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A method is proposed for obtaining lower bounds on the complexity
of logical neiworks. It allows one to prove in a uniform and easy way
that sufficiently local circuits (including monotone circuits, bounded
depth circuits, circuits with no null chains, etc.) require nearly-
exponential size to compute naturally arising Boolean functions. Our
best lower bound for an NP function of n varisbles is exp(u(ym logn)).

1. Introduction. Although most of the Boolean functions (BFs in
short) have exponential complexity the largest known lower bound for
effectively defined functions (or ELB for Effective Lower Bound) re-
mains an &1:(n2/log2) bound by Nechiporuk [N 667 . The principality
of such a situastion was foreseen already in 1959 by Jablonskij[;ab5§l

Thus in order to gain more insight to the problem of proving non
~trivial lower bhounds, one has investigated more restricted models.
While introducing the restrictions, an attempt is usually made to

achieve the situation where the function, computed by a subcircuit,
weakly depends (or does not depend at all) on the whole circuit, i.e.
to achieve a certaein locality in computetions. This has been done at
first by Tkachev [T 80] who investigated the realization of BFs by cir-
cuits of depth & 3 over the complete basis {&,V ,  }and proved nearly
exponentisl ELB of size exp(&L(nl/4)). Independently and at about the
same time Furst/Saxe/Sipser[FSS 81] obtained super-polynomial ELBs for
the circuits of any consgtant depth. Considering a different restric-
tion of the circuits, namely the circuits with no null chains, Pulatov
[ 79] anda Kuznetsov[K 81] obtained ELBs of size exp(Qu(n)) for some
special BFg. Investigating one-time-only branching programs Pudlak/
Zék [PZ 83, ¥ 84] ,Wegener{W 841 and Dunne(D 85] obtained an ELBs of
gize exp(\nl(nl 2)). For monotone circuits, i.e. the circuits over the
incomplete basis{&,V ,0,1] , Andreev[A 85] has recently proved near-
ly-exponential ELBs of size exp(&x(nl/s_o(l))). Independently for the
same class of circuits (but for other BFs) Razborov{R 85]obtains ELBs
of gize exp(SL(loan)). Subsequently, modifying Razborov’s arguments
Alon/Boppanal[AB 85] improved these bounds to exp(&L(nl/4(log n)l/z)).
In this paper we propose some initial ideas of a new method for
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obtaining non-trivial ELBs. In the case of local circuits it allows
us to obtain in a uniform and easy way nearly-exponential ELBs of size
exp(&L(nl/zlog n)j.

Our method represents an appropriate concretization of an entro-
pic approach to the lower bounds problem we propose in[Juk 84].Basic
idea is quite simple: we offer to define the lower bound on the com-
plexity by means of "entropy preserving" imbeddings of circuits into

the more restricted ones. In [Juk 84], to define the enitropy of ma-
chines, we use Janov’s [Jan 75)notion of convolution of their compu-
tation trees, and spply this to bound the complexity of Turing ma-
chine computetions. Here we apply such an approach to Boolean networks.
To be more specific, let there be given some encoding F: X — Y of
the objects from Y (Boolean functions) by the objects from X(networks)
together with some measure m: X — N of their complexity. A goal is
to define the lower bounds for the induced measure L(y) = min {m(x) :
Mx) = y} on Y without any use of the encoding ¥. Doing this we pro-
pose to act as follows.Choose some intermediate classes (of more re-
stricted circuits) X = X;> Xy > ... > X =Y. Further, identify any
object x&X with an appropriate seft x* of its '"sub-objects" and choose
some binary relation @ & x*X x* of their "similarity". Define ¢-en-
tropy HY¥(x) of x to be the minimal number of @ -intervals, covering
x* ; Ac x* is a -interval over x* iff ayb for all a,b&A. An
object x, is said to be (e, %/)—eplmorphlc to x, iff there is a(poss~-
1bly partial) surjection ¥: xi — x2 such that for any a,b from
N (x2), ayb implies V(a)y V(b). Then H‘f(xl)>II¢(x?), though
it may be the case that m(xl) < m(xz) Thus, if the relations ¢ =
@poseens ‘Pk ¢ are chosen so that H¥=m and for any yve&¥ and
x€X, ﬂF*(y), x is (@5, \¢;,1)-epimorphic to some X 6X1+lﬂF (y),
then Ly z ¥y,

Here we apply such an approach for contact circuits. For other
kinds of logical networks this may be done in a similar manner.

