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Abstract. We study k-partition communication protocols, an extension
of the standard two-party best-partition model to k input partitions. The
main results are as follows.

1. A strong explicit hierarchy on the degree of non-obliviousness is estab-
lished by proving that, using k+1 partitions instead of k may decrease
the communication complexity from Θ(n) to Θ(log k).

2. Certain linear codes are hard for k-partition protocols even when k

may be exponentially large (in the input size). On the other hand, one
can show that all characteristic functions of linear codes are easy for
randomized OBDDs.

3. It is proved that there are subfunctions of the triangle-freeness function

and the function ⊕Clique3,n that are hard for multi-partition proto-
cols. As an application, strongly exponential lower bounds on the size
of nondeterministic read-once branching programs for these functions
are obtained, solving an open problem of Razborov [22].

Keywords: Computational complexity, multi-partition communication
complexity, non-obliviousness, lower bounds, complexity hierarchy, read-
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1 Introduction

One of the hardest tasks in theoretical computer science is to prove nontriv-
ial lower bounds on the amount of computational resources needed to solve ex-
plicit computing problems. For many models of computation we observe the
phenomenon that the border between oblivious and non-oblivious variants corre-
sponds to the border between “easy” and “hard” for proving lower bounds. We
call a model of computation oblivious if it may access its input bits in an order
that may depend only on the input length but not on the actual input itself, and
non-oblivious if this is not the case.
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A nice illustration of this connection between non-obliviousness and hardness
of proving lower bounds is provided by finite automata. Clearly, one-way finite
automata are an oblivious model of computation and there is no problem in
proving tight, large lower bounds on their size (the number of states) and so, for
instance, to obtain an exponential gap between determinism and nondeterminism
for some specific regular languages. In contrast, two-way finite automata are
non-oblivious and one is so far not able to prove satisfying lower bounds on their
size. In particular, proving an exponential gap between the sizes of two-way
deterministic and two-way non-deterministic finite automata is a long-standing
open problem [23]. In 1979, Sipser restricted two-way finite automata to so-
called sweeping automata and proved an exponential gap between determinism
and nondeterminism for this restricted model [26]. But the crucial point is that
sweeping automata are an oblivious version of two-way automata and this kind
of obliviousness can exponentially increase the number of states [18] (i. e., the
lower bound proof technique for sweeping automata cannot successfully be used
for general two-way finite automata). As a further source of examples illustrating
the relationship between non-obliviousness and hardness of proving lower bounds
we mention the area of branching programs. More details on this model will be
given in the next section. For a thorough introduction we refer the reader to the
monograph [27].

The above facts show that, in order to get better lower bound techniques for
non-oblivious models of computation, it is worthwhile to study the dependence
of computational complexity on the degree of non-obliviousness allowed in the
model under consideration. In this paper, we follow this line of research for two-
party communication protocols. The main reason for considering this model is
the simplicity of its description and the fact that communication complexity has
become one of the most successful instruments in proving lower bounds on other
fundamental complexity measures in the last twenty years (see, e. g., [9,10,16] for
surveys). Moreover, the standard models of deterministic, nondeterministic, and
randomized two-party communication protocols are well understood and one has
developed a powerful mathematical machinery for estimating the communication
complexity of specific problems.

In the following, we summarize the definitions of deterministic and nondeter-
ministic two-party communication protocols in the form required here. Let f be
a boolean function defined on a set X of n boolean variables and let Π = (X1, X2)
be a partition of X, i. e., X1 ∪ X2 = X and X1 ∩ X2 = ∅. A deterministic two-
party communication protocol P for f with respect to Π is an algorithm by which
two players, called Alice and Bob, can evaluate f as follows. At the beginning
of the computation, Alice obtains an input x : X1 → {0, 1} and Bob an input
y : X2 → {0, 1}. Then the players communicate according to P by alternatingly
exchanging messages. The message computed by a player at some stage of the
protocol may be viewed as a function of his or her respective input and all the
previously exchanged messages. The players may use unbounded resources to
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compute their messages. The message sent by the last player is the output of the
protocol, which has to agree with f(x, y). The cost of P on input (x, y) is the total
number of bits exchanged during the computation on (x, y). The cost of P is the
maximum of the cost of P on (x, y) over all inputs (x, y) ∈ {0, 1}|X1| × {0, 1}|X2|.
The communication complexity of f with respect to Π, ccΠ(f), is the minimum
cost of a two-party protocol P for f with respect to Π. Finally, we may also
allow to adaptively choose the partition Π from a restricted class of partitions.
For a constant β > 0 call the partition Π β-balanced if |X1|, |X2| > bβnc and just
balanced if it is (1/2)-balanced. We define the (best-partition) communication
complexity of f , cc(f) as the minimum of ccΠ(f) over all balanced partitions Π.

A nondeterministic protocol allows each player to access a (private) string of
nondeterministic bits as an additional input. Such a protocol computes the func-
tion f if there is an assignment to the nondeterministic bits such that the protocol
outputs 1 if and only if f(x, y) = 1. The complexity of a nondeterministic pro-
tocol P is the maximum of the number of exchanged bits taken over all inputs,
including the nondeterministic bits. The nondeterministic communication com-
plexity of f with respect to Π, nccΠ(f), and the (best-partition) nondeterministic
communication complexity of f , ncc(f), are defined analogously to the determin-
istic case. For the following, it is important to mention an alternative, combi-
natorial characterization of nondeterministic communication complexity. For a
partition Π = (X1, X2) of the input variables, a (combinatorial) rectangle (with
respect to Π) is a function r : {0, 1}n → {0, 1} that can be written as r = r(1)∧r(2),
where the functions r(1), r(2) : {0, 1}n → {0, 1} only depend on the variables in
X1 and X2, resp. A collection of such rectangles r1, . . . , rt with respect to Π is
said to form a rectangle cover with respect to Π of a boolean function f defined
on X if f = r1 ∨· · ·∨ rt. It is a well-known fact [9,16] that each nondeterministic
communication protocol P for f with respect to a partition Π using m bits of
communication yields a rectangle cover of f with respect to Π with 2m rectangles
and vice versa. In particular, nccΠ(f) is equal to the logarithm (rounded up) of
the minimum number of rectangles in a rectangle cover of f with respect to Π.

We may regard two-party communication protocols as an oblivious model be-
cause they work with a fixed partition of the set of input variables for all inputs.
Thus it is not surprising that a straightforward application of communication
complexity for proving lower bounds only works for oblivious models of compu-
tation. As an example, we mention the situation for branching programs, where
the first exponential lower bounds on the size using communication complexity
have been for the oblivious variant of the model (Alon and Maass [3], see [12]
for a generalized variant of their approach and [27] for a more detailed history
of results). As an important step on the way to lower bounds for more gen-
eral variants of branching programs, Okolnishnikova [20] and Borodin, Razborov,
and Smolensky [6] succeeded in deriving exponential lower bounds on the size of
the non-oblivious models of deterministic and nondeterministic syntactic read-k
branching programs, resp. ¿From the perspective of communication complexity
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theory, their approach leads to protocols that may use several different input
partitions. More precisely, the idea is that such a protocol is allowed to choose
nondeterministically between k different subprotocols according to the standard
definition which may each use a different partition of the inputs. Then the num-
ber k is a natural measure for the degree of non-obliviousness allowed in the
model. If f is the function we want to compute, we require that for each input x
there is a subprotocol that outputs 1 for this input if and only if f(x) = 1. This
model has been introduced in [11], where the subprotocols were deterministic.
Here we allow the subprotocols even to be nondeterministic and arrive at the
following formal definition.

Definition 1. Let f be a boolean function defined on a set X of boolean vari-
ables, and let k be a positive integer. Let Π1, . . . , Πk be partitions of X. A
k-partition protocol P for f with respect to Π1, . . . , Πk is a collection of k nonde-
terministic protocols P1, . . . , Pk with f = f1 ∨· · ·∨fk, where the protocol Pi uses
the partition Πi and computes the function fi. Let ci be the number of rectan-
gles in the rectangle cover of fi induced by Pi. Then the complexity of P is de-
fined as

⌈

log
∑k

i=1 ci

⌉

. The k-partition communication complexity of f , k-pcc (f),
is the minimum of the complexity of a k-partition protocol for f with respect
to Π1, . . . , Πk taken over all collections Π1, . . . , Πk of balanced partitions. The
multi-partition communication complexity of f is mpcc(f) = mink∈ � k-pcc (f).

The paper of Borodin, Razborov, and Smolensky [6] implicitly contains the
first nontrivial lower bounds on multi-partition communication complexity. They
considered the so-called clique-only function on n =

(

m
2

)

variables checking
whether a graph on m vertices consists of an m/2-clique and m/2 isolated vertices
and proved that this function requires multi-partition communication complex-
ity at least Ω

(

n1/2
)

. Furthermore, they obtained a linear lower bound on the
multi-partition communication complexity for functions checking whether the in-
ner product with respect to generalized Fourier transform matrices is equal to
zero. The latter bound was in fact even for a generalization of multi-partition
protocols working with covers of the input variables that do not overlap too much
instead of partitions (see [15], we do not treat this model here), and thus allowed
to obtain even exponential lower bounds on the size of syntactic read-k branching
programs for not too large k.

