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Abstract

In this paper we study the lower bounds problem for monotone circuits. The
main goal is to extend and simplify the well known method of approximations
proposed by A. Razborov in 1985. The main result is the following combi-
natorial criterion for the monotone circuit complexity: a monotone Boolean
function f(X) of n variables X = {z4,...,2,} requires monotone circuits of
size exp(Q(t/ logt)) if there is a family F C 2% such that: (i) each set in F
is either a minterm or a maxterm of f, and (ii) Dg(F)/Dgs1(F) > t for every
k=0,1,...,t1—1. Here Dy(F)is the k-th degree of F,i.e. maximum cardinality
of a subfamily H C F with | N H| > k.

1 Introduction

The question of determining how much economy the universal non-monotone basis {A, V, =}
provides over the monotone basis {A, V} has been a long standing open problem in Boolean
circuit complexity. In 1985, Razborov [10, 11] achieved a major development in this direc-
tion. He worked out the, so-called, "method of approximations” and proved that Clique
function requires super-polynomial circuits over {A,V}. He then proved the same lower
bound for Perfect Matching function which is known (see [7, 15]) to have polynomial size
circuit over the complete basis {A,V, =}. Using arguments similar to those in [10, 11], An-
dreev [3] and Alon and Boppana [2] proved that some Boolean functions in NP require
exponential size monotone circuits.

After this progress the following problem to investigate as a ”"next step” arise naturally

([12]):

Is there a uniform and tractable criterion for the monotone circuit complexity
? Or equivalently, what are the combinatorial properties of a Boolean function

that imply (or even characterize) its hardness with respect to monotone circuits
?



Due to the observation made by Berkowitz in [4] that for some monotone functions their
monotone and non-monotone circuits are of almost the same size, this last question deserves
a special attention.

In this paper we prove some results answering this question. The main result is a simple and
7purely combinatorial” criterion for monotone circuit complexity of Boolean functions. The
criterion states that a monotone Boolean function f(X) of n variables X = {zy,...,2,}
requires monotone circuits of size exp(Q(t/logt)) if there is a family F C 2% such that:
(i) each set in F is either a minterm or a maxterm of f, and (ii) Dg(F)/Dgs1(F) > t for
every k =0,1,...,t— 1. Here Dy(F) is the maximum cardinality |H| of a subfamily H C F
with | N H| > k. Using this criterion it becomes an easy task to re-prove known exponential
lower bounds form [2, 3, 11, 12].

The criterion is derived via extension of Rarborov’s approximations to more general class
of circuits. Besides monotone circuits, this extension allows one to answer, for example,
the following question about the size of non-monotone circuits. Each circuit over the basis
{A,V, =} computes in a natural way not only the function f itself but also some DNF D of
f. Thus, given a DNF D, one may ask what is the size of an optimal circuit over {A,V, -}
computing D. The extension allows to show (see [8]) that some DNF's are ‘incompressible’,
i.e. any circuit over {A,V, -} computing them must have almost the same number of gates
as the number of monomials in them.

2 The main result

Before presenting the criterion in full generality, we will state a special case of our main
theorem proved in Section 4. The definitions are easier to understand, and the criterion is
more intuitive.

It is convenient for our purposes to look at Boolean functions f : {0,1}" — {0,1} as
mappings f : 2% — {0,1} where X is a finite set of cardinality n. That is, we identify the
arguments of f with subsets of X in the natural way: f(A) = f(zy,...,2,), where z; = 1if
i € A and z; = 0 otherwise. A Boolean function fis monotoneif AC B = f(A) < f(B).
Throughout this section we will consider only monotone functions.

Given a set Y C X, we say that a set A C X is Y-critical for f (or (f,Y)-critical) if
ANY =0, f(AUY) =1and f(X — A) = 0. Let CRIT(f,Y) denote the set of all such
sets.

Informally, the criterion below states that f requires large monotone circuits if, for some
Y C X, the family of (f,Y)-critical sets is "highly dispersed”. To formalize this, let F C 2X
and 0 < k < n. The k-th degree Dy(F) of F is the maximum number of sets in F with at
least k elements in common, i.e.

Dip(F)y=max {|F'| : FFCFand |Nn F'|>k}.

Notice that Dy(F) = |F| and Dy(F) decreases as k increases. The rate of this decrease is
characterized by fractions Dy(F)/Dys1(F).



For a family F C 2%, let u(F) be the maximum number ¢ > 0 such that
Dp(F)/Dypgr(F) >t forallk=0,1,...,1.
For a Boolean function f:2% — {0,1}, let

u(f) = max max u(F).

where F ranges over all 7 C CRIT(f,Y).

Notice that for any function f of n arguments, it holds that

0 < p(f)logu(f) < n.

