A special example of (max, +) polynomial*

S. Jukna, H. Seiwert, I. Sergeev

In the present supplementary note we provide an example of tropical polynomial P illustrating a very specific feature of computations over ($\max ,+$) semiring. Any minimal (max,,$+-x$) circuit computing P has to produce terms with negative coefficients. Nothing similar cannot be observed in the cases of $(+, *)$ and (min, +) semirings.

Consider the polynomial

$$
P(x, y, z)=\max (2 x+y+2 z, 3 x+z, 2 y) .
$$

We will prove below that its ($\max ,+,-x$) complexity is 6 , and any minimal circuit produces terms with negative coefficients. Indeed, it follows that (max,,$+-x$) complexity of P is smaller than its (max, +) complexity.

The polynomial P may be computed by a circuit (actually, a formula)

$$
\begin{equation*}
\max (2(x+z), y)+\max (y, x-z) \tag{1}
\end{equation*}
$$

of size 6 . Note that this formula produces a redundant term $x+y-z$.
Let $t(P)$ and $d(P)$ denote the set of (defining) terms of P, and the set of their pairwise differences (up to the sign), respectively:

$$
t(P)=\{2 x+y+2 z, 3 x+z, 2 y\}, \quad d(P)=\{x-y-z, 2 x-y+2 z, 3 x-2 y+z\}
$$

In what follows, under the weight (absolute weight) of a linear term we mean the sum of its coefficients (the sum of absolute values of coefficients, respectively). For example, the term $3 x-y+z$ has weight 3 and absolute weight 5 . The weight $w(p)$, and absolute weight $W(p)$ of a polynomial p are defined as the maximum of weight (absolute weight, respectively) over all terms of p. The following claim is quite obvious.

Claim 1.

(i) If a circuit produces some polynomial p with either $w(p) \geq s$ or $W(p) \geq s$, then the circuit contains at least $\left\lceil\log _{2} s\right\rceil$ addition gates.
(ii) Moreover, in any circuit producing p with exactly $\left\lceil\log _{2} s\right\rceil$ addition gates, there is a path from an input to an output running through all addition gates.
(iii) If a term t has weight (absolute weight) 2^{s}, and it can be produced by a circuit of s addition gates, then t has a form $2^{s-1}(x+y)$ (or $2^{s-1}(\pm x \pm y)$, respectively).

[^0]Proof. For $p=\max \left(p_{1}, p_{2}\right)$, we have $w(p)=\max \left(w\left(p_{1}\right), w\left(p_{2}\right)\right)$, and $W(p)=\max \left(W\left(p_{1}\right), W\left(p_{2}\right)\right)$. For $p=p_{1}+p_{2}$, we have $w(p)=w\left(p_{1}\right)+w\left(p_{2}\right)$, and $W(p) \leq W\left(p_{1}\right)+W\left(p_{2}\right)$. For inputs, $|w(\pm x)|=W(\pm x)=1$. Now it can be verified easily, that to produce a polynomial p with $w(p) \geq s$ or $W(p) \geq s$, a tree of addition depth at least $\left\lceil\log _{2} s\right\rceil$ is required. Hence, the former two assertions of the claim follow. To produce the weight 2^{s} by s additions, all these additions, except possibly the first one, should be doublings. This leads to (iii).

We call a polynomial p prime, if it contains the only term of maximal weight $w(p)$. For a prime polynomial, we also call its maximal weight term prime. So, the polynomial P is prime (with prime term being $2 x+y+2 z$), and the polynomial $\{3 x-y, 2 z, x+y-z\}$ is not.

In what follows, for a circuit C producing some term t, we call a gate $g \in C$ essential for t if after replacing this gate with some term t^{\prime}, the circuit no longer produces t.
Claim 2. If a circuit produces some prime polynomial p, then at any gate essential for the prime term of p, a prime polynomial is produced. Moreover, the prime term produced at this gate contributes to the prime term of p.
Proof. Note that at any gate (either max or +) maximal weight terms are produced exactly from the maximal weight terms of inputs (the property of higher envelopes). Let t denote the prime term of p. Assume that in some gate essential for p, besides a term t_{1} contributing to t, another term $t_{2}, w\left(t_{2}\right) \geq w\left(t_{1}\right)$, is produced. Then $t+t_{2}-t_{1}$ is a term of p (just take all terms contributing to t, except that t_{2} instead of $\left.t_{1}\right)$. But $w\left(t+t_{2}-t_{1}\right) \geq w(t)$, which makes term t not prime. A contradiction.