The goal of this paper is to study the influence of the degree of non-obliviousness
measured in terms of the number of partitions k on the k-partition communica-
tion complexity (more precisely, we compare k-pcc (f) and k′-pcc (f) for k < k′),
to prove new lower bounds on the fundamental measure mpcc(f), and to apply
these results to branching programs. Our main results are as follows.

1. In [11], it was shown for an explicitly defined sequence of boolean func-
tions fn : {0, 1}n → {0, 1} that ncc(fn) = 1-pcc (fn) = Θ(n), while 2-pcc (fn) =
O(1). In Section 3 (Theorem 1), we significantly extend this result by prov-
ing that for all functions k :

�
→

�
there is an explicitly defined sequence of
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boolean functions fk,n : {0, 1}n → {0, 1} such that,

k(n)-pcc (fk,n) = Ω(n) and (k(n)+1)-pcc (fk,n) = O(log k(n)).

In particular, the gap between the bounds is unbounded for constant k and still
exponential for k(n) polynomial in n. Thus, a small increase of the degree of
non-obliviousness can result in a huge decrease of communication complexity.

2. In Section 4, we observe that an argument from [13,20] yields the lower bound
Ω
(

n1/2
)

on the multi-partition communication complexity of the characteristic
function of a BCH-code of length n and designed distance d = 2t + 1 with
t ≈ n1/2 (Theorem 2). Furthermore, we show that the characteristic function
of a random linear code even requires linear multi-partition communication
complexity (Theorem 3). On the other hand, the characteristic function of
the complement of a linear code can be computed by small randomized OB-
DDs with arbitrarily small one-sided error (Theorem 4). Thus we obtain
the apparently best known tradeoff between randomized and nondeterministic
branching program complexity.

3. In Section 5, we consider the problem of determining whether a given graph
on m vertices has no triangles. The corresponding triangle-freeness function
∆n has n =

(

m
2

)

boolean variables, one for each potential edge, and accepts
a given graph if and only if it has no triangles. We prove that there is a
subfunction ∆′

n of ∆n with mpcc(∆′
n) = Ω(n) (Theorem 5).

Although this result does not imply a lower bound on the multi-partition com-
munication complexity of the triangle-freeness function ∆n itself, it has an
interesting consequence for nondeterministic read-once branching programs.
Razborov ([22], Problem 11) asked whether a strongly exponential lower bound
holds for the function ⊕Clique3,n on n =

(

m
2

)

variables that outputs the par-
ity of the number of triangles in a graph on m vertices. In the case of determin-
istic read-once branching programs, such a lower bound for ⊕Clique3,n was
proved by Ajtai et al. in [2]. We solve this problem by proving that nondeter-
ministic read-once branching programs for ⊕Clique3,n and for the triangle-
freeness function ∆n require size at least 2Ω(n). The only other strongly ex-
ponential lower bounds for nondeterministic read-once programs so far were
proved for a class of functions based on quadratic forms in [4–6]. In the
deterministic case, the celebrated result of Ajtai [1] gave a strongly exponen-
tial lower bound for a function similar to ⊕Clique3,n even for linear-length
branching programs, which was subsequently improved by Beame, Saks, Sun,
and Vee [5] to work also for the randomized case and slightly super-linear
length.
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Remark. Building on the results of this paper presented in the conference
version, the following additional results have recently been achieved in [15]:
(i) mpcc(∆n) = Ω

(

n3/4
)

; (ii) k-pcc (∆n) = Ω(n) provided that k 6 2c
√

n for a
sufficiently small constant c > 0; and (iii) there is a constant c > 0 such that
nondeterministic syntactic read-k branching programs detecting the absence of

4-cliques in a graph on m vertices require size at least 2Ω(m2/ck). Moreover, it
has been shown that the lower bound on the multi-partition communication com-
plexity of the triangle-freeness function remains true also for protocols that use
β-balanced partitions, where β is any constant with 0 < β 6 1/2.

The rest of the paper is organized as follows. In Section 2, we provide some
further motivation why multi-partition communication complexity is a natural
and fundamental measure by characterizing it combinatorially in terms of the
size of rectangle covers and by discussing its relationship to usual nondetermin-
istic communication complexity and to branching program complexity. In Sec-
tions 3, 4, and 5, we present the main contributions of the work in the order
described above.

2 Relations Between Multi-Partition Commu-

nication Complexity and Other Complexity

Measures

In this section, we discuss the relationship of multi-partition communication com-
plexity to rectangle cover complexity, best-partition nondeterministic communi-
cation complexity, and to branching program complexity.

We start with a characterization of multi-partition communication complexity
in terms of the number of rectangles needed to cover the ones of the considered
function, in analogy to the standard model of nondeterministic communication
complexity with respect to a single partition. We rely on this characterization
for our lower bound proofs on multi-partition communication complexity.

Given a boolean function f defined on a set of variables X, we define its (multi-
partition) rectangle complexity R(f) as the minimal number t for which there
exist t rectangles r1, r2, . . . , rt, which may each have its own balanced partition
of the variables in X, such that f = r1 ∨ r2 ∨ · · · ∨ rt. The k-partition rectangle
complexity Rk(f) of f is the minimal number of rectangles needed to cover f
under the restriction that these rectangles may use at most k different balanced
partitions. Note that

Rk(f) = min
f1,f2,...,fk

R1(f1) + R1(f2) + · · ·+ R1(fk),
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where the minimum is taken over all k-tuples of boolean functions f1, f2, . . . , fk

with f1 ∨ f2 ∨ · · · ∨ fk = f . Furthermore, R(f) = mink Rk(f). The definitions
directly imply the following:

Proposition 1. For all boolean functions f ,

dlog Rk(f)e = k-pcc (f) and dlog R(f)e = mpcc(f).

This gives us the following obvious approach for proving lower bounds on
multi-partition communication complexity.

Proposition 2. Let f be a boolean function defined on the variable set X. Sup-
pose that any rectangle r with respect to a balanced partition of X and with
r 6 f , i. e., with r−1(1) ⊆ f−1(1), accepts at most b inputs. Then mpcc(f) =
dlog R(f)e >

⌈

log
(

|f−1(1)|/b
)⌉

.

Proposition 1 includes the fact that ncc(f) = dlog R1(f)e = 1-pcc (f) as a
special case. Apart from this, ncc(f) is also related to mpcc(f) in a deeper and
somewhat surprising way which we describe now. We show that, analogously
to ncc(f), the measure mpcc(f) can be characterized in terms of the rectangle
size bound from communication complexity theory [16].

Let f : {0, 1}n → {0, 1} be a boolean function, A ⊆ f−1(1), and let Π be a
partition of the variables of f . Define the distribution µA on {0, 1}n by µA(x) =
|A|−1 if x ∈ A, and µA(x) = 0 otherwise. Define the rectangle size bound for f
(with respect to A and Π) as B1

A,Π(f) = log
(

1/ maxr µA(r−1(1))
)

, where the
maximum extends over all rectangles r with respect to Π with r 6 f .

We have nccΠ(f) = maxA⊆f−1(1) B1
A,Π(f) ± O(log n) by the proof of Theo-

rem 2.16 in [16], and consequently

ncc(f) = min
Π

max
A⊆f−1(1)

B1
A,Π(f) ± O(log n),

where the minimum extends over all balanced partitions Π of the variables of f .
A similar argument yields the following characterization of multi-partition com-
munication complexity:

Proposition 3. For every boolean function f : {0, 1}n → {0, 1},

mpcc(f) = max
A⊆f−1(1)

min
Π

B1
A,Π(f) ± O(logn).

Proof. Due to Proposition 1, it is sufficient to prove that

R(f) > max
A⊆f−1(1)

min
Π

2B1

A,Π(f) and (1)

R(f) = O(n) · max
A⊆f−1(1)

min
Π

2B1

A,Π(f). (2)
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We first prove (1). Choose A ⊆ f−1(1) arbitrarily. Let c = R(f). By aver-
aging, there is a rectangle r0 6 f with respect to a balanced partition Π0 of

the variables of f such that |r−1
0 (1) ∩ A| > |A|/c. Since 2B1

A,Π0
(f) is the mini-

mum of |A|/|r−1(1) ∩ A| over all rectangles r 6 f with respect to Π0, it follows

that 2B1

A,Π0
(f)

6 |A|/|r−1
0 (1) ∩ A| 6 c. Hence, minΠ 2B1

A,Π(f)
6 2B1

A,Π0
(f)

6 c. Since
A ⊆ f−1(1) has been chosen arbitrarily, inequality (1) follows.

Now we prove (2). The proof is analogous to that of Theorem 2.16 in [16]. We
choose a sequence of rectangles r0, . . . , rc−1 such that f = r0 ∨ · · · ∨ rc−1 by the
greedy method. Let A0 = f−1(1). For i > 1, let Ai be the set of accepted
inputs of f not covered by r0, . . . , ri−1. For i > 0 such that |Ai| > 1, choose ri

such that it has maximal measure µAi
among rectangles r with r 6 f , i. e., such

that µAi

(

r−1
i (1)

)

= maxΠ maxr µAi

(

r−1(1)
)

, where the maxima are taken over all
balanced partitions Π of the input variables and all rectangles r 6 f according
to Π, resp. Let B = maxA⊆f−1(1) minΠ 2B1

A,Π(f). By the choice of ri,

|Ai+1|/|Ai| = 1 − µAi

(

r−1
i (1)

)

= 1 − max
Π

max
r

µAi

(

r−1(1)
)

= 1 − 1/
(

min
Π

2B1

Ai,Π(f))
6 1 − 1/B.