Indeed, if p(f) =t and F C 2X then
1< DF) <t Dy (F) < oo <7 Do(F) = 711 F),

and hence, tlogt < log|F| < |X]|.
We consider usual monotone circuits with inputs zy,...,2z,, with AND and OR gates al-

lowed but no NOT gates allowed. For a monotone Boolean function f, let C'y(f) denote
the minimum number of gates in a monotone circuit computing f.

THEOREM 2.1 For any monotone Boolean function f, we have that
Co(f) > exp (Qu(f)/logu(f)))-

We postpone the proof of this criterion to Section 5. It is a direct consequence from general
theorem proved in Section 4.

Due to an extreme simplicity of the measure u(f), it is an easy task to prove non-trivial
lower bounds for the monotone circuit complexity of many natural functions: it is enough
to estimate the degree of minterms and maxterms of f. It seems somewhat surprising that
such a simple criterion yields the same lower bounds as those proved in [2, 3, 10, 11] via
complicated combinatorical and probabilistic arguments.

3 The machinery

Here we recall from [8] the basic machinery which we will use in the proof of our criterion.
The machinery is actually an extension of the method proposed by Razborov in [10, 11]
(see also, [12, 13]) and known as the "method of approximations”. Let us notice instantly
that the machinery described below is somewhat too powerful for our purposes. The more
general form is provided in order to avoid repetitions when applying the machinery to other
purposes.

Let ( P,<) be a finite partially ordered set (poset) with the least element 0. Atoms of P
are its minimal elements # 0. A predicate over P is a function f: P — {0,1}. We will often



identify a predicate f with the set f='(1); thus, for example, |f| is the cardinality of f='(1)
and f—g stands for the predicate fA-g. A predicate fis monotoneifz <y = f(z) < f(y).
We say that @ covers y if @ > y. Each subset A C P defines the unique monotone predicate
[A] which given y € P, computes 1 iff y covers some 2z € A. We say that a predicate g
covers a predicate f if f < g,1i.e. if f(z) < g(z) for all z € P. For a singleton set {z} we
write [z] instead of [{z}], A staris a predicate f,. = [z] where z € P; f, is a prime star
if z is an atom of P.

Throughout, a circuit over a poset P will mean the circuit with gates {A,V} and all prime
stars over P given as inputs. FKach such circuit computes some monotone predicate f :
P — {0,1}. Let C'(f, P) (or simply C(f) if the poset is clear from the context) denote the
minimum number of gates in a circuit over P computing f.

EXAMPLE. A monomial over the set of Boolean variables {z;,...,2,} is a subset m C
{z1,...,Tp,"21,..., 2y} which has no contrary pair, i.e. |mnN {z;,-z;}| < 1. Let M be
the set of all monomials, and My be the set of all positive monomials (i.e. monomials without
negations) ordered by C . Predicates over M correspond to disjunctive normal forms (DNF’s
for short). Atoms of M are all singleton monomials {z1},...,{z,},{-21},..., {72, }. Thus,
circuits over M compute DNI’s and C(D,M) is the minimum size of a circuit over the
universal basis {A,V, -} computing the DNF D. Moreover, the minimum of C'(D, M) over
all DNF’s D of a Boolean function f is the non-monotone circuit complexity of f. On the
other hand, C'(f,My) is ezactly the monotone circuit complexity of f.

QuesTioN: What combinatorial properties of a monotone predicate f : P — {0,1} are
essential for C'(f) being large ?

Razborov [11] reduced this problem to an instance of MINIMAL COVER problem. He calls
a family of monotone predicates M supplied with two binary operations A and V to be a
legitimate model if M contains 0,1 and all prime predicates over P. Let Ay (A_) denote the
set of all predicates of the form (g*h)—(gxh) (respectively, of the form (gxh)—(g+h)) where
* € {A,V} and g,h € M; these predicates are called é-predicates. The distance p(f, f) from
a predicate f to a predicate f within M is the minimum number ¢ for which there exist
predicates &1, ...,6; in 6, and predicates 8/,...,8/in A_ such that f < fVé; V---V§ and

f< fVEV---Vél. The distance from f to a model M is defined by p(f, M) = inf p(f, f).
FEM

THEOREM 3.1 ([10]) Let f be a monotone predicate over a poset P. Then for any legitimate
model M, we have C(f, P) > p(f, M).

Thus, a monotone predicate f requires large circuits over P if f cannot be covered by a small
number of é-predicates. This theorem is the heart of so-called method of approximations
and has been successfully employed in [10, 11, 2]. In all these works bounding p(f, M) is
the most involved part using complicated combinatorial and probabilistic arguments. This
is stipulated by a complicated character of §-predicates. So, one may ask if these predicates
can be replaced by more natural ones. Theorem 3.2 below claims that é-predicates may be
actually replaced by more tractable ones, called ”stars” and ”costars”.

