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A method is proposed for obtaining lower bounds on the complexity 

of logical networks. It allows one to prove in a uniform and easy way 

that sufficiently local circuits (including monotone circuits, bounded 

depth circuits, circuits with no null chains, etc.) require nearly- 

exponential size to compute naturally arising Boolean functions. Our 

best lower bound for an NP function of n variables is exp(J%(~F~logn)). 

1. Introduction. Although most of the Boolean functions (BFs in 

short) have exponential complexity the largest known lower bound for 

effectively defined functions (or ELB for Effective Lower Bound) re- 

mains an ~(n2/log 2) bound by Nechiporuk ~N 662 . The principality 

of such a situation was foreseen already in 1959 by Jablonskij[Jab5~. 

Thus in order to gain more insight to the problem of proving non 

-trivial lower bounds, one has investigated more restricted models. 

While introducing the restrictions, an attempt is usually made to 

achieve the situation where the function, computed by a subcircuit, 

weakly depends (or does not depend at all) on the whole circuit, i.e. 

to achieve a certain locality in computations. This has been done at 

first by Tkachev ~ 801 who investigated the realization of BFs by cir- 

cuits of depth ~ 3 over the complete basis ~, V ,-~ and proved nearly 
1/,L 

exponential ELB of size exp(~(n ')). Independently and at about the 

same time Furst/Saxe/Sipser~FSS 81] obtained super-polynomiaLELBs for 

the circuits of any constant depth. Considering a different restric- 

tion of the circuits, namely the circuits with no null chains, Pulatov 

[P 79~ and Kuznetsov[K 81~ obtained ELBs of size exp(~%(n)) for some 

special BFs. Investigating one-time-only branching programs Pudl~k/ 

Zak [PZ 83, Z 841 ,Wegener[W 84] and Dunne[D 85] obtained an ELBs of 

size exp(~(nl/2)). Pot monotone circuits, i.e. the circuits over the 

incomplete basis ~, V ,O,1 I , Andreev[A 85] has recently proved near- 

ly-exponential ELBs of size exp(~(nl/8-°(1))). Independently for the 

same class of circuits (but for other BFs) Razborov[R 85]obtains ELBs 

of size exp(d~(log2n)). Subsequently, modifying Razborov's arguments 

Alon/Boppana[AB 85] improved these bounds to exp(~(nl/4(log n)l/2)). 

In this paper we propose some initial ideas of a new method for 
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obtaining non-trivial ELBs. In the case of local circuits it allows 

us to obtain in a uniform and easy way nearly-exponential ELBs of size 

exp(d~ (nl/21og n) ). 

Our method represents an appropriate concretization of an entro- 

pic approach to the lower bounds problem we propose in[Juk 84~ .Basic 

idea is quite simple: we offer to define the lower bound on the com- 

plexity by means of "entropy preserving" imbeddings of circuits into 

the more restricted ones. In [Juk 84], to define the entropy of ma- 

chines, we use Janov's [Jan 75] notion of convolution of their compu- 

tation trees, and apply this to bound the complexity of Turing ma- 

chine computations. Here we apply such an approach to Boolean networks. 

To be more specific, let there be given some encoding F: X--~Y of 

the objects from Y (Boolean functions) by the objects from X(networks) 

together with some measure m: X--~N of their complexity. A goal is 

to define the lower bounds for the induced measure L(y) = min ~m(x) : 

F(x) = y} on Y without any use of the encoding F. Doing this we pro- 

pose to act as follows. Choose some intermediate classes (of more re- 

stricted circuits) X = XOO X 1 ~ ... ~ Xk=Y. Further, identify any 

object xaX with an appropriate set x ~ of its "sub-objects" and choose 

some binary relation ~ ~ x~ x* of their "similarity". Define ~-en___- 

tropy H~ (x) of x to be the minimal number of ~ -intervals, covering 

x ~ ; A~ x* is a ~Tinterval over x ~ iff a~b for all a,b~A. An 

object x I is said to be (~,~)-epimorphic to x 2 iff there is a(poss- 

ibly partial) surjection ~ : xf--, x2 ~ such that for any a,b from 

~-l(~), a~b implies ~(a)~ ~(b)• Then H ~(x l) ~II~ (x2) , though 

it may be the case that m(x l) < m(x2). Thus, if the relati~s T = 

~o, .... ~k = ~ are chosen so that HT= m and for any y~Y and 

x ~Xi~F'~(y), x is ( ~i' ~i÷l )-epim°rphic to some x~Xi+l~F-l(y), 

then L(y) ~ H~(y)• 

Here we apply such an approach for contact circuits. For other 

kinds of logical networks this may be done in a similar manner. 

