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Lower Bounds on Communication Complexity∗

Stasys P. Jukna

Abstract

A notion of ”communication complexity” is used to formally measure the degree

to which a Boolean function is ”global”. An explicit combinatorial lower bound for

this complexity measure is presented. In particular, this leads to an exp(Ω(
√

n)) lower

bound on the complexity of depth-restricted contact schemes computing some natural

Boolean functions in NP.

1 Introduction

Suppose that a Boolean function f : {0, 1}n → {0, 1} must be computed by two distinct

computers. Each computer receives half of the input bits, and the computation proceeds

using some protocol for communication between the two computers. The minimum number

of bits that has to be exchanged in order to successfully compute f , minimized over all

partitions of the input into two equal parts, is called the communication complexity of f .

This model of communication was introduced by Ch. Papadimitriou and M. Sipser [5]. The

motivation for this complexity measure is that it provides a direct lower bound for the

minimum bisection width of any chip that recognizes f .

The paper is divided as follows. Section 2 involves the definition of communication

complexity. The basic result concerning the lower bound for this complexity measure is given

in Section 3. In Section 4 the communication in bounded-depth contact-gating schemes is

involved and a lower bound for such a schemes is provided. Section 5 contains an example

of a Boolean function with hight communication complexity.

2 The Model

Fix some set of Boolean variables X = {x1, . . . , xn} with n ≡ 0 (mod2). An assignment on

X is a mapping δ from X into X ∪ {0, 1} such that (∀x ∈ X) δ(x) 6∈ {0, 1} → δ(x) = x;

dom(δ) = δ−1(0) ∪ δ−1(1) is the domain of δ. For Y ⊆ X, let [Y ] denote the set of all

∗Some of these results were presented at the Second All Union Seminar on Discrete Mathematics and Its

Applications (Moscow, January 1987).
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assignments γ on X with dom(γ) = Y . Note that [X] = {0, 1}X . A restriction of δ ∈ [X] to

Y ⊆ X is an assignment δeY in [Y ] that coincides (on Y ) with δ. A partition of X is a pair

π = (X0,X1) of its subsets with X = X0 ∪ X1, X0 ∩ X1 = ∅ and |X0| = |X1| (throughout,

|A| is the cardinality of A).

A (nondeterministic) protocol on input X is a pair P = (π,Φ), where

(a) π = (X0,X1) is a partition of X.

(b) Φ is a relation

Φ ⊆ ([X0] ∪ [X1]) × {0, 1,#}∗ × ({0, 1}∗ ∪ {accept, reject})

Intuitively, the first argument of Φ is the local part of the input, while the second

argument is the sequence of all previous messages. The third argument is the next message.

For a given string w ∈ {0, 1,#}∗, the relation Φ has the following prefix-freeness property:

for any two δ, γ ∈ {0, 1}n/2, if (δ, w, u), (γ,w, v) ∈ Φ then u is not a prefix of v (for a

motivation of such a restriction see, e.g. [6]). The protocol P = (π,Φ) is called deterministic

if Φ is a function from ([X0] ∪ [X1]) × {0, 1,#}∗ to ({0, 1}∗ ∪ {accept, reject}).
A computation of P = (π,Φ) on input δ ∈ [X] is a string w = w1#w2# . . .#wk, where

k ≥ 1, w1, w2, . . . , wk ∈ ({0, 1}∗ ∪ {accept, reject}), and such that, for each i, 0 ≤ i ≤ k, we

have

(δi, w1#w2# . . .#wi, wi+1) ∈ Φ

where δi is the restriction of δ to Xi (mod2). A computation w accepts δ if

w1, . . . , wk−1 6∈ {accept, reject} and wk = accept. We say P computes a Boolean function

f : [X] → {0, 1} if, for all inputs δ in [X], f(δ) = 1 iff there is a computation of P on input

δ that accepts δ.

