
Yet Harder Knapsack ProblemsI

Stasys Jukna∗,1

Georg Schnitger

University of Frankfurt, Institut of Computer Science, D-60054 Frankfurt, Germany.

Abstract

Already 30 years ago, Chvátal has shown that some instances of the zero-one
knapsack problem cannot be solved in polynomial time using a particular type of
branch-and-bound algorithms based on relaxations of linear programs together
with some rudimentary cutting-plane arguments as bounding rules. We extend
this result by proving an exponential lower bound in a more general class of
branch-and-bound and dynamic programming algorithms which are allowed to
use memoization and arbitrarily powerful bound rules to detect and remove sub-
problems leading to no optimal solution.

Key words: Branch and bound, dynamic programming, memoization,
branching program, knapsack, perfect matching

1. Introduction

An n-dimensional zero-one maximization problem Pn is specified by a set A
of possible data items, a target function Φ : An × {0, 1}n → R, and a constraint
predicate P : An×{0, 1}n → {0, 1}. Problem instances are strings a ∈ An of data
items. Some of them are declared as valid instances. A solution for an instance
a ∈ An is a zero-one vector x ∈ {0, 1}n such that P (a, x) = 1. Given a valid
instance a, the goal is to maximize Φ(a, x) over all solutions x for a. A solution
x achieving this maximum is optimal.

In this paper we concentrate on the classical zero-one knapsack problem: given
a set of n items, each item i having an integer profit ai and an integer weight

IResearch of both authors supported by a DFG grant SCHN 503/5-1.
∗Corresponding author
Email addresses: jukna@thi.informatik.uni-frankfurt.de (Stasys Jukna),

georg@thi.informatik.uni-frankfurt.de (Georg Schnitger)
1Affiliated with Vilnius University, Institute of Mathematics, Vilnius, Lithuania.

ci, the problem is to choose a subset of the items such that their overall profit is
maximized, while the overall weight does not exceed a given capacity b:

maximize Φ(a, x) =
∑n

i=1 aixi (1)

subject to
∑n

i=1 cixi ≤ b, xi ∈ {0, 1}, i = 1, . . . , n

where the binary decision variables xi are used to indicate whether item i is
included in the knapsack or not. We will consider the space complexity of algo-
rithms for the knapsack problem using the combined powers of branch-and-bound,
dynamic programming, and backtracking arguments; however, the full generality
of polynomial-time algorithms is outside their scope.

Every zero-one optimization problem gives a class of boolean functions, one
for each problem instance a ∈ An. Namely, say that a boolean function fa :
{0, 1}n → {0, 1} is the optimum-function for a given instance a, if for every
vector x ∈ {0, 1}n,

fa(x) = 1 iff x is an optimal solution for a. (2)

A general algorithmic paradigm, known as branch-and-bound algorithm, consists
of a systematic enumeration of all candidate solutions, where large subsets of
fruitless candidates are discarded, by using an appropriate pruning or bounding
rules. The work of such an algorithm on a given instance a = (a1, . . . , an) of a
zero-one optimization problem starts at the root node and iteratively constructs
a branching tree (a BT) on variables x1, . . . , xn corresponding to the decisions
about the n items in a. At each node some item ai is tested and the two outgoing
edges are labeled by the two possible decisions xi = 0 and xi = 1. There is no
restrictions on which item is tested at what node. Along each path p from the
root some subsequence ap = (ai : i ∈ I) of items in a is considered and a sequence
xp = (xi : i ∈ I) of decisions about them is made. The subtree rooted in the last
node of p defines a subproblem of the original optimization problem consisting of
all 0-1 extensions of xp. The algorithm then tries to cut off or prune this subtree
using some pruning heuristic. Pruning a path means to declare its last node a
0-leaf (no optimal solution possible). End-nodes of non-pruned paths are called
1-leafs; these paths correspond to optimal solutions. The complexity measure of
the algorithm is the total number of nodes in the tree, that is, the number of
produced subproblems.