2. Terminology. A contact circuit (or simply a circuit) is a fi- 

nite undirected graph, the edges of which are labeled by contacts, 

i.e. by variables and their negations x l, ..,xn,~l,.. • .,Xn, or by con- 

stant l, with distinguished node-root and some nodes-terminals. For 

an edge e, ~ denotes its label. A chain is a path with no cycles. 

A chain, starting in a circuit's root is initial. A branch is an in- 

itial chain ending in some terminal. A chain C : voelvle2...ehVh 

defines the minterm ~ ~ ^ .e h- = ele2.. ^ If C is an initial chain of a 

contact tree we shall write v h instead of C, and call the number of 

contacts in C a height of v h. A chain C is null chain iff ~ m O. 
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A circuit is primitive (or one-time-only) iff any of its branches con- 

tains no repeated occurrences of variables. Given m circuit S, a vi-- 

cinit~ of a node v ~S consists of all the variables x such that for 

some a g{0,1] the following is valid: there exist an initial non-null 

chains C0,C 1 to v and a non-null chain C 2 from v to a terminal of S 

such that xa~c2, ~aEc O and ~a~ C1" A circuit is t-local (t~O) 

iff the vicinity of any of its node contains no more than t variables. 

Thus one-time-only circuits, monotone circuits (i.e. the circuits 

with no negated variables) and circuits with no null chains are spe- 

cial instances of t-local circuits with t=0. On the other hand any 

circuit of n variables is t-local for some t~ n. 

A circuit S is q-circuit (l~ q ~ ) if any Boolean vector real- 

izes no more than q distinct branches of S. Thus any circuit is ~-cir- 

cult. A branching program ~BP) is a special case of the 1-circuit: it 

is a directed contact circuit, where each node has an outdegree ~ 2, 

and the edges leaving a node with an outdegree =2 are labeled by con- 

trary contacts. For the sake of uniformity we shall refer to BP as to 

O-circuit. 

The size L(S) of circuit S is the number of nodes in S, The com- 

plexity of a Boolean function f is defined by Lt,q(f) = min L(S) where 

min is over all the t-local q-circuits S, computing f. Put C t = Lt ~o, 

DC t = Lt, 1 ("D" for Deterministic) and BP t = Lt, O. Then clearly, 

Ct(f) ~ DCt(f) ~ BPt(f). Onthe other hand it is known (see, e.g~LPZ 

83~ ) that C~o and BP~ are polynomially related. 

For a contact tree T let T ~ denote the set of all its (complete) 

subtrees. Given ~ Q T*x T ~ , let H ~(T) denote ~-entropy of T, 

i.e. H~(T) = HT(T~). The entropy of a Boolean function f is defined 

by H~(f) = min[H~(T) : T is a primitive q-tree and ~ = f]. Here 

and in what follows ~ stands for the disjunction of all branches in T. 

For a minterm K and a disjunctive normal form (DNF in short) D = 
I 

let D[K~ denote the set of all DNFs KIK 1v...vK K~ K 1 v @ @ @ V K r , 
where K i _ K (l~ i&r). For minterms E 1 and K2, put Kl~ K 2 { x ~ • 

x a~K 1 and~a~ and Kl= ~ = Kl-(K l~- ~). 

Define two special relations ~ and @ on T ~ as follows. For sub- 

trees T v and T u with the roots v and u, let: 

T v ~ T u iff (v-U)~v = (u~)Tu ' and 

T T u iff • 

Notice that H~(T) ~ H@(T), since ~ ~ @ 
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3. Complexity and Entropy. Let E denote the set of all Boolean 

functions f such that any two distinct Boolean vectors from f-l(1) 

differ in at least two coordinates. 

Theorem 1.For any Boolean function f, any t ~ O and O ~ q ~ ~ , we have 

Lt,q(f) ~ H~(f)-3 -t, 

where ~= ~ if f ~E, and ~= ~ otherwise. 

