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In the present supplementary note we provide an example of tropical polynomial P illustrat-
ing a very specific feature of computations over (max,+) semiring. Any minimal (max,+,−x)
circuit computing P has to produce terms with negative coefficients. Nothing similar cannot be
observed in the cases of (+,∗) and (min,+) semirings.

Consider the polynomial

P(x,y,z) = max(2x+ y+2z, 3x+ z, 2y).

We will prove below that its (max,+,−x) complexity is 6, and any minimal circuit produces
terms with negative coefficients. Indeed, it follows that (max,+,−x) complexity of P is smaller
than its (max,+) complexity.

The polynomial P may be computed by a circuit (actually, a formula)

max(2(x+ z), y)+max(y, x− z) (1)

of size 6. Note that this formula produces a redundant term x+ y− z.
Let t(P) and d(P) denote the set of (defining) terms of P, and the set of their pairwise differ-

ences (up to the sign), respectively:

t(P) = {2x+ y+2z, 3x+ z, 2y}, d(P) = {x− y− z, 2x− y+2z, 3x−2y+ z}.

In what follows, under the weight (absolute weight) of a linear term we mean the sum of
its coefficients (the sum of absolute values of coefficients, respectively). For example, the term
3x− y+ z has weight 3 and absolute weight 5. The weight w(p), and absolute weight W (p) of
a polynomial p are defined as the maximum of weight (absolute weight, respectively) over all
terms of p. The following claim is quite obvious.

Claim 1.
(i) If a circuit produces some polynomial p with either w(p)≥ s or W (p)≥ s, then the circuit

contains at least ⌈log2 s⌉ addition gates.
(ii) Moreover, in any circuit producing p with exactly ⌈log2 s⌉ addition gates, there is a path

from an input to an output running through all addition gates.
(iii) If a term t has weight (absolute weight) 2s, and it can be produced by a circuit of s

addition gates, then t has a form 2s−1(x+ y) (or 2s−1(±x± y), respectively).

*Supplementary note for the main paper “Reciprocal inputs in arithmetic and tropical circuits”.
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Proof. For p=max(p1, p2), we have w(p)=max(w(p1),w(p2)), and W (p)=max(W (p1),W (p2)).
For p = p1 + p2, we have w(p) = w(p1) +w(p2), and W (p) ≤ W (p1) +W (p2). For inputs,
|w(±x)| = W (±x) = 1. Now it can be verified easily, that to produce a polynomial p with
w(p) ≥ s or W (p) ≥ s, a tree of addition depth at least ⌈log2 s⌉ is required. Hence, the former
two assertions of the claim follow. To produce the weight 2s by s additions, all these additions,
except possibly the first one, should be doublings. This leads to (iii).

We call a polynomial p prime, if it contains the only term of maximal weight w(p). For a
prime polynomial, we also call its maximal weight term prime. So, the polynomial P is prime
(with prime term being 2x+ y+2z), and the polynomial {3x− y,2z,x+ y− z} is not.

In what follows, for a circuit C producing some term t, we call a gate g ∈C essential for t if
after replacing this gate with some term t ′, the circuit no longer produces t.

Claim 2. If a circuit produces some prime polynomial p, then at any gate essential for the prime
term of p, a prime polynomial is produced. Moreover, the prime term produced at this gate
contributes to the prime term of p.

Proof. Note that at any gate (either max or +) maximal weight terms are produced exactly from
the maximal weight terms of inputs (the property of higher envelopes). Let t denote the prime
term of p. Assume that in some gate essential for p, besides a term t1 contributing to t, another
term t2, w(t2)≥ w(t1), is produced. Then t+ t2− t1 is a term of p (just take all terms contributing
to t, except that t2 instead of t1). But w(t + t2 − t1) ≥ w(t), which makes term t not prime. A
contradiction.

Now we are ready to prove what promised.

Lemma 1. Any minimal (max,+,−x) circuit computing P(X) produces terms with negative
coefficients.