Since |A0| 6 22n, it follows that |Ai| 6 22n(1 − 1/B)i for all i > 0. Using that
(1−1/B)i 6 e−i/B , we get |Ai| < 1 for i > ln(22n) · B. Thus there is a c = O(n)·B
such that f = r0 ∨ · · · ∨ rc−1 and we have proved inequality (2). �

In the remainder of the section, we introduce the model of branching programs
and some of its restricted variants that occur in this paper and discuss their
relationship to multi-partition protocols.

Definition 2. A (deterministic) branching program on the variable set X =
{x1, . . . , xn} is a directed acyclic graph with a source and two sinks. The sinks
are labeled by the constants 0 and 1, resp. Each interior node is labeled by a
variable from X and has two outgoing edges carrying labels 0 and 1, resp. This
graph computes a boolean function f defined on X as follows. To compute f(a)
for some input a = (a1, . . . , an) ∈ {0, 1}n, start at the source. For an interior node
labeled by xi, follow the edge labeled by ai (this is called a test of the variable).
Iterate this until a sink is reached, whose label gives the value f(a). For a fixed
input a, the sequence of nodes visited in this way is uniquely determined and
is called the computation path for a. The size |G| of a BP G is the number of
its nodes. The branching program size of a function f is the minimum size of a
branching program that computes it.

The following variants of branching programs are important for this paper.
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Definition 3.
– A branching program is called syntactic read-k if, for each variable xi, each of

the paths in the branching program contains at most k nodes labeled by xi.
For the case k = 1 we use the name read-once branching program.

– An OBDD (ordered binary decision diagram) is a read-once branching program
where on each computation path the variables are tested according to the same
order.

We only remark that for the more general model of semantic read-k branching
programs (not considered here) the restriction on the number of read accesses to
the variables is required to hold only for all computation paths instead of all
graph theoretical paths as above.

Nondeterministic branching programs and randomized branching programs are
defined by allowing nodes labeled with variables from an additional set of non-
deterministic or randomized variables, resp. The value of these variables are
chosen nondeterministically or by independent coin tosses, resp. For randomized
branching programs, acceptance with different types of error, e. g., one-sided and
two-sided error, are defined as usual for Turing machines and communication
protocols.

Multi-partition communication complexity allows to capture the essence of
the technique of Borodin, Razborov, and Smolensky [6] for proving lower bounds
on the size of nondeterministic read-once branching programs. By the results in
their paper, it follows that for every boolean function f nondeterministic read-
once branching programs require size at least 2mpcc(f)/4. This bound can slightly
be improved by additional ideas from the paper [20] of Okolnishnikova to get:

Proposition 4 ([6,20]). For every boolean function f on n variables the size of
a nondeterministic read-once branching program for f is at least 2mpcc(f)/(2n).

The above proposition may be generalized to syntactic read-k branching pro-
grams by considering generalized multi-partition protocols that work with covers
of the input variables that do not overlap too much instead of partitions [15].
Since we do not prove any results for this case, we refrain from discussing the
technical details.

3 A Strong Hierarchy on the Degree of

Non-Obliviousness

The goal of this section is to prove that allowing one more partition of the input
variables can lead to an unbounded decrease of the communication complexity
for explicitly defined functions. This represents the strongest possible influence
of the degree of non-obliviousness on the complexity.
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Theorem 1. For all functions k :
�
→

�
, there is an explicitly defined sequence

of boolean functions fk,n : {0, 1}n → {0, 1} such that

k(n)-pcc (fk,n) = Ω(n) and (k(n)+1)-pcc (fk,n) = O(log k(n)).

Furthermore, the upper bound can even be achieved by using (k(n)+1)-partition
protocols where each subprotocol is deterministic.

Observe that, for any boolean function f on n variables and any k, k-pcc (f) >

dlog ke. Hence, the above statement is obviously true if k(n) = 2Θ(n), since then
k(n)-pcc (f) = Θ(n) and (k(n)+1)-pcc (f) = Θ(n). We get a non-trivial gap as
soon as k(n) = 2o(n).

We first explain how the functions used in the proof of Theorem 1 are con-
structed. We start with some function h that is known to be hard for multi-
partition protocols even if arbitrarily many β-balanced partitions are allowed,
for a suitable constant β with 0 < β 6 1/2. From h and a carefully chosen
collection of partitions P = (Π1, . . . , Πk+1) of the variables of h, a new function is
constructed that requires the evaluation of h on one half of each of the partitions
in P and is thus easy for (k + 1)-partition protocols. Using the properties of P,
we then show that, on the other hand, any k-partition protocol for this function
is forced to split the variables of h more or less evenly between the halves of
its partitions and thus requires large complexity. More formally, we have the
following definition.

Definition 4. Let k, `, and m be positive integers such that dlog(k + 1)e 6 `,
and let h : {0, 1}m → {0, 1} be an arbitrary function. Let x = (x1, . . . , x2m),
y = (y0, . . . , y`−1), and z = (z0, . . . , z`−1) be vectors of boolean variables. Let P =
{Π1, . . . , Πk+1}, where Πi = (Πi,1, Πi,2) is a balanced partition of the variables
in the vector x. Let Fh,`,P(x, y, z) be the boolean function in 2(m + `) variables
whose value on input (x, y, z) is the value of h on the part of x corresponding to
the first half of the ith partition Πi, where i is the number whose binary code
is y.

Observe that Fh,`,P does neither depend on the variables in x that only appear
in the second halves of the partitions in P nor on the variables in z. The latter
are dummy variables only used for padding the input. It is obvious that, for
any h and P, Fh,`,P has (k + 1)-partition protocols of small complexity:

Lemma 1. For any h and any collection P = (Π1, . . . , Πk+1) of balanced parti-
tions of the variables of h, (k + 1)-pcc (Fh,`,P) = O(log k). The upper bound is
achieved by (k + 1)-partition protocols where each subprotocol is deterministic.

Proof. The protocol for Fh,`,P uses k + 1 partitions which divide the x-vector of
input variables between the two players according to the partitions in P, and
which give all y-variables to the first player and all z-variables to the second
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player. In the ith subprotocol, the first player outputs the value of h on the
variables in the first half of the ith partition in P if i is the value represented by
the y-variables, and 0 otherwise. The second player does nothing. The complexity
of the whole protocol is obviously dlog(2(k + 1))e = dlog(k + 1)e + 1. �

In the following, we describe the main combinatorial idea for the proof of the
lower bound on the complexity of (k + 1)-partition protocols for Fh,`,P . If we can
ensure that all the sets occurring as halves of partitions in P (where |P| = k +1)
are “very different,” then the partitions in P cannot be “approximated” by only
k partitions, as the following lemma shows. For this, define the Hamming distance
between two finite sets A, B by d(A, B) = |A ∩ B| + |A ∩ B|.

Lemma 2. Let D, m > 1 be integers. Let A and B be families of subsets of
{1, . . . , 2m} with |A| = m for all A ∈ A, D 6 d(A, A′) 6 2m−D for all different
A, A′ ∈ A, and

∣

∣|B|−m
∣

∣ 6 D/4 for all B ∈ B. If |A| > |B|+1, then there exists
an A0 ∈ A such that for all B ∈ B,

|A0 ∩ B| > D/8 and |A0 ∩ B| > D/8.

Proof. We first show that there is an A0 ∈ A such that D/2 6 d(A0, B) 6

2m − D/2 for all B ∈ B. Assume to the contrary that for each A ∈ A there is
a B ∈ B such that d(A, B) < D/2 or d(A, B) = 2m − d(A, B) < D/2. Since
|A| > |B|+ 1, the pigeonhole principle implies that there exists B ∈ B such that
d(S1, B) < D/2 and d(S2, B) < D/2 for some S1 ∈ {A1, A1}, S2 ∈ {A2, A2}
and A1, A2 ∈ A, A1 6= A2. But then d(S1, S2) 6 d(S1, B) + d(B, S2) < D, a
contradiction to the hypothesis of the lemma.

For any two sets A and B, we have d(A, B) = |A|+ |B| − 2|A∩B|. Thus, for
the above A0 and all B ∈ B,

|A0∩B| =
1

2

(

|A0|+ |B|−d(A0, B)
)

>
1

2

(

m + m −
D

4
−

(

2m −
D

2

))

=
D

8
.

Analogously, we get |A0 ∩ B| > D/8 for all B ∈ B. �

The next lemma shows how we apply the above combinatorial idea to multi-
partition protocols in order to prove the lower bound in Theorem 1.

Lemma 3. Let k and m be positive integers. Let h be a boolean function in m
variables and let P be a collection of k+1 balanced partitions of 2m variables with
the property that the Hamming distance between the first halves of the partitions is
at least D and at most 2m−D for some D = εn, ε > 0. For any positive integer `
with dlog(k + 1)e 6 ` 6 D/4 let F = Fh,`,P be the function described in Defini-
tion 4. Then the k-partition communication complexity of h with (ε/8)-balanced
partitions does not exceed the k-partition communication complexity of F .

11



Thus, the lemma implies a large lower bound on the k-partition communi-
cation complexity of F if we have a large lower bound the complexity of multi-
partition protocols for h with β-balanced partitions, β a suitable constant with
0 < β 6 1/2.

Proof. Recall that F is defined on n = 2(m + `) variables in the vectors x, y, z.