Proof. Consider an unfoldnment T of some minimal t-local q-circuit S, 

computing f, i.e. T is a contact q-tree such that ~ = f and HI(T) = 

Lt,q(f), where I stands for the isomorphism relation. Remove from T 

all the edges e (together with their successors) such that an initial 

chain to e contains a contact contrary to 3. Let T ° denote the result- 

ing contact tree. Hence, T ° has no null chains and ~o= f. Moreover, 

from the locality of S it follows that HI(T ° ) ~ HI(T).3 t. Indeed, let 

~T v : v ~V~ be an I-interval over T* . As S is minimal, all the 

nodes of T from V correspond to a single node v o of S. Let X be the 

vicinity of v o in S. Then IXI & t (here and in what follows IXI stands 

for the cardinality of X). Put mt(X) = i xa : x6X and a~,l]3 , and 

let ~ denote the set of all non-null minterms over mt(X). Clearly, 

IMI = 31Xt~ 3t.Let U be the set of nodes in T O , corresponding to V, 

and let A denote the set of all subtrees of T ° rooted in U, i.e. A = 

~T~ : u~U~ .For a minterm K from M, put U(K) = {ueU : ~mt(X)=K}. 

It is seen that for any minterm K all the subtrees from A rooted in 

U(K) are pairwise isomorphic. Hence A contains no more than IMI ~ 3 t 

pairwise non-isomorphic subtrees. Therefore, HI(T ° ) ~ HI(T)-3 t. 

Next, replace all the repeated occurrences of contacts in any of T°'s 

branch by 1. Clearly, such a relabeling does not change the function. 

It is also seen that T°is (I,~)-epimorphic to the resulting q-tree 

T l, where ~= ~ if f aE, and ~= ~ otherwise. So HI(T ° ) ~ H~(T l) 

where by definition, H~(T l) ~ H~(f). D 

Taking into account the structure of coverings one may investi- 

gate more meaningful notions of entropy and improve Theorem 1 for 

less restrictive notions of locality. In particular, one may relax the 

condition ,,~a ~ C1 . in the definition of vicinity to " ~a ~ C1/Co,, 

where C1/C O denotes the maximal tail of C 1 which has no edge in com- 

mon with C O . However, this is not in the scope (nor the aim) of the 

present report and will be published elsewhere. 

Nevertheless, even such a naive definition of entropy leads to 

rather strong lower bounds. By Theorem l, in order to bound the 

complexity of a given BF it sufficies to bound theentropy of its primi- 

tive trees. Let us demonstrate this for three natural classes of BFs. 
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Let X : {Xl,...,Xn~. An assignment is a function ~: X --~ X k] 

~O,l~ such that for any x6X, either g(x) 6{0,1] or ~(x) = x; 

D~ = ~-l(o) [3 ~-l(1) is a signature of ~ ; ID$1 is a rank of ~ • 

For a Boolean function f(X), f ~ denotes the subfunction f( ~ (Xl) , 

.... ~(Xn)). A Boolean function f(X) is m-mixed (O<m.<n) if for any 

Y ~ X, with IYI ~< m, and any two assignments $ ~ ~" of the signature 

Y, either f~ = f'g--- 0 or f~ ~ fY ; it is strongly m-mixed if f?~ f~ 

for all such assignments. The class of mixed BFs is sufficiently rich: 

for any m~_n - (l+ £)log n, with a >0 arbitrary small almost all BFs 

of n variables are strongly m-mixed. For an assignment ~ , put K( ~ )= 

= {x~(X): xeD~ I . ~or a BP f(X), let Qf(m) denote the least nu~n- 

bet r of assignments 91 .... ' ~r of rank = m, possessing the repre- 

sentation: f = Vr=l K( ~i )'f~" 

Theorem 2. If f(X) is a 2m-mixed Boolean function then Hl@(f) ~ Qf(m). 

If, in addition, f isstron~ly m-mixed then Hl@(f) ~ exp(m). 