Proof. We have already presented in (1) a (max,+,−x) circuit of size 6 for P. First, we show
that the above circuit is indeed optimal, i.e. there are no circuits of size 5 computing P.

I. Since P contains 3 terms, it requires at least 2 max-gates to be computed. The term 2x+
y+ 2z alone requires at least 3 +-gates by Claim 1. Assume that some circuit C of 3 +-gates
computes P. These +-gates should be arranged as a chain to make computation of the prime term
t1 = 2x+ y+ 2z of weight 5 possible (again by Claim 1). Hence, all these +-gates are essential
for t1 and by Claim 2 should produce prime polynomials.

For computing t1, we have only two types of circuits with respect to connections between +-
gates. The first type: s1 = x+z,s2 = 2s1,s3 = s2+y, the second type: s1 = x+z,s2 = s1+y,s3 =
s2 + s1 (by si we denote prime terms of the polynomials produced at the corresponding gates).

Consider the computation of t2 = 3x + z. This term also has additive complexity 3 (by
Claim 1), so it should be produced at the last +-gate. Since w(t2) = 4, a prime term of one of the
inputs of this gate contributes to t2. In a circuit of the first type the prime terms of the inputs are
2(x+ z) and y. Then, t2 cannot be produced, since it does not have a form of 2(x+ z)+w0,0 or
y+w3,2, where wi, j are some terms of weight ≤ i and addition complexity ≤ j.

For a circuit of the second type, input prime terms are x+y+z and x+z. Though t2 cannot be
expressed as x+y+ z+w1,1, it has a representation x+ z+w2,2 with w2,2 = 2x. But the required
term 2x cannot be produced at the first +-gate, since otherwise it would be another prime term
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there. Thus, the term 2x should be computed at the second +-gate. Again, notice that then some
of input prime terms contributes to 2x, so we obtain that either 2x = x+ z+w0,0 or 2x = y+w1,1,
which indeed is not possible.

We comes to a contradiction. Therefore, at least 4 +-gates are required to compute P.
II. Now we are going to check that any circuit of size 6 computing P produces terms with

negative coefficients. We have already shown that such circuit should contain 4 +-gates and 2
max-gates. We will consider two subcases.

Subcase 1. The output gate g of the circuit is a max-gate.
Case 1.1. The output of the other max-gate is fed to the input of g.
It means that all 3 terms of P should be computed in a subcircuit containing +-gates alone.

But then we need at least 3 gates to compute the term 2x+ y+2z (by Claim 1), and additionally
at least one gate for each of the terms 3x+ z, 2y. Hence, the circuit contains at least 5 +-gates
which makes it not minimal.

Case 1.2. Both inputs of g are connected to +-gates.
Let max(a,b) be the polynomial produced by another (inner) max-gate in the circuit (a,b

are the terms). If this max-gate does not precede one of the +-gates entering g, then that +-gate
produces exactly some term of P. This term has to be 2y, since any other term of P requires 3
+-gates to be produced. It follows that e.g. the term 3x+ z can be computed via 2 additions from
inputs ±x,±y,±z,2y, which indeed does not hold.

Hence, the inner max-gate should precede to both +-gates entering g. Thus, P=max(max(a,b)+
c,max(a,b) + d) for some terms c,d. By assumption, this formula produces the 3 required
terms and a redundant term. Assume w.l.o.g. that the latter is b+ d. So we have that b+ d =
(a+d)+(b+ c)− (a+ c) = t1 + t2 − t3 for some permutation (t1, t2, t3) of the defining terms of
P. Hence,

b+d ∈ {5x− y+3z,−x+3y+ z, x+ y− z}.

Anyway, b+d is a term with a negative coefficient.
Subcase 2. The output gate g of the circuit is a +-gate.
Then the produced polynomial has a form p+ q, where p = max(a1, [a2,a3, . . .]) and q =

max(b1, [b2,b3, . . .]) are polynomials at inputs of g (square brackets may include optional terms).
These polynomials must have at least 4 terms in total to compute the 3 required terms of P.
W.l.o.g. assume that p contains no less contributing terms than q.

