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Abstract

A completion of an m-by-n matrix A with entries in {0, 1,∗} is obtained by setting all ∗-entries to
constants 0 and 1. A system of semi-linear equations over GF2 has the form M x = f (x ), where M is a
completion of A and f : {0,1}n → {0, 1}m is an operator, the ith coordinate of which can only depend
on variables corresponding to ∗-entries in the ith row of A. We conjecture that no such system can have
more than 2n−ε·mr(A) solutions, where ε > 0 is an absolute constant and mr(A) is the smallest rank over
GF2 of a completion of A. The conjecture is related to an old problem of proving super-linear lower
bounds on the size of log-depth boolean circuits computing linear operators x 7→ M x . The conjecture
is also a generalization of a classical question about how much larger can non-linear codes be than
linear ones. We prove some special cases of the conjecture and establish some structural properties of
solution sets.
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1. Introduction

One of the challenges in circuit complexity is to prove a super-linear lower bound for log-depth
circuits over {&,∨,¬} computing an explicitly given boolean operator f : {0, 1}n → {0,1}n. Attempts
to solve it have led to several weaker problems which are often of independent interest. The problem
is open even if we impose an additional restriction that the depth of the circuit is O(log n). It is even
open for linear log-depth circuits, that is, for log-depth circuits over the basis {⊕, 1}, in spite of the
apparent simplicity of such circuits. It is clear that the operators computed by linear circuits must also
be linear, that is, be matrix-vector products x → M x over the field GF2 = ({0, 1},⊕, ·),

An important result of Valiant [27] reduces the lower bounds problem for log-depth circuits over
{&,∨,¬} to proving lower bounds for certain depth-2 circuits, where we allow arbitrary boolean func-
tions as gates.

1.1. Reduction to depth-2 circuits
A depth-2 circuit of width w has n boolean variables x1, . . . , xn as input nodes, w arbitrary boolean

functions h1, . . . , hw as gates on the middle layer, and m arbitrary boolean functions g1, . . . , gm as

IResearch of both authors supported by a DFG grant SCHN 503/4-1.
∗Corresponding author
Email addresses: jukna@thi.informatik.uni-frankfurt.de (Stasys Jukna),

georg@thi.informatik.uni-frankfurt.de (Georg Schnitger)
1Currently at University of Frankfurt, Institut of Computer Science, Frankfurt, Germany.



gates on the output layer. Direct input-output wires, connecting input variables with output gates,
are allowed. Such a circuit computes an operator f = ( f1, . . . , fm) : {0,1}n → {0,1}m if, for every
i = 1, . . . , m,

fi(x ) = gi(x , h1(x ), . . . , hw(x )) .

The degree of such a circuit is the maximum, over all output gates gi , of the number of wires going
directly from input variables x1, . . . , xn to the gate gi . That is, we ignore the wires incident with the
gates on the middle layer. Let degw( f ) denote the smallest degree of a depth-2 circuit of width w
computing f .

It is clear that degn( f ) = 0 for f : {0, 1}n→ {0, 1}n: just put the functions f1, . . . , fn on the middle
layer. Hence, this parameter is only nontrivial for w < n. Especially interesting is the case when
w = O(n/ ln ln n) (see also Theorem 2.2 in [20] for more details):

Lemma 1.1 (Valiant [27]). If degw( f ) = nΩ(1) for w = O(n/ ln ln n), then the operator f cannot be
computed by a circuit of depth O(ln n) using O(n) constant fan-in gates.

Recently, there was a substantial progress in proving lower bounds on the size of (that is, on the total
number of wires in) depth-2 circuits. Superlinear lower bounds of the form Ω(n log2 n) were proved
using graph-theoretic arguments by analyzing some superconcentration properties of the circuit as a
graph [6, 14, 15, 18, 16, 2, 20, 21, 22]. Higher lower bounds of the form Ω(n3/2) were proved using
information theoretical arguments [4, 9]. But the highest known lower bound on the degree of width
w circuits has the form Ω((n/w) ln(n/w)) [20], and is too weak to have a consequence for log-depth
circuits.

A natural question therefore was to improve the lower bound on the degree at least for linear
circuits, that is, for depth-2 circuits whose middle gates as well as output gates are linear boolean
functions (parities of their inputs). Such circuits compute linear operators x 7→ M x for some (0, 1)-
matrix M ; we work over GF2. By Valiant’s reduction, this would give a super-linear lower bound for
log-depth circuits over {⊕, 1}.

This last question attracted attention of many researchers because of its relation to a purely alge-
braic characteristic of the underlying matrix M—its rigidity. The rigidity RM (r) of a (0, 1)-matrix M
is the smallest number of entries of M that must be changed in order to reduce its rank over GF2 to
r. It is not difficult to show (see [27]) that any linear depth-2 circuit of width w computing M x must
have degree at least RM (w)/n: If we set all direct input-output wires to 0, then the resulting degree-0
circuit will compute some linear transformation M ′x where the rank of M ′ does not exceed the width
w. On the other hand, M ′ differs from M in at most dn entries, where d is the degree of the original
circuit. Hence, RM (w)≤ dn from which d ≥RM (w)/n follows.

Motivated by its connection to proving lower bounds for log-depth circuits, matrix rigidity (over
different fields) was considered by many authors, [23, 1, 17, 7, 16, 20, 25, 24, 10, 11, 19, 26] among
others. It is therefore somewhat surprising that the highest known lower bounds on RM (r) (over the
field GF2), proved in [7, 25] also have the form Ω((n2/r) ln(n/r)), resulting to the same lower bound
Ω((n/w) ln(n/w)) on the degree of linear circuits as that for general depth-2 circuits proved in [20].
This phenomenon is particularly surprising, because general circuits may use arbitrary (not just linear)
boolean functions as gates. We suspect that the absence of higher lower bounds for linear circuits than
those for non-linear ones could be not just a coincidence.

Conjecture 1 (Linearization conjecture for depth-2 circuits). Depth-2 circuits can be linearized. That
is, every depth-2 circuit computing a linear operator can be transformed into an equivalent linear depth-2
circuit without substantial increase of its width or its degree.
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If true, the conjecture would have important consequences for log-depth circuits. Assuming this
conjecture, any proof that every depth-2 circuit of width w = O(n/ ln ln n) with unbounded fan-in
parity gates for a given linear operator M x requires degree nΩ(1) would imply that M x requires a
super-linear number of gates in any log-depth circuit over {&,∨,¬}. In particular, this would mean
that proving high lower bounds on matrix rigidity is a much more difficult task than assumed before:
such bounds would yield super-linear lower bounds for log-depth circuits over a general basis {&,∨,¬},
not just for circuits over {⊕, 1}.

As the first step towards Conjecture 1, in this paper we relate it to a purely combinatorial conjec-
ture about partially defined matrices—the min-rank conjecture, and prove some results supporting this
last conjecture. This turns the problem about the linearization of depth-2 circuits into a problem of
Combinatorial Matrix Theory concerned with properties of completions of partially defined matrices
(see, e.g., the survey [8]). Hence, the conjecture may also be of independent interest.

Unfortunately, we were not able to prove the conjecture in its full generality. So far, we are only
able to prove that some of its special cases are true. This is not very surprising because the conjecture
touches a basic problem in circuit complexity: Can non-linear gates help to compute linear operators?
This paper is just the first step towards this question.

1.2. The Min-Rank Conjecture
A completion of a (0,1,∗)-matrix A is a (0,1)-matrix M obtained from A by setting all ∗’s to constants

0 and 1. A canonical completion of A is obtained by setting all ∗’s in A to 0.
If A is an m-by-n matrix, then each its completion M defines a linear operator mapping each vector

x ∈ {0,1}n to a vector M x ∈ {0, 1}m. Besides such (linear) operators we also consider general ones.
Each operator G : {0, 1}n → {0, 1}m can be looked at as a sequence G = (g1, . . . , gm) of m boolean
functions gi : {0,1}n→ {0, 1}.

We say that an operator G = (g1, . . . , gm) is consistent with an m-by-n (0, 1,∗)-matrix A = (ai j) if
the ith boolean function gi can only depend on those variables x j for which ai j = ∗. That is, the ith
component gi of G can only depend on variables on which the ith row of A has stars (see Example 1.6).

Definition1.2. With some abuse in notation, we call a set L ⊆ {0, 1}n a solution for a partial matrix
A if there is a completion M of A and an operator G such that G is consistent with A and M x = G(x )
holds for all x ∈ L. A solution L is linear if it forms a linear subspace of {0,1}n over GF2.