To formulate the result in full generality we need some auxiliary lattice-theoretic notions.

4



A lower semilattice is a poset ( L, <) with 0, in which each two elements 2,y € I have their
meet infr,(z,y) in L (whereas the join sup;(z,y) may be undefined). A semilattice L is
Boolean if each its interval [0, z] is a Boolean lattice. The height h(x) of an element z € L
is the maximum length of a chain in L from 0 to z.

ExampLE. The poset (M, C) of monomials is not a lattice since the join m U n of two
monomials m and n may contain a contrary pair, and hence, may be not a monomial.
Newertheless, (M, C) is a Boolean semilattice with the height function A(m) = |m|.

Let ( P, <) be a finite poset with the least element 0. A skeleton for P is a Boolean semilattice
(L,<)with L C P such that (i) L contains 0 and all the atoms of P, and (ii) for all z,y € L,
r=y = z<y.

A costar over L is a predicate fz = 07 — [Z] where Z C L, |Z] > 2 and

O7(z)=1 <= z>infr(y,z)forally,z€ Z,y # =.

Thus, fz(z) = 1iff 2 covers the meets of all pairs of elements in Z but covers no element
in Z. Recall that stars are predicates of the form f, = [z], and hence, are monotone.
Costars are not monotone predicates and are, in some sense, the ”complements” of stars.

For example, if inf7(y,z) = 0 for all y # z € L, then fz; = _'<\/x€L fac)

Let £ be a (not necessarily uniformly distributed) random element of P. We will make use
of the following two functions describing the behavior of £ on the skeleton L :

Fe(s) = max Pr[fo(€) = 1]

and

De(s,7) = max Pr [f7(€) = 1]

where the first maximum is over all 2 € L with h(z) = s and the second is over all
subsets Z C I containing r + 1 elements of height at most s each. (In order to indicate
the skeleton used we shall also write F¢(s : L) and Dg(s,r : L).) Note that F¢(0) = 1
and Fe(k 4+ 1) < Fe(k) for all & > 0. The rate to which F¢(k) decreases (as k increases)
characterizes the "density” of £ : intuitively, F¢(k + 1) < F¢(k) if £ is not concentrated on
a particular star f; with h(z) =k 4+ 1.

To be more specific, say that £ is (s, 7)-sparse (with respect to L) if forall k =0,1,...,s—1

1
< = .
Fe(k+1) < 3FA(r, k)
Here A(r, k) is the growth function of the skeleton I defined inductively as follows: A(r,0) =
A(1,k)=1,and for r > 2, A(r, k) = S5 v(k, 1)A(r—1,i) where v(k, i) is the maximum over
all z € L of height k, of the number of elements in the i-th slice of the interval [0,2] C L.
For example, if L is the Boolean lattice of all subsets of a finite set, then v(k,i) = (f) and

hence, \(r, k) = r*,



THEOREM 3.2 Let f be a monotone predicate over a poset P, I, C P be a skeleton for P;
s,r > 1 be integers and | = [(s+ 1)/2]. Then for any (s, r)-sparse random element £ of 1,
and for any random element n of P we have that

Prif©=1-5 _ Pr(f(n)=0] }
4Fe(l: L)X(r, 1) Dy(s,r: L)X(r+1,s) |’

C(f,P)> min{ (1)

Let us instantly notice that a very special case of this general theorem will be sufficient for
the purposes of this paper. Namely, Theorem 2.1 will be deduced from this theorem in case
when P is the Boolean lattice of all subsets of a finite set and I = P. However, the proof of
Theorem 3.2 in this special case is not simpler than that in the general case. So, the more
general form is provided in order to avoid repetitions when applying the machinery to other
purposes.

This theorem is a slightly modified version of the main theorem from [8]. To make the
paper self-contained, the full proof of Theorem 3.2 is given in the appendix. We just say
a few words about it here. The arguments are similar to those appearing in [10, 11, 2] for
the special poset P, namely, for the Boolean lattice (2%, C) of all subsets of a finite set X.
The main step in [10, 11, 2] was to define an appropriate notion of "closure” and to prove
that closed families of sets contain only small number of minimal sets. The key lemma of
our proof is the extension of this result from the lattice (2%, C) to an arbitrary Boolean
semilattice ( L, < ). Theorem 3.2 was used in [8] to prove lower bounds for some classes of
circuits over the complete basis {A,V, =}. Here we will use the theorem to obtain a uniform
criterion for the complexity of circuits over the monotone basis {A,V}. The criterion is
obtained by proving that in this case the function D,(-) in (1) can be replaced by more
natural function F,(+).