Thus, the complexity of a branch-and-bound algorithm is just the minimum
number of nodes in branching tree for the optimum-function fa(x). The more
powerful path-pruning rules are allowed, the fewer nodes are necessary. Let
us stress that we allow to use different decision trees for different problem in-
stances a ∈ An.

2

1.1. Previous results

Most of path-pruning rules for the knapsack problem usually use some kind of
linear programming (LP) relaxation: prune a path if no its fractional extension
is better than the best 0-1 solution found so far. The simplest of these rules is,
given a partial 0-1 solution (xi : i ∈ I) (a path), to solve the following LP:

maximize
∑

i 6∈I aixi subject to∑
i 6∈I cixi ≤ b−

∑
i∈I cixi, 0 ≤ xi ≤ 1 (i 6∈ I) (3)

The path (xi : i ∈ I) can then be pruned if this LP does not have a fractional
solution at least as good as a 0-1 solution obtained so far.

That this pruning rule, called also fathoming, may be very inefficient was
observed by Jaroslow [9]. To see this, consider the knapsack problem (1) with
b = n and ai = ci = 2 for all i. That is, the set of optimal zero-one solutions for
this instance consists of all 0-1 vectors with exactly bn/2c ones. But if |I| < n/2,
then (3) has a fractional solution, which is at least as good as an optimal solution,
and hence, the path (xi : i ∈ I) cannot be pruned. Thus, under the path-pruning
rule (3), any BT for this problem must have at least 2n/2 nodes.

Krishnamoorthy [13] used counting arguments to show that, for every instance
(a1, . . . , an, b) of (1) with ci = ai and b being a number larger than all ai and
relatively prime to all ai, every BT using the fathoming rule (3) to prune paths
must have at least about (b/a)n/n! nodes, where a = maxi ai.

Chvátal in [5] considered BTs for (1) with more powerful path-pruning rules
based on rudimentary cutting-plane argument. The first rule, called domination,
allows to prune a path p = (xi : i ∈ I) if there is another path q = (yi : i ∈ I)
along which the same variables (with indexes in I) are tested, and such that∑

i∈I cixi ≥
∑

i∈I ciyi but
∑

i∈I aixi ≤
∑

i∈I aiyi. That is, a path p can be
pruned if there is another path that has—considering only the fixed variables—
at least as much slack in the weight constraint and at least as good an objective
value.

Note that this rule alone reduces the BT size in Jaroslow’s example from
2n/2 to O(n2). Indeed, if we test the variables in the same order x1, . . . , xn
along all paths then, at the n/2-th level all

(n/2
k

)
but one path with exactly k

(k = 0, 1, . . . , n/2) tests xi = 1 can be pruned by the domination rule. That is,
the resulting BT will contain only n/2 + 1 paths.

The second rule allowed by Chvátal is a strengthening of the fathoming rule
with (3) replaced by∑

i 6∈I
(ai/d)xi ≤ b(b−

∑
i∈I

aixi)/dc 0 ≤ xi ≤ 1 (i 6∈ I) ,

where d is the greatest common divisor of the integers ai with i 6∈ I, and bαc =
max{m ∈ Z : m ≤ α}. The path (xi : i ∈ I) is then truncated if this LP does

3

not have a fractional solution better than an optimal 0-1 solution (or a temporal
solution obtained so far). Since the coefficients ai are integers, this rule is also
legal, that is, does not remove any 0-1 solutions.

Chvátal considers instances a = (a1, . . . , an) of (1) with b = b
∑

i ai/2c, ci = ai
for all i, and the ai being numbers between 1 and 10n/2. Using probabilistic
arguments, he shows that, under his pruning rules, almost all such instances
require BTs of size at least 2n/10. In the same paper, he shows that this lower
bound also holds for the following explicit instance constructed by Michael Todd
(as cited in [5]) with profits/weights ai of items defined by: ai := 2k+n+1+2k+i+1
where k = blog 2nc.

Gu et al. [6] and Husaker and Tovey in [8] extended Chvátal’s result to a more
general class of branch-and-bound algorithms, where the bound rule is allowed to
use (at no cost) all so-called “lifted cover inequalities” to detect whether a given
path can have an optimal extension.