That is, a solution for A is a set L of (0, 1)-vectors of the form L = {x : M x = G(x )}, where M is
a completion of A, and G is an operator consistent with A. A solution L is linear, if x ⊕ y ∈ L for all
x , y ∈ L.

Since, besides the consistency, there are no other restrictions on the operator G in the definition of
the solution L, we can always assume that M is the canonical completion of A (with all stars set to 0).

Observation 1.3 (Canonical completions). If L = {x : M x = G(x )} is a solution for A, and M ′ is
the canonical completion of A, then there is an operator G′ such that G′ is consistent with A and L =
{x : M ′x = G′(x )}.

Proof. The ith row m i of M must have the form m i = m′i + p i , where m′i ∈ {0, 1}n is the ith row of
the canonical completion M ′ of A, and p i ∈ {0, 1}n is a vector with no 1’s in positions where the ith
row of A has no stars. We can then define an operator G′ = (g ′1, . . . , g ′m) by g ′i(x ) := gi(x )⊕ 〈p i , x 〉.
(As customary, the scalar product of two vectors x , y ∈ {0, 1}n over GF2 is 〈x , y〉 =

∑n
i=1 x i yi mod 2.)

Since G was consistent with A, the new operator G′ is also consistent with A. Moreover, for every vector
x ∈ {0,1}n, we have that 〈m i , x 〉= gi(x ) iff 〈m′i , x 〉= g ′i(x ).
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We are interested in how much the maximum opt(A) = maxL |L| over all solutions L for A can
exceed the maximum lin(A) =maxL |L| over all linear solutions L for A. It can be shown (Corollary 6.3
below) that

lin(A) = 2n−mr(A) ,

where mr(A) is the min-rank of A defined as the smallest possible rank of its completion:

mr(A) =min{rk(M): M is a completion of A} .

If we only consider constant operators G, that is, operators with G(x ) = b for some b ∈ {0, 1}m

and all x ∈ {0,1}n, then Linear Algebra tells us that no solution for A can have more than 2n−r vectors,
where r = rk(M) is the rank (over GF2) of the canonical completion M of A, obtained by setting all
stars to 0.

If we only consider affine operators G, that is, operators of the form G(x ) = Hx ⊕ b where H is
an m-by-n (0, 1)-matrix, then no solution for A can have more than 2n−mr(A) vectors, because then the
consistency of G(x ) with A ensures that, for every completion M of A, the matrix M⊕H is a completion
of A as well.

Remark1.4. This last observation implies, in particular, that opt(A)≤ 2n−mr(A) for all (0,1,∗)-matrices
A with at most one ∗ in each row: In this case each gi can depend on at most one variable, and hence,
must be a linear boolean function.

We conjecture that a similar upper bound also holds for any operator G, as long as it is consistent
with A. That is, we conjecture that linear operators are almost optimal.

Conjecture 2 (Min-Rank Conjecture). There exists a constant ε > 0 such that for every m-by-n (0,1,∗)-
matrix A we have that opt(A)≤ 2n−ε·mr(A) or, equivalently,

opt(A)≤ 2n
�

lin(A)
2n

�ε

. (1)

Remark1.5. To have consequences for log-depth circuits, it would be enough, by Lemma 1.1, that the
conjecture holds at least for ε= o(1/ log log n).

Example1.6. To illustrate the introduced concepts, let us consider the following system of 3 equations
in 6 variables:

x1⊕ x6 = x3 · x5

x2⊕ x3⊕ x4 = x1 · (x5⊕ x6) (2)

x4 = (x2⊕ x5) · (x3⊕ x6) .

The corresponding (0, 1,∗)-matrix for this system is

A=







1 0 ∗ 0 ∗ 1
∗ 1 1 1 ∗ ∗
0 ∗ ∗ 1 ∗ ∗






, (3)

and the system itself has the form M x = G(x ), where M is the canonical completion of A:

M =







1 0 0 0 0 1
0 1 1 1 0 0
0 0 0 1 0 0






,
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and G = (g1, g2, g3) : {0,1}6→ {0,1}3 is an operator with

g1(x ) = x3 · x5 ;

g2(x ) = x1 · (x5⊕ x6) ;

g3(x ) = (x2⊕ x5) · (x3⊕ x6) .

The min-rank of A is equal 2, and is achieved by the following completion:

M ′ =







1 0 0 0 0 1
0 1 1 1 0 0
0 1 1 1 0 0






.

1.3. Our results

In Section 2 we prove the main consequence of the min-rank conjecture for boolean circuits: If true,
it would imply that non-linear gates are powerless when computing linear operators M x by depth-2
circuits (Lemmas 2.2 and 2.3).

In Sections 3 and 4 we prove some partial results supporting Conjectures 1 and 2. We first show
(Corollary 3.4) that every depth-2 circuit of width w computing a linear operator can be transformed
into an equivalent linear depth-2 circuit of the same degree and width at most w plus the maximum
number of wires in a matching formed by the input-output wires of the original circuit.

We then prove two special cases of Min-Rank Conjecture. A set of (0, 1,∗)-vectors is independent
if they cannot be made linearly dependent over GF2 by setting stars to constants 0 and 1. If A is
a (0,1,∗)-matrix, then the upper bound opt(A) ≤ 2n−r holds if the matrix A contains r independent
columns (Theorem 4.4). The same upper bound also holds if A contains r independent rows, and the
sets of star positions in these rows form a chain with respect to set-inclusion (Theorem 4.11).

After that we concentrate on the structure of solutions. In Section 5 we show that solutions for a
(0, 1,∗)-matrix A are precisely independent sets in a Cayley graph over the Abelian group ({0,1}n,⊕)
generated by a special set KA ⊆ {0,1}n of vectors defined by the matrix A (Theorem 5.2).

In Section 6 we first show that every linear solution for A lies in the kernel of some completion
of A (Theorem 6.2). This, in particular, implies that lin(A) = 2n−mr(A) (Corollary 6.3), and gives an
alternative definition of the min-rank mr(A) as the smallest rank of a boolean matrix H such that
Hx 6= 0 for all x ∈ KA (Corollary 6.4). In Section 7 we show that non-linear solutions must be “very
non-linear”: they cannot contain linear subspaces of dimension exceeding the maximum number of ∗’s
in a row of A (Theorem 7.1).

In Section 8 we consider the relation of the min-rank conjecture with error-correcting codes. We
define (0,1,∗)-matrices A, the solutions for which are error-correcting codes, and show that the min-
rank conjecture for these matrices is true: In this case the conjecture is implied by well known lower
and upper bounds on the size of linear and nonlinear error correcting codes (Lemma 8.3).

For readers convenience, we summarize the introduced concepts at the end of the paper (see Ta-
ble 1).

2. Min-rank conjecture and depth-2 circuits

Let F be a depth-2 circuit computing a linear operator x → M x , where M is an m-by-n (0, 1)-
matrix. Say that the (i, j)th entry of M is seen by the circuit, if there is a direct wire from x j to the ith
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output gate. Replace all entries of M seen by the circuit with ∗’s, and let AF be the resulting (0,1,∗)-
matrix. That is, given a depth-2 circuit F computing a linear operator x → M x , we replace by ∗’s all
entries of M seen by the circuit, and denote the resulting (0, 1,∗)-matrix by AF . Note that the original
matrix M is one of the completions of AF ; hence, rk(M)≥mr(AF ).

Lemma 2.1. Every linear depth-2 circuit F has width(F)≥mr(AF ).

In particular, if F computes a linear operator x 7→ M x and has no direct input-output wires at all,
then AF = M and width(F)≥ rk(M).

Proof. Let M x be a linear operator computed by F . Every assignment of constants to direct input-
output wires leads to a depth-2 circuit of degree d = 0 computing a linear operator Bx , where B is a
completion of AF . This operator takes 2rk(B) different values. Hence, the operator H : {0,1}n→ {0, 1}w

computed by w = width(F) boolean functions on the middle layer of F must take at least so many
different values, as well. This implies that the width w must be large enough to fulfill 2w ≥ 2rk(B), from
which w ≥ rk(B)≥mr(AF ) follows.

Lemma 2.2. Every depth-2 circuit F computing a linear operator can be transformed into an equivalent
linear depth-2 circuit of the same degree and width at most mr(AF ).

Together with Lemma 2.1, this implies that width(F) = mr(AF ) for every optimal linear depth-2
circuit F .