Case 2.1. Both polynomials p, q contain 2 terms contributing to the computation of 3 terms
of P.

It means that P = max(a1,a2)+max(b1,b2). This formula produces the 3 required terms and
a redundant term. Let the latter be a2 + b2. So we have that a2 + b2 = (a1 + b2)+ (a2 + b1)−
(a1 +b1) = t1 + t2 − t3 for some permutation (t1, t2, t3) of terms of P. Hence,

a2 +b2 ∈ {5x− y+3z,−x+3y+ z, x+ y− z},

so a2 +b2 is a term with a negative coefficient. Note, that this case covers the circuit (1).
Case 2.2. The polynomial p has 3 terms, and q has at least 2 terms involved in computing P.
It means that P = max(a1,a2,a3)+max(b1,b2). Note that some two pairs of terms of P have

to be computed independently, say, as t1 = a1 + b1 and t2 = a2 + b2, and as t2 = a2 + b2 and
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t3 = a3 + b1. Assume w.l.o.g. t1, t2 be a pair with a larger total weight (so, it is not 3x+ z, 2y).
Consider two other terms u1 = a1+b2 and u2 = a2+b1 produced by the circuit. By construction,
u1 +u2 = t1 + t2, and u1,u2 /∈ {t1, t2}.

If {t1, t2}= {2x+y+2z,3x+z}, then some ui has weight at least 5, hence it cannot be a term
of the prime polynomial P.

If {t1, t2}= {2x+y+2z,2y}, and since none of the terms ui can have weight ≥ 5 (by the above
reason), then u1,u2 have weights 4 and 3. Choose those of them (say, u1) whose y-coefficient is
≥ 2. But then u1 is illegal, since in a point (1,5,1) it takes larger value than any of the defining
3 terms of P.

Case 2.3. The polynomial p has 3 terms (a1,a2,a3), and q has just one term contributing into
computing P.

We may assume that q is simply a 1-term polynomial, q = b1 (that is, max-gates are not
involved in computing q). If it had another term b2, then b2 < b1 would hold, since p+ b2 ≤
p+b1 = P. But then the circuit would also produce the terms of the polynomial P+(b2 −b1).
Since b2 −b1 has negative coefficients, then at least one of the produced terms 3x+ z+b2 −b1,
2y+b2 −b1 also has negative coefficients.

Subcase 2.3.1. The term q is computed by a subcircuit consisting of 3 +-gates.
Then the terms ai are either from the set V = {0,±x,±y,±z} or are computed at the gates of

the +-subcircuit. Only the two inner +-gates may compute some of ai’s, since 2q cannot be the
term of P, except when q = y, but then q does not require gates to be computed.

Recall that some 3 differences ai−a j form the set d(P). Given that any difference in d(P) has
absolute weight at least 3, only one of ai’s (say, a3) may belong to V . And it does belong, since
a1,a2 have to be computed at the two inner gates of the +-subcircuit (so, no other possibilities for
a3 remain open). But then W (a1−a2)≤ 4, W (a1),W (a2)≤ 4, hence W (ai−a3)≤ 5 for i = 1, 2.
As a consequence, neither of differences ai −a j have absolute weight 6, as required to make the
set d(P). A contradiction.

Subcase 2.3.2. The term q is computed by a subcircuit consisting of 2 +-gates.
Then either q = 2s or q = s+ v for some v ∈ V , where s is the term computed at the +-gate

entering the gate computing q. Assuming that the circuit is non-degenerate, we require s to have
absolute weight 2, and q to have absolute weight 3 or 4. The remaining subcircuit (besides those
computing q) contains 2 max-gates and a +-gate.

Subsubcase 2.3.2.1. The polynomial p is computed at a +-gate.
By checking all ways to locate two max-gates, we obtain

p ∈ {2max(c1,c2,c3), max(c1,c2,c3)+d1, max(c1,c2)+max(d1,d2)}, (2)

where ci,di ∈V ∪{q,s}. By construction, the pairwise differences between some three terms of
p form d(P). Recall that absolute weights of terms in d(P) are 3, 5, and 6.