4 The criterion

Recall that Boolean functions f are predicates over the Boolean lattice P(X) = (2%, C) of
all subsets of a finite set X, | X| = n. Monotone circuits are circuits over the lattice P(X).

A set A C X is a 1-term (0-term) of f if setting all variables in A to 1 (0), forces the value
of f to 1 (0). Throughout, let 77(f) (15(f)) denote the set of all 1-terms (0-terms) of f.
Minterms (mazterms) are minimal 1-terms (0-terms). Notice that, although the families
F71(1) and f~1(0) are disjoint, the families T ( f) and Ty(f) may be not, i.e. it may be that
some subset A C X is both a 1-term and a 0-term of f. In particular, if f is non-constant
function then X € Ti(f) N To(f).

We say that a poset (£, C) with £ C 2% is a legitimate skeleton for the lattice P(X) =
(2%, C)if

(i) £ contains all one-element sets {z}, z € X; and

(ii) for any A € £, (24N L, C) is a Boolean lattice.

Notice that any legitimate skeleton (£, C) is a skeleton for P(X) = (2%, C) with the
height function A satisfying 0 = h(0) < h(A) < |A|, and the growth function A(r,s) < r®.
In particular, the lattice P(X) is a legitimate skeleton for itself.



Razborov asked in [12] if there exists a unique and tractable criterion for the monotone
complexity of Boolean functions. The theorem below gives such a criterion. Informally, the
criterion states that a monotone Boolean function f requires large monotone circuits if for

some legitimate skeleton £, both To(f) and T1(f) cannot be covered by a small number of
"stars”, i.e. by families of the form [{Ag}] = {4 : A D Ap}.

Convention: To make our notations simpler, assume from now that: L(X) stands for an
arbitrary legitimate skeleton for P(X); A is any (s, r)-sparse random set in L(X); B is a
random set in P(X); s > 1 and r > 1 are fixed but arbitrary integers; [ = [(s + 1)/2],
ey =37l and e- = (r+ 1)=%¢(s)~ 1) where ¢(s) is the maximum cardinality of a set in

L(X) of height s.

THEOREM 4.1 For any monotone Boolean function f: P(X) — {0,1} we have that

Ci(f) > min{ey -®T(A), e_ -7 (B)}

where
Pr[A € Ty(f)] - 1/2
A s —F ) @
o Pr[BeTo(f)
B = i 1 PX)) (3)

REMARK. Notice that the density function F 4(+) of A in (2) is defined with respect to the
skeleton L(X) C P(X) whereas that of B in (3) is defined with respect to the whole lattice
P(X).

Proof. We will apply Theorem 3.2. Since A(r,s) = r®, we have that e; - ®T(A) is exactly
the first term in (1). Thus, it suffices to prove that the second term in (1) is bounded from
below by e_ - ®1(B).
Let us consider the random set C = X — B. Since Pr[f(C) = 0] = Pr[B € To(f)], it is
enough to prove that

Do(s,r: L(X)) < c(s)" T Fg(r+1: P(X)). (4)

Call a family Z C L(X) to be an (r,s)-family if |Z| =74 1 and h(A) < sforall A € Z.
By the definition, D¢ (s, 7 : L(X)) is the maximum probability of an event that fz(C) =1
where fz is the costar induced by an (7, s)-family Z.

Fix an (r,s)-family Z maximizing the probability Pr[fz(C) = 1], and let ©(Z2) denote
the family of all subsets A C X such that for all B € 2, A 2 B but A D B where
B=U{BnC : B+# C € Z}. Since the meet in £ coincides with N, we have that
O(Z) = fz'(1). Thus, D (s, r: L(X)) = Pr[C € ©(2)], and hence, (4) is equivalent to

PriC e O(Z)] < ()" Fg(r+1:P).
Say that a subset A C X is a transversal for a family Z if AN(B—B) # @ forall B € Z. Let

tr(Z) denote the set of all transversals for Z. For a family F, denote co-F ={X —A| A €
F}.



It is easy to see that for any family Z,
co-0(2) C tr(2). (5)

Indeed, let A € co-O(Z). Then X — A € O(Z), and hence VB € Z : X — A 2 B but
X — A D B. This means that AN (B — B)# 0 for all B € Z, and thus, A € tr(Z2).

Thus, by (5),
Pr[C € 0(2)] < Pr[B € tr(2)]. (6)

It remains to estimate the right-hand side of (6). Recall that B € tr(Z) iff Z # § and B
intersects every set in Z where Z = {B - B : Be Z}. Let T be the family of all minimal
sets in tr(Z). Then the event "B € tr(Z)” is the union of the events B D T” where
T € 7. Since |Z] =7+ 1 and every set in Z is of cardinality at most ¢(s), we have that 7
consists of at most ¢(s)"*! sets, each of cardinality exactly r 4+ 1. Hence,

Do(s,r: L(X)) < Pr[Betr(Z2)] < [T|Fg(r+1: P(X))

where |7] < ¢(s)"t!. This completes the proof of (4), and thus, the proof of Theorem 4.1.
O

For most applications of Theorem 4.1, including the proof of Theorem 2.1, it is enough to
consider trivial skeletons, namely, one may take L(X) = P(X). To illustrate how non-trivial
legitimate skeletons may arise, let us consider the following NP-complete problem.