2. Terminology. A contact circuit (or simply a circuit) is a fi-
nite uwndirected graph, the edges of which are labeled by contacts,
i.e. by variables and their negations Xl"“’xn’ia"";ih’ or by con-
stant 1, with distinguished node-root and some nodes-terminals. For
an edge e, © denotes its label. A chain is a path with no cycles.

A chain, starting in a circuit’s root is initial. A branch is an in-

itial chain ending in gome terminagl. A chain C = v 0€1V182 ey Vy
defines the minterm T = elez...e . If ¢ is an initial chain of a
contact tree we shall write Vh instead of C and call the number of
contacts in C a height of V- A chain C is null chain iff ¢ = o.



442

A circuit is primitive (or one-time-only) iff any of its branches con-
tains no repeated occurrences of variables. Given & circuit S, a vi-
cinity of a node ve&S3 consists of all the variables x such that for
some a G{O 1] the following is valid: there exist an initiasl non-null
chains CO,Cl to v and a non-null chain C2 from v t0 a terminal of S
such that x° €Cy,, 32 €C, and '5'{8$ Cq- A circuit is t-local {(t=20)
iff the vicinity of any of its node contains no more than t variables.
Thus one~time-only circuits, monotone circuits (i.e. the circuits
with no negated variasbles) and circuits with no null chains are spe~
cial instances of t-locgl circuits with t=0. On the other hand any
circuit of n variables is t-local for some +t<n.

A circuit S is g-circuit (1€ qse° ) if any Boolean vector real-
izes no more than q distinct branches of S. Thus any circuit is oo -cir-
cuit. A brenching program BP) is a special cage of the l-circuit: it
is a directed contact circuit, where each node has an outdegree $ 2,
and the edges leaving a node with an outdegree =2 are labeled by con-
trary contacts. Por the sake of uniformity we shall refer to BP as to
O-circuit.

The size L{8) of circuit S is the number of nodes in S. The c.m-
plexity of a Boolean function f is defined by L, (f) = min L(S) where
min is over all the t-local g-circuits S, computlng f. Put Ct = Lt oo 1
DC, = Ly 1 ("D" for Deterministic) and BRy = Lt o+ Then clearly,
Ct(f) DC (f) BP, (£). Onthe other hand it is known (see, e.g.[PZ
831) that C oo and BPos are polynomially related.

For a contact tree T let T” denote the set of all its (complete)
subtrees. Given ¥ & P , let H\Q(T) denote ¢ -entropy of T,
i.e. B¥(T) = ¥ (T*). The entropy of a Boolean function f is defined
by Bft) = min{H‘P(T) : T is & primitive g-tree and T = £]. Here
and in what follows 5 stands for the disjunction of all branches in T.

For a minterm K and a disjunciive normal form (DNF in short} D =
= Ky v...v K, let D{K} denote the set of all DNFs KKy V...VK K.
where Kl C-K (l i<r). For minterms K, and X,, put K; o K, = $x% s
€K, and X°€ K} and K;<K, = Kj-(K; ™ K,).

Define two special relations Y and O on ™ as follows. For sub-
trees Tv and Tu with the roots v and u, let:

poY T, iff (BT = (=0T, , end
v, 0 or, iff B {va1N E {89 4

v

Notice that HY(T) = HY(T), since ¢ < @ .
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3. Complexity and Entropy. Let E denote the set of all Boolean
functions £ such that any two distinct Boolean vectors from f_l(l)
differ in at least two coordinates.