So, the first possibility in (2) cannot occur, since (absolute) weights of all three differences in
it would be even.

The second one is also impossible, since neither of terms ci − c j can have absolute weight 6
(absolute weights of q, s, and q− s are at most 4, 2, and 2, respectively).

In the remaining case p = max(c1,c2)+max(d1,d2), one of the terms ci+d j (say, c2+d2) is
redundant. Then, the three pairwise differences are c1 − c2, d1 −d2 and c1 +d2 − c2 −d1 (up to
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the sign). Either c1 − c2, or d1 −d2 has absolute weight at least 5 (assume that it is c1 − c2), and
neither of them has absolute weight less than 3. Then ci = q for some i, and W (q) = 4. Hence,
q = 2(v+v′) for some v,v′ ∈V by Claim 1. Also d j ∈V for some j (since {d1,d2} ̸= {s,q}). But
then the circuit produces the term ci + d j + q = 2q+ d j, which either has negative coefficients
(when w(q) < 4), or weights at least 7 (when w(q) = 4) and makes the computed polynomial
different from P.

Subsubcase 2.3.2.2. The polynomial p is computed at a max-gate.
Here we have

p ∈ {max(c1,2c2,2c3), max(c1,c2 +d1,c3 +d1), max(c1,c2,d1 +d2)}, (3)

where ci,di ∈V ∪{q,s}.
The first possibility in (3) cannot occur, since it implies the difference 2(c2 − c3) between

some two terms of P with all coefficients being even, contradicting the structure of d(P).
Now, assuming p = max(c1,c2,d1 + d2) we obtain that c1 − c2 (up to the sign) belongs to

d(P). Hence, w.l.o.g. c1 ∈V , and c2 ∈ {q,s}. But c2 ̸= q, otherwise c2+q = 2q would be a term
of P (recall that q = y doesn’t go, since the gate computing q would be redundant). Thus, c2 = s.
It would follow from q = 2s that 3s ∈ t(P), which is impossible. Therefore, q = s+ v for some
v ∈V . Then we have c2+q = 2s+v as a term of P, leading to v = y, s = x+ z, and q = x+y+ z.
But neither of the 3 terms of P have the form c1 +q = x+ y+ z+ c1. A contradiction.

We are left to check the case p = max(c1,c2 + d1,c3 + d1). Since c2 − c3 (up to the sign)
belongs to d(P), we obtain w.l.o.g. c2 ∈V , and c3 ∈ {q,s}.

Since 3q /∈ t(P), then c3 +d1 ̸= 2q. Since neither 4s, nor 3s+ v for some v ∈V , cannot be a
term of P, then c3+d1 ̸= 2s. Now assume that c3+d1 = s+q. Then 2q+ s is a term of P, hence
q ̸= 2s. So q = s+ v for some v ∈V , and 3q− v is a term of P, but its absolute weight is at least
8, which is not possible. Thus, we obtain d1 ∈V .

Look at c1. Clearly, c1 ̸= q, since 2q /∈ P, and c1 ̸= s, since otherwise the difference c2 +
d1 − c1 would have even absolute weight ≤ 4 contradicting with the structure of d(P). In the
remaining case c1 ∈V , we need c3 = q = 2s to provide a difference (namely, c3 +d1 − c1) with
absolute weight 6. But then the circuit would produce the term c3 + d1 + q = 4s+ d1 ∈ t(P),
which is impossible.

Subcase 2.3.3. The term q is computed by a +-gate connected to inputs.
It means that the absolute weight of q is 2. Recall that the polynomial p is produced by a

subcircuit of 2 +-gates and 2 max-gates taking inputs from V ∪{q}. The weight of q cannot be
non-positive, since otherwise some of ai’s would have weight at least 5, which is impossible to
produce via just 2 +-gates. So the weight of q is 2.

