝑍 = 𝑌 2 is then 𝑍𝑖, 𝑗 =

∨𝑟
𝑘=1 𝑌𝑖,𝑘 · 𝑌𝑘,𝑗 , where the OR is

componentwise. Using fast matrix multiplication [35, 9, 39], we can compute each of the 𝑟 matrix
products 𝑌𝑖,𝑘 · 𝑌𝑘,𝑗 by a DeMorgan circuit of size 𝑀 = O(𝑚𝜔 ), where 𝜔 < 2.373. Since each such
circuit has only 2𝑚2 input variables, the negation width of each of these circuits is trivially at most
2𝑚2 = 𝑛𝜖 . Using additional 𝑟𝑚2 OR gates, we can then compute all 𝑚2 entries of the matrix 𝑍𝑖, 𝑗 .
Since the negation width can only increase at AND gates, the negation width of the resulting circuit
remains the same, that is, remains at most 𝑤 = 𝑛𝜖 . Since we only have 𝑟 2 submatrices 𝑍𝑖, 𝑗 of the
product matrix 𝑍 , and since 𝑀 ≥ 𝑚2, all entries of 𝑍 can be computed by a circuit of size at most
𝑟 2(𝑟𝑀 + 𝑟𝑚2) ≤ 2𝑟 3𝑀 . Since 𝑟 = 𝑛/𝑚 with𝑚 = 1

2𝑛
𝜖/2, the size of the resulting circuit is at most a

constant times (𝑛/𝑚)3𝑚𝜔 = 𝑛3/𝑚3−𝜔 ≤ 𝑛3−𝜖/4, as desired. □
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Appendix D. Negation width and communication

Let 𝑓 : {0, 1}𝑛 → {0, 1} be amonotone Boolean function, and𝑤 ≥ 0 be an integer. Let𝑑+ = 𝐷+(𝑓 )
be theminimumdepth of amonotone circuit computing 𝑓 , and𝑑 = 𝐷𝑤 (𝑓 ) be theminimumdepth of a
DeMorgan circuit of negation width𝑤 computing 𝑓 . Corollary 1 gives an upper bound 𝑑+ ≤ 𝑑+ log𝜏 ,
where 𝜏 = 4 ·min{𝑤𝑚,𝑚𝑤} · log |𝑃𝐼 (𝑓 ) |, and𝑚 is the maximum length of a prime implicant of 𝑓 . In
this section, we give a direct proof of an upper bound 𝑑+ ≤ 𝑑 +𝑤 · ⌈log(𝑛 + 1)⌉ using the Karchmer–
Wigderson communication arguments [18].

As shown by Karchmer and Wigderson [18], 𝑑+ is exactly the maximum, over all inputs (𝑎, 𝑏) ∈
𝑓 −1(1) × 𝑓 −1(0), of the minimum number of bit of communication required for the players, Alice
and Bob, in the following game. When an input pair (𝑎, 𝑏) with 𝑓 (𝑎) = 1 and 𝑓 (𝑏) = 0 arrives, the
first vector 𝑎 is given to Alice, and the second vector 𝑏 to Bob. Their goal is to find a position 𝑖 ∈ [𝑛]
such that 𝑎𝑖 = 1 and 𝑏𝑖 = 0; since 𝑓 is monotone, such a position always exists.

Now take a DeMorgan circuit 𝐹 of negation width 𝑤 computing 𝑓 , and whose depth is 𝑑 . In
order to show the inequality 𝑑+ ≤ 𝑑 +𝑤 · ⌈log(𝑛 + 1)⌉ it is enough, by the aforementioned result of
Karchmer and Wigderson [18], to design a communication protocol for the game on 𝑓 which uses
at most 𝑑 +𝑤 · ⌈log(𝑛 + 1)⌉ bits of communication on all input pairs (𝑎, 𝑏) ∈ 𝑓 −1(1) × 𝑓 −1(0). So,
suppose such an input pair (𝑎, 𝑏) arrives. If we directly run the Karchmer–Wigderson protocol on
the (nonmonotone) circuit 𝐹 , then only 𝑑 bits will be communicated. But at the end, the players will
only obtain an input literal 𝑧 = 𝑥𝜎

𝑖
such that 𝑧 (𝑎) ≠ 𝑧 (𝑏). We, however, want to end up with an input

literal with 𝜎 = 1 (unnegated variable). To achieve this, we will allow to communicate more bits,
and use the fact that the negation width of our circuit 𝐹 is bounded.

