On the Minimum Number of Negations Leading to
Super-polynomial Savings

Stasys Jukna *'*8

Abstract

We show that an explicit sequence of monotone functions f, : {0,1}" —
{0,1}™ (m < n) can be computed by Boolean circuits with polynomial (in
n) number of And, Or and Not gates, but every such circuit must use at least
logn—O(loglogn) Not gates. This is almost optimal because results of Markov
(1957) and Fisher (1974) imply that, with only small increase of the total
number of gates, any circuit in n variables can be simulated by a circuit with
at most [log(n + 1)] Not gates.

1 Introduction

We consider Boolean circuits with And, Or and Not gates. Such a circuit is just
a sequence ¢i,...,q; of Boolean functions where each g; is either one of the input
variables x1, . . ., z, or is obtained from the previous functions by applying an Or, And
or Not operation (such applications are called gates). The length ¢ of this sequence is
the size of the circuit. A multi-output function f : {0,1}" — {0,1}"™ can be looked at
as a sequence f = (fi,..., fi,) of m Boolean functions, where for @ € {0,1}", f;(@) is
the i-th bit of f(@). A circuit computes f if it contains all fi, ..., f,;. The minimum
number of Not gates in a circuit computing f us the inversion complexity of f.
More than forty years ago, Markov [7, 8] has found the following surprisingly
tight combinatorial characterization of the inversion complexity. Given a chain in
the binary n-cube (that is, a sequence @; < dy < ... < @ of vectors in {0,1}"),
the decrease of f = (f1,..., fm) on this chain is the number of indices ¢ such that
f(@) £ f(@it1) (that is, f;(@;) > f;j(@iy1) for at least one 1 < j < m). Taking the

*Universitit Frankfurt, Institut fiir Informatik, D-60054 Frankfurt, Germany
tInstitute of Mathematics and Informatics, LT-2600 Vilnius, Lithuania
tEmail: jukna@thi.informatik.uni-frankfurt.de

$Research supported in part by a DFG grant SCHN 503/2-1.

maximum over all chains we obtain the decrease d(f) of f. Note that 0 < d(f) < n
for every function f in n variables.

Theorem 1.1 (Markov (7, 8]). For every function f, the minimum number of Not
gates contained in a circuit computing f is precisely

M(f) = [log(d(f) + 1)1

This, in particular, implies that any function in n variables can be computed
by a circuit with at most [log(n + 1)]| negations, and for some functions, like the
inverter In(x) = (—xq,...,x,), SO many negations are also necessary. Fischer [5]
has shown that [log(n+1)] negations are also enough to compute I,,(z) by a circuit of
size O(n? log? n). His construction was subsequently improved in [14, 3]: the circuit
constructed in [14] has size O(nlogn) and depth O(logn). Thus, restricting the
number of negations in a circuit to [log(n + 1)] entails only a small blowup in circuit
size: using de Morgan’s lows we can push all negations to the inputs (this can increase
the size by at most twice) and use the circuit for I,, to compute these inputs from
T1yeeeyTp.

Thus, if a function f, has n variables and is feasible, i.e. can be computed by
a circuit of polynomial in n size, then it remains feasible even if we allow at most
[log(n+1)] Not gates. For the inverter I,,(x) this is optimal: this function is feasible,
and (according to Markov’s theorem) it cannot be computed using fewer than [log(n+
1)] Not gates. The reason here is that this function has maximal decrease, implying
that M (I,) = [log(n+1)]. But what about functions whose decrease is much smaller
than n? In particular, what about functions with M(f,) = 0, i.e. about monotone
functions? This motivates the following definition.

Definition 1.2. For a feasible function f,, let A(f,) be the minimum number such
that f,, can be computed by a circuit of polynomial size using M (f,)+A(f,) negations.

Few words about the notation. As it is customary in circuit complexity theory, by
a function in n variables we actually mean an infinite sequence (f, : n=1,2,...) of
functions with growing number n of variables. Hence, A(f,) > r(n) means that for
any constant ¢ > 0 there exist infinitely many n such that every circuit computing
fn with M(f,) + r(n) negations has size larger than n°.

We know that A(f,) < [log(n +1)] — M(f,). But what about lower bounds on
A(f,)? Berkowitz [4] and Valiant [16] have shown that for so-called slice functions
(these are monotone Boolean functions which are non-trivial only on one slice of
the n-cube) negations are powerless, i.e., cannot lead to a super-polynomial savings.
Hence, there is a large class of feasible monotone functions f,, for which A(f,) = 0, and
the first natural question was whether using Not gates can lead to super-polynomial
savings in size at all?