The depth of a computation w is the number of messages in w, i.e. depth(w) is the

number of #’s plus one. The width of w is the length of its maximal message (the messages

0 and 1 are supposed to have zero length). If P computes f then depth(P ) (width(P ))

is the minimum of depth(w) (of width(w) resp.) over all computations w that accept δ,

maximized over all inputs δ from f−1(1).

For k ≥ 1, we define the communication complexity of f by

commk(f) = min{width(w) : P computes f and depth(P ) ≤ k}.

Notice that for any f : {0, 1}n → {0, 1} and k ≥ 1,

0 ≤ commk+1(f) ≤ commk(f) ≤ n/2,

and for k = n/2,

0 ≤ commk(f) ≤ 1.

2



3 The Lower Bound

For a (0, 1)-matrix A, let per(A) denote the permanent of A and let 〈A, q〉 denote the set

of all q × q-submatrices of A. The term-rank, tr(A), and the clique-number, cl(A), of A are

defined by

tr(A) = max{q : per(B) > 0 for some B in 〈A, q〉}

and

cl(A) = max{q : per(B) = q! for some B in 〈A, q〉}.

Given a Boolean function f(X), X = {x1, . . . , xn}, and an assignment δ on X, denote by f δ

the function we get by composing f and δ, i.e. f δ = f(δ(x1), . . . , δ(xn)). Note that f δ is a

function of n− |dom(δ)| variables. For a partition π = (Y,Z) of X, we define the following

(0, 1)-matrix M(f, π) of order 2n/2 × 2n/2:

M(f, π) =
{

f δγ : δ ∈ [Y ] and γ ∈ [Z]
}

.

For f 6= const, define the dispersion, Θ(f), of f by

Θ(f) = min

{

tr(M(f, π))

cl(M(f, π))
: π is a partition of X

}

.

Note that

1 ≤ Θ(f) ≤ 2n/2.

Theorem 3.1 For any k ≥ 1 and a Boolean function f 6= const the following bound holds

commk(f) ≥ k−1 · log Θ(f).

Proof. Choose some protocol P = (π,Φ) computing f , and such that depth(P ) ≤ k and

commk(f) = width(P ). Let π = (Y,Z).

Choose some maximal subset of assignments D ⊆ {δ ∈ [X] : f δ = 1} such that, for all

δ 6= γ in D, δeY 6= γeY and δeZ 6= γeZ . Then |D| = tr(M(f, π)).

Now, let t = width(P ). Define the computation w = w1#w2# . . .#wk of P inductively

as follows. To define the message wi+1 consider the set D(i) of all assignments δ in D for

which w1# . . .#wi is a prefix of an accepting δ computation of depth k. (Hence D(0) = D).

Let wi+1 be a message in {0, 1}∗ ∪ {0, 1} for which w1# . . .#wi#wi+1 is the prefix of

computations (of depth k) that accept at least |D(i)| · 2−t assignments in D(i).

Since the computation w accepts at least |D(k)| ≥ |D| · 2−tk assignments in D and

t = commk(f), it remains to show that cl(M(f, π)) ≥ |D(k)|.
Indeed, if δ 6= γ are in D(k) then both δ and γ are accepted by w. Then by cutting and

pasting argument, w accepts both (δeY , γeZ) and (δeZ , γeY ). So,

f δ = f δeY ,γeZ = f δeZ ,γeY = fγ,

and the proof follows.
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4 Communication in Contact Schemes

A contact-gating scheme over the set of Boolean variables X = {x1, . . . , xn} is a finite

acyclic digraph (multiple edges allowed) with edges labeled by x1, . . . , xn, x̄1, . . . , x̄n (cf.

[4]). One of the nodes is a source (has fan-in zero), some other nodes are leafs (fan-out

zero). A branching program is a contact-gating scheme such that

(i) every node has outdegree at most 2, and

(ii) for every node v with outdegree=2, one of the edges leaving v is labeled by a variable

x ∈ X and the other is labeled by its complement x̄ (see, e.g. [2,3,7]).