Now we are ready to prove what promised.
Lemma 1. Any minimal (max,,$+-x$) circuit computing $P(X)$ produces terms with negative coefficients.

Proof. We have already presented in (1) a (max,,$+-x$) circuit of size 6 for P. First, we show that the above circuit is indeed optimal, i.e. there are no circuits of size 5 computing P.
I. Since P contains 3 terms, it requires at least 2 max-gates to be computed. The term $2 x+$ $y+2 z$ alone requires at least $3+$-gates by Claim 1. Assume that some circuit C of $3+$-gates computes P. These + -gates should be arranged as a chain to make computation of the prime term $t_{1}=2 x+y+2 z$ of weight 5 possible (again by Claim 1). Hence, all these +-gates are essential for t_{1} and by Claim 2 should produce prime polynomials.

For computing t_{1}, we have only two types of circuits with respect to connections between +gates. The first type: $s_{1}=x+z, s_{2}=2 s_{1}, s_{3}=s_{2}+y$, the second type: $s_{1}=x+z, s_{2}=s_{1}+y, s_{3}=$ $s_{2}+s_{1}$ (by s_{i} we denote prime terms of the polynomials produced at the corresponding gates).

Consider the computation of $t_{2}=3 x+z$. This term also has additive complexity 3 (by Claim 1), so it should be produced at the last +-gate. Since $w\left(t_{2}\right)=4$, a prime term of one of the inputs of this gate contributes to t_{2}. In a circuit of the first type the prime terms of the inputs are $2(x+z)$ and y. Then, t_{2} cannot be produced, since it does not have a form of $2(x+z)+w_{0,0}$ or $y+w_{3,2}$, where $w_{i, j}$ are some terms of weight $\leq i$ and addition complexity $\leq j$.

For a circuit of the second type, input prime terms are $x+y+z$ and $x+z$. Though t_{2} cannot be expressed as $x+y+z+w_{1,1}$, it has a representation $x+z+w_{2,2}$ with $w_{2,2}=2 x$. But the required term $2 x$ cannot be produced at the first +-gate, since otherwise it would be another prime term
there. Thus, the term $2 x$ should be computed at the second +-gate. Again, notice that then some of input prime terms contributes to $2 x$, so we obtain that either $2 x=x+z+w_{0,0}$ or $2 x=y+w_{1,1}$, which indeed is not possible.

We comes to a contradiction. Therefore, at least $4+$-gates are required to compute P.
II. Now we are going to check that any circuit of size 6 computing P produces terms with negative coefficients. We have already shown that such circuit should contain $4+$-gates and 2 max-gates. We will consider two subcases.

Subcase 1. The output gate g of the circuit is a max-gate.
Case 1.1. The output of the other max-gate is fed to the input of g.
It means that all 3 terms of P should be computed in a subcircuit containing +-gates alone. But then we need at least 3 gates to compute the term $2 x+y+2 z$ (by Claim 1), and additionally at least one gate for each of the terms $3 x+z, 2 y$. Hence, the circuit contains at least $5+$-gates which makes it not minimal.

Case 1.2. Both inputs of g are connected to +-gates.
Let $\max (a, b)$ be the polynomial produced by another (inner) max-gate in the circuit (a, b are the terms). If this max-gate does not precede one of the +-gates entering g, then that +-gate produces exactly some term of P. This term has to be $2 y$, since any other term of P requires 3 + -gates to be produced. It follows that e.g. the term $3 x+z$ can be computed via 2 additions from inputs $\pm x, \pm y, \pm z, 2 y$, which indeed does not hold.