This question was considered by several authors under additional restrictions on
the topology and/or on the use of Not gates. In particular, Okolnishnikova [9], and
Ajtai and Gurevich [1] have shown that there exists monotone functions that can
be computed with polynomial size, constant depth circuits, but cannot be computed
with monotone, polynomial size, constant depth circuits. Moreover, it was shown by
Santha and Wilson [13] that in this class we may need much more than [log(n +
1)] negations: any depth-d circuit computing the inverter I,,(x) must use at least
Q(n/log*™® n) negations. (Note that this result does not contradict the Markov—
Fischer upper bound: their simulation requires logarithmic depth.) Another line of
research was to restrict the use of Not gates. Raz and Wigderson [10] have proved
that, if we require that all the negations are placed on the input variables, then
there is an explicit monotone function (corresponding to the connectivity problem
for graphs) that can be computed with polynomial size, depth O(log®n) circuits, but
can not be computed with polynomial size, depth klogn circuits using only o(n/2¥)
negated variables.

The case of general circuits (no restrictions on the topology or on the use of Not
gates) was resolved by Razborov [11]: A(f) > 0 for a very natural monotone Boolean
function detecting a presence of a perfect matching in bipartite graphs. Another
feasible function (defined using Lovéasz-capacity of graphs), for which presence of Not
gates yields even exponential savings, was later given by Tardos [15]. After this
progress it still remained unclear how to construct feasible functions f,, for which,
say, A(fn) > 1.

In this note we show that, if we allow f, be a multi-output function, then the
above mentioned results [11, 15] can be used to move the threshold A(f,) of the
first super-polynomial decrease in size quite near to the Markov—Fischer upper bound

[log(n + 1) = M(fn)-

2 The result

As mentioned above, A(f,,) < [log(n +1)| — M(f,) for every feasible function f, in
n variables. On the other hand, we have the following:

Theorem 2.1. There is an explicit sequence fy, : {0,1}" — {0, 1}™ of feasible mono-
tone functions with m < n such that

A(fy) > logn — O(loglogn).

The proof of this theorem is based on the following lemma allowing us to eliminate
some Not gates without increasing the size of the circuit. Let h = h(X) be a Boolean
function in m variables X = {z1,...,2,}. Let £ = 2" and n = km. A function

f:{0,1}™ — {0,1}* is an r-fold extension of h if it computes k copies of h on disjoint
copies X1,..., X of X. That is, given an input (ds,...,d) with @ € {0,1}™, the
function outputs the sequence (h(d:),...,h(ds)). Important here is that the i-th
output bit h(d;) is independent of inputs @; for j # i. Note also that the extensions
of monotone functions are monotone. A minterm of a monotone Boolean function is
a minimal set of variables which, if assigned the value 1, forces the function to take
the value 1 regardless of the values assigned to the remaining variables.

Lemma 2.2. Let h be a Boolean function, and r be a nonnegative integer. If the
r-fold extension f of h can be computed by a circuit using at most s negations, then
h can be computed by a circuit of the same size using at most s — r negations.

Proof. Given a circuit G' which computes f and has r Not gates, we eliminate these
gates one-by-one. To do this, consider the first Not gate in G, and let g be the
monotone Boolean function computed at the input to this gate (i.e., immediately
before this gate). Let Yy and Y; be the union of the first 2"~ and, respectively, the
last 2"~! blocks of variables X1, ..., Xor. Let fo(Yp) and f1(Y1) be the corresponding
(r — 1)-fold extensions of h.

Since g is monotone, all its minterms are positive (no negated literals). Hence, we
have only two possibilities: either some minterm of g lies entirely in Y7, or not. In
the first case we assign constant 1 to all the variables in Y, whereas in the second
case we assign constant 0 to all the variables in Yj. As the function g is monotone, in
both cases it turns to a constant function (constant 1 in the first case, and constant
0 in the second), and the subsequent Not gate can be eliminated.

Since the sets of variables Yy and Y; are disjoint, assigning constant € to all the
variables in Y, does not affect the function f;_.. Hence, we obtain a circuit which
computes an (r — 1)-fold extension of A, and has one Not gate fewer. Repeating this
argument r times we will obtain a circuit of the same (or smaller) size which computes
h and has only s — r Not gates. O O

Proof of Theorem 2.1. Take the explicit monotone Boolean function 7}, in m vari-
ables considered in [15]. As shown in [15], this function is feasible (can be computed
by a circuit of size m®®")) but every monotone circuit computing it requires size at
least 2¢™* for some constant ¢ > 0. Set r = r(m) := |mY® — logm| and consider
the r-fold extension f,, of T;,. The function f,, is a monotone function in n = 2"m
variables. By the choice of 7 and n, we have that 2" = © (n/(logn)®). Moreover, the
function f, is feasible since it can be computed by a circuit of size 2" - mP() < pOM).