A scheme computes a Boolean function in a natural way: S(X) computes f : {0, 1}X →
{0, 1} if for any δ in {0, 1}X , it holds that f(δ) = 1 iff S(δ) contains a path from the source

to a leaf. The size of a scheme is the number of edges.

A set of nodes V of S is called a cut if each path from the source to a leaf contains

exactly one node in V . For cuts U and V we shall write U ≤ V if there is a path from each

node in U to some node in V . For U ≤ V , let S[U, V ] denote the sub-scheme of S between

U and V (including U and V ).

For a scheme S(X), let depth(S) denote the minimal number k for which there exists a

partition π = (X0,X1) of X and a sequence of cuts

V0 ≤ V1 ≤ . . . ≤ Vk

such that V0 = {source}, Vk = {leafs} and, for each i = 0, . . . , k−1, the function computed

by S[Vi, Vi+1] does not depend on variables in Xi+1 (mod2). For a Boolean function f and

k ≥ 1, denote

Ck(f) = min{size(S) : S computes f and depth(S) ≤ k}.

In case of branching programs the corresponding measure is denoted by BPk(f). Obviously,

BPk(f) ≥ Ck(f).

Remark: The depth k contact scheme model is quite powerful even for k = const. There

are Boolean functions fn that require nearly-exponential (up to exp(n/ log n)) size to be

computed by any sufficiently ”local” scheme (see [2], [3]), and BP4(fn) = O(n2). On the

other hand, constant-depth schemes are also quite powerful for almost all functions (the

term ”almost all” refers to a (1 − o(1)) fraction of the exp exp(n) possible choices of n-

variable Boolean functions). Namely, the method by O.B. Lupanov [4] implies that for

almost all fn : {0, 1}n → {0, 1}, the following asymptotic holds

C(fn) ∼ C4(fn) ∼ 2n/n.

Every contact-gating scheme S(X) of depth k defines the following protocol PS =

(π,ΦS). Set t = max |Vi| and fix some injection ν from {0, 1, . . . , t − 1} to {0, 1}log t. The
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relation ΦS is defined as follows. For any i ∈ {0, . . . , k − 1}, m1, . . . ,mi+1 ∈ {0, . . . , t − 1}
and an assignment δ in Xi (mod2), let

(δ, ν(m1)# . . .#ν(mi), ν(mi+1)) ∈ ΦS

iff there exists a path in S(δ) from the mi-th node in Vi to mi+1-th node in Vi+1. Notice

that only the last message ν(mi) is essential for ΦS .

Remark: If S is a branching program then the corresponding protocol PS is deterministic.

The scheme S and the protocol PS both compute the same Boolean function. Moreover,

size(S) ≥ 2width(PS). (4.1)

It is known (see, e.g. [7]) that for k = ∞, the contact gating scheme complexity and the

branching program complexity are polynomially related. Namely, there exists a constant

c ≥ 1 such that for any Boolean function f , it holds that

BP (f) ≤ C(f) ≤ (BP (f))c .

However, for depth-restricted schemes the picture changes drastically.

Proposition 4.1 There is a sequence of Boolean functions {fn}∞n=1 such that

C2(fn) ≤ nO(1)

and for any k = k(n) ≥ 1,

BPk(fn) ≥ 2Ω(n/k).

Proof. For m ≥ 2, let Tn(X) denote the function of n =
(

m
2

)

Boolean variables X, whose

value is 1 iff X represents the adjacency matrix of an undirected graph of m nodes containing

a triangle. It is easy to check that C2(Tn) ≤ nO(1). On the other hand, it is known ([6])

that for any k ≥ 1,

k · det-comk(Tn) ≥ Ω(n)

where ”det-com” stands for deterministic communication complexity. It remains to use

(4.1).

Theorem 4.1 For any k ≥ 1 and any Boolean function f 6= const, it holds that

Ck(f) ≥ Θ(f)1/k.

Proof. Follows directly from (4.1) and Theorem 3.1.