Hence, the inner max-gate should precede to both +-gates entering g. Thus, $P=\max (\max (a, b)+$ $c, \max (a, b)+d)$ for some terms c, d. By assumption, this formula produces the 3 required terms and a redundant term. Assume w.l.o.g. that the latter is $b+d$. So we have that $b+d=$ $(a+d)+(b+c)-(a+c)=t_{1}+t_{2}-t_{3}$ for some permutation $\left(t_{1}, t_{2}, t_{3}\right)$ of the defining terms of P. Hence,

$$
b+d \in\{5 x-y+3 z,-x+3 y+z, x+y-z\} .
$$

Anyway, $b+d$ is a term with a negative coefficient.
Subcase 2. The output gate g of the circuit is a +-gate.
Then the produced polynomial has a form $p+q$, where $p=\max \left(a_{1},\left[a_{2}, a_{3}, \ldots\right]\right)$ and $q=$ $\max \left(b_{1},\left[b_{2}, b_{3}, \ldots\right]\right)$ are polynomials at inputs of g (square brackets may include optional terms). These polynomials must have at least 4 terms in total to compute the 3 required terms of P. W.l.o.g. assume that p contains no less contributing terms than q.

Case 2.1. Both polynomials p, q contain 2 terms contributing to the computation of 3 terms of P.

It means that $P=\max \left(a_{1}, a_{2}\right)+\max \left(b_{1}, b_{2}\right)$. This formula produces the 3 required terms and a redundant term. Let the latter be $a_{2}+b_{2}$. So we have that $a_{2}+b_{2}=\left(a_{1}+b_{2}\right)+\left(a_{2}+b_{1}\right)-$ $\left(a_{1}+b_{1}\right)=t_{1}+t_{2}-t_{3}$ for some permutation $\left(t_{1}, t_{2}, t_{3}\right)$ of terms of P. Hence,

$$
a_{2}+b_{2} \in\{5 x-y+3 z,-x+3 y+z, x+y-z\}
$$

so $a_{2}+b_{2}$ is a term with a negative coefficient. Note, that this case covers the circuit (1).
Case 2.2. The polynomial p has 3 terms, and q has at least 2 terms involved in computing P.
It means that $P=\max \left(a_{1}, a_{2}, a_{3}\right)+\max \left(b_{1}, b_{2}\right)$. Note that some two pairs of terms of P have to be computed independently, say, as $t_{1}=a_{1}+b_{1}$ and $t_{2}=a_{2}+b_{2}$, and as $t_{2}=a_{2}+b_{2}$ and
$t_{3}=a_{3}+b_{1}$. Assume w.l.o.g. t_{1}, t_{2} be a pair with a larger total weight (so, it is not $3 x+z, 2 y$). Consider two other terms $u_{1}=a_{1}+b_{2}$ and $u_{2}=a_{2}+b_{1}$ produced by the circuit. By construction, $u_{1}+u_{2}=t_{1}+t_{2}$, and $u_{1}, u_{2} \notin\left\{t_{1}, t_{2}\right\}$.

If $\left\{t_{1}, t_{2}\right\}=\{2 x+y+2 z, 3 x+z\}$, then some u_{i} has weight at least 5 , hence it cannot be a term of the prime polynomial P.

If $\left\{t_{1}, t_{2}\right\}=\{2 x+y+2 z, 2 y\}$, and since none of the terms u_{i} can have weight ≥ 5 (by the above reason), then u_{1}, u_{2} have weights 4 and 3 . Choose those of them (say, u_{1}) whose y-coefficient is ≥ 2. But then u_{1} is illegal, since in a point $(1,5,1)$ it takes larger value than any of the defining 3 terms of P.

Case 2.3. The polynomial p has 3 terms $\left(a_{1}, a_{2}, a_{3}\right)$, and q has just one term contributing into computing P.

We may assume that q is simply a 1-term polynomial, $q=b_{1}$ (that is, max-gates are not involved in computing q). If it had another term b_{2}, then $b_{2}<b_{1}$ would hold, since $p+b_{2} \leq$ $p+b_{1}=P$. But then the circuit would also produce the terms of the polynomial $P+\left(b_{2}-b_{1}\right)$. Since $b_{2}-b_{1}$ has negative coefficients, then at least one of the produced terms $3 x+z+b_{2}-b_{1}$, $2 y+b_{2}-b_{1}$ also has negative coefficients.