Chung et al. [4] considered general knapsack problem (1) where the xi may
be arbitrary non-negative integers, that is, where one is allowed to take multiple
copies of the same item. They proved that in this case even instances with
moderately large profits ai and weights ci are hard for a particular type of branch-
and-bound algorithms.

In this paper we give an instance of the 0-1 knapsack problem which is hard
for a more general class of branch-and-bound algorithms than those considered
in [9, 5, 6, 8].

1.2. Path pruning rule

First, together with the domination rule of Chvátal, we allow the most pow-
erful fathoming rule:

prune a path iff it cannot be extended to an optimal 0-1 solution. (4)

The “only if” part—if a path is pruned then it cannot be extended to an opti-
mal 0-1 solution—holds for most used heuristics, including those based on linear
relaxations.

Remark 1. This is quite reasonable requirement because a BT must not only
contain a path to a 1-leaf giving an optimal solution – it must also provide a proof
or witness that this solution is optimal. That is, it must make sure that paths
which do not lead to 1-leaves cannot correspond to optimal solutions. Without
this restriction the model would be too powerful: every instance of every zero-
one optimization problem could then be solved by a BT of linear size! For this,
it would be enough just to guess an optimal solution, take one path to a 1-leaf
corresponding to any one optimal solution, and let all remaining edges go directly
to 0-leaves.

4

What makes our heuristic powerful is the “if” part: a path can be pruned
as soon as it lacks an optimal extension. That is, we assume that fathoming is
made by a “superior being” able to detect the absence of optimal extensions at
no cost.

A direct consequence of our path-pruning rule (4) is that if an instance of
an n-dimensional zero-one optimization problem has K optimal solutions, then
it has a BT of size O(nK). To see this, just take a full binary tree of depth
n and cut-off all paths that are not consistent with any optimal solution; this
way only K paths will survive. This observation implies that a lot of instances
(a1, . . . , an) of the knapsack problem have very small BTs. In particular, this
holds for all instances which are sum-free in that

∑
i∈I ai 6=

∑
j∈J aj holds for all

disjoint nonempty subsets I, J of [n] = {1, . . . , n}. Each such instance can have
at most one optimal zero-one solution, and hence, the instance can be solved by
a BT of size O(n). Since instances used by Chvátal in [5] are also sum-free, all
these instances have small BTs under our pruning rule (4), as well.

Actually, as observed by Chvátal in [5], almost all instances are sum-free (and
hence, have BTs of linear size) as long as the range for the coefficients ai is large
enough. To see this, consider the set of all instances in [M]n. Then at least a
1− 3n/M fraction of all Mn such instances are sum-free. To show this, fix a pair
I, J of disjoint nonempty subsets of [n], and fix an element k ∈ I. The number of
strings such that

∑
i∈I ai =

∑
j∈J aj is at most Mn−1, because in such strings the

element ak is determined by the remaining elements: ak =
∑

j∈J aj−
∑

i∈I\{k} ai.
The number of pairs I, J does not exceed 3n: for each of the n elements, we decide
whether it belongs to I, to J or to neither. Thus, the number of not sum-free
instances does not exceed 3nMn−1. In particular, if M = 3n+1 then at least 2/3
fraction of all instances in [M]n have BTs of linear size.

1.3. Free branching programs

Our next generalization of the model is that, besides branch-and-bound, we
allow another algorithmic paradigm known as memoization, one of the main
aspects of dynamic programming. It allows to remember the solution to common
subproblems for the later use. That is, it allows to merge isomorphic subtrees of a
BT. Both these paradigms – branch-and-bound and memoization – are captured
by the following model of “free branching programs.”

As mentioned above, the work of a branch-and-bound algorithm on a given
problem instance a ∈ An can be presented as branching tree at each node of which
a decision xi = 0 or xi = 1 about some data item ai is made. To incorporate
memoization we allow some subtrees to be merged. We also allow to re-consider
previously made decisions (test the same variable many times), as well as to
behave in a nondeterministic manner. All this is captured by a classical model
of branching programs (see, e.g., [16] for a comprehensive survey on this model).