Proof. Let x → M x be the operator computed by F , and let A= AF be the (0,1,∗)-matrix of F . We can
construct the desired linear depth-2 circuit computing M x as follows. Take a completion B of A with
rk(B) = mr(A). By the definition of completions, the ith row bi of B has the form bi = ai + p i , where
ai is the ith row of A with all stars set to 0, and p i is a (0,1)-vector having no 1’s in positions, where
this row of A has non-stars. The ith row m i of the original (0, 1)-matrix M is of the form m i = ai+m′i ,
where m′i is a (0,1)-vector which coincides with m i in all positions, where the ith row of A has stars,
and has 0’s elsewhere.

The matrix B has r = rk(B) =mr(A) linearly independent rows. Assume w.l.o.g. that these are the
first rows b1, . . . , br of B, and add r linear gates computing the scalar products 〈b1, x 〉, . . . , 〈br , x 〉 over
GF2 on the middle layer. Connect by wires each of these linear gates with all input and all output nodes.
Note that the ith output gate, knowing the vectors p i and m′i , can compute both scalar products 〈p i , x 〉
and 〈m′i , x 〉 by only using existing direct wires from inputs x1, . . . , xn to this gate. Hence, using the r
linear gates 〈b1, x 〉, . . . , 〈br , x 〉 on the middle layer, the ith output gate, for i ≤ r, can also compute the
whole scalar product 〈m i , x 〉 of the input vector with the ith row of M by:

〈m i , x 〉= 〈ai , x 〉 ⊕ 〈m′i , x 〉= 〈bi , x 〉 ⊕ 〈p i , x 〉 ⊕ 〈m′i , x 〉 .

For i > r, just replace vector bi in this expression by the corresponding linear combination of b1, . . . , br .
We have thus constructed an equivalent linear depth-2 circuit of the same degree and of width r =
mr(AF ).

By Lemma 2.2, the main question is: How much the width of a circuit F can be smaller than the
min-rank of its matrix AF ? Ideally, we would like to have that width(F) ≥ ε ·mr(AF ): then the width
of the resulting linear circuit would be at most 1/ε times larger than that of the original circuit F .

Lemma 2.1 lower bounds the width of linear circuits F in terms of the min-rank of their (0,1,∗)-
matrices AF . We now show that the Min-Rank Conjecture implies a similar fact also for general (non-
linear) circuits.
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Lemma 2.3. For every depth-2 circuit F computing a linear operator in n variables, we have that

width(F)≥ n− log2 opt(AF ) .

Hence, the Min-Rank Conjecture (stating that opt(A) ≤ 2n−ε·mr(A)) implies that width(F) ≥ ε ·
mr(AF ).

Proof. Let M be an m-by-n (0,1)-matrix. Take a depth-2 circuit F of width w computing M x , and let
AF be the corresponding (0,1,∗)-matrix. Let H = (h1, . . . , hw) be an operator computed at the gates
on the middle layer, and G = (g1, . . . , gm) an operator computed at the gates on the output layer.
Hence, M x = G(x , H(x )) for all x ∈ {0, 1}n. Fix a vector b ∈ {0,1}w for which the set L = {x ∈
{0,1}n : M x = G(x , b)} is the largest one; hence, |L| ≥ 2n−w . Note that the operator G′(x ) := G(x , b)
must be consistent with A: its ith component g ′i(x ) can only depend on input variables x j to which the
ith output gate gi is connected. Hence, L is a solution for AF , implying that opt(AF )≥ |L| ≥ 2n−w from
which the desired lower bound w ≥ n− log2 opt(AF ) on the width of F follows.

We can now show that the Min-Rank Conjecture (Conjecture 2) indeed implies the Linearization
Conjecture (Conjecture 1).

Corollary 2.4. Conjecture 2 implies Conjecture 1.

Proof. Let F be a depth-2 circuit computing a linear operator in n variables. Assuming Conjecture 2,
Lemma 2.3 implies that ε · mr(AF ) ≤ n − log2 opt(AF ) ≤ width(F). By Lemma 2.2, the circuit F
can be transformed into an equivalent linear depth-2 circuit of the same degree and width at most
mr(AF )≤ width(F)/ε.

Hence, together with Valiant’s result, the Min-Rank Conjecture implies that a linear operator M x
requires a super-linear number of gates in any log-depth circuit over {&,∨,¬}, if every depth-2 circuit
for M x over {⊕, 1} of width w = O(n/ ln ln n) requires degree nΩ(1).

Finally, let us show that the only “sorrow”, when trying to linearize a depth-2 circuit, is the possible
non-linearity of output gates—non-linearity of gates on the middle layer is no problem.

Lemma 2.5. Let F be a depth-2 circuit computing a linear operator. If all gates on the output layer are
linear boolean functions, then F can be transformed into an equivalent linear depth-2 circuit of the same
degree and width.

Proof. Let M be an m-by-n (0,1)-matrix, and let F be a depth-2 circuit of width w computing M x .
Let H = (h1, . . . , hw) be the operator H : {0, 1}n → {0, 1}w computed by the gates on the middle layer.
Assume that all output gates of F are linear boolean functions. Let B be the m-by-n adjacency (0, 1)-
matrix of the bipartite graph formed by the direct input-output wires, and C be the m-by-w adjacency
(0, 1)-matrix of the bipartite graph formed by the wires joining the gates on the middle layer with those
on the output layer. Then

M x = Bx ⊕ C ·H(x ) for all x ∈ {0, 1}n,

where C ·H(x ) is the product of the matrix C with the vector y = H(x ). Hence,

C ·H(x ) = Dx (4)
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is a linear operator with D = M ⊕ B. Write each vector x = (x1, . . . , xn) as the linear combination

x =
n
∑

i=1

x ie i (5)

of unit vectors e1, . . . , en ∈ {0,1}n, and replace the operator H computed on the middle layer by a
linear operator

H ′(x ) :=
n
∑

i=1

x iH(e i) (mod 2) . (6)

Then, using the linearity of the matrix-vector product, we obtain that (with all sums mod 2):

C ·H(x ) = D ·
�
∑

x ie i

�

by (4) and (5)

=
∑

x i De i linearity

=
∑

x iC ·H(e i) by (4)

= C ·
�
∑

x iH(e i)
�

linearity

= C ·H ′(x ) by (6) .

Hence, we again have that M x = Bx ⊕ C · H ′(x ), meaning that the obtained linear circuit computes
the same linear operator M x .

3. Bounds on opt(A)

Recall that opt(A) is the largest possible number of vectors in a solution for a given (0,1,∗)-matrix A.
The simplest properties of this parameter are summarized in the following

Lemma 3.1. Let A be an m-by-n (0,1,∗)-matrix. If A′ is obtained by removing some rows of A, then
opt(A′)≥ opt(A). If A= [B, C] where B is an m-by-p submatrix of A for some 1≤ p ≤ n, then

opt(B) · opt(C)≤ opt(A)≤ opt(B) · 2n−p .

Proof. The first claim opt(A′) ≥ opt(A) is obvious, since addition of new equations can only decrease
the number of solutions in any system of equations.

To prove opt(A) ≤ opt(B) · 2n−q, take an optimal solution LA = {x : M x = G(x )} for A; hence,
|LA|= opt(A). Fix a vector b ∈ {0, 1}n−p for which the set

LB = {y ∈ {0,1}p : (y , b) ∈ LA}

is the largest one; hence, |LB| ≥ opt(A)/2n−p. The completion M of A has the form M = [M ′, M ′′],
where M ′ is a completion of B and M ′′ is a completion of C . If we define an operator G′ : {0,1}p →
{0,1}m by

G′(y) := G(y , b)⊕M ′′b ,

then M ′y = G′(y) for all y ∈ LB. Hence, LB is a solution for B, implying that opt(A) ≤ |LB| · 2n−p ≤
opt(B) · 2n−p.

To prove opt(A) ≥ opt(B) · opt(C), let LB = {y ∈ {0, 1}p : M ′y = G′(y)} be an optimal solution for
B, and let LC = {z ∈ {0,1}n−p : M ′′z = G′′(z)} be an optimal solution for C . For any pair x = (y , z) ∈
LB× LC , we have that M x = G(x ), where M = [M ′, M ′′] and G(y , z) := G′(y)⊕G′′(z). Hence, the set
LB× LC ⊆ {0, 1}n is a solution for A, implying that opt(B) ·opt(C) = |LB× LC | ≤ opt(A), as claimed.
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Let A be an m-by-n (0, 1,∗)-matrix. The min-rank conjecture claims that the largest number opt(A)
of vectors in a solution for A can be upper bounded in terms of the min-rank of A as opt(A)≤ 2n−ε·mr(A).
The claim is true if the min-rank of A is “witnessed” by some (0, 1)-submatrix of A, that is, if A contains
a (0, 1)-submatrix of rank equal to the min-rank of A. This is a direct consequence of the following
simple

Lemma 3.2. If A is an m-by-n (0,1,∗)-matrix, then opt(A)≤ 2n−rk(B) for every (0, 1)-submatrix B of A.