Subcase 2.3.1. The term q is computed by a subcircuit consisting of $3+$-gates.
Then the terms a_{i} are either from the set $V=\{0, \pm x, \pm y, \pm z\}$ or are computed at the gates of the + -subcircuit. Only the two inner +-gates may compute some of a_{i} 's, since $2 q$ cannot be the term of P, except when $q=y$, but then q does not require gates to be computed.

Recall that some 3 differences $a_{i}-a_{j}$ form the set $d(P)$. Given that any difference in $d(P)$ has absolute weight at least 3 , only one of a_{i} 's (say, a_{3}) may belong to V. And it does belong, since a_{1}, a_{2} have to be computed at the two inner gates of the + -subcircuit (so, no other possibilities for a_{3} remain open). But then $W\left(a_{1}-a_{2}\right) \leq 4, W\left(a_{1}\right), W\left(a_{2}\right) \leq 4$, hence $W\left(a_{i}-a_{3}\right) \leq 5$ for $i=1,2$. As a consequence, neither of differences $a_{i}-a_{j}$ have absolute weight 6 , as required to make the set $d(P)$. A contradiction.

Subcase 2.3.2. The term q is computed by a subcircuit consisting of $2+$-gates.
Then either $q=2 s$ or $q=s+v$ for some $v \in V$, where s is the term computed at the +-gate entering the gate computing q. Assuming that the circuit is non-degenerate, we require s to have absolute weight 2 , and q to have absolute weight 3 or 4 . The remaining subcircuit (besides those computing q) contains 2 max-gates and a + -gate.

Subsubcase 2.3.2.1. The polynomial p is computed at a +-gate.
By checking all ways to locate two max-gates, we obtain

$$
\begin{equation*}
p \in\left\{2 \max \left(c_{1}, c_{2}, c_{3}\right), \max \left(c_{1}, c_{2}, c_{3}\right)+d_{1}, \max \left(c_{1}, c_{2}\right)+\max \left(d_{1}, d_{2}\right)\right\}, \tag{2}
\end{equation*}
$$

where $c_{i}, d_{i} \in V \cup\{q, s\}$. By construction, the pairwise differences between some three terms of p form $d(P)$. Recall that absolute weights of terms in $d(P)$ are 3,5 , and 6 .

So, the first possibility in (2) cannot occur, since (absolute) weights of all three differences in it would be even.

The second one is also impossible, since neither of terms $c_{i}-c_{j}$ can have absolute weight 6 (absolute weights of q, s, and $q-s$ are at most 4,2 , and 2 , respectively).

In the remaining case $p=\max \left(c_{1}, c_{2}\right)+\max \left(d_{1}, d_{2}\right)$, one of the terms $c_{i}+d_{j}\left(\right.$ say,$\left.c_{2}+d_{2}\right)$ is redundant. Then, the three pairwise differences are $c_{1}-c_{2}, d_{1}-d_{2}$ and $c_{1}+d_{2}-c_{2}-d_{1}$ (up to
the sign). Either $c_{1}-c_{2}$, or $d_{1}-d_{2}$ has absolute weight at least 5 (assume that it is $c_{1}-c_{2}$), and neither of them has absolute weight less than 3 . Then $c_{i}=q$ for some i, and $W(q)=4$. Hence, $q=2\left(v+v^{\prime}\right)$ for some $v, v^{\prime} \in V$ by Claim 1. Also $d_{j} \in V$ for some j (since $\left.\left\{d_{1}, d_{2}\right\} \neq\{s, q\}\right)$. But then the circuit produces the term $c_{i}+d_{j}+q=2 q+d_{j}$, which either has negative coefficients (when $w(q)<4$), or weights at least 7 (when $w(q)=4$) and makes the computed polynomial different from P.