Proof. Consider a primitive 1-tree T, computing f, and let V denote 

the set of its nodes of height m. Then clearly, [V[~ Qf(m). If f is 

strongly m-mixed then IV I >~exp(m), since T is a 1-tree. So it remains 

to show that any @-interval over T ~ contains no more than one sub- 

tree rooted in V. Indeed~ let (on the contrary) that Tv~T u for some 

v ~ u from V. Put K = ~(~-u 9), and let vat(K) denote the set of vari- 

ables in K. Consider an assignment 9 of signature var(K) such that 

K $ = l, and let ~" be an assignment (of the same signature) such that 

~(x) ~ ~(x) if x&var(~u>$), and %~(x) = ~(x) otherwise. Since 

Tv~ T u and T has no null chains, it follows that (T v) ~ = (T u) .Thus 

f$ = f~ ,since (9) ~ = (~)~= 1 and T is a 1-tree. Moreover, 

~ , since otherwise some Boolean vector ~ , with ~i = $(xi) for 

x i& D ~ , realizes ~ 2 branches of T. But I D ~ I = [DT I ~ 2m~ [~ 

A Boolean function f(X) is m-stable if for any x6X and any Y 

X -[x~, with [YI ~< re,there is an assignment Q¢ of signature X - Y 

-Ix} such that f~ depends merely on x,i.e, either f~(x,Y) = x or 

fT(x,Y) = ~.Following the proof of Theorem 2 one can easily prove 

Theorem ~. If f is a 2m-stable Boolean function then Hl@(f) >i exp(m). 

Using an argument originally employed by Wegener in [W 84 ] , 

Dunne in [D 85~ shows that computing any m-stable BF requires primi- 

tive BP of size exp(m). Theorems 1,3 yield more general bound. 

Corollar,y 1.If f is a 2m-stable Boolean function then for any t ~ 0, 

we have: DCt(f) = /~ (exp(m - t)). 

The weight wh(~) of ~ ~0,i~ n is the number of l's in ~. We 

call ~ a lower one (LWO) of a BF f iff f(~) = 1 and f(~) = 0 for 
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any "b ~[0,i~ n such that ~ _< ~ a n d  wh(~) = wh(~) - 1. For a monotone 

BFs this notion of LW0 coincides with the usual one . Let Nf (Mi) 

denote the slet of all LW0s of f (of rainimal weight). Thus, wh(~) = 

wh(~) for all ~,~ EMf. For ~ g[0,1~ n, put Z(~) : {i : ~i : i}. 

A Boolean function f is (k,r)-uniform (k ~ 2, r ~ I) iff wh(~) ~ 2r 

for all ~llf, and for any k pairwise distinct LW0s ~l,...,~k from 

Ivif it holds: IZ(~ I) A ".-m Z([k) [ ~< r; f is k-uniform if it is 

(k,r)-uniform for some r>~l; f is strongly k-uniform if,in this con- 

nection, Mf = Nf. Thus, the uniformity of f corresponds to a certain 

"uniformity of distribution" ~f symbols in its shortest DIrts. 

 heorem 4.1f f is a 2-uniform  oolean function then H (f) .> IMfl. If 

f is strongly k-uniform for some k ~ 2 and f ~ E then for any q, 

O.<q.< oo, it holds: H~(f)~ INfl.(k-1)-2max ( l / k ,  I/(q+l)). 

~. Applications. Theorems 1-4 permit us to obtain in a uniform 

and easy way nearly-exponential lower bounds on the complexity of lo- 

cal circuits. In a number of cases it leads us to the improvement of 

ELBs recently obtained by quite strong (but special) methods. ~%qilst 

it would be tedious to attempt to indicate all such ELBs we restrict 

ourselves to some typical samples. 

A great deal of examples may be defined by means of transvers- 

als in (0,1)-matrices. For k~2, let W k denote the set of all func- 

tions w: k--~k, where k = {0,1,...,k-l]. For an (0,1)-matrix X = 

= {xi,j: i,j gk ~, let Tr(X) denote the set of all transversals of 

X, i.e. Tr(X) = {W6Wk: Xi,w(i) =i for all iEk ~.For F ~--~ W k, let 

trF(X) denote the number of transversals of X in F, i.e. trF(X) = 

= IF ~ Tr(X) I . Any subset of k-valued functions F ~_ W k induces the 

following two Boolean functions F_°(X) and _FI(x) of n = k 2 vari- 

ables: F_°(X) = 1 iff trF(X) m O, and _FI(x) = trF(X)(mod 2). For 

such a BFs there is quite a simple criterion of their stability. Let 

gr(w) denote the graph of w. We say that F ~ W k is m-dense if for 

any ygk 2 and any Y ~_ k2-[y], with IY[ .< m, t h e r e  i s  w o 6 F  such 

that: y6gr(Wo) , Y ~ gr(w o) = ~ and gr(w) - (Y~ gr(Wo)) ~ ~ for 

any other w from F -[w o~ . 

Lenm~a. Let F ~ W k and a E {0,1~. Then F_ a is m-stable iff F is m-dense. 