Let V be a finite set, |V| = m, and X = (‘2/), elements of X are edges, i.e pairs {u,v}
with w,v € V, and P(X) = (2%,C) is the lattice of all graphs on V. A graph A C X
is a clique if A = (g) for some U C V; A is a g-clique (2 < ¢ < m) if |U| = ¢. In
particular, edges are minimal non-empty cliques. Let A be the family of all cliques. Since
the union of two (incomparable) cliques is not a clique, the poset L(X) = (\A,C) is not
a lattice. Nevertheless, this poset is a Boolean semilattice since for any clique A = (U),

2
the poset (24 N A, C) is a Boolean lattice isomorphic to the lattice P(U). Thus, L(X)

is a legitimate skeleton for P(X) with the height function h((g)) = |U| and the growth

function A(r, k) = r*. Since a clique with s vertices has (j) edges, we have also that for this
skeleton ¢(s) = (3).
Let CLIQUE(m,q) : 2¥ — {0,1} be the function (of n = (7}) Boolean variables) which,
given a graph G C X, computes 1 iff G contains a g-clique. In [10] Razborov showed that for
q = [(Inm)/4], this function requires monotone circuits of super-polynomial m!°&™ size.
Modifying his arguments, Alon and Boppana improved this bound to exp (Q((m/ logm)'/?))
for ¢ ~ (m/ logm)?/3.

Direct application of Theorem 4.1 yields the following lower bound.

LEMMA 4.2 Suppose2 < ¢ < m?/®, and let f = CLIQU E(m,q). Then forany 1 < s < g—1
and 1 < r < m/3q we have that C(f) > min{¢t, ¢~} where

1/ m\ [(s+1)/2] 1 q r+1
+ _ (7 - ({4 —s
ot = 8<q7‘) and ¢ 2<521n(m/q)) (r+ 17"



Proof. Let L(X) be the family of all cliques. We have seen above that L(X) is a legitimate
skeleton for the lattice of all graphs P(X). To prove the desired lower bound on Cy(f)
it is enough by Theorem 4.1 to choose an (s,r)-sparse (for any s < ¢ and r < m/3q)
random clique A in L(X) and a random graph B in P(X) so that ¢, - ®*(A) > ¢1 and
e -9 (B)> ¢

Choose A randomly with uniform distribution on the set of all g-cliques. Then Pr[A €
Ti(f)] =1 and for any £ < m — 1,

Fa(k: L(X))= (i;:,ﬁ)/(”;) < (%)k (7)

So, A is (s, r)-sparse for any s and r satisfying (¢ —s)/(m —s) < 1/3r, and hence, for s < ¢
and r < m/3q. Putting e = Irl(s+1)/21 and the estimate (7) in 2 we get the desired upper
bound for ¢*.

To obtain the desired upper bound for ¢~, let B, be a random graph, with each edge
appearing independently with probability p = ¢='In(m/q). Then

Pr[B, € To(f)] = =1-Pr[Bi_, has a ¢-clique]

1- > Pr [Bl_p 2 (g)]

Uucv
Ul =k

> 1- (7;‘)(1—19)(5) >

Since ¢(s) = (5) < s* and FBP(T +1: P(X))=pt, (3) gets the desired upper bound for
¢~ , which completes the proof of Lemma 4.2. O

(V4

DN —

5 The criterion (symmetric version)

Although general, Theorem 4.1 in its present form may be hard to apply for some functions
directly. Suppose, for example, that f has the form f = [{Y}] A f’ where f’ is a function
defined on P(Y). Then, for any random set A on P(X ) and for any integer k& < |Y|, we have
that F 4(k : P(X)) > Pr[A € Ti(f)] since A € T(f) yields A D Y, and F 4(k : P(X))
is the maximum of Pr[A D A] over all sets A € P(X) with |A| = k. There is a simple
way to overcome this difficulty. Namely, one may apply Theorem 4.1 to the subfunction f’
rather than to the function f itself. Since fis defined on the smaller lattice P(Y), one may
replace F 4(k : P(X)) by F g4(k : P(Y)) which may be much smaller than F 4(k : P(X))
since now the maximum is taken over sets A in P(Y ) only. Let us state this amplification
more precisely.