Subsubcase 2.3.2.2. The polynomial p is computed at a max-gate.
Here we have

$$
\begin{equation*}
p \in\left\{\max \left(c_{1}, 2 c_{2}, 2 c_{3}\right), \max \left(c_{1}, c_{2}+d_{1}, c_{3}+d_{1}\right), \max \left(c_{1}, c_{2}, d_{1}+d_{2}\right)\right\} \tag{3}
\end{equation*}
$$

where $c_{i}, d_{i} \in V \cup\{q, s\}$.
The first possibility in (3) cannot occur, since it implies the difference $2\left(c_{2}-c_{3}\right)$ between some two terms of P with all coefficients being even, contradicting the structure of $d(P)$.

Now, assuming $p=\max \left(c_{1}, c_{2}, d_{1}+d_{2}\right)$ we obtain that $c_{1}-c_{2}$ (up to the sign) belongs to $d(P)$. Hence, w.l.o.g. $c_{1} \in V$, and $c_{2} \in\{q, s\}$. But $c_{2} \neq q$, otherwise $c_{2}+q=2 q$ would be a term of P (recall that $q=y$ doesn't go, since the gate computing q would be redundant). Thus, $c_{2}=s$. It would follow from $q=2 s$ that $3 s \in t(P)$, which is impossible. Therefore, $q=s+v$ for some $v \in V$. Then we have $c_{2}+q=2 s+v$ as a term of P, leading to $v=y, s=x+z$, and $q=x+y+z$. But neither of the 3 terms of P have the form $c_{1}+q=x+y+z+c_{1}$. A contradiction.

We are left to check the case $p=\max \left(c_{1}, c_{2}+d_{1}, c_{3}+d_{1}\right)$. Since $c_{2}-c_{3}$ (up to the sign) belongs to $d(P)$, we obtain w.l.o.g. $c_{2} \in V$, and $c_{3} \in\{q, s\}$.

Since $3 q \notin t(P)$, then $c_{3}+d_{1} \neq 2 q$. Since neither $4 s$, nor $3 s+v$ for some $v \in V$, cannot be a term of P, then $c_{3}+d_{1} \neq 2 s$. Now assume that $c_{3}+d_{1}=s+q$. Then $2 q+s$ is a term of P, hence $q \neq 2 s$. So $q=s+v$ for some $v \in V$, and $3 q-v$ is a term of P, but its absolute weight is at least 8 , which is not possible. Thus, we obtain $d_{1} \in V$.

Look at c_{1}. Clearly, $c_{1} \neq q$, since $2 q \notin P$, and $c_{1} \neq s$, since otherwise the difference $c_{2}+$ $d_{1}-c_{1}$ would have even absolute weight ≤ 4 contradicting with the structure of $d(P)$. In the remaining case $c_{1} \in V$, we need $c_{3}=q=2 s$ to provide a difference (namely, $c_{3}+d_{1}-c_{1}$) with absolute weight 6 . But then the circuit would produce the term $c_{3}+d_{1}+q=4 s+d_{1} \in t(P)$, which is impossible.

Subcase 2.3.3. The term q is computed by a +-gate connected to inputs.
It means that the absolute weight of q is 2 . Recall that the polynomial p is produced by a subcircuit of $2+$-gates and 2 max-gates taking inputs from $V \cup\{q\}$. The weight of q cannot be non-positive, since otherwise some of a_{i} 's would have weight at least 5 , which is impossible to produce via just $2+$-gates. So the weight of q is 2 .

Note that if $q \neq 2 x$, then the polynomial $p=P-q$ contains a term requiring $3+$-gates to be produced: either $3 x+z-q$, when $q \neq x+z$, or $2 y-q$, otherwise (by Claim 1). Looking over all ways to arrange $2+$-gates in the subcircuit computing p we obtain that any produced term a_{i} belongs to one of the two types $2\left(u_{1}+u_{2}\right), u_{1}+u_{2}+u_{3}$, where $u_{i} \in V \cup\{q\}$. Given that $W(t) \geq 4, w(t) \in\{0,2\}$, and t contains odd coefficients, it remains the only possibility $t=q+v_{1}+v_{2}$ for some $v_{1}, v_{2} \in V$. In the case $q \neq x+z$, we obtain $3 x+z-v_{1}-v_{2}=2 q$, hence $2 q=(3 \pm 1) x+(1 \mp 1) z$, and it cannot be satisfied. In the case $q=x+z$, we have $2 y-v_{1}-v_{2}=$ $2 q=2(x+z)$, which is obviously unsatisfiable.