Proof. Let B be a p-by-q (0, 1)-submatrix of A. Since B has no stars, only constant operators can be
consistent with B. Hence, if L ⊆ {0,1}q is a solution for B, then there must be a vector b ∈ {0,1}p

such that Bx = b for all x ∈ L. This implies |L| ≤ 2q−rk(B). Together with Lemma 3.1, this yields
opt(A)≤ 2q−rk(B) · 2n−q = 2n−rk(B).

The max-rank Mr(A) of a (0, 1,∗)-matrix A is a maximal possible rank of its completion. A line of A
is either its row or its column. A cover of A is a set X of its lines covering all stars. Let cov(A) denote
the smallest possible number of lines in a cover of A.

Lemma 3.3. For every m-by-n (0, 1,∗)-matrix A, we have that

opt(A)≤ 2n−Mr(A)+cov(A) .

Proof. Given a cover X of the stars in A by lines, remove all these lines, and let AX be the resulting
(0, 1)-submatrix of A. Clearly, we have: Mr(A) ≤ rk(AX ) + |X |. (In fact, it is shown in [5] that Mr(A) =
minX

�

rk(AX ) + |X |
�

, where the minimum is over all covers X of A.) Take a cover X of A of size
|X | = cov(A). Hence, Mr(A) ≤ rk(AX ) + cov(A). Since AX is a (0, 1)-submatrix of A, Lemma 3.2 yields
opt(A)≤ 2n−rk(AX ), where rk(AX )≥Mr(A)− |X |=Mr(A)− cov(A).

Given a depth-2 circuit F , let m(F) denote the largest number of wires in a matching formed by
direct input-output wires. That is, m(F) is the largest number of ∗-entries in the matrix AF of F , no
two on the same line. By the well-known König–Egeváry theorem, stating that the size of a largest
matching in a bipartite graph is equal to the smallest set of vertices which together touch every edge,
we have that m(A) = cov(AF ). This leads to the following

Corollary 3.4. Every depth-2 circuit F computing a linear operator can be transformed into an equivalent
linear depth-2 circuit F ′ of the same degree and

width(F ′)≤ width(F) +m(F) .

Proof. Let AF be the (0,1,∗)-matrix of F . By Lemmas 2.3 and 3.3, we have that

width(F)≥ n− log2 opt(AF )≥ n−
�

n−Mr(AF ) + cov(AF )
�

=Mr(AF )− cov(AF ) =Mr(AF )−m(F) .

By Lemma 2.2, the circuit F can be transformed into an equivalent linear depth-2 circuit of the same
degree and width at most mr(AF )≤Mr(AF )≤ width(F) +m(F).
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4. Row and column min-rank

We are now going to show that the min-rank conjecture holds for stronger versions of min-rank—
row min-rank and column min-rank.

If A is a (0,1,∗)-matrix of min-rank r then, for every assignment of constants to stars, the resulting
(0, 1)-matrix will have r linearly independent columns as well as r linearly independent rows. How-
ever, for different assignments these columns/rows may be different. It is natural to ask whether the
min-rank conjecture is true if the matrix A has r columns (or r rows) that remain linearly independent
under any assignment of constants to stars?

Namely, say that (0,1,∗)-vectors are dependent if they can be made linearly dependent over GF2 by
setting their ∗-entries to a constants 0 and 1; otherwise, the vectors are independent.

Remark4.1. The dependence of (0,1,∗)-vectors can be defined by adding to {0, 1} a new element ∗
satisfying α⊕ ∗ = ∗ ⊕ α = ∗ for α ∈ {0,1,∗}. Then a set of (0, 1,∗)-vectors is dependent iff some its
subset sums up to a (0,∗)-vector. Indeed, if some subset sums up to a (0,∗)-vector, then we can set the
∗-entries to constants so that the corresponding subset of (0,1)-vectors will sum up (over GF2) to an
all-0 vector. On the other hand, if no subset sums up to a (0,∗)-vector, for every subset, there must be a
position in which all vectors in this subset have no stars, and the sum of these positions over GF2 is 1.

Remark4.2. A basic fact of Linear Algebra, leading to the Gauss-Algorithm, is that linear independence
of vectors x , y ∈ {0, 1}n implies that the vectors x + y and y are linear independent as well. For
(0,1,∗)-vectors this does not hold anymore. Take, for example, x = (0,1) and y = (1,∗). Then
x ⊕ y = (1,∗) = y .

For a (0,1,∗)-matrix A, define its column min-rank, mrcol(A), as the maximum number of inde-
pendent columns, and its row min-rank, mrrow(A), as the maximum number of independent rows. In
particular, both mrrow(A) and mrcol(A) are at least r if A contains an r × r “triangular” submatrix, that
is, a submatrix with zeroes below (or above) the diagonal and ones on the diagonal:

∆=











1 ⊛ ⊛ ⊛
0 1 ⊛ ⊛
0 0 1 ⊛
0 0 0 1











,

where ⊛ ∈ {0, 1,∗}. It is clear that neither mrcol(A) nor mrrow(A) can exceed the min-rank of A. Later
(Lemma 8.4 below) we will give an example of a matrix A where both mrcol(A) and mrrow(A) are by
a logarithmic factor smaller than mr(A). The question about a more precise relation between these
parameters remains open (see Problem 9.3).

Albeit for (0,1)-matrices we always have that their row-rank coincides with column-rank, for
(0,1,∗)-matrices this is no more true. In particular, for some (0, 1,∗)-matrices A, we have that mrrow(A) 6=
mrcol(A).

Example4.3. Consider the following (0, 1,∗)-matrix:

A=







1 1 ∗ 1
1 0 1 ∗
1 ∗ 0 0






.
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Then mrrow(A) = mr(A) = 3 but mrcol(A) = 2. To see that mrrow(A) = 3, just observe that the rows
cannot be made linearly dependent by setting the stars to 0 or 1: the sum of all three vectors is not a
{0,∗}-vector because of the 1st column, and the pairwise sums are not {0,∗}-vectors because, for each
pair of rows there is a column containing 0 and 1. To see that mrcol(A) = 2, observe that the last three
columns are dependent (each row has a star). Moreover, for every pair of these columns, there is an
assignment of constants to stars such that either the resulting (0, 1)-columns are equal or their sum
equals the first column.

We first show that the min-rank conjecture holds with “min-rank” replaced by “column min-rank”.

Theorem 4.4 (Column min-rank). Let A be a (0, 1,∗)-matrix with n columns and of column min-rank r.
Then opt(A)≤ 2n−r .

Proof. Any m-by-n (0,1,∗)-matrix B of column min-rank r must contain an m× r submatrix A of min-
rank r. Since opt(B) ≤ opt(A) · 2n−r (Lemma 3.1), it is enough to show that opt(A) ≤ 1 for all m-by-r
(0,1,∗)-matrices A of min-rank r.

To do this, let L be a solution for A. Then there is an operator G = (g1, . . . , gm) : {0, 1}r → {0, 1}m

such that G is consistent with A and 〈ai , x 〉 = gi(x ) holds for all x ∈ L and all i = 1, . . . , m. Here
a1, . . . , am are the rows of A with all stars set to 0.

For the sake of contradiction, assume that |L| ≥ 2 and fix any two vectors x 6= y ∈ L. Our goal is to
construct a vector c ∈ {0, 1}m and a completion M of A such that M x = M y = c. Since M must have
rank r, this will give the desired contradiction, because at most 2r−rk(M) = 20 = 1 vectors z can satisfy
M z = c.

If M is a completion of A= (ai j), then its ith row must have the form m i = ai⊕p i where p i ∈ {0,1}n

is some vector with no 1’s in positions where the ith row of A has no stars. To construct the desired
vector p i for each i ∈ [m], we consider two possible cases. (Recall that the vectors x and y are fixed.)

Case 1: 〈ai , x 〉= 〈ai , y〉. In this case we can take p i = 0 and ci = 〈ai , x 〉. Then 〈m i , x 〉= 〈m i , y〉=
〈ai , x 〉= ci , as desired.