We start by recalling the following well known fact concerning subfunctions. Given a func-
tion f: P(X) — {0,1},its subfunctions are defined as follows. For Y, Z C X with YNZ = 0,
let

Pyz(X) = {A : ACY U Z}.

9



The (Y, Z)-subfunction of a Boolean function f : P(X) — {0,1} is the Boolean function
v,z : Prz(X)— {0,1} defined by

frz(A)=1 < fAUuY)=1.

In other words, the subfunction fy 7 is the function of | X |—|Y UZ| variables and is obtained
from f by setting all the variables in Y (Z) to 1(0).

Fact 5.1 For any function f: P(X) — {0,1} and any Y, Z C X with Y N Z = 0, it holds
that
Cr(f) > C(frzs Pra(X)),

Proof.  Given a circuit over P(X) computing f, replace all its inputs [z] with z € ¥
(z € Z) by 1 (0). The resulting circuit is a circuit over the lattice Py z(X) and computes
the projection fy,z. |

Recall that a subset A CY is Y-critical for f if f(AUY) =1 and f(A) = 0; CRIT(f,Y)
denotes the family of all subsets A C Y which are Y-critical for f. The main property of
critical sets is that they are both 1-terms and 0-terms of the (Y, 0)-subfunction of f.

Facrt 5.2 Let Y C X and f' be the (Y,0)-subfunction of f : P(X) — {0,1}. Then

CRIT(f,Y) C Ti(f) N To(f).

Proof. Tet A CY be a Y-critical set for f. We have to show that both f/(A) = 1 and
J'(A°) = 0 where A° =Y — A is the complement of A in P(Y).
By the definition of critical sets, f/(A) = f(AUY) = 1. On the other hand, A°UY = A,

and hence, f'(A°) = f(A°UY) = f(A)=0. O

Facts 4.2 and 4.3 lead to the following symmetrical version of Theorem 4.1.

THEOREM 5.3 Let f: P(X) — {0,1} be a monotone Boolean function, Y C X and L(Y)

be a legitimate skeleton for P(Y ). Then for any (s,r)-sparse random set A in L(Y), we
have

Cy(f) > a min {€+ FAL (Y)Y, ec Fa(r+1: P(Y))_l}

where a = Pr[A is Y -critical for f] — 1

Proof. Let f' be the (Y,{)-subfunction of f. By 5.1, C..(f) = C(f, P(X)) > C(f', P(Y)).
On the other hand, by 5.2 we have that both Pr[A € T (f')] and Pr[A € Ty(f')] are at
least a. With this in mind Theorem 4.1 yields the desired lover bound on C(f’, P(Y)), and
hence, on C4(f). o

We conclude this section by the proof of Theorem 2.1 stated in Section 2.
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Proof of Theorem 2.1. Set t = u(f), and take Y C X and F C CRIT(f,Y) for which
w(F) = p(f) = t. We will apply Theorem 5.3 with L(Y) = P(?) No

er = 2r7[GHD/ 2 and e_ = (r + 1)7s= 0+ since ¢(s) = s.

Choose A randomly with uniform distribution on F. Then A is Y-critical for f with proba-
bility 1. Next, by the definition of u(F), we have that F 4 (k+1)/F g4 (k) = Drp1(F)/Di(F) <
t=! for all k < t, and hence, A is (s,7)-sparse for any s, < t/3. Moreover, since F 4(0) = 1,
we have that F 4 (k) < ¢7* for all k¥ < ¢. Thus, Theorem 5.3 yields the following lower bound

Cy(f) > min { %(f) RSH)M, <3>T+1(r+ 1)—5}

T S

tice that in this case

which for r = /3] and s = |r/log ] yields the desired lower bound C'y(f) > exp (Q(¢/ logt)).
a
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6 Appendix A: The proof of Theorem 3.2

This appendix contains the full proof of Theorem 3.2. A variant of this theorem was proved
in [8].

By Theorem 3.1 it is enough to define an appropriate model M for which the distance
p(f, M) is bounded from the below by the right-hand side of (1). To achieve this goal, we
make use of "generalized filters” or ”closed set”, a notion introduced in [11].

Let ( M, <) be a Boolean semilattice. Following [11] say that an element « € M is derivable
from a subset Z C M if fz(z) = 1, where fz is the costar over M defined by Z (see
Section 3). A semifilter over M is a subset /' C M such that F' > 2 <ye M = y e M.
An r-filter over M is a semifilter ¥’ C M which together with any subset Z C F, |Z| =r+1
contains all the points of M derivable from 7, i.e.

Z C Fand|Z| =r+1implies f;'(1) C F.

Note that 1-filters are just usual filters over M. (This is why we prefer the term "filter”
instead of ”closed set”).

Since the intersection of two r-filters is an r-filter, we may associate with any subset A C M
the minimal r-filter A* containing A, namely A* = {B|A C B and B is an r-filter }. The
nice property of filters is that they have small number of minimal elements.