Note that if q ̸= 2x, then the polynomial p = P− q contains a term requiring 3 +-gates to
be produced: either 3x+ z− q, when q ̸= x+ z, or 2y− q, otherwise (by Claim 1). Looking
over all ways to arrange 2 +-gates in the subcircuit computing p we obtain that any produced
term ai belongs to one of the two types 2(u1 + u2), u1 + u2 + u3, where ui ∈ V ∪{q}. Given
that W (t) ≥ 4, w(t) ∈ {0, 2}, and t contains odd coefficients, it remains the only possibility
t = q+ v1 + v2 for some v1,v2 ∈V . In the case q ̸= x+ z, we obtain 3x+ z− v1 − v2 = 2q, hence
2q = (3±1)x+(1∓1)z, and it cannot be satisfied. In the case q = x+ z, we have 2y−v1−v2 =
2q = 2(x+ z), which is obviously unsatisfiable.
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In the remaining case, q = 2x and p = max(y+ 2z,x+ z,2y− 2x). There is the only way to
produce the term 2y−2x via 2 +-gates, namely, as 2(y−x) (by Claim 1). It means that the inputs
of the first of these two gates are polynomials p1 = max(y, [. . .]) and p2 = max(−x, [. . .]), where
square brackets may include some additional terms. Since p is prime polynomial, then both p1
and p2 are prime by Claim 2. To have the prime term y+ 2z produced for p, the term z should
belong to one of pi. It cannot belong to p1, since p1 is prime, so p2 = max(−x,z, [. . .]). But then
the subcircuit computing p illegally produces the term 2(y+ z). A contradiction.

Subcase 2.3.4. q ∈V \{0}.
In this subcase, we are checking that no circuit with 3 +-gates can compute P− q. We will

search through all possible values for q.
Subsubcase 2.3.4.1. q ∈ {−x,−z}.
We will show that the prime term 2x+y+2z−q of p alone requires 4 +-gates to be computed.

Cases q =−x and q =−z are mutually symmetric, so we consider only the former. Assume that
3 additions are sufficient to compute 3x+ y+2z.

By Claim 1, these additions should be arranged into a chain s1,s2,s3. The last gate cannot be
doubling, since the term has odd coefficients. So to obtain the weight 6, we need s2 = 2s1 and
s3 = s2 + s1. But then the circuit would compute 3s1, which is not what required.

Subsubcase 2.3.4.2. q ∈ {±y}.
Again, we will show that the term 3x± y+ z alone requires 4 +-gates. Assume contrariwise

that 3 additions are sufficient.
By Claim 1, these additions should be arranged into a chain s1,s2,s3. There cannot be dou-

blings among the two last additions, since the term has 3 odd coefficients. So to obtain absolute
weight 5, we need s3 = s2 + s1 to hold. But then the circuit computes 2s1 + v for some v ∈ V ,
which is clearly cannot have all coefficients odd.

Subsubcase 2.3.4.3. q ∈ {x,z}.
Both possibilities are treated symmetrically. For q = x, we have that {x+ y+ 2z, 2y− x} ⊂

t(p), and for q = z, we have {2x+ y+ z, 2y− z} ⊂ t(p). We will follow the latter case.
The first term t = 2x+ y+ z is prime and requires 3 +-gates to be computed by Claim 1. So

by Claim 2, all inputs for all +-gates are prime polynomials. Next, we consider two types of
interconnection between +-gates.

First, assume that +-gates are arranged as a depth-2 tree. So, the inputs for the first two gates
have prime terms x,x,y,z in some order.

Second, assume that +-gates are arranged into a chain. Due to weight considerations, the first
+-gate has two inputs with prime terms of weight 1 (variables). Obviously, with respect to the
computation of t, the last +-gate cannot be doubling. The same goes with the second +-gate,
since t cannot be represented as 2s+ v or 3s, where s has absolute weight 2, and v ∈V .

In both cases, we obtain that +-gates form a tree with 4 variable inputs. Note that to produce
the term 2y− z we should have −z as a term at the input of some +-gate. Let v denote the prime
term belonging to the same input polynomial. But then the subcircuit computing p produces an
illegal term 2y+ v. A contradiction.
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