Case 2: 〈ai , x 〉 6= 〈ai , y〉. In this case we have that gi(x ) 6= gi(y), that is, the vectors x and y must
differ in some position j where the ith row of A has a star. Then we can take p i := e j (the jth unit
vector) and ci := 〈ai , x 〉 ⊕ x j . With this choice of p i , we again have

〈m i , x 〉= 〈ai , x 〉 ⊕ 〈p i , x 〉= 〈ai , x 〉 ⊕ 〈e j , x 〉= 〈ai , x 〉 ⊕ x j = ci

and, since 〈ai , x 〉 6= 〈ai , y〉 and x j 6= y j ,

〈m i , y〉= 〈ai , y〉 ⊕ 〈p i , y〉= 〈ai , y〉 ⊕ 〈e j , y〉= 〈ai , x 〉 ⊕ x j = ci .

Example4.5. It is not difficult to verify that, for the (0, 1,∗)-matrix A given by (3), we have that
mrcol(A) = mr(A) = 2. Hence, no linear solution of the system of semi-linear equations (2) can have
more than lin(A) = 26−2 = 32 vectors. Theorem 4.4 implies that, in fact, no solution can have more
than this number of vectors.

The situation with row min-rank is more complicated. In this case we are only able to prove an
upper bound opt(A)≤ 2n−r under an additional restriction that the star-positions in the rows of A form
a chain under set-inclusion.

Recall that (0, 1,∗)-vectors are independent if they cannot be made linearly dependent over GF2
by setting stars to constants. The row min-rank of a (0,1,∗)-matrix is the largest number r of its
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independent rows. Since adding new rows can only decrease opt(A), it is enough to consider r-by-n
(0, 1,∗)-matrices A with mr(A) = r.

If r = 1, that is, if A consists of just one row, then opt(A) ≤ 2n−1 = 2n−r holds. Indeed, since
mr(A) = 1, this row cannot be a (0,∗)-row. So, there must be at least one 1 in, say, the 1st position.
Let LA = {x : 〈a1, x 〉 = g1(x )} be a solution for A, where a1 is the row of A with all stars set to 0. Take
the unit vector e1 = (1, 0, . . . , 0) and split the vectors in {0,1}n into 2n−1 pairs {x , x ⊕ e1}. Since the
boolean function g1 cannot depend on the first variable x1, we have that g1(x ⊕ e1) = g1(x ). But
〈ai , x ⊕ e1〉= 〈ai , x 〉 ⊕ 1 6= 〈ai , x 〉. Hence, at most one of the two vectors x and x ⊕ e1 from each pair
{x , x ⊕ e1} can lie in LA, implying that |LA| ≤ 2n−1.

To extend this argument for matrices with more rows, we need the following definition. Let A =
(ai j) be an r-by-n (0,1,∗)-matrix, and a1, . . . , ar be the rows of A with all stars set to 0. Let Si =
{ j : ai j = ∗} be the set of star-positions in the ith row of A. It will be convenient to describe the star-
positions by diagonal matrices. Namely, let Di be the incidence matrix of stars in the ith row of A. That
is, Di is a diagonal n-by-n (0, 1)-matrix whose jth diagonal entry is 1 iff j ∈ Si . In particular, Di x = 0
means that x j = 0 for all j ∈ Si .

Definition4.6. A matrix A is isolated if there exist vectors z1, . . . , zr ∈ {0, 1}n such that, for all 1≤ i ≤ r,
we have Di z i = 0 and

〈a j , z i〉=

(

1 if j = i;

0 if j < i.

If D1z i = . . .= Di z i = 0, then the matrix is strongly isolated.

Lemma 4.7. If A is a strongly isolated r-by-n (0, 1,∗)-matrix, then opt(A)≤ 2n−r .

Proof. Let a1, . . . , ar be the rows of A with all stars set to 0. We prove the lemma by induction on r.
The basis case r = 1 is already proved above. For the induction step r − 1 7→ r, let

LA = {x ∈ {0,1}n : 〈ai , x 〉= gi(x ) for all i = 1, . . . , r}

be an optimal solution for A, and let B be a submatrix of A consisting of its first r − 1 rows. Then

LB = {x ∈ {0, 1}n : 〈ai , x 〉= gi(x ) for all i = 1, . . . , r − 1}

is a solution for B. Since A is strongly isolated, the matrix B is strongly isolated as well. The induction
hypothesis implies that |LB| ≤ 2n−(r−1).

Let z = zr be the r-th isolating vector. For each row i = 1, . . . , r − 1, the conditions 〈z, ai〉 = 0 and
Di z = 0 imply that 〈(x ⊕ z), ai〉= 〈x , ai〉 and gi(x ⊕ z) = gi(x ). That is,

x ∈ LB iff x ⊕ z ∈ LB.

For the rth row, the conditions 〈z, ar〉 = 1 and Dr z = 0 imply that 〈(x ⊕ z), ar〉 6= 〈x , ar〉 whereas
gr(x ⊕ z) = gr(x ). That is,

x ∈ LA iff x ⊕ z 6∈ LA.

Hence, for every vector x ∈ LB, only one of the vectors x and x ⊕ z can belong to LA, implying that

opt(A) = |LA| ≤ |LB|/2≤ 2n−r .
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We are now going to show that (0,1,∗)-matrices with some conditions on the distribution of stars
in them are strongly isolated. For this, we need the following two facts. A projection of a vector
x = (x1, . . . , xn) onto a set of positions I = {i1, . . . , ik} is the vector

x↾I= (x i1 , . . . , x ik) .

A (0, 1,∗)-vector x is independent of (0, 1,∗)-vectors y1, . . . , yk if no completion of x can be written as
a linear combination of some completions of these vectors.

Lemma 4.8. Let x , y1, . . . , yk be (0,1,∗)-vectors, and I = {i : x i 6= ∗}. If x is independent of y1, . . . , yk,
then x↾I is also independent of y1↾I , . . . , yk↾I .

Proof. Assume that x ↾I is dependent on the projections y1↾I , . . . , yk↾I . Then there is an assignment
of stars to constants in the vectors y i such that x ↾I can be written as a linear combination of the
projections y ′1 ↾I , . . . , y ′k ↾I on I of the resulting (0, 1)-vectors y ′1, . . . , y ′k. But since x has stars in all
positions outside I , these stars can be set to appropriate constants so that the resulting (0, 1)-vector x ′

will be a linear combination of y ′1, . . . , y ′k, a contradiction.

Lemma 4.9. Let a ∈ {0,1}n be a vector and M be an m-by-n (0, 1)-matrix of rank r ≤ n− 1. If a is
linearly independent of the rows of M, then there exists a set Z ⊆ {0,1}n of |Z | ≥ 2n−r−1 vectors such that,
for all z ∈ Z, we have 〈z, a〉= 1 and M z = 0.

Proof. Let Z = {z : M z = 0, 〈a, z〉= 1}, and let M ′ be the matrix M with an additional row a. Note that
Z = ker(M)\ker(M ′), where ker(M) = {z : M z = 0} is the kernel of M . Since rk(M ′) = rk(M)+1≤ n,
we have that |ker(M ′)|= |ker(M)|/2, implying that

|Z |= |ker(M) \ ker(M ′)|= |ker(M)|/2≥ 2n−r−1 .

Lemma 4.10. If A is an r-by-n (0,1,∗)-matrix with mr(A) = r, then A is isolated.

Proof. Let a1, . . . , ar be the rows of A with all stars set to 0. Let I ⊆ {1, . . . , n} be the set of all star-
free positions in the ith row of A, and consider an (r − 1)-by-|I | (0, 1)-matrix Mi whose rows are
the projections a′j = a j ↾I of vectors a j with j 6= i onto the set I . By Lemma 4.8, the projection
a′i = ai ↾I of the ith vector ai onto I cannot be written as a linear combination of the rows of Mi;
hence, rk(Mi) ≤ |I | − 1. Since 2|I |−rk(Mi)−1 ≥ 20 = 1, Lemma 4.9 gives us a vector z′i ∈ {0, 1}|I | such
that 〈z′i , a′i〉 = 1 and 〈z′i , a′j〉 = 0 for all j 6= i. But then z i := (z′i ,0) is the desired (0,1)-vector:
Di z i = Di · 0= 0, 〈z i , ai〉= 〈z′i , a′i〉= 1, and 〈z i , a j〉= 〈z′i , a′j〉= 0 for all rows j 6= i.

Say that an r-by-n (0, 1,∗)-matrix A is star-monotone if the sets S1, . . . , Sr of star-positions in its
rows form a chain, that is, if S1 ⊆ S2 ⊆ . . .⊆ Sr .