LEMMA 6.1 Let M be a Boolean semilattice with the growth function A. Then for any
semifilter A over M and an integer k > 0, both A* and A* — A have no more than A(r, k)
minimal elements of height k.

We postpone the proof of this combinatorial lemma to the appendix B . Here we just say
that similar result for the number of minimal elements in A* has been proved by Z. Firedi
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[5] in case when M is the Boolean lattice (2%, C) of all subsets of a finite set X, and was
one of the key lemmas in [2, 10, 11]; our lemma extends the result to A*— A and to arbitrary
semilattices.

Proof of Theorem 3.2: Let M be the set of all elements in the skeleton I, of height at most

s, and take
M = {[F] : Fis an r-filter over M }.

Define the operations A and V on M by [F|A[G] = [FNG] and [F|V[G] = [(FUG)*]
where, for A C M, A* stands for the least r-filter over M containing A. Since s > 1, the
semilattice M contains all the atoms of P, and hence M is a legitimate model. By Theorem

3.1, C(f) > p(f,M). Put t = p(f, M), and let f be a predicate in M for which p(f, f) = t.

As in [2] we consider two possible cases.
Case 1. f#1.

We prove that in this case
PO =1~
T AF(DA(r, )

By the definition of p(f, M), there exists a family of §-predicates A C Ay such that |A| < ¢
and f < fV\/ A. Thus, the desired lower bound on t is a direct consequence of the following
two claims.

Cramv 1. Pr[f(§) =1]<1/2.

Cram 2. For any § € Ay, Pr[6(€) = 1] <4 Fe(D)A(r,1).

Proof of Claim 1. Let F be an r-filter for which f = [F]. Notice that since f # 1, each
element of /' is of height at least 1. Fach element 2 € P for which f(z) = 1, covers
some minimal element of F. (Here and throughout, the minimality means the minimality
in M C L). By Lemma 6.1, for each 1 < k < s, the filter /' has at most A(r, k) minimal
elements of height k. Since F¢(0)A(r,0) = 1 and £ is (s, r)-sparse, we conclude that

B s s 1 k
Pr(f(&)=1] < > Fe(k)A(r,k) <> <§> < 1/2.
k=1 k=1

Proof of Claim 2. Let é € A. If 6 = 0 then there is nothing to prove. Assume that § # 0.
Then é = ([F] N [G]) — ([F N GY) for some r-filters I and G over M.

Take an element z € I for which §(z) = 1. Then z covers a minimal element a € F and
a minimal element b € G, but no element of F' N G. Since I is a Boolean semilattice I,
we have that elements a and b have their join ¢ = sup;(a,b) in the interval [0,2] C L.
Moreover, at least one of @ or b must have the height at least [ since otherwise ¢ would have
the height h(c) < h(a) + h(a) < s, and hence, would belong to I' N GG since both F' and G
are semifilters over M; but this is impossible since [F' N G'(z) = 0. We therefore conclude
that each element 2 € L for which §(z) = 1, covers a minimal element of height k£ > [ of
either F" or G (or both). Let A be the set of these minimal elements, and for [ < & < s, put
A(k)={a € A: h(a) = k}. By 6.1, |[A(k)| < 2A(r, k). Since § < [A] and £ is (s, r)-sparse,

we have that
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Pris)=1] < Y Y Prlfal(§)=1]< 3 > Fe(k)

k=l a€A(k) k=l a€ A(k)
s s—1 k
1
< 2 Fe(k < -
< 2Y FbAE) < 2FAD Y ()
k=l k=0
< AF(DA(r, D).
This completes the proof of Theorem 3.2 in Case 1. a
Case 2 f = 1.

We prove that in this case

Pr{f(n) = 0]
= Dy(s,m)A(r+1,5)
By the definition of p(f, M), there exists a family of é-predicates A C A_ such that [A] < ¢
and f A-f < VA where f A—-f = —f since f = 1. Hence, the desired lower bound on % is
a direct consequence of the following claim.
Cram 3. Forany é € A_, Pr[é(n)=1] < D,(s,7)A(r+1,s).
Proof of Claim 3. By the definition of operations A and V, each predicate § € A_ has the

form § = [A*] — [A] for some semifilter A C M. By the definition of A*, the predicate [ A*]
is the result of the following ”closure algorithm” :