Theorem 1.For any Boolean function f, any t20 and O € qs< o= , we have
Ly o(8) > BX(5)-37%,
where =¢ if fe&E, and ¢ =0 otherwise.
Proof. Consider an unfoldnment T of some minimal t-local g-circuit S,
computing f, i.e. T is a contact g-tree such that T - ¢ and HI(T) =
Lt, (f), where I stends for the isomorphism relation. Remove from T
all the edges e (together with their successors) such that an initial
chain to e contains a contact contrary to €. Let 1% denote the result-
ing contact tree. Hence, T° has no null cheins and %°= f. Moreover,
from the locality of S it follows that HI(T°) & HL(T)-3%. Tndeed, let
{I, : VeVl be en I-interval over 1™ . As § is minimal, all the
nodes of T from V correspond to a single node v, of S. Let X be the
vicinity of v, in S. Then |X| & t (here and in what follows |X| stands
for the cardinality of X). Put mt(X) ={x® : x€X and ae{0,1}] , and
let M denote the set of all non-null minterms over mt(X). Clearly,
M| = 31Xl ¢ 3% et U be the set of nodes in 0, corresponding to V,
and let A denote the set of all subtrees of T° rooted in U, i.e. A =
{Tg : u€U] .For a minterm K from M, put U(K) = {ueU : G0mt(X)=K]}.
It is seen that for any minterm K all the subtrees from A rooted in
U(KX) are pairwise isomorphic. Hence A contains no more than M| < 3t
pairwise non-isomorphic subtrees. Therefore, HI(TO) 4 HI(T)-Bt.
Next, replace all the repeated occurrences of contacts in any of 10 g
branch by 1. Clearly, such a relabeling does not change the function.
It is also seen that T°is (I, )-epimorphic to the resulting g-tree
Tl, where Ww=¢ if f€3E, and ¥= © otherwise. So HI(TO) 2 H\?(Tl)
where by definition, H¥(TY) » Bi(e). O

Taking into account the structure of coverings one may investi-
gate more meaningful notions of entropy and improve Theorem 1 for
less restrictive notlons of locality. In particular, one may relax the
condition "X% € ¢," in the definition of vicinity to " X% ¢ ¢ /C,"
where Cl/CO denotes the maximal tail of Cl which has no edge in com-
mon with CO. However, this is not in the scope (nor the aim) of the
present report and will be published elsewhere.

Nevertheless, even such a naive definition of entropy leads to
rather strong lower bounds. By Theorem 1, in order to bound the
complexity of a given BF it sufficies to bound theentropy of its primi-
tive trees. Let us demonstrate this for three natursl classes of BFs.
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Let X = {xl,...,xn.ﬁ An assignment is a function Q: X —= X U

{o, lS such that for any xeX, either ©(x)€{0,1] or Q(x) =
D¢ = (O) U ¢ (l) is a signature of § ; |DQ| is a rank of ¢
For a Boolean function £(X), £§ denotes the subfunction £ Q (xl),
ceey g(xn)). A Boolean function f£(X) is m-mixed (O<mgn) if for any
YC X, with |Y| € m, and any two assignments Q# ¥ of the signature
Y, either £S = £¥= 0 or £S 4 £¥ ; it is strongly m-mixed if £3¢ £¥
for all such assignments. The class of mixed BFs is sufficiently rich:
for any m<n - (l+ &€)log n, with & >0 arbitrary small almost all BFs
of n variables are strongly m~mixed. For an assignment ¢ , put K(Q)=

§x§’ x): xeDgﬁ . For a BF f£(X), let Qf(m) denote the least num-~
ber r of asglgnments g ey 91« of rank = m, possessing the repre-~
sentation: f = _1( 91) 280,

Theorem 2. If f(X) is a 2m~mixed Boolean functlon then He(f) = Qf(n)
1f, in addition, f isgtrongly m-mixed then Hl(f) Z exp(m)
Proof. Congider a primitive l-tree T, computing f, and let V denote
the set of its nodes of height m. Then clearly, [Vl;Qf(m). If £ is
strongly m-mixed then [V[ > exp(m), since T is a l-tree. So it remains
to show that any @-interval over T¥ contains no more than one sub-
tree rooted in V. Indeed, let (on the contrary) that TVQTu for some
v £ ufrom V., Put K = ¥(8 ~ ¥), and let var(K) denote the set of vari-
ables in K. Consider en assignment € of signature var(K) such that
kS = 1, and let ¥ be an assignment (of the same signature) such that
W(x) £ 9(x) if xevar(fo>9), and ¥ (x) = Q(x) otherwise. Since
7,0 T, and T has no null chains, it follows that (T )S = (’l‘ )¥.Thus
fg = f"‘\ ,since ()3 = (M¥=1 and T is a 1- tree. Moreover, g
£ % , since otherwise some Boolean vector a , with ai = g(xi) for
x;€DQ , reslizes » 2 branches of T. But [pgl =[p%]| < 2m. O