Let x be split into halves
(

x
(1)
1 , x

(2)
1

)

, . . . ,
(

x
(1)
k+1, x

(2)
k+1

)

according to the partitions
in P. Let P ∗ be an optimal k-partition protocol for F according to some balanced
partitions Π∗

1, . . . , Π
∗
k of the input variables of F , where Π∗

i = (Π∗
i,1, Π

∗
i,2).

For i ∈ {1, . . . , k+1}, let Si and Si denote the sets of variables in x
(1)
i and x

(2)
i ,

resp. For i ∈ {1, . . . , k}, let Ti and Ti be the sets of x-variables contained in Π∗
i,1

and Π∗
i,2, resp. Since the number of the y- and z-variables together is 2` and

` 6 D/4 by the hypothesis, the number of x-variables in each half of Π∗
i is at

least n/2 − 2` = m − ` > m − D/4. Hence, |Ti|, |Ti| > m − D/4. We apply
Lemma 2 to A = {Si | i = 1, . . . , k + 1} and B = {Ti | i = 1, . . . , k}. This yields
an index i0 ∈ {1, . . . , k + 1} with |Si0 ∩ Tj|, |Si0 ∩ Tj| > D/8 = (ε/8)m for all
j = 1, . . . , k.

We construct the desired k-partition protocol P for h by setting variables to
constants in the given protocol P ∗ for F . Let F = P ∗

1 ∨ · · · ∨P ∗
k , where P ∗

i is the
function computed by the ith subprotocol P ∗

i of P ∗. We fix the y-variables such
that y represents the value i0. Furthermore, we fix the variables in Si0 and the
z-variables in an arbitrary way.

Let P and P1, . . . , Pk be the protocols obtained from P ∗ and P ∗
1 , . . . , P ∗

k ,
resp., by the above variable assignments. The new protocols only work on the m
variables in Si0 , and we have P1∨· · ·∨Pk = h

(

x1(1)
)

. By restricting the partitions
Π∗

1, . . . , Π
∗
k to the remaining variables in Si0, we obtain new partitions Π′

1, . . . , Π
′
k,

where Π′
i = (Π′

i,1, Π
′
i,2), such that |Π′

i,1|, |Π
′
i,2| > b(ε/8)mc for all i = 1, . . . , k.

Each Pi is a nondeterministic protocol according to Π′
i. Altogether, P is a protocol

of the desired type for h defined on Si0 , and the complexity of P is bounded from
above by the complexity of P ∗. �

In order to get a collection of partitions for which we can apply Lemma 3, we
rely on results from coding theory. We use the following definitions. A binary code
of length n is a subset of {0, 1}n. Such a code is called linear if it is even a subspace
of {0, 1}n regarded as a vector space. For two vectors x, y ∈ {0, 1}n, let d(x, y)
denote the Hamming distance between x and y. By the weight of x ∈ {0, 1}n,
denoted by w(x), we mean the number of ones in x. Finally, for even n call a
code C balanced if w(x) = n/2 for each x ∈ C.

We identify balanced partitions Π1, . . . , Πk+1 of 2m variables with their char-
acteristic vectors in {0, 1}2m, where (say) a one indicates a variable from the first
half and a zero a variable from the second half. A suitable collection of partitions
is then described by a balanced code where the Hamming distance between two
different codewords is neither too small nor too large. Furthermore, to make our
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argument work for a sufficiently large range of values for k, we need a code with
2Ω(m) codewords. Finally, we have to make sure that the characteristic function
of the chosen code can be efficiently computed in order to be able to argue that
the function constructed from this code later on is explicitly defined. The next
lemma provides codes satisfying all these requirements.

Lemma 4. Let d > 2 be an integer and let m = 2d(2d − 1). Then there is a bal-
anced code C ⊆ {0, 1}2m satisfying the following: (i) The characteristic function
of C can be computed in deterministic polynomial time; (ii) D 6 d(x, y) 6 2m−D
for all different x, y ∈ C, with D = εm for some constant ε with 1/32 < ε < 1;
and (iii) |C| > 2m/4.

Proof. Our starting point are Justesen codes, which are a known family of good
codes. We refer to [17] for a thorough treatment, but for easier reference also
include a definition and the facts about these code used here in an appendix. Fix
an integer d > 2 and let m = 2d(2d−1), N = 2d−1, and K = dN/2e 6 N−1. Let
Jd ⊆ {0, 1}m be the [N, K]-Justesen code. This code has at least 2m/4 codewords
and there is a constant ε with 1/32 < ε < 1 such that for sufficiently large d
each x ∈ Jd has weight w(x) > εm. Furthermore, following the proof of the
lower bound on the weight, e. g., in [17], one can easily show an analogous upper
bound, i. e., for sufficiently large d and each x ∈ Jd, w(x) 6 (1 − ε)m. Since Jd

is a linear code, the minimum and maximum weight of codewords are equal to
the minimum and maximum distance, resp., of different codewords, and thus we
have for all different x, y ∈ Jd that εm 6 d(x, y) 6 (1 − ε)m.

So far, the chosen code is not balanced. To rectify this problem, we double
the length of the codewords and balance the codewords by padding them with
ones. Let

C =
{

(x, y)
∣

∣ x ∈ Jd, y ∈ {0, 1}m with w(y) = 2m − w(x)
}

⊆ {0, 1}2m.

Then C is a balanced code with at least 2m/4 codewords that satisfies εm 6

d(x, y) 6 2m− εm for all different x, y ∈ C. Thus, all parameters are as required
for the lemma.

Finally, the characteristic function of C is also deterministic polynomial-time
computable. The only difficulty here is that the finite field arithmetic involved
in the construction of Jd requires an irreducible polynomial of degree d over � 2.
To get such a polynomial for arbitrary d we use the deterministic algorithm of
Shoup [25] which has polynomial running time if the characteristic of the finite
field is fixed. �

To complete the construction of the functions Fh,`,P for the proof of the lower
bound, we still need an explicitly defined function h which has large multi-
partition communication complexity even if the given partitions are only β-
balanced for a constant β. Linear lower bounds of this type, even for arbitrary
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constants β with 0 < β 6 1/2, are provided, e.g., in [4,15]. In [4] this is proved for
boolean functions based on quadratic forms with respect to generalized Fourier
transform matrices and in [15] for the boolean function detecting the absence of
4-cliques in graphs. Now we are ready to complete the proof of Theorem 1.

Proof of Theorem 1. Recall that for k(n) = 2Θ(n) the claim of the theorem is
trivially true. Hence, it suffices to choose any constant α > 0 and to show the
result for all k = k(n) 6 2αn. Choose α and k such that dlog(k + 1)e 6 n/212.

We now define the functions fk,n. We assume that n is a sufficiently large,
even integer (obviously, this can be done w. l. o. g. since the result can be extended
also to odd n by padding the input). Let d = blog n − loglog nc − 3 > 2 and
m = 2d(2d − 1). Then n/16 6 m 6 n/4. Let r = dn/2 − (1 + 1/128)me > 0,
m′ = m + r, and ` = (1/2)(n − 2m′) = n/2 − (m + r). Then ` 6 n/2 − (m +
n/2 − (1 + 1/128)m) = m/128 and ` > m/128 − 1 > m/256. Let C ⊆ {0, 1}2m

be the code obtained from Lemma 4. Define the new code C ′ ⊆ {0, 1}2m′

by

C ′ =
{

(x, y)
∣

∣ x ∈ C, y ∈ {0, 1}2r with w(y) = r
}

.

Then C ′ is a balanced code with D 6 d(x, y) 6 2m′ − D, where D = εm and ε
is the constant from Lemma 4 with 1/32 < ε < 1, and |C ′| > 2m/4 > 2n/64.

Let h be a boolean function on m′ variables from [4, 15] with multi-partition
communication complexity Ω(m′) for β-balanced partitions, where β is an ar-
bitrary constant with 0 < β 6 1/2. Choose different codewords c1, . . . , ck+1 ∈
{0, 1}2m′

from C ′; this is possible since k + 1 6 2n/212

6 |C ′|. Define the col-
lection of partitions P = (Π1, . . . , Πk+1) of the variables {x1, . . . , x2m′} with
Πi = (Πi,1, Πi,2), i = 1, . . . , k + 1, by Πi,1 = {xj | ci,j = 1} and Πi,2 = {xj |
ci,j = 0}. Let fk,n = Fh,`,P be the function on n = 2(m′ + `) variables ob-
tained for the parameters h, `, and P according to Definition 4. We observe that
` > m/256 > n/212 > dlog(k + 1)e. The number of y-variables is thus sufficiently
large to encode the numbers 1, 2, . . . , k + 1.

The upper bound in the theorem immediately follows from Lemma 1. For the
lower bound, we apply Lemma 3. As required in the hypothesis of Lemma 3, we
have ` 6 m/128 6 (ε/4)m, where ε > 1/32 is the constant from Lemma 4. Due
to the choice of h, we know that the multi-partition communication complexity
of this function with respect to (ε/8)-balanced partitions is linear in its input
length m′ = m + r = Ω(n). By Lemma 3, this also implies that k-pcc (fk,n) =
Ω(n). �

4 The Multi-Partition Communication Complex-

ity of Linear Codes

In this section, we investigate the multi-partition communication complexity of
the characteristic function of linear codes. Define the distance of a code as the
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minimum Hamming distance between any two different codewords belonging to
this code. The following lemma is implicit in [13, 20], where a stronger version has
been used to show that syntactic read-k branching programs for the characteristic
functions of certain linear codes require exponential size.