Theorem 4.11 (Star-monotone matrices). Let A be a (0, 1,∗)-matrix with n columns. If A contains an
r-by-n star-monotone submatrix of min-rank r, then opt(A)≤ 2n−r .

Proof. Since addition of new rows can only decrease the size of a solution, we can assume that A itself
is an r-by-n star-monotone matrix of min-rank r. Let a1, . . . , ar be the rows of A with all stars set to
0. By Lemma 4.10, the matrix A is isolated. That is, there exist vectors z1, . . . , zr ∈ {0,1}n such that:
〈ai , z j〉= 1 iff i = j, and Di z i = 0 for all 1≤ i ≤ r. Since S j ⊆ Si for all j < i, this last condition implies
that D j z i = 0 for all 1≤ j < i ≤ r, that is, A is strongly isolated. Hence, we can apply Lemma 4.7.
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5. Solutions as independent sets in Cayley graphs

Let A = (ai j) be an m-by-n (0, 1,∗)-matrix. In the definition of solutions L for A we take a com-
pletion M of A and an operator G(x ), and require that M x = G(x ) for all x ∈ L. The operator
G = (g1, . . . , gm) can be arbitrary—the only restriction is that its ith component gi can only depend
on variables corresponding to stars in the ith row of A. In this section we show that the actual form
of operators G can be ignored—only star-positions are important. To do this, we associate with A the
following set of “forbidden” vectors:

KA = {x ∈ {0,1}n : ∃i ∈ [m] Di x = 0 and 〈ai , x 〉= 1} ,

where Di is the incidence n-by-n (0,1)-matrix of stars in the ith row of A, and ai is the ith row of A
with all stars set to 0. Hence, KA is a union KA =

⋃m
i=1 Ki of m affine spaces

Ki =
�

x :

�

Di
ai

�

x =

�

0
1

�

�

.

Lemma 5.1. For every vector x ∈ {0,1}n, x ∈ KA if and only if M x 6= 0 for all completions M of A.

Proof. (⇒): Take a vector x ∈ KA. Then there exists an i ∈ [m] such that vector x has zeroes in all
positions, where the ith row of A has stars, and 〈ai , x 〉 = 1, where ai is obtained by setting all stars in
this row to 0. So, if bi is any completion of the ith row of A then 〈bi , x 〉= 〈ai , x 〉= 1. Thus, the scalar
product of x with the ith row of any completion of A must be equal to 1.
(⇐): Take a vector x 6∈ KA. We have to show that then M x = 0 for at least one completion M

of A. The fact that x does not belong to KA means that for each i ∈ [m] either (i) 〈ai , x 〉 = 0, or (ii)
〈ai , x 〉= 1 but vector x has a 1 in some position j, where the ith row of A has a star. We can therefore
construct the ith row m i of the desired completion M of A with M x = 0 by taking m i = ai , if (i), and
mi = ai + e j , if (ii). In both cases we have 〈m i , x 〉= 0, as desired.

The sum-set of two sets of vectors S, T ⊆ {0, 1}n is the set of vectors

S+ T = {x ⊕ y : x ∈ S and y ∈ T} .

Theorem 5.2. A set L ⊆ {0,1}n is a solution for A if and only if (L+ L)∩ KA = ;.

Proof. Observe that the sum x ⊕ y of two vectors belongs to KA iff these vectors coincide on all stars
of at least one row of A such that 〈ai , x 〉 6= 〈ai , y〉. By this observation, we see that the condition
(L+ L)∩ KA = ; is equivalent to:

∀x , y ∈ L ∀i ∈ [m] : Di x = Di y implies 〈ai , x 〉= 〈ai , y〉. (7)

Having made this observation, we now turn to the actual proof of Theorem 5.2.
(⇒) Let L be a solution for A. Hence, there is an operator G = (g1, . . . , gm) consistent with A such

that 〈ai , x 〉 = gi(x ) for all x ∈ L and all rows i ∈ [m]. To show that then L must satisfy (7), take any
two vectors x , y ∈ L and assume that Di x = Di y . This means that vectors x and y must coincide in
all positions where the ith row of A has stars. Since gi can only depend on these positions, this implies
gi(x ) = gi(y), and hence, 〈ai , x 〉= 〈ai , y〉.
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(⇐) Assume that L ⊆ {0, 1}n satisfies (7). We have to show that then there exists an operator
G = (g1, . . . , gm) consistent with A such that 〈ai , x 〉 = gi(x ) for all x ∈ L and i ∈ [m]; here, as before,
ai is the ith row of A with all stars set to 0. The ith row of A splits the set L into two subsets

L0
i = {x ∈ L : 〈ai , x 〉= 0} and L1

i = {x ∈ L : 〈ai , x 〉= 1} .

Condition (7) implies that Di x 6= Di y for all (x , y) ∈ L0
i × L1

i . That is, if Si is the set of star-positions in
the ith row of A, then the projections x↾Si

of vectors x in L0
i onto these positions must be different from

all the projections y↾Si
of vectors y in L1

i . Hence, we can find a boolean function gi : {0,1}Si → {0,1}
taking different values on these two sets of projections. This function will then satisfy gi(x ) = 〈ai , x 〉
for all x ∈ L.

A coset of a set of vectors L ⊆ {0, 1}n is a set v + L = {v ⊕ x : x ∈ L} with v ∈ {0, 1}n. Since
(v + L) + (v + L) = L+ L, Theorem 5.2 implies:

Corollary 5.3. Every coset of a solution for a (0,1,∗)-matrix A is also a solution for A.

Remark5.4. A Cayley graph over the Abelian group ({0,1}n,⊕) generated by a set K ⊆ {0,1}n of
vectors has all vectors in {0,1}n as vertices, and two vectors x and y are joined by an edge iff x⊕y ∈ K .
Theorem 5.2 shows that solutions for a (0, 1,∗)-matrix A are precisely the independent sets in a Cayley
graph generated by a special set KA.

Remark5.5. If A is an m-by-n (0,1)-matrix, that is, has no stars at all, then KA = {x : Ax 6= 0}. Hence,
in this case, a set L ⊆ {0, 1}n is a solution for A iff there is a vector b ∈ {0,1}m such that Ax = b for all
x ∈ L. That is, in this case, ker(A) = {x : Ax = 0} is an optimal solution.

6. Structure of linear solutions

By Theorem 5.2, a set of vectors L ⊆ {0,1}n is a solution for an m-by-n (0, 1,∗)-matrix A if and only
if (L + L) ∩ KA = ;, where KA ⊆ {0,1}n is the set of “forbidden” vectors for A. Thus, linear solutions
are precisely vector subspaces of {0, 1}n avoiding the set KA. Which subspaces these are? We will show
(Theorem 6.2) that these are precisely the subspaces lying entirely in the kernel of some completion
of A.

Each vector subspace of {0,1}n is a kernel ker(H) = {x : Hx = 0} of some (0, 1)-matrix H. Hence,
linear solutions for A are given by matrices H such that Hx 6= 0 for all x ∈ KA; in this case we also say
that the matrix H separates KA from zero. By the span-matrix of a (0,1)-matrix H we will mean the
matrix bH whose rows are all linear combinations of the rows of H.

Lemma 6.1. Let A be a (0, 1,∗)-matrix and H be (0,1)-matrix. Then ker(H) is a solution for A iff bH
contains a completion of A.

Proof. To prove (⇐), suppose that some completion M of A is a submatrix of bH. Let x ∈ KA. By
Lemma 5.1, we know that then M x 6= 0, and hence, also bHx 6= 0. Since Hx = 0 would imply bHx = 0,
we also have that Hx 6= 0.

To prove (⇒), suppose that ker(H) is a solution for A, that is, Hx 6= 0 for all x ∈ KA. Then, for
every row i ∈ [m] and every vector x ∈ {0,1}n, Hx = 0 and Di x = 0 imply that 〈ai , x 〉 = 0. This
means that ai must be a linear combination of rows of H and Di . Hence, for each i, the vector ai must
lie in the vector space spanned by the rows of H and Di , that is, ai = α>i H ⊕β>i Di for some vectors αi

and β i . In other words, the ith linear combination α>i H of the rows of H is the ith row ai ⊕β>i Di of a
particular completion M of A, implying that M is a submatrix of bH, as desired.
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Theorem 6.2. Let A be a (0, 1,∗)-matrix. A linear subspace is a solution for A if and only if it is contained
in a kernel of some completion of A.

Proof. (⇐): If a linear subspace L ⊆ {0,1}n lies in a kernel of some completion of A then L ∩ KA = ;,
by Lemma 5.1. Since L+ L = L, the set L must be a solution for A, by Theorem 5.2.