F—=

A Boolean function f£(X) is m-stable if for eny x€X and any Y

< X -{x}, with [Y| ¢ m,there is an assignment % of signature X - ¥
-§x} such that £¥  depends merely on x,i.e. either (x,Y) = x or
#¥(x,Y) = ¥.Following the proof of Theorem 2 one can easily prove

Theorem 3. If f is a 2m-stable Boolean function then Hg(f) 2z exp(m).

Using an argument originally employed by Wegener in [W 847,
Dunne in [D 85] shows that computing any m-stable BF requires primi-
tive BP of size exp(m). Theorems 1,3 yield more general bound.
Corollary 1.If £ is a 2m-stable Boolean function then for eny t 2 O,
we have: DCt(f) = £ (exp(m - t)).

The weight wh(%) of & €{0,1}® is the number of 1’s in &. We
call % a lower one (LWO) of a BF f iff £(¥) = 1 and £(b) = 0 for
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any b €{0,11™ such that b < & and wh(b) = wh(Z) - 1. For a monotone
BFs this notion of LWO coincides with the usual one . Let N (Mf)
denote the set of all LWOs of £ (of wminimal weight). Thus, wh(8) =
wh(b) for all 3,% €lip. For & €{0,1{", put 2(8) = {i : 7] = 1}.

A Boolean function f is (k,r)-uniform (k =z 2, v 2 1) iff wh(3) = 2r
for all Eel\if, and for any k psirwise distinct LWOs al,...,ak from
M, it holds: [z(gl) N .../\z(ak)[ ¢ r; f is k-uniform if it is
(k,r)-uniform for some rzl; f is strongly k-uniform if,in this con-
nection, Mf = Nf. Thus, the uniformity of f corresponds to a certain
"uniformity of distribution" of symbols in its shortest DNFs.

Theorem 4.If f is a 2-uwniform Boolean function then Hi(f) 2 \Mf\ . If
f is strongly k-uniform for some k 2 2 and feE then for any g,

0<qso00, it holds: H;'(f) > M- (k-1)"Pmax (1/k, 1/(q+1)).

4. Applications. Theorems 1-4 permit us to obtain in a uniform
and eagy way nearly-exponential lower bounds on the complexity of lo-
cal circuits. In a number of cases it leads us to the improvement of
ELBs recently obtained by quite strong (but special) methods. Whilst
it would be tedious to attempt to indicate all such ELBs we restrict
ourselves to some typical samples.

A great deal of examples may be defined by means of transvers-
als in (0,1l)-matrices. For kz2, let Wk denote the set of all func~
tions w: k — k, where k = {0,1,...,k~1}. For an (0,1)-matrix X =
= {Xi’j: i,jek 7], let Tr(X) denote the set of all transversals of
X, ive. Tr(X) ={weW: x; ;) =1 forall iek[.For F < W, let

trF(X) denote the number of transversals of X in P, i.e. trF(X) =
= |P N 1r(X)| . Any subset of k-valued functions F S Wy induces the
following two Boolean functions F(X) and _lj‘_l(X) of n = k2 vari-
ables: FO(X) = 1 iff trp(X) > 0, and BN(X) = try(X)(mod 2). For
such a BFs there is quite a simple criterion of their stability. Let
gr({w) denote the graph of w. Ve say that P & Wk is m~dense if for
any ye_lgz and any Y gl_iz—{y], with |Y| < m, there is w, &P such
that: yegr(w,), Y gr(w) =@ and gr(w) - (YU grlw))) # @ for
any other w from F -{w_ { .