Lemma 5 ([13, 20]). Let C ⊆ {0, 1}n be an arbitrary (not necessarily linear)
code of distance 2t + 1 with characteristic function fC . Then

mpcc(fC) = log

(

|C| ·

(

bn/2c

t

)2

· 2−n

)

.

For the sake of completeness, we include the easy proof of this lemma.

Proof. Let Π = (X1, X2) be any balanced partition of the n variables of fC . Let
r = r(1)∧r(2) be a rectangle with respect to Π such that r 6 fC . By Proposition 2,
it is sufficient to show that r−1(1) cannot contain more than 2n/B(t)2 inputs in
f−1

C (1) = C, where B(t) =
∑t

i=0

(bn/2c
i

)

is the number of vectors in the Hamming

ball of radius t in {0, 1}bn/2c. This follows directly from the fact that any two
different inputs in f−1

C (1) must differ in at least d = 2t + 1 bits. If r(a, b) =
1 for any pair of assignments a, b to the variables in X1 and X2, resp., then
we can conclude for all inputs b′ 6= b of Hamming distance at most d from b
that fC(a, b′) = 0 and thus (since r 6 fC) also r(a, b′) = 0. This implies that

|
(

r(2)
)−1

(1)| 6 2|X2|/B(t). Since we analogously get |
(

r(1)
)−1

(1)| 6 2|X1|/B(t),
we are done. �

To give an explicit example, we consider binary BCH-codes with length n =
2m − 1 and designed distance d = 2t + 1; such a code has at least 2n/(n + 1)t

vectors and distance at least d [17]. Let BCHn be the characteristic function of
such a BCH code with t =

⌈

n1/2
⌉

. Using Lemma 5, we obtain:

Theorem 2. Each multi-partition protocol for the characteristic function of BCHn

has complexity at least Ω
(

n1/2
)

.

Proof. Using Stirling’s formula, one can easily prove the following estimate for
the binomial coefficients occurring in Lemma 5:

(

bn/2c

t

)

=
1

e(2π)1/2 · n1/4
·
(e

2
· n1/2

)n1/2

· (1 + o(1)).

Thus,
(bn/2c

t

)

> 2αn1/2

· n(1/2)n1/2

, for some positive constant α < log(e/2) (where
log(e/2) > 0.442).

By Lemma 5, we obtain the following lower bound on the multi-partition
communication complexity of the characteristic function of the considered BCH-
code:

log

(

|C| ·

(

bn/2c

t

)2

· 2−n

)

> log

(

22αn1/2

· nn1/2

(n + 1)dn1/2e

)

= Ω
(

n1/2
)

.

�
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Lemma 5 has the advantage of working for arbitrary codes, but is not strong
enough to give linear lower bounds on the multi-partition communication com-
plexity. However, for linear codes we can use the stronger argument explained in
the following. A linear code C ⊆ {0, 1}n can be described by its boolean parity-
check matrix H of dimension m × n, m 6 n a suitable integer, which satisfies
H · x ≡ 0 mod 2 if and only x ∈ C. Call a boolean m × n-matrix s-good if each
of its m × (n/2)-submatrices has rank at least s.

Lemma 6. Let C be a binary linear code with an s-good m × n parity-check
matrix H and characteristic function fC . Then mpcc(fC) > 22s−m.

Proof. Let Π = (X1, X2) be a balanced partition of the n variables of fC . Let
r = r(1) ∧ r(2) be a rectangle with respect to Π such that r 6 fC . Since we have
|(fC)−1(1)| > 2n−m, it is sufficient to show that r does not accept more than 2n−2s

inputs.
To prove this, let H1 and H2 be the m×(n/2)-submatrices of H corresponding

to variables from X1 and X2. Hence, for assignments a, b to X1 and X2, resp.,
f(a, b) = 1 if and only if H1 ·a+H2 ·b ≡ 0 mod 2, implying that r(a, b) = 1 if and
only if H1 ·a ≡ H2 ·b mod 2. If b0 is fixed, then the vector w0 = H2 ·b0 is fixed, and
r(a, b0) = 1 only if a is a solution of H1 · a ≡ w0 mod 2. Due to the fact that H
is s-good, the matrix H1 has rank at least s, and thus we have at most 2n/2−s

possible solutions a. Analogously, if a0 is fixed, then the vector w1 = H1 · a0 is
fixed and then r(a0, b) = 1 only if b is a solution of H2 · b ≡ w1 mod 2. Moreover,
r(a0, b0) = 1 implies that for all pairs (a, b) accepted by r we have the same column
of free coefficients w1 ≡ w0 mod 2. Thus, r accepts at most 2n/2−s ·2n/2−s = 2n−2s

inputs. �

To obtain a linear lower bound on multi-partition communication complexity
by Lemma 6, we need a family of m×n-matrices that are s-good for s > αm and
a constant α > 1/2. We have to leave it as an open problem to come up with an
explicit construction of such a family and only show that random matrices have
the required property with high probability.

Proposition 5. Let m 6 n/32. Let H be a random boolean m×n-matrix. Then
H is (m − 1)-good with probability 1 − 2−Ω(n).

Proof. Let v1, . . . , vn ∈ {0, 1}m be vectors whose entries are determined by inde-
pendent, fair coin tosses. Let H be the random boolean matrix with v1, . . . , vn

as column vectors. Our goal is to show that, with high probability, every subset
of n/2 vectors from v1, . . . , vn spans a space of dimension at least m − 1. This
is not the case if and only if the following event happens:

(∗) There is a set I ⊆ {1, . . . , n}, |I| = n/2, and vectors w1, w2 ∈ {0, 1}m −
{0}, w1 6= w2, such that for all i ∈ I, w>

1 · vi ≡ w>
2 · vi ≡ 0 mod 2.
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We show that (∗) occurs with exponentially small probability. Let w1, w2 be
as described in (∗), and let Xi be the indicator random variable for the event that
w>

1 · vi ≡ w>
2 · vi ≡ 0 mod 2. Since E [

∑

Xi] = n/4, Chernoff’s inequality gives
us that, for this pair of vectors w1, w2, the event (∗) happens with exponentially
small probability: For λ = 1, we have

Prob

[

n
∑

i=1

Xi > (1 + λ) · n/4

]

6 e−λ2(n/4)/3 = e−n/12.

Since we have fewer than
(

2m

2

)

6 22m 6 2n/16 pairs of non-zero vectors w1, w2,

the event (∗) occurs with probability at most 2n/16 · e−n/12 = 2−Ω(n). �

Combining the above proposition with Lemma 6, we obtain:

Theorem 3. With probability 1−2−Ω(n), the characteristic function of a random
binary linear code of length n has multi-partition communication complexity Ω(n).

In the remainder of the section, we derive upper bounds on the complexity the
characteristic functions of linear codes. First, we observe that all linear codes have
small randomized communication complexity even in the fixed-partition model.

Proposition 6. Let fC be a characteristic function of a linear binary code of
length n. Then the two-party fixed-partition one-round bounded error communi-
cation complexity of fC is O(1) with public coins and O(logn) with private coins.

Proof. Checking whether a given input is accepted reduces to checking whether
the two strings, obtained by Alice and Bob by multiplying the parts of the in-
put they see with the corresponding parts of the parity-check matrix, are equal.
Hence, if H1 and H2 are the parts of the parity-check matrix corresponding to
the parts of the inputs string (x, y) given to Alice and Bob, then testing whether
fC(x, y) = 1 is the same as testing the equality H1 · x ≡ H2 · y mod 2 of two
strings of length at most n. �

The characteristic functions fC of linear codes are known to be hard for differ-
ent models of branching programs, including nondeterministic syntactic read-k
branching programs [13] and (1,+k)-branching programs [14] (the latter are de-
terministic branching programs where along each computation path at most k
variables are allowed to be tested more than once). On the other hand, the
negation ¬fC is just an OR of at most n scalar products of an input vector
with the rows of the corresponding parity-check matrix. Hence, for every linear
code, the characteristic function ¬fC of its complement has a small nondeter-
ministic OBDD. Here we strengthen this observation to randomized OBDDs with
one-sided error.
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Theorem 4. Let C ⊆ {0, 1}n be a linear code and let fC be its characteristic
function. Then, for every integer r > 2, ¬fC can be computed by a randomized
OBDD of size O

(

n4r
)

with one-sided error at most 2−r.

For the proof of the theorem, we need a technique to reduce the number of
random bits that is originally due to Newman [19] and also appeared in different
disguises in other papers (see, e. g., [7,8,19,24]). Although the main trick is quite
simple, it is usually hidden behind the technical details of a particular model of
computation. Since the argument may be of independent interest, it makes sense
to formulate it as a separate combinatorial lemma about the average density of
boolean matrices.

Lemma 7. Let M, N be positive integers with M = 2o(
√

N). Let A be a boolean
M×N-matrix with the property that the average density, i. e. the average number
of ones, in each row does not exceed p, 0 6 p < 1. Then, for every constant δ > 0,
there is a set I ⊆ {1, . . . , N} with |I| = 3

⌈

log
(

2M/δ2
)⌉

such that in the submatrix
of A consisting of the columns with index in I, each row has average density at
most p + δ.