[Al=fo=Ffi == fp=[AT]

where fi1 = fi V [y;| and y; is some minimal element derivable from some 7; C fz-_l(l),
with |Z;| = r + 1. (The algorithm terminates since the poset P is finite). Fori =1,...,p,
let v; = [y;] — [Z;]. Then 6§ < V.-V, Indeed, if 6(z) = 1 then, since [A](z) = 0, there
exists an 4 such that f;_;(z) = 0 but f;(z) = 1, and hence y;(z) = 1. Let I = {i : y; isa
minimal element of ¢}. By Lemma 6.1, |[1| < >>7_; A(r, k) < A(r+1,s). Since all the minimal
elements of § are among {y1,...,¥,}, we conclude that & < \/,c;v: < Viey fz, where f7 is
the costar induced by a subset Z. Hence, Pr[6(n) = 1] < |I|D,(s,7) < A(r,s+ 1) Dy(s,7)
which completes the proof of Claim 3, and thus, the proof of Theorem 3.2. O

7 Appendix B: The proof of Lemma 6.1

The goal of this appendix is to prove Lemma 6.1 about the number of minimal elements in
(generalized) filters.

Let ( M, <) be a Boolean semilattice with the height function A and the growth function
A.Forz € M and Y C M, we write z > Y if 2 > y for some y € Y where z > y means
that z > y and z # y.

We say that a set A C M has property P(r, k) if
(i) h(z) =k forall z € A, and

14



(ii) there are no z € A and 7 C A with |Z| = r + 1, such that z > 6(7) where
0(7Z)={z€ M : z=infar(z1,29) forall z1,20 € 7,21 # 2z }.

Fix an integer » > 1, and for a subset A C M, let A* denote the minimal r-filter over M
containing A.

Lemma 6.1 is a direct consequence of the following two lemmas.

LEMMA 7.1 Let A be a semifilter over M, and let I and G be sets of all minimal elements
of height k in A* and A* — A, respectively. Then both F and G have the property P(r, k).

Proof. The set F' has P(r,k) by the definition of A*. Let us check that G' also has this
property. Suppose the opposite, i.e. that z > z for some 2 € G and z € 6(Z) where
Z CGand |Z] =r+1.1f z # Z then z is derivable from Z and hence belongs to A*, a
contradiction with the minimality of z. If z » Z then h(z) > k since Z C G, and hence
z>z= h(z)>h(z)+12>k+1,a contradiction with « € G. Thus, the set G also has
the property P(r, k). O

LEMMA 7.2 If A C M has the property P(r,k) then |A| < A(r,k) where X is the growth
function of M.

Proof. We argue by induction on 7 > 1. The basis r = 1 is trivial since P(1,k) = |X|=
1=A(1,k).

Assuming the result for » — 1, we prove it for 7. Let A be a set having the property P(r,k).
Choose an arbitrary point z¢ € A, and put

Y={asNzy | € A—{xo}}.

Since M is a Boolean semilattice, each its interval [0, 2] is a Boolean lattice. Thus, each
point y = z A 29 € Y has the complement in the interval [0, 2], i.e. there is an element y’
such that ' Ay = 0 and 3’ Vy = 2 where A and V are the meet and the join operation of
the lattice [0, z]. Moreover, in Boolean lattices this complement is unique. Let 9,(z) stand
for the complement of y in [0, z]. For y € Y, set

Ay ={0y(z) | 2z € Aand z Azy = y}.

CrLAIM For each y € Y, Ay has the property P(r — 1,k — h(y)).
Note that, by induction hypothesis, this claim directly yields the desired result:

Al < D014 £ D0 AMr=1,k=h(y)) < Ar,k).

yeY y=To

To prove the claim, notice that all points in A, are of height £ — h(y) since the height
function in Boolean lattices is modular: h(a V b) 4+ h(a A b) = h(a) + h(b).
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Now, suppose that some set A, does not have the property P(r — 1,k — h(y)), i.e. that

!

(%) y -z

for some y' € A, and 2’ € §(Z') where Z' C A, and |Z'| = r. Let X be the set of those
z € A for which dy(z) € Z'. Take a point 2 € A for which y' = d,(z), and let V and A be

the join and the meet operations in the Boolean lattice [0, z]. Since 2’ € 6(Z'), we have by
(*) that for all 2" # 2" in X,

z=yVy =yvz = yV(9,(z")A0,(z"))
(y v 9y(2")) A (y v 9y(2"))

= ' Az".

Since zg Az = y for all z € X, we obtain that yVvz' = 2’ Az” for all 2’ # 2" in Z = {xo}UX,
and hence the point y Vv 2’ belongs to 6( 7). Since Z C A, |Z] = |X|+ 1 =7r+ 1 and A has
the property P(r, k), the situation z > yV 2’ is impossible. Hence, z = yV 2’. On the other
hand, (5) implies that y A 2/ <y Ay’ = 0. Thus, the point 2’ is also a complement of y in
the interval [0, z], and hence 2’ = 9,(2) = ¥/, a contradiction with (*). This completes the
proof of the claim, and thus, the proof of 7.2. a
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