Corollary 2.For any m-dense subset F c_ Wk ' any a g{O,1} and t >_. O, 

we have: I~t(F_a) = ~"L(exp(m/2 - t)). 

To illustrate this, let us consider the following three classes 

of k-valued functions: (1) Pr, the set of all permutations of k ; 

(2) Rd, the set of all residue functions Wl(W2(X) rood p), where p = 
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= [k/2j and Wl,W 2 6Pr ; (3) P1, the set of all polynomials of degree 

at most p over the Galois field GP(k), where k is a prime power. It 

is easily seen that all these classes are m-dense for any m -~ p-2. 

Co rollsr,y 3. r.et F~[Pr,Rd,Pl~ and a g{o,1). If t = t(n) -~ n 1/2-°(1) 

then DC (F a) = exp(&%(~)) 
t -- 

Recently, concerning an important case of 0-local co-circuits, 

namely the monotone ones, Andreev [A 85] obtained an exp(A~(nl/8-°(1))) 

lower bound for P1 °. Razborov [R 85] obtained an exp(iO~(log2n)) 

bound for P__rr °. Nodifying Razborov's arguments, Alon/Boppana lAB 85] 

improved the lower bound for P1 ° to exp(/b(nl/4(log n)l/2)). These 

arguments use essentially the monotonicity of circuits, so they do 

not work for such "close" functions as, e.g. P1 1 and P_.rr 1. 

For a Boolean function f, let f~ denote the characteristic func- 

tion of Nf. If f is monotone then, clearly, f, ~ E. In many cases not 

only f itself but also f, is hard to compute by a local circuit. For 

example, P~I ° is (2,p)-uniform and Pr ° is ((k-i):,i)-uniform for 

any i -< i .< p, so Theorems 1 and 4 yield 

Corollary @. For any t ~ 0 and 0 ~< q .< oo , we have: 
r o Lt,q(Pr~) = exp(/b(E- t)), and 

exp(~b(~-~logn- t)) ~< Ct(P!l ~) ..< exp(0(~-~logn)). 

Concerning the circuits with no null chains Pulatov/Kuznetsov 

[P 79, K 81] have proved that for any BF f, Co(f) >I If-l(1)l d/n, 

where d stands for the minimal Hamming's distance between any two 

distinct vectors from f-l(1)~ {O,l~ n. It enables them to obtain near- 

ly-e~onential lower bounds for some special functions. However, if d 

is too small with respect to I f-l(1)I , their arguments do not work. 

For example, i f  f =--.P1 O then d_~'~, whereas If-l(1)l = e~'p(i/4 

~-~ log n), and hence,~f-l(1)l d/n = 0(n) (of. corollary 4). 

n 

variables representing the edges of an undirected graph G on n nodes, 

whose value is 1 iff G contains an s-clique. Razborov in [R 85j 

shows that fs, with s = El/4 Inn J, requires monotone circuit of 

size exp(gZ(~og2n)) .Subsequently, Alon/Boppana lAB 85] improved this 

bound to exp(/h(n/log n)l/3). Wegener in[W 84] proves that fs , 

with s = R2n/3) I/3 ] requires O-local BP of size ~-l(exp(n/3 - o(n))). 
s is m-stable for any m .< minl (s) As fn _ _2 , n-sl- i, Theorems I and 

3 directly yield 

corollary 5. If s = L(2n)l/2 d then for any t >~ 0, we have: 

D c t ( f n  S) = ~ ( e ~ ( n / 2  - 4 ~ -  t ) ) .  
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Considering gn = (f~/2), , knov~ also as an "exactly-half clique 

function", Pudl~k/Z~k ~PZ 83, Z 84~proved that gn requires primitive 

BP of size exp(~(n)). As far as gn is m-mixed for any m ~ Lr/yJ, 

Theorems 1 and 2 directly yield 

Corollary 6 For any t = t(n) n 1-°(1) • ~ , we have: 

DCt(g n) = exp(a'L(n)). 

Pinally, notice that the non-local branching program complexity 

of Boolean functions Pr ° , Pr_~ l, P_~l~ and gn is actually polynomial. 

Thus, if t m n 1/2-°(l~-- then some functions of n variables require 

nearly-exponential t-local circuits, whereas their n-local circuit 

complexity is polynomial, i.e. the locality of circuits may force an 

e~ponential rise of their complexity. 
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