Proof. Let ξ1, . . . , ξt be independent random variables which are uniformly dis-
tributed over {1, . . . , N}, where t = 3

⌈

log
(

2M/δ2
)⌉

. First, observe that with
probability 1 −

(

t
2

)

/N = 1 − o(1), all ξ1, . . . , ξt are distinct. Next, fix a row
x = (x1, . . . , xN) of A and consider the 0-1 random variables X i = xξi

, for
i = 1, . . . , t. We have Prob [X i = 1] 6 p for all i. By Chernoff bounds, the
average density

(
∑t

i=1 Xi

)

/t of ones in x exceeds p + δ with probability at most

e−δ2t/3 6 (2M)− log e. Thus, with probability at least 1 − M · (2M)− log e, the re-
striction of each row of A to the columns with indices ξ1, . . . , ξt has density at
most p + δ. This probability is larger than 0 for all positive integers M . Alto-
gether, the probability that the submatrix consisting of the columns with indices
ξ1, . . . , ξt has the claimed properties is larger than 0. �

We can now prove the desired upper bound on the size of randomized OBDDs
for the characteristic functions of linear codes.

Proof of Theorem 4. Let H be the m × n parity-check matrix of C. Let w be
chosen uniformly at random from {0, 1}n. The essence of the construction is the
simple fact that

w>Hx ≡ 0 mod 2, for x ∈ C,

whereas
Prob

[

w>Hx 6≡ 0 mod 2
]

= 1/2, for x 6∈ C.

We cannot use this representation of fC directly to construct a randomized
OBDD, since this OBDD would require exponentially many randomized vari-
ables to randomly choose the vector w.
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In order to reduce the required number of randomized variables, we apply
Lemma 7. Choose the set of all x ∈ {0, 1}n with ¬fC(x) = 1, i.e., x 6∈ C,
as the row indices, and all vectors w ∈ {0, 1}n as the column indices of the
(2n − |C|) × 2n-matrix A = (ax,w). Let

ax,w =

{

1, if w>Hx 6≡ 0 mod 2, and

0, otherwise.

Then each row of A has density 1/2. For M = 2n−|C| 6 2n and each constant δ >
0, the lemma gives us a set Wδ ⊆ {0, 1}n with

|Wδ| = 3
⌈

log
(

2M/δ2
)⌉

= O
(

n/δ2
)

such that, for all x with ¬fC(x) = 1 and w chosen uniformly at random from W ,
we have

Prob
[

w>Hx 6≡ 0 mod 2
]

> 1/2 − δ.

Choose δ = 1/5. Let G be the randomized OBDD which starts with a tree on
dlog |Wδ|e randomized variables at the top by which an element w ∈ Wδ chosen
uniformly at random. At the leaf of the tree belonging to the vector w, append
a deterministic sub-OBDD that checks whether w>Hx ≡ 0 mod 2. By the above
facts, this randomized OBDD computes ¬fC with one-sided error at most 7/10.
The size of G is bounded by O

(

n2
)

.
To decrease the error probability, we use probability amplification as described

in [24]. We regard G as a deterministic OBDD on all variables (deterministic and
randomized ones). Applying the known efficient OBDD-algorithms (see, e. g.,
[27]), we obtain an OBDD G′ for the OR of 2r copies of G with different sets of
randomized variables. This OBDD G′ has one-sided error at most (7/10)2r < 2−r

and size O
(

n4r
)

. �

Apparently, this result gives the strongest known tradeoff between nondeter-
ministic and randomized branching program complexity.

5 A Lower Bound for Triangle-Freeness

Let x = (xi,j)16i<j6m be a vector of n =
(

m
2

)

boolean variables that are used
to encode a graph G(x) on m vertices by setting xi,j = 1 if the edge {i, j} is
present and xi,j = 0 otherwise. The triangle-freeness function ∆n is defined on x
by ∆n(x) = 1 if G(x) contains a triangle and ∆n(x) = 0 otherwise. The function
⊕Clique3,n has the same set of variables and on input x outputs the parity of
the number of triangles in G(x). In this section, we prove the following result.

Theorem 5. There is a subfunction ∆′
n of ∆n such that mpcc(∆′

n) = Ω(n). The
same holds also for ⊕Clique3,n.
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This result is sufficient to prove that each nondeterministic read-once branch-
ing program detecting the triangle-freeness of a graph requires strongly exponen-
tial size. Since by assigning constants to some variables, we can only decrease
the branching program size, the desired lower bound on the size of any non-
deterministic read-once branching program computing ∆n follows directly from
Theorem 5 and Proposition 4. We obtain the following main result which also
answers Problem 11 of Razborov from [22].

Theorem 6. Nondeterministic read-once branching programs for the triangle-
freeness function ∆n as well as for ⊕Clique3,n require size 2Ω(n).

In remainder of the section, we prove Theorem 5.

5.1 Statement and Application of the Main Combinato-

rial Lemma

For simplicity, we concentrate on ∆n first. We handle ⊕Clique3,n analogously
later on. We observe that setting variables of ∆n to 0 or to 1 means that edges
are forbidden or are required to be present. Each subfunction thus corresponds
to a subfamily of all graphs on m vertices. We carefully choose such a subfamily
of all graphs and prove that detecting the absence of triangles is already hard
for this subfamily. We consider graphs on m vertices partitioned into sets U =
{1, . . . , m/2} and V = {m/2 + 1, . . . , m} (w. l. o. g., assume that m is even). By
a probabilistic argument, we choose triangle-free subgraphs GU and GV on the
vertices in U and V , resp., and fix the variables of ∆n in the sets XU = {xi,j |
i, j ∈ U, i < j} and XV = {xi,j | i, j ∈ V, i < j} accordingly. This yields the
desired subfunction ∆′

n that only depends on the variables in XU×V = {xi,j | i ∈
U, j ∈ V }. The number of remaining variables is still m2/4 and thus linear in
the input size.

For the following combinatorial arguments, it is rather inconvenient to argue
about families of graphs or subfunctions. Instead, we look at the single graph
on m vertices that is obtained as the union of GU , GV and the complete bipartite
graph GB = U × V . We then have to keep in mind that the edges in GB in
fact correspond to the variables of our subfunction. A multi-partition protocol
for ∆′

n works according to balanced partitions of the variables in XU×V which
correspond to balanced partitions of the edges in GB.

A test is a pair of edges from GB that form a triangle together with an edge
from GU ∪ GV . Two tests are said to collide if a triangle can be formed by
picking one edge from the first test, one edge from the second test, and an edge
from GU ∪ GV . In particular, tests collide if they share an edge. For a balanced
partition Π of GB, call a test split by Π if its two edges belong to different halves
of Π. Ideally, we would like to ensure by the choice of the graphs GU and GV

that for any balanced partition Π of GB there is a large, collision-free set of
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tests that are split by Π. Then the variables belonging to these tests could be
fixed independently, and any multi-partition protocol for ∆′

n would require large
complexity already to check that all these tests do not generate any triangle.
We cannot obtain the desired properties for any balanced partition of GB, but
surprisingly, we can still show something quite close to that.

Lemma 8. There exist triangle-free graphs GU and GV and constants α, β > 0
such that for all balanced partitions Π1, . . . , Πk of GB = U × V with k 6 2αm2

,
the graph G = GU ∪GV ∪GB has a set T of tests without collisions such that for
each i ∈ {1, . . . , k} there are at least βm2 tests in T that are split by Πi.

The proof of this central combinatorial lemma is deferred to the next subsec-
tion. Here we show how it implies Theorem 5.

Proof of Theorem 5. We first present the proof for the subfunction ∆′
n of ∆n.

Choose GU and GV according to Lemma 8 and let ∆′
n be the resulting subfunction

on XU×V . Let α, β > 0 be the constants from the lemma. It is sufficient to prove
that Rk(∆

′
n) > 2Ω(m2) for k with

log k 6 min
{

αm2, (β/2)m2
}

.

Let functions f1, . . . , fk be given with ∆′
n = f1 ∨ · · · ∨ fk and

∑k
i=1 R1(fi) =

Rk(∆
′
n), and let Π1, . . . , Πk be the partitions corresponding to optimal covers of

f1, . . . , fk by rectangles.
We construct a set A of hard 1-inputs for ∆′

n which will already require many
rectangles to be covered according to the partitions Π1, . . . , Πk. Let T be the
set of tests obtained by Lemma 8. For all inputs in A, variables belonging to
edges outside of T are fixed to 0. For each test in T , we then choose exactly one
edge and set the respective variable to 1, the second one is set to 0. Thus, the
graph corresponding to an input in A has precisely one of the two edges of each
test in T , and two graphs differ only on edges in T . Since the tests in T do not
collide, the graphs are triangle-free and we obtain a total of 2|T | graphs. Hence,
|A| = 2|T |.

For i ∈ {1, . . . , k}, let Ai = (fi)
−1(1) ∩ A. Since A1 ∪ · · · ∪ Ak = A, there is

at least one i with
|Ai| > |A|/k = 2|T |/k.