However, in order to do this we must use at least A(f,) > r negations. Indeed,
given a circuit G with at most s Not gates computing f,, we can apply Lemma 2.2 and
obtain a circuit G’ of the same size which has at most s — r negations and computes
T,,. If s < r, then the circuit G’ has no negations at all, implying that the circuit G’,

4

and hence, the circuit G must have size at least 2¥ where N = cm!/® = ¢(n/2")Y/® =

Q ((logn)g/s). Thus, A(f,) > r > logn — O(loglogn). O

3 Concluding remarks

1. One may ask what happens if besides And, Or and Not gates we will allow, say,
any monotone real-valued functions as gates—does then the use of negations can still
lead to a drastic decrease of size? If yes, how many negations do we actually need
to achieve such a decrease?” The question makes sense because, using a counting
argument, Rosenbloom [12] has shown that there exist monotone Boolean functions
that can be computed by monotone real circuits (no Not gates) of linear size O(n),
but require Boolean circuits with And, Or and Not gates of size 2% . On the other
hand, it was shown in [6] that Tardos’ function 7}, requires even monotone real-valued
circuits of size 2%™"®) Since also in real-valued circuits the input to a Not gate must
be a Boolean function, Lemma 2.2 holds also for such circuits. This means that the
function f,, considered in Theorem 2.1 captures the role of negations in a quite strong
sense: this function is feasible but cannot be computed by a circuit of polynomial
size with fewer than logn — O(loglogn) Not gates, even if we allow any monotone
real-valued functions with two variables as gates.

2. In the proof of Theorem 2.1 we have essentially used the fact that the function f,
is a multi-output function. To prove a similar lower bound for a feasible Boolean (i.e.
single-output) function remains an interesting open problem. A step in this direction
was made by Amano and Maruoka [2] who modified Razborov’s argument to show
that the Clique function cannot be computed by circuits of polynomial size using only
cloglogn negations. However, the measure A(f) makes sense only if the function f
itself is feasible, and the Clique function is (most likely) not such.

3. So far, the only known way to reduce the number of Not gates is to compute the
inverter I,,(z1,...,z,) = (1, ..., 2,) using only [log(n+1)]| such gates ([5, 14, 3]).
However, by Markov’s theorem, every circuit computing I, must contain [log(n+1)]
negations. Hence, this type of simulation will always leave us with a circuit containing
[log(n + 1)] negations, even when the function f is such that the necessary number
M (f) of negations is much smaller. Is it possible to do more subtle simulation without
computing 1,7

References

[1] M. Ajtai and Y. Gurevich (1987): Monotone versus positive, J. of the ACM 34,
1004-1015.

[2] K. Amano and A. Maruoka (1988): A superpolynomial lower bound for a circuit
computing the clique function with at most (1/6)loglogn negation gates, in:
Springer Lect. Notes in Comput. Sci., vol. 1450, 399-408.

[3] R. Beals, T. Nishino, and K. Tanaka (1998): On the complexity of negation-
limited Boolean networks, SIAM J. Comput. 27:5, 1334-1347.

[4] S.J. Berkowitz (1982): On some relationships between monotone and non-
monotone circuit complexity. Technical Report, University of Toronto.

[6] M.J. Fischer (1974): The complexity of negation-limited networks—a brief survey,
in: Springer Lect. Notes in Comput. Sci., vol. 33, 71-82.

[6] S. Jukna (1999): Combinatorics of monotone computations, Combinatorica 19:1,
65-85.

[7] A.A. Markov (1957): On the inversion complexity of systems of functions, Dok-
lady Academii Nauk SSSR, 116, 917-919 (in Russian). English translation in:
J. of ACM, 5:4 (1958), 331-334.

[8] A.A. Markov (1963): On the inversion complexity of systems of Boolean func-
tions, Doklady Academii Nauk SSSR, 150:3, 477-479 (in Russian). English trans-
lation in: Soviet Math. Doklady 4 (1963), 694-696.

[9] E.A. Okolnishnikova (1982): On the influence of negation on the complexity of
realization of monotone Boolean functions by formulas of bounded depth, in:
Metody Diskretnogo Analiza 38, 74-80 (in Russian)

[10] R. Raz and A. Wigderson (1989): Probabilistic communication complexity of
Boolean relations, in: Proc. of 30th Ann. IEEE Symp. on Foundations of Com-
put. Sci., 562-567.

[11] A.A. Razborov (1985): A lower bound on the monotone network complexity of
the logical permanent, Matematicheskie Zametki, 37:6, 887-990 (in Russian).
English translation in: Math. Notes Acad. of Sci. USSR 37:6 (1985), 485-493.

[12] A. Rosenbloom (1997): Monotone real circuits are more powerful than monotone
Boolean circuits, Information Processing Letters 61, 161-164.

[13] M. Santha and Ch. Wilson (1993): Limiting negations in constant depth circuits,
SIAM J. Comput. 22:2, 294-302.

[14] K. Tanaka and T. Nishino (1994): On the complexity of negation-limited Boolean

networks, in: Proc. 26th Annual ACM Symposium on the Theory of Computing
(ACM, New-York), 38-47.

[15] E. Tardos (1987): The gap between monotone and non-monotone circuit com-
plexity is exponential, Combinatorica, 7:4, 141-142.

[16] L.G. Valiant (1986): Negation is powerless for Boolean slice functions, STAM
J. Comput. 15, 531-535.