5

A nondeterministic branching program (NBP) on boolean variables x1, . . . , xn
is a directed acyclic graph with one source node, at some of whose edges some tests
xi = 0 or xi = 1 are made. Each leaf (a node of zero fanout) is labeled either by
“1” (optimal solution) or by “0” (no optimal solution possible). Such a program
solves a zero-one optimization problem for a given problem instance a ∈ An if
a 0-1 vector x is an optimal solution for a if and only if x is consistent with all
tests made along at least one path from the source node to a 1-leaf. (Edges at
which no test is made are consistent with all vectors x.) The complexity measure
is again the number of nodes in the underlying graph.

So as it is, the model of NBP is too powerful, much more powerful than, say,
branching trees considered in [9, 5, 6, 8], and even more powerful than any nonde-
terministic Turing machine working with logarithmic memory. More adequate in
the context of the branch-and-bound paradigm is the model of free NBP, where
every path to a 1-leaf is required to be consistent, that is, do not contain two
contradictory tests xi = 0 and xi = 1 on the same variable. This implies that
every path from the source node, along which a contradictory test is made for
the first time, must immediately go to the 0-leaf.

This “null-path freeness” is a severe restriction, but it can be justified as
follows. After the algorithm has constructed a branching program (a “table” of
partial solutions), it must be able to quickly reconstruct an optimal solution with-
out probing all (exponentially many) possible paths leading to a 1-leaf. Instead,
it should be possible to start at any 1-leaf, traverse backwards any one path until
the source node is reached; the sequence of decisions along this path should give
an optimal solution. A similar justification also applies to the model of so-called
“priority BP” introduced in [3] and capturing the power of backtracking and
simple dynamic programming algorithms.

As such, even the model of free NBP is much more powerful than decision
trees constructed by branch-and-bound algorithms. So, we “granulate” the model
by introducing additional restrictions:

1. An NBP is read-once (shortly, 1NBP) if along each path to a 1-leaf every
variable is tested at most once.

2. An deterministic branching program (shortly, BP) is an NBP with a restric-
tion that every inner node must have fanout exactly 2, and the two outgoing
edges must be labeled by the tests xi = 0 and xi = 1 on the same variable
xi. Such a program is deterministic because for every vector x ∈ {0, 1}n
there is only one path to a leaf.

Hence, branching trees (BT) are read-once BP (1BP) with an additional re-
striction that the underlying graph must be a tree. On the other hand, 1BP
can be looked at as a “BT with memoization” where isomorphic subtrees (those
corresponding to the same subproblem) can be merged. We have the following

6

relations between these models (where A ⊂ B means that, for some instances,
model A is exponentially weaker than model B):

BT ⊂ 1BP ⊂ free BP ⊆ free NBP and 1BP ⊂ 1NBP .

Separations 1BP ⊂ free BP and 1BP ⊂ 1NBP were shown in [12] using so-called
pointer functions.

Just like standard branching programs for boolean functions (or languages)
capture the space complexity of Turing machines for that function, the size of a
BP for a particular instance a ∈ An captures the number of partial solutions that
a branch-and-bound algorithm must maintain during the execution on a. In this
sense, the logarithm of the BP size is a lower bound on the amount of memory
required by any branch-and-bound algorithm for that instance.

We stress that we are looking for a smallest branching tree or branching pro-
gram for one given instance a = (a1, . . . , an) of a zero-one optimization problem:
given an instance a, we are looking for the size of a smallest branching tree or free
branching program computing its optimum-function (2). That is, we consider the
classical model of branching programs but restrict ourselves to special boolean
functions corresponding to zero-one optimization problems.