By Lemma 8, there is a set Ti ⊆ T of tests with |Ti| > βm2 that are split by
the partition Πi. Since there are only 2|T |−|Ti| assignments in A which differ in
the variables belonging to tests in T − Ti, there is at least one fixed assignment
to these variables such that the subset B of inputs in Ai consistent with this
assignment has size

|B| > |Ai|/2|T |−|Ti| > 2|Ti|/k > 2(β/2)m2

.
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The last inequality follows from our assumption that log k 6 (β/2)m2. Since
all the inputs from B are accepted by fi, it remains to show that no rectangle
r 6 fi with the underlying partition Πi can accept more than one input from B.
Assume that (a, b) and (a′, b′) are two different inputs in B accepted by r. By the
choice of B, they differ in a test t = {e1, e2} which is split by Πi, i. e., whose edges
belong to different halves of the partition Πi. By the definition of A, exactly one
of the two edges e1 and e2 is present in each of the graphs belonging to (a, b) and
(a′, b′), resp., and these edges are different.

Now, if r(a, b) = 1, then r(a, b′) = 0 or r(a′, b) = 0 because either the graph
corresponding to (a, b′) or to (a′, b) will contain both edges e1, e2, which, together
with the corresponding edge of GU or GV , forms a triangle. This is a contradiction
to the fact that r is a rectangle. Altogether (assuming Lemma 8 holds), we have
completed the proof of the lower bound for ∆′

n.

Now we prove the result for ⊕Clique3,n. We consider the subfunction
⊕Clique′

3,n which is obtained from ⊕Clique3,n in the same way as ∆′
n from

∆n. Let t = |T |. For x, y ∈ {0, 1}t define

IPt(x, y) =

t
∑

i=1

xiyi mod 2.

Define the set A of hard inputs for ⊕Clique′
3,n as follows: For all (x, y) ∈

IP−1
t (1), include the input obtained by setting variables outside of T to 0 and

setting the two edge variables belonging to the ith test in T to xi and yi, resp.
Then

A ⊆ ⊕Clique−1
3,n(1) and |A| = | IP−1

t (1)| = 22t−1 − 2t−1 > 22t−2.

Analogously to the proof for ∆n, we obtain a set Ai of inputs covered by the
rectangles with respect to a single partition Πi in a cover of ⊕Clique3,n such
that |Ai| > |A|/k > 22t−2/k. Furthermore, at least s > βm2 tests in T are split
with respect to Πi. Since there are at most 22(t−s) assignments to the variables
belonging to tests that are not split by Πi, we get a set B of inputs in Ai that all
agree on these variables with

|B| > |Ai|/22(t−s)
> 22s−2/k.

The inputs in B are all accepted by ⊕Clique3,n. Thus, the parts of the inputs
in B fixing the variables that belong to the s tests split by Πi are either all
accepted by IPs or are all accepted by ¬ IPs. Let IPs be defined on the variables
x1, . . . , xs and y1, . . . , ys and let r be a rectangle with respect to the partition
Π = ({x1, . . . , xs}, {y1, . . . , ys}) with r 6 IPs or r 6 ¬ IPs. Then |r−1(1)| 6 2s

(see, e. g., [16]). This implies that also no rectangle r′ 6 ⊕Clique′
3,n contains

more than 2s inputs from B. Thus, at least 2s−2/k > 2(β/2)m2−2 rectangles
are needed to cover B and the desired lower bound for ⊕Clique′

3,n follows.
Assuming that Lemma 8 holds, this completes the proof of the theorem. �
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5.2 Proof of the Main Combinatorial Lemma (Lemma 8)

Recall that a test is a pair of edges in GB = U ×V which form a triangle together
with an edge in GU or GV , and that a test is split by partition Π if its two edges
lie in different halves of Π. As the first step in the proof of Lemma 8, we choose
the graphs GU and GV . For this, we apply the following lemma.

Lemma 9. There exist graphs GU and GV such that:

(i) each of the graphs GU and GV has Θ(m) edges, at most O(1) triangles, and
at most O(m) paths of length 2 or 3; and

(ii) for every balanced partition Π of GB = U × V , there are Ω
(

m2
)

tests which
are split by Π.

Proof. We prove the existence of the desired graphs by a probabilistic argument.
In what follows, let GU (GV ) stand for the random graph on U (resp., on V )
obtained by inserting the edges independently at random with probability p =
c/m each, for some constant c > 0 fixed below. We use Markov’s inequality to
show that the graphs GU and GV have the properties described in part (i) of
the lemma with probability at least 1/2.

Let G be a random graph on m/2 vertices where the edges are inserted inde-
pendently at random with probability p = c/m. We claim that, with probability
at least 3/4, G has Θ(m) edges, O(1) triangles, and O(1) paths of length 2 and 3.

(a) The expected number of edges in G is E = p ·
(

m/2
2

)

= Θ(m). Using Chernoff
bounds, we get that the actual number of edges is smaller than E/2 or larger
than (3/2)E only with exponential small probability.

(b) The expected number of triangles in G is E =
(

m/2
3

)

· p3. Hence, G has more
than 16 · E triangles with probability less than 1/16 by Markov’s inequality.

(c) The expected number of paths of length k in G is E =
(

m/2
k+1

)

· pk, and G

has more than 32 ·E paths of length k with probability less than 1/32. Thus
the bound on the number of paths of length two and three is exceeded with
probability at most 1/16.

Altogether, the conjunction of (a), (b) and (c) holds with probability at least
1 − 3/16 > 3/4. It follows that, with probability larger than 1/2, both of the
random graphs GU and GV have Θ(m) edges, O(1) triangles, and O(1) paths of
length 2 and 3.

It remains to prove that, with probability larger than 1/2, for every balanced
partition of U × V , there are at least Ω

(

m2
)

tests split by this partition. Let Π
be such a balanced partition. The partition Π distributes the edges in U × V to
two sets of size m2/8 each which are given to the players Alice and Bob. Call a
vertex mixed if each of the two players has at least 1

8 ·
m
2

bipartite edges incident
to it.

Claim 1. There are Ω(m) mixed vertices in each of the sets U and V .
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Proof of Claim 1. We use essentially the same argument as Papadimitriou and
Sipser in [21]. W. l. o. g., assume that we have at most εm mixed vertices in V ,
where ε > 0 is a sufficiently small constant (ε < 1/112 works fine). Call a vertex v
an A-vertex (resp. B-vertex ) if Alice (resp. Bob) has at least 7

8 ·
m
2

edges incident
to v. Thus, vertices which are neither A- nor B-vertices are mixed. Observe first
that the number of A-vertices as well as the number of B-vertices in each of the
sets U and V is at most bmax = 4

7 · m
2 , since otherwise Alice or Bob would have

more than m2/8 edges. On the other hand, the number of A-vertices as well as
the number of B-vertices in U (in V ) is bounded from below by bmin = 3

7 ·
m
2 −εm,

since otherwise there would be more than εm mixed vertices in U (in V ), contrary
to the assumption.

Now more than half of the edges from A-vertices in U to B-vertices in V
belong to Alice, because otherwise there will be an A-vertex u ∈ U such that
Alice has at most half of the edges from u to B-vertices in V , and thus altogether
at most

1

2
· bmax + |V | − bmin =

1

2
·
4

7
·
m

2
+

m

2
−

(

3

7
·
m

2
− εm

)

6
6

7
·
m

2
+ εm <

7

8
·
m

2

edges incident to u. With the same reasoning, however, more than half of all
edges from A-vertices in U to B-vertices in V belong to Bob. Contradiction. �

For each mixed vertex u ∈ U , let VA(u) (VB(u)) be the set of vertices v ∈ V for
which Alice (resp. Bob) has the edge {u, v}. Since u is mixed, |VA(u)|, |VB(u)| >
1
8 · m

2 . Observe that each edge between VA(u) and VB(u) leads to a test split by
the given partition Π.

Claim 2. There is a constant c > 0 such that for the random graph GV on m/2
vertices obtained by inserting edges independently at random with probability p =
c/m, the following event has probability larger than 1/2: For all pairs of disjoint
sets S1, S2 ⊆ V of size at least m/16 each, the number of edges in GV between
S1 and S2 is at least p|S1||S2|/2.

Proof of Claim 2. The expected number of edges between fixed sets of vertices S1

and S2 is p|S1||S2|. By Chernoff bounds, the true number of edges is at least
p|S1||S2|/2 with probability at least 1 − e−c′m, where the constant c′ > 0 can be
adjusted by the choice of the constant c in the definition of p. Since there are at

most
(

2m/2
)2

= 2m choices for the sets S1, S2 ⊆ V , the probability of the described

event is at least 1 − 2m · e−c′m, which is larger than 1/2 for appropriate c′. �

Fix the constant c > 0 and p = c/m such that Claim 2 holds and let GV be
the resulting random graph. We apply the claim to the sets VA(u), VB(u) ⊆ V ,
where u ∈ U is a mixed vertex. Due to Claim 2, the event that, for all balanced
partitions Π and all Ω(m) mixed vertices u with respect to Π, the respective
sets VA(u) and VB(u) are connected by at least p|VA(u)||VB(u)|/2 = Ω(m) edges,
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has probability larger than 1/2. Thus, with probability larger than 1/2, for each
balanced partition Π there are Ω

(

m2
)

tests split by Π. This completes the proof
of Lemma 9. (Observe that it does not matter whether we carry out the above
argument for mixed vertices in U or in V .) �

We apply Lemma 9 and fix graphs GU and GV with the described proper-
ties. Since there are only O(1) triangles, we can remove these triangles without
destroying the other properties. Especially, we still have linearly many edges.
By property (ii), this pair of graphs produces a set of Ω

(

m2
)

split tests for any
balanced partition of GB.