1. Alice takes a vector 𝑎′ ≤ 𝑎 with a minimal number of 1s which still satisfies 𝑓 (𝑎′) = 1. Then
𝑝 (𝑎′) = 1 holds for some prime implicant 𝑝 =

∧
𝑖∈𝑆 𝑥𝑖 of 𝑓 ; note that 𝑎′𝑖 = 1 if and only if 𝑖 ∈ 𝑆 .

2. Since the negation width of the circuit 𝐹 is bounded by 𝑤 , there is a term 𝑟 =
∧

𝑖∈𝐼 𝑥𝑖 with
|𝐼 | ≤ 𝑤 such that 𝑝 · 𝑟 ∈ 𝑇 (𝐹 ) and 𝑝 · 𝑟 (𝑎′) = 1; hence, 𝑓 (𝑎′) = 1 and 𝑆 ∩ 𝐼 = ∅.

3. Alice uses |𝐼 | · ⌈log(𝑛 + 1)⌉ ≤ 𝑤 · ⌈log(𝑛 + 1)⌉ bits to send Bob the entire set 𝐼 of positions of
negated variables in her chosen term 𝑝 · 𝑟 .

4. Since Bob knows Alice’s strategy, he knows that Alice’s current input 𝑎′ must have solely zeros
in all positions 𝑖 ∈ 𝐼 . So, he replaces his original input vector 𝑏 by the vector 𝑏′ ≤ 𝑏 with 𝑏′𝑖 = 0
for 𝑖 ∈ 𝐼 , and 𝑏′𝑖 = 𝑏𝑖 for 𝑖 ∉ 𝐼 . Since 𝑓 (𝑏) = 0 and function 𝑓 is monotone, we have 𝑓 (𝑏′) = 0.

5. The players now replace by constant 0 each negated input gate 𝑥𝑖 in the circuit 𝐹 with 𝑖 ∉ 𝐼 ,
and consider the resulting (not necessarily monotone) circuit 𝐹 ′.

6. Since no negated literal of the term 𝑝 · 𝑟 was set to 0, this term belongs also to the set𝑇 (𝐹 ′) of
terms produced by the new circuit. So, since 𝑝 · 𝑟 (𝑎′) = 1, the circuit 𝐹 ′ accepts vector 𝑎′. On
the other hand, since the original circuit 𝐹 rejected vector 𝑏, and we have only replaced some
input gates by zeros, the circuit 𝐹 ′ rejects vector 𝑏′.

7. So, the players can now run the standard Karchmer–Wigderson protocol ([18, Lemma 2.1]) on
the pair (𝑎′, 𝑏′) using the (not necessarily monotone) circuit 𝐹 ′ . After communicating at most
𝑑 bits (the depth of 𝐹 ′ can only be smaller than 𝑑), they will arrive at some input literal 𝑧 of
the circuit 𝐹 ′ such that 𝑧 (𝑎′) = 1 and 𝑧 (𝑏′) = 0. The literal 𝑧 is either an unnegated variable 𝑥𝑖 ,
or a negated variable 𝑥𝑖 for some 𝑖 ∈ 𝐼 : the circuit 𝐹 ′ has no other non-constant input literals.

8. Since vectors 𝑎′ and 𝑏′ coincide in all positions 𝑖 ∈ 𝐼 (both have zeros here), 𝑧 = 𝑥𝑖 must hold
for some (unnegated) variable 𝑥𝑖 , implying that the found input literal 𝑧 gives the position 𝑖
with 𝑎′𝑖 = 1 and 𝑏′𝑖 = 0.
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Now, 𝑎′𝑖 = 1 and 𝑎′ ≤ 𝑎 imply 𝑎𝑖 = 1. On the other hand, since the position 𝑖 lies outside 𝐼 ,
and since vector 𝑏′ coincides with 𝑏 on all such positions, 𝑏′𝑖 = 0 also implies 𝑏𝑖 = 0. So, the found
position 𝑖 satisfies 𝑎𝑖 = 1 and 𝑏𝑖 = 0, as desired. □
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