(⇒): Let L ⊆ {0,1}n be an arbitrary linear solution for A. Then L + L = L and L ∩ KA = ;.
Take a (0, 1)-matrix H with L = ker(H). Since ker(H)∩ KA = ;, the matrix H separates KA from zero.
Lemma 6.1 implies that then bH must contain some completion M of A. But then L = ker(H) = ker( bH)⊆
ker(M), as claimed.

Corollary 6.3. For any (0, 1,∗)-matrix A we have that lin(A) = 2n−mr(A).

Proof. By Theorem 6.2, lin(A) is the maximum of |ker(M)| = 2n−rk(M) over all completions M of A.
Since mr(A) is the minimum of rk(M) over all completions M of A, we are done.

Corollary 6.4 (Alternative definition of min-rank). For every (0,1,∗)-matrix A we have

mr(A) =min{rk(H): Hx 6= 0 for all x ∈ KA} .

Proof. Let R be the smallest possible rank of a (0, 1)-matrix separating KA from zero. To prove mr(A)≥
R, let M be a completion of A with rk(M) = mr(A). By Lemma 5.1, the matrix M separates KA form
zero. Hence, R≤ rk(M) =mr(A).

To prove mr(A) ≤ R, let H be a (0,1)-matrix such that H separates KA form zero and rk(H) = R.
By Lemma 6.1, the matrix bH must contain a completion M of A. Hence, mr(A) ≤ rk(M) ≤ rk( bH) =
rk(H) = R.

By Lemma 5.1, the complement of KA is the union of kernels ker(M) of all completions M of A. So,
Theorems 5.2 and 6.2 imply that a subset L ⊆ {0,1}n is:

• a solution for A iff L+ L ⊆
⋃
�

ker(M): M is a completion of A
	

;

• a linear solution for A iff L ⊆ ker(M) for some completion M of A.

7. Structure of general solutions

The following theorem says that non-linear solutions must be “very non-linear”: they cannot con-
tain large linear subspaces. Recall that in Valiant’s setting (cf. Lemma 1.1) we may assume that each
row of a (0, 1,∗)-matrix contains at most s = nδ stars, where δ > 0 is an arbitrary small constant.

Define the co-distance of a vector space as the smallest weight of a non-zero vector in its orthogonal
complement.

Theorem 7.1. Let L ⊆ {0,1}n be a solution for an m-by-n (0, 1,∗)-matrix A, and let s be the maximum
number of stars in a row of A. If L contains a linear subspace of co-distance at least s+ 1, then L lies in a
linear solution for A.

Proof. Since L is a solution for A, W is a linear solution for A as well. Hence, by Theorem 6.2, W is
contained in a kernel of some completion M of A. Our goal is to show that then the entire solution L
must be contained in ker(M). To show this, we will use the following simple fact.
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Claim 7.2. Let W ⊆ {0,1}n be a linear subspace of co-distance at least k+ 1. Then, for every k-element
subset S ⊆ [n] and for every vector y ∈ {0,1}n, there is a vector x ∈W such that x 6= 0 and y↾S= x↾S .

Proof of Claim. The set of all projections of vectors in W onto S forms a linear subspace. If this subspace
would be proper, then some non-zero vector, whose support lies in S, would belong to the orthogonal
complement of W , a contradiction.

Assume now that L 6⊆ ker(M), and take a vector y ∈ L \ ker(M). Since y 6∈ ker(M), we have
that 〈m i , y〉 = 1 for at least one row m i of M . Let S be the set of star-positions in the ith row of A
(hence, |S| ≤ s), and let ai be this row of A with all stars set to 0. By Claim 7.2, there must be a vector
x ∈W ⊆ L ∩ ker(M) with y↾S= x↾S , that is, Di(x ⊕ y) = 0. But x ∈ ker(M) implies that 〈m i , x 〉 = 0.
Hence, 〈m i , x ⊕ y〉 = 〈m i , x 〉 ⊕ 〈m i , y〉 = 〈m i , y〉 = 1. Since the vector ai can only differ from m i
in star-positions of the ith row of A and, due to Di(x ⊕ y) = 0, the vector x ⊕ y has no 1’s in these
positions, we obtain that 〈ai , x ⊕ y〉 = 1. Hence, the vector x ⊕ y belongs to KA, a contradiction with
x , y ∈ L.

This completes the proof of Theorem 7.1.

8. Relation to codes

Let 1 ≤ r < n be integers. A (binary) error-correcting code of minimal distance r + 1 is a set
C ⊆ {0, 1}n of vectors, any two of which differ in at least r + 1 coordinates. A code is linear if it forms
a linear subspace over GF2. The question on how good linear codes are, when compared to non-linear
ones, is a classical problem in Coding Theory. We now will show that this is just a special case of a
more general “opt(A) versus lin(A)” problem for (0, 1,∗)-matrices, and that Min-Rank Conjecture in
this special case holds true.

An (n, r)-code matrix, or just an r-code matrix if the number n of columns is not important, is a
(0, 1,∗)-matrix with n columns and m= (r+1)

�n
r

�

rows, each of which consists of n−r stars and at most
one 0. The matrix is constructed as follows. For every r-element subset S of [n] = {1, . . . , n} include in
A a block of r+1 rows a with ai = ∗ for all i 6∈ S, ai ∈ {0,1} for all i ∈ S, and |{i ∈ S : ai = 0}| ≤ 1. That
is, each of these rows has stars outside S and has at most one 0 within S. For r = 3 and S = {1,2, 3}
such a block looks like











1 1 1 ∗ · · · ∗
0 1 1 ∗ · · · ∗
1 0 1 ∗ · · · ∗
1 1 0 ∗ · · · ∗











.

A Hamming ball around the all-0 vector 0 is defined by

Ball(r) = {x ∈ {0,1}n : 0≤ |x | ≤ r} ,

where |x |= x1+ · · ·+ xn is the number of 1’s in x .

Observation 8.1. If A is an r-code matrix, then KA = Ball(r) \ {0}.

Proof. Observe that no vector x ∈ {0,1}r , x 6= 0 can be orthogonal to all r+1 vectors 1,1⊕e1, . . . ,1⊕er
in {0, 1}r with at most one 0. Indeed, if 〈x ,1〉 = 0 then 〈x ,1⊕ e i〉 = x i for all i = 1, . . . , r. By this
observation, a vector x belongs to KA iff there is an r-element set S ⊆ [n] of positions such that x↾S 6= 0
and x↾S= 0, that is, iff x 6= 0 and x ∈ Ball(r).
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Observation 8.2. If A is an (n, r)-code matrix, then the solutions for A are error-correcting codes of
minimal distance r + 1, and linear solutions for A are linear codes.

Proof. We have (L + L)∩ (Ball(r) \ {0}) = ; iff |x ⊕ y | ≥ r + 1 for all x 6= y ∈ L, that is, iff every two
vectors x 6= y ∈ L differ in at least r + 1 positions. Hence, every solution for an r-code matrix A is a
code of minimal distance at least r + 1, and linear solutions are linear codes.

Lemma 8.3. For code matrices, the min-rank conjecture holds with a constant ε > 0.

Proof. Let A be an (n, r)-code matrix; hence, KA = Ball(r) \ {0}. Set t := b(r − 1)/2c. Since |x ⊕ y | ≤
2t < r for all x , y ∈ Ball(t), the sum of any two vectors x 6= y from Ball(t) lies in KA, implying that
Ball(t) is a clique in the Cayley graph generated by KA. Since, by Remark 5.4, solutions for A are
independent sets in this graph, and since in any graph the number of its vertices divided by the clique
number is an upper bound on the size of any independent set, we obtain:

opt(A)≤ 2n/|Ball(t)|= 2n
.

t
∑

i=0

�

n

i

�

, (8)

which is the well-known Hamming bound for codes. On the other hand, Gilbert-Varshamov bound says
that linear codes in {0, 1}n of dimension k and minimum distance d exist, if

d−2
∑

i=0

�

n− 1

i

�

< 2n−k .

Hence,

lin(A)≥ 2n
.

r
∑

i=0

�

n

i

�

. (9)

Together with (8), this implies that the inequality (1) holds with ε about 1/2.

The example of code matrices also shows that the gap between min-rank and row/column min-rank
may be at least logarithmic in n.

Lemma 8.4. If A is an (n, r)-code matrix, then mr(A) = Ω(r ln(n/r)) but mrcol(A)≤ r+1 and mrrow(A)≤
2r.