5 Example

Let GF (q) be the finite Galois field of order q, where q is a prime power and q ≡ 0 (mod2).

Define POLn(X) to be the function of n = q2 Boolean variables X = {xa,b : a, b ∈ GF (q)},
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whose value is 1 iff there exists a polynomial Q of degree at most d = q/2 − 1 over GF (q)

such that for all a, b in GF (q),

xa,b = 1 ⇐⇒ b = Q(a).

Remark: POLn is the characteristic function for the set of all ”lower ones” (i.e. of prime

implicants) of an NP-complete monotone Boolean function investigated by A.E. Andreev

[1].

Lemma 5.1 Θ(POLn) ≥ 2
√

n/2.

To prove the lemma, we need some combinatorial properties of POLn.

Lemma 5.2 For any partition π = (Y,Z) of X and an assignment δ in [Y ], put

Γδ = {γ ∈ [Z] : POLδ,γ
n = 1}.

Then

|Γδ| ≤ max{0, H(‖δ‖)}

Proof. If ‖δ‖ ≥ d + 1 then Γδ = ∅ since any two distinct polynomials of degree at most d

over GF (q) differ in at least q − d points.

Let ‖δ‖ = t ≤ d. Denote by Cδ the set of all columns C of X such that C − δ−1(1) 6= ∅.
The either Γδ = ∅ or |Cδ| = q − ‖δ} = q − t. Let Cδ = {C1, . . . , Cq−t} and put si =

|Ci − dom(δ)|. Then

s1 + . . . + sq−t ≤ |Z| = n/2 (5.1)

where w.l.o.g.

s1 ≤ s2 ≤ . . . ≤ sq−t. (5.2)

Set r = d + 1− t, and let h(s1, . . . , sr) denote the number of all r-tuples (j1, . . . , jr), where

1 ≤ ji ≤ si, i = 1, . . . , r. Then obviously,

|Γδ| ≤ h(s1, . . . , sr), (5.3)

where by (5.1) and (5.2)

s1 + . . . + sr ≤ n/2 − (d + 1)sr (5.4)

Since the sum of s1, . . . , sr is bounded, the maximum of h(s1, . . . , sr) is achieved for s1 =

. . . = sr. Hence by (5.4), sr ≤ n/(2(q−t)), and so, |Γδ| ≤ H(t) = h(n/(2(q−t)), . . . , n/(2(q−
t))).

Proof of Lemma 5.1. Let f = POLn and π = (Y,Z) be a partition of X such that Θ(POLn) =

tr(M)/cl(M), where M = M(f, π). The matrix M contains exactly |f−1(1)| = qd+1 ones.

Since H(t) ≤ H(0), by Lemma 5.2 we have that the minimal number of lines (columns and

rows) we need to cover all the 1’s of M is no less than qd+1 · H(0) = 2d+1. By König-

Egervary theorem (see, e.g. [5]) this minimal number of lines coincides with the term-rank

of M . Therefore,

Θ(POLn) ≥ 2d+1 · cl(POLn)−1,

where by Lemma 5.2, cl(POLn) = 1.
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Corollary 5.1 For any k = k(n),

commk(POLn) ≥ √
n/2.

Corollary 5.2 If k = O(n1/2−ε) for some 0 ≤ ε ≤ 1/2 then

Ck(POLn) ≥ 2nε−o(1)
.

In particular, for any constant k,

Ck(POLn) ≥ 2Ω(
√

n).

Finally, notice that

comm1(POLn) ≤ √
n log n/4.

Indeed, let some (0, 1)-matrix A of order q × q be given. Divide A into two submatrices A0

and A1 of order q × (d + 1) each. To compute POLn, the first computer transmits either

reject or the binary code bin(Q) of a polynomial Q of degree at most d over GF (q) such that

(the graph of) Q corresponds to A0. The second computer then has enough information to

decide acceptance. The length of bin(Q) is at most (d + 1) log q. Note that this protocol is

even deterministic (i.e. with Φ, a function).
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