In the remaining case, $q=2 x$ and $p=\max (y+2 z, x+z, 2 y-2 x)$. There is the only way to produce the term $2 y-2 x$ via $2+$-gates, namely, as $2(y-x)$ (by Claim 1). It means that the inputs of the first of these two gates are polynomials $p_{1}=\max (y,[\ldots])$ and $p_{2}=\max (-x,[\ldots])$, where square brackets may include some additional terms. Since p is prime polynomial, then both p_{1} and p_{2} are prime by Claim 2. To have the prime term $y+2 z$ produced for p, the term z should belong to one of p_{i}. It cannot belong to p_{1}, since p_{1} is prime, so $p_{2}=\max (-x, z,[\ldots])$. But then the subcircuit computing p illegally produces the term $2(y+z)$. A contradiction.

Subcase 2.3.4. $q \in V \backslash\{0\}$.
In this subcase, we are checking that no circuit with $3+$-gates can compute $P-q$. We will search through all possible values for q.

Subsubcase 2.3.4.1. $q \in\{-x,-z\}$.
We will show that the prime term $2 x+y+2 z-q$ of p alone requires $4+$-gates to be computed. Cases $q=-x$ and $q=-z$ are mutually symmetric, so we consider only the former. Assume that 3 additions are sufficient to compute $3 x+y+2 z$.

By Claim 1, these additions should be arranged into a chain s_{1}, s_{2}, s_{3}. The last gate cannot be doubling, since the term has odd coefficients. So to obtain the weight 6 , we need $s_{2}=2 s_{1}$ and $s_{3}=s_{2}+s_{1}$. But then the circuit would compute $3 s_{1}$, which is not what required.

Subsubcase 2.3.4.2. $q \in\{ \pm y\}$.
Again, we will show that the term $3 x \pm y+z$ alone requires $4+$-gates. Assume contrariwise that 3 additions are sufficient.

By Claim 1, these additions should be arranged into a chain s_{1}, s_{2}, s_{3}. There cannot be doublings among the two last additions, since the term has 3 odd coefficients. So to obtain absolute weight 5 , we need $s_{3}=s_{2}+s_{1}$ to hold. But then the circuit computes $2 s_{1}+v$ for some $v \in V$, which is clearly cannot have all coefficients odd.

Subsubcase 2.3.4.3. $q \in\{x, z\}$.
Both possibilities are treated symmetrically. For $q=x$, we have that $\{x+y+2 z, 2 y-x\} \subset$ $t(p)$, and for $q=z$, we have $\{2 x+y+z, 2 y-z\} \subset t(p)$. We will follow the latter case.

The first term $t=2 x+y+z$ is prime and requires $3+$-gates to be computed by Claim 1. So by Claim 2, all inputs for all +-gates are prime polynomials. Next, we consider two types of interconnection between +-gates.

First, assume that +-gates are arranged as a depth -2 tree. So, the inputs for the first two gates have prime terms x, x, y, z in some order.

Second, assume that +-gates are arranged into a chain. Due to weight considerations, the first +-gate has two inputs with prime terms of weight 1 (variables). Obviously, with respect to the computation of t, the last +-gate cannot be doubling. The same goes with the second +-gate, since t cannot be represented as $2 s+v$ or $3 s$, where s has absolute weight 2 , and $v \in V$.

In both cases, we obtain that +-gates form a tree with 4 variable inputs. Note that to produce the term $2 y-z$ we should have $-z$ as a term at the input of some +-gate. Let v denote the prime term belonging to the same input polynomial. But then the subcircuit computing p produces an illegal term $2 y+v$. A contradiction.

[^0]: *Supplementary note for the main paper "Reciprocal inputs in arithmetic and tropical circuits".