Proof. To prove mr(A) = Ω(r ln(n/r)), recall that KA = Ball(r) \ {0}. Hence, Corollary 6.4 implies that
mr(A) is the smallest possible rank of a (0,1)-matrix H such that ker(H)∩ Ball(r) ⊆ {0}. On the other
hand, for any such matrix H, its kernel L = ker(H) is a (linear) code of minimal distance at least r + 1
containing |L| = 2n−rk(H) vectors. Since, by Hamming bound (8), no code L of distance at least r + 1
can have more than N = 2n/(n/r)O(r) vectors, we have that

rk(H) = n− log2 |L| ≥ n− log2 N = Ω(r ln(n/r)) .

To prove that mrcol(A) ≤ r + 1, suppose that A contains some m× k submatrix B of min-rank k.
Since all k columns must be independent, at least one row b of B must be ∗-free and contain an odd
number |b| of 1’s. But every row of A (and hence, also b) can contain at most one 0, implying that
|b| ≥ k− 1. Together with |b| ≤ r, this implies that k ≤ r + 1.
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To prove that mrrow(A) ≤ 2r, recall that each row of A consists of n− r stars and at most one 0;
the remaining r (or r − 1) entries are 1’s. Suppose now that A contains some set X of |X | = k + 1
independent rows. That is, no subset of these rows can be made linearly dependent by setting ∗’s to
0 or 1. The rows in X must be, in particular, pairwise independent. This, in particular, means that the
set X can contain at most one row without 0-entries. So, let Y ⊆ X be a set of |Y |= k rows containing
0-entries. Take any two rows x 6= y ∈ Y with x i = 0 and y j = 0. Since x and y are independent and
have only ∗’s or 1’s outside their 0-entries, we have that: i 6= j and either x j = 1 or yi = 1. This implies

that the total number of 1’s in the rows of Y must be at least the number
�k

2

�

of pairs of vectors in Y .

So, there must exist a row x ∈ Y with |x | ≥
�k

2

�

/|Y |= (k−1)/2. Together with |x | ≤ r−1, this implies
that k ≤ 2r − 1, and thus, that |X |= k+ 1≤ 2r.

9. Conclusion and open problems

In this paper we pose a conjecture about systems of semi-linear equations and show its relation to
proving super-linear lower bounds for log-depth circuits. We then give a support for the conjecture by
proving that some its weaker versions are true. We also show that solutions are independent sets in
particular Cayley graphs, thus turning the conjecture in a more general (combinatorial) setting. Using
this, we prove several structural properties of sets of solutions that might be useful when tackling the
original conjecture.

We defined solutions for a given m-by-n (0,1,∗)-matrix A as sets L ⊆ {0, 1}n of vectors x satisfying
a system of equations

〈ai , x 〉= gi(Di x ) i = 1, . . . , m , (10)

where ai is the ith row of A with all stars replaced by 0, gi is an arbitrary boolean function, and Di is
a diagonal n-by-n (0,1)-matrix corresponding to stars in the ith row of A. We have also shown (see
Remark 5.4) that solutions for A are precisely the independent sets in a Cayley graph over the Abelian
group ({0,1}n,⊕) generated by a special set of vectors

KA = {x : ∃i Di x = 0 and 〈ai , x 〉= 1} . (11)

The following two questions about possible generalizations of the min-rank conjecture naturally arise:

1. What if instead of diagonal matrices Di in (10) we would allow other (0, 1)-matrices?
2. What if instead of special generating sets KA, defined by (11), we would allow other generating

sets?

The following two examples show that the min-rank conjecture cannot be carried too far: its general-
ized versions are false.

Example9.1 (Bad generating sets K). Let G be a Cayley graph generated by the set K ⊆ {0, 1}n of
all vectors with more than n− 2

p
n ones. If L ⊆ {0,1}n consist of all vectors with at most n/2−

p
n

ones, then (L + L)∩ K = ;, that is, L is an independent set in G of size |L| ≥ 2n−O(log n). But any linear
independent set L′ in G is a vector space of dimension at most n−2

p
n. Hence, |L′| ≤ 2n−2

p
n, and the

gap |L|/|L′| can be as large as 2Ω(
p

n).
Note, however, that there is a big difference between the set K we constructed and the sets KA

arising form (0,1,∗)-matrices A: generating sets KA must be almost “closed downwards”. In particular,
if x ∈ KA then all nonzero vectors, obtained from x by flipping some even number of its 1’s to 0’s, must
also belong to KA. Hence, this example does not refute the min-rank conjecture as such.
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Example9.2 (Bad matrices Di). Let us now look what happens if we allow the matrices D1, . . . , Dm in
the definition of a system of semi-linear equations (10) be arbitrary n×n (0, 1)-matrices. A completion
M of A can then be defined as a (0, 1)-matrix with rows m i = ai +α>i Di . Now define mr(A|D1, . . . , Dr)
as the minimal rank of such a completion of A. Observe that this definition coincides with the “old”
min-rank, if we take the Di ’s to be the diagonal matrices corresponding the stars in the ith row of A.

However, Example 9.1 shows that the min-rank conjecture is false in this generalized setting. To
see why, we can define appropriate matrices A, D1, . . . , Dm such that the corresponding set KA defined
by (11) consists of vectors with more than n− 2

p
n ones: for an arbitrary vector v with more than

n−2
p

n ones just define ai and Di such that the system Di x = 0, 〈ai , x 〉= 1 has v as its only solution.

Except of the obvious open problem to prove or disprove the linearization conjecture (Conjecture 1)
or the min-rank conjecture (Conjecture 2), there are several more concrete problems.

We have shown (Lemma 8.4) that the gap between min-rank and row/column min-ranks may be
as large as ln n. It would be interesting to find (0,1,∗)-matrices A with larger gap.

Problem 9.3. How large can the gap mr(A)/max{mrcol(A),mrrow(A)} be?

The next question concerns the clique number ω(GA) of (that is, the largest number of vertices
in) Cayley graphs GA generated by the sets of the sets KA ⊆ {0,1}n of the form (11). By Remark 5.4,
solutions for A are independent sets in this graph. Hence, opt(A) is just the independence number
α(GA) of this graph. Since in any N -vertex graph G we have that ω(G) ·α(G)≤ N , this yields opt(A)≤
2n/ω(GA). On the other hand, it is easy to see that ω(GA)≤ 2rk(M), where M is a canonical completion
of A obtained by setting all ∗’s to 0: If C ⊆ {0, 1}n is a clique in GA, then we must have M x 6= M y for
all x 6= y ∈ C , because otherwise the vector x ⊕ y would not belong to KA.

Problem 9.4. Give a lower bound on ω(GA) in terms of min-rank mr(A) of A.

Finally, it would be interesting to eliminate an annoying requirement in Theorem 4.11 that the
matrix A must be star-monotone.

Problem 9.5. If A is an r-by-n (0, 1,∗)-matrix of min-rank r, is then opt(A)≤ 2n−r?
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Table 1: This table summarizes the concepts introduced in this paper. Here A is a partially defined m× n matrix with entries
from {0, 1,∗}.

Concept Notation Meaning

Completion of A A (0,1)-matrix obtained from A by setting its ∗-
entries to 0 and 1.

Canonical completion of A All ∗-entries of A set to 0.
Min-rank mr(A) Minimal rank over GF2 of a completion of A.
Max-rank Mr(A) Maximal rank over GF2 of a completion of A.
Operator G consistent with A The ith coordinate of G : {0, 1}n→ {0,1}m can only

depend on variables corresponding to ∗-entries in
the ith row of A.

Solution for A A set L ⊆ {0,1}n of the form L = {x : M x = G(x )},
where M is a completion of A, and G is an operator
consistent with A.

Linear solution for A A solution for A forming a linear subspace of
{0, 1}n.

opt(A) Maximum size of a solution for A.
lin(A) Maximum size of a linear solution for A; lin(A) =

2n−mr(A).
Min-Rank Conjecture opt(A)≤ 2n−ε·mr(A) for a constant ε > 0.
Independence of (0, 1,∗)-
vectors

Cannot be made linear dependent by setting ∗’s to
constants.

Row min-rank mrrow(A) Maximal number of independent rows.
Column min-rank mrcol(A) Maximal number of independent columns.
Incidence matrix of ∗’s Di Diagonal (0, 1)-matrix with Di[ j, j] = 1 iff A[i, j] =

∗.
Set of forbidden vectors KA All vectors x ∈ {0, 1}n such that Di x = 0 and

〈ai , x 〉 = 1, where ai is the ith row of A with all
stars set to 0. Main property: L is a solution for A
iff (L+ L)∩ KA = ;.
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