Lemma. Let F & Wy and a€{0,1{. Then F® is m-stable iff P is m-dense.
Corollary 2.For any m-dense subset F & Wk’ any a 6{0,1} and t 2 0,
we have: DCt(za) = LL(exp(m/2 - $)).

To illustrate this, let us consider the following three classes
of k-valued fumctions: (1) Pr, the set of all permutations of k ;

(2) R4, the set of all residue functions wy (w,(x) mod p), where p =
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= |k/2] and wy,W, €PT ; (3) P1, the set of all polynomials of degree
at most p over the Galois field GF(k), where k is a prime power. It
is easlily seen that all these classes are m~dense for any m € p-2.
Corollary 3. Let P&{Pr,Rd,Pl}and a €0,1}. If t = t(n) = n1/270(1)
then DC (E%) = exp(Lu({m).

Recently, concerning an important case of 0-local oo-circuits,
namely the monotone ones, andreev [A 85 obtained an exp(&)(nl/a"o(l%)
lower bound for pP1°. Razborov [R 85] obtained an exp(Su(1og®n))
bound for Pr°. Modifying Razborov’s arguments, Alon/Boppana [AB 85]
improved the lower bound for E;D to ex@(SL(n1/4(log n)l/2)). These
arguments use egsentially the monotonicity of circuits, so they do
not work for such "close" functions as, e.g. 2;1 and 231.

For a Boolean function £, let £, denote the characteristic func-
tion of Nf. If £ is monotone then, clearly, f, &€ E. In many cases not
only £ itself but also £4 1s hard to compute by a local circuit. For
example, 2;2. is (2,p)-uniform and 259* is ((k-1)1,i)-uniform for
any 1 £ i< p, so Theorems 1 and 4 yield
Corollary 4. Por any t 20 and 0 € q g o0 , we have:

Lt’q(ggi) = exp(Q({n - t)), and

exp(L({F logn - t)) < CL(BL) < exp(O(NT logn)).

ConceTning the circuits with no null chains Pulatov/Kuznetsov
[P 79, K 81] have proved that for any BF £, ¢ (£) » |£7H(1)|%/%,
where 4 stands for the minimal Hamming’s distance between any two
distinet vectors from £73(1) < {0,1}™. It enables them to obtain near-
ly-exponential lower bounds for some special functions. However, 1f 4
is too small with respect to ff'l(l)l , their arguments do not work.

For example, if £ = 3;2‘ then dsyn, whereas [f_l(l)l = exp(l/4
4@ log n), and hence, lf"l(l)[d/n = 0(n) (cf. corollary 4).

For 1 s¢un, let £ be the function of T = (rzl) Boolean

variables representing the edges of an undirected graph G on n nodes,
whose value is 1 iff G contains an s—-clique. Razborov in [R 85]

shows that fg, with s = | 1/4 1n n_l , requires monotone circuit of
size exp(SL(10g2n)).Subseﬁgently, Alon/Boppana [ AB 85 ] improved this
bownd to exp(Qu(n/log n)/?). Wegener in[ W 84] proves that fJ ,
with s = fZZn/B)l/B'] requires O-local BP of size Q(exp(n/3 - o(n))
As fg is m~stable for any m < min{ (g ), n—s} - 1, Theorems 1 and

3 directly yield

Corollary 5. If s = LﬁZn)l/gj then for any t 2z O, we have:

pC (£5) = u(exp(n/z - @' - £)).
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Considering g, = (fg/z)* , known also as an "exactly-half clique
function", Pudlék/Zék [PZ 83, Z 84 ]proved that g, requires primitive
BP of size exp(uw(n)). As far as g, is m-mixed for any m ¢ \x/2],
Theorems 1 and 2 directly yield

1-0(1)

Corollary 6. For any t = t(n) 2 n , We have:

DCt(gn) exp(£L(n)).

Pinally, notice that the non-local branching program complexity
of Boolean functions Pr°, Eg}, g;°

*
Thus, if t = nl/2—o(17— then some functions of n variables require

i}

and g, is actually polynomial.

nearly-exponential +t-local circuits, whereas their n-local circuit
complexity is polynomial, i.e. the locality of circuits may force an
exponential rise of their complexity.
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