Let T0 be the set of all tests induced by GU and GV , and let t = |T0| be its
size. Since both graphs GU and GV have Θ(m) edges, t = Ω

(

m2
)

. Using the
properties of these graphs stated in Lemma 9 (i), we show that at most O(t) of
all
(

t
2

)

pairs of tests in T0 collide:

Lemma 10. There are at most O(t) pairs of colliding tests in T0.

Proof. We prove the claim by case inspection of all possible situations in which
tests may collide. Recall that a test is a pair of edges of the complete bipartite
graph GB = U × V which together with an edge from GU or GV form a triangle.
Thus, a test is described by a pair (e, v), where e is an edge in GU (GV ) and a
vertex v ∈ V (v ∈ W , resp.).

Claim 1. Let (e1, w1) and (e2, w2) describe two colliding tests where e1 and e2 both
belong to GU (resp. where both belong to GV ). Then at least one of the following
conditions applies.
(a) {w1, w2} is an edge of GV (resp. of GU) and e1 and e2 belong to a GU -path

(resp. to a GV -path) of length two;

(b) w1 = w2 and e1 and e2 belong to a GU -path (resp. to a GV -path) of length
two or three.

Proof of Claim 1. Assume first that a triangle is formed by picking a GV -edge
(resp. a GU -edge) as the third edge. In this case the two edges in GB originate
from the same vertex in U (resp. V ) which has to be a common endpoint of e1

and e2. Thus e1 and e2 belong to a GU -path (resp. GV -path) of length two and
{w1, w2} is the GV -edge (resp. the GU -edge) in question. (See Figure 1 a.)

Now assume that the triangle is formed by picking a GU -edge (resp. a GV -
edge) e. Thus the triangle consists of e and the two edges in GB: w1 = w2

follows. If e1 and e2 do not share an endpoint, then (e1, e, e2) is a GU -path (resp.
GV -path) of length three (Figure 1 b1). Finally, if e1 and e2 share an endpoint,
then (e1, e2) is a GU -path (resp. GV -path) of length two (Figure 1 b2). �

Claim 2. Let (e1, w1) and (e2, w2) describe two colliding tests where e1 belongs
to GU and e2 belongs to GV (the situation where e1 belongs to GV and e2 to GV

is symmetric). Then at least one of the following conditions applies.
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(c) w1 is an endpoint of e2 and w2 is an endpoint of e1;

(d) w1 is an endpoint of e2 and e1 belongs to a GU -path of length two that begins
in w2;

(e) w2 is an endpoint of e1 and e2 belongs to a GV -path of length two that begins
in w1.

Proof of Claim 2. There are essentially three different possible situations which
are shown in Figure 2. Obviously, this is exactly what is described in condi-
tions (c)–(e). Condition (e) is symmetric to (d). �

We now estimate the number of colliding pairs of tests by using the above
results and Lemma 9, part (i). We show that there are only O

(

m2
)

pairs of tests
for which one of the conditions (a)–(e) applies. Since t = Θ

(

m2
)

, this also proves
that the number of colliding pairs is of order O(t).

(a) There are only O(m) edges {w1, w2} in GU (resp. GV ) and O(m) GV -paths
(GU -paths) of length two.

(b) There are only m/2 vertices w1 and O(m) GU -paths (GV -paths) of length
three.

(c) The number of collisions of this type is 2|GU ||GV | = O
(

m2
)

, since there are
|GU ||GV | choices for e1 and e2 and two ways to place the endpoints w1 and
w2 for each of these choices.
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(d) There are O(m) GU -paths of length two and 2|GV | choices for the pair
(e2, w1).

(e) This is symmetric to (d).

This concludes the proof of Lemma 10. �

Recall that we already have a set of tests T0 of size t = Ω(m2) such that each
balanced partition of GB = U ×V has Ω(m2) split tests in T0. To finish the proof
of Lemma 8, it remains to find constants α, β > 0 such that for each collection
Π1, . . . , Πk of balanced partitions of GB with k 6 2αm2

, there is a subset T ⊆ T0

of tests with the following properties:

(i) There is no pair of tests from T which collide; and

(ii) for each i ∈ {1, . . . , k} there are at least βm2 tests in T that are split by Πi.

We again use a probabilistic construction. Let T be a set of u tests picked
uniformly at random from the set T0, where u = γt and γ is a constant with
0 < γ < 1 chosen later on.

Lemma 11. There is a constant α > 0 such that for all k 6 2αm2

and for any
collection Π1, . . . , Πk of balanced partitions of GB such that for each i ∈ {1, . . . , k}
there is a set of at least s = Ω

(

m2
)

tests in T0 that are split by Πi, the following
is satisfied.
(i) With probability at least 1/2, the set T contains at most O

(

u2/t
)

pairs of
colliding tests (where t = |T0| is the total number of tests).

(ii) With probability larger than 1/2, for each i ∈ {1, . . . , k} there are at least
us/(2t) test in T that are split by Πi.

Proof. Part (i): We define the collision graph to have tests as vertices and edges
for each collision. Let c be the number of edges in the collision graph. By
Lemma 10, we know that c = O(t).

Let cT be the number of edges in the subgraph of the collision graph induced
by the randomly chosen set T . Since we pick tests uniformly at random, the
expected number of edges is E [cT ] = u(u−1)

t(t−1)
· c. By Markov’s inequality, it follows

that the actual number of edges is at most 2 ·E [cT ] with probability at least 1/2.
Hence, the number of pairs of colliding tests in T is at most

2 · E [cT ] = O
(

(u/t)2 · c
)

= O
(

u2/t
)

with probability at least 1/2.

Part (ii): Consider a fixed partition Πi and let Ti be a set of s = Ω
(

m2
)

tests
in T0 that are split by Πi. Then the probability that T contains a test from Ti is
s/t, t = Ω

(

m2
)

the total number of tests. Thus the expected number of elements
in T ∩ Ti for a randomly chosen set T of u tests is u · s/t. Let λ = 1/2. By
Chernoff bounds, it follows that

Prob [|T ∩ Ti| < (1 − λ) · us/t] 6 e−λ2(us/t)/2 = e−Ω(u).
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Hence, the probability that for each i ∈ {1, . . . , k} the set T contains at least
(1 − λ) · us/t = us/(2t) tests split by Πi is at least 1− k · 2−Ω(u). Since u = γt =
Θ
(

m2
)

, this probability is larger than 1/2 for k 6 2αm2

and α > 0 sufficiently
small. �

Let k 6 2αm2

with α > 0 the constant from the above lemma. For i ∈
{1, . . . , k}, let Πi be a balanced partitions of GB and let Ti be a set of s = Ω

(

m2
)

tests in T0 split by Πi. Lemma 11 yields the existence of a set T ⊆ T0 with the
following properties:
(i) |T | = u = γt;

(ii) there are at most δu2/t pairs of tests in T which collide, δ > 0 some constant;
and

(iii) for all i = 1, . . . , k, |T ∩ Ti| > us/(2t).
By deleting at most δu2/t tests from T , we remove all collisions, obtaining a

smaller set T ′. For each i, the number of tests in T ′ split by Πi is still

us

2t
−

δu2

t
=

u

t
·
(s

2
− δu

)

= γ ·
(s

2
− δγt

)

.

Since this number is of order Ω
(

m2
)

for γ = s/(4δt) = O(1), there is a suitable
constant β > 0 independent of the choice of the partitions Π1, . . . , Πk such that
the number of tests in T ′ split by Πi is at least βm2. Altogether, we have
completed the proof of Lemma 8.

Appendix: Justesen Codes

For easier reference, we include a definition of Justesen codes and the main facts
about these codes used in Section 3. Different from the main text we also consider
non-binary codes. A (linear) code of length n over � q, q a prime power, is a subset
(subspace) of � n

q .

Definition. Let d be a positive integer, N = 2d − 1, and let α be a primitive
element of � 2d. Let K be an integer with 1 6 K 6 N − 1, and define D =
N −K + 1. Let RN,K be the [N, K]-Reed-Solomon code which is the linear code
of length N over � 2d specified by the parity-check matrix

HN,K =











1 α α2 · · · αN−1

1 α2 α4 · · · α2(N−1)

...
...

... · · ·
...

1 αD−1 α(D−1)·2 · · · α(D−1)(N−1)











.

For x ∈ � 2d and 1 6 i 6 N , define ci(x) = (x, αi · x). For x = (x1, . . . , xN) ∈ � N
2d,

define c(x) = (c1(x1), . . . , cN(xN)) and regard this as a vector from ( � 2)
2dN . The

code JN,K ⊆ � 2dN
2 defined by JN,K = {c(x) | x ∈ RN,K} is called [N, K]-Justesen

code.
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The code RN,K is known to have dimension K and distance D [17]. By the
above definition, it follows that JN,K is linear and has dimension mK. In the
main text, we have made use of the following general bounds on the weight (and
thus the distance) of these codes.

Theorem (Justesen). Let d be a positive integer and let 0 < R < 1/2. Let
N = 2d − 1, m = 2dN = 2d(2d − 1), and K = dR · 2Ne 6 N − 1. Then the
Justesen code JN,K has at least 2Rm codewords, and for each constant ε > 0, d
sufficiently large, and each x ∈ JN,K,

αm 6 w(x) 6 m − αm, with α = (1 − ε)(1 − 2R)H−1(1/2),

where H(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function.

The lower bound on the weight of the codewords of a Justesen code stated
above is standard in textbooks on coding theory, see, e. g., [17]. The upper bound
follows along the same lines.
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