We have already mentioned that if an instance of a zero-one optimization
problem has only few optimal solutions, then it has a small BT. But a large
number of optimal solutions alone does not imply that the NBP for that instance
must be large. For example, Jaroslow’s instance a of the knapsack problem
mentioned in Section 1.1 has 2Ω(n) optimal solutions, but the optimum function
fa(x) for this instance is very simple: fa(x) = 1 if and only if

∑n
i=1 xi = bn/2c.

Hence, this instance has a 1BP with O(n2) nodes.

1.4. Our result: a hard knapsack problem

To define an explicit instance requiring free NBPs of exponential size even
under the heuristic (4), we use a q-ary encoding of integers. A q-ary code (q ≥ 2)
of a non-negative integer r is a string (c1, . . . , cm) of integers ci ∈ {0, 1, . . . , q−1}
such that r = c1q

0 + c2q
1 + · · ·+ cmq

m−1. We will use the trivial fact that every
integer r ≤ (qm − 1)/(q − 1) has a unique q-ary code. We will consider the case
when m = 2n and

q := n+ 1 .

To describe a hard instance for the zero-one knapsack problem (1), we index the
items by edges (i, j) ∈ U ×V of the complete bipartite graph Kn,n = U ×V with
U = {1, . . . , n} and V = {n+ 1, . . . , 2n}. As in Chvátal’s paper [5] we consider a
restricted version of the knapsack problem where profit of each item is equal to
its weight. The weight of an item (edge) (i, j) is defined by:

aij := qi−1 + qj−1 . (5)
7

Every zero-one vector x = (xij : i ∈ U, j ∈ V) defines a bipartite subgraph
Ex := {(i, j) : xij = 1} of Kn,n corresponding to the 1-positions of x, and the
weight of this subgraph is

w(x) :=
∑
i∈U

∑
j∈V

aijxij .

Note that the weight aij of every edge (i, j) is an integer whose q-ary code is
a binary vector of length 2n with exactly two ones in the i-th and (n + j)-th
positions. As the capacity of the knapsack we will take the number b whose q-ary
code is the vector (1, 1, . . . , 1) of length 2n, that is, we define

b := q0 + q1 + · · ·+ q2n−1 =
q2n − 1

q − 1
. (6)

Given a capacity t, consider the knapsack problem KNAP(a, t): maximize w(x)
subject to w(x) ≤ t, x binary. Our first result is that, for t = b, no small free
NBP can solve the problem KNAP(a, t).

Theorem 2. Every free NBP for the zero-one knapsack problem KNAP(a, b)
requires at least

(
n

n/2

)
nodes.

Our second result is that, for t = rb, no small read-once NBP can even
approximate the problem KNAP(a, t) within a factor r.

Theorem 3. For every 1 ≤ r ≤ n, every 1NBP approximating the zero-one
knapsack problem KNAP(a, br) with a factor of r requires at least

(
n

n/2

)
nodes.

In the proof of these theorems we will use one special property of the knapsack
problem defined by the weights (5) which may be of some independent interest
(see Lemma 5 below): a 0-1 vector x is an optimal solution for KNAP(a, b) if
and only if the graph Ex forms a perfect matching, that is, consists of n vertex
disjoint edges. The “if” direction is here trivial—more interesting is the “only
if” direction.

Weights (5) to the basis q = 2 were already considered in [7] to show that
the threshold function Tn(x) = 1 iff

∑
i,j aijxij ≥ b requires oblivious 1BP of

exponential size. This was extended to arbitrary (non-oblivious) 1BPs in [1]. To
extend this further to the more powerful models of free BP and free NBP we need
an exact correspondence between optimal solutions and perfect matchings. We
achieve this by taking larger basis q = n+ 1.

Note that Theorem 3 does not state that the knapsack problem is hard to
approximate: there is a simple branch-and-bound algorithm approximating this
problem with the factor 2. The algorithm either accepts or rejects the highest
profit item, and then greedily chooses items when ordered by their decreasing

8

profit to weight ratio. But this algorithm accepts just one of two possible ap-
proximative solutions, whereas we require that none of approximative solutions
can be rejected. That is, we (as well as authors of the papers cited in Section 1.1)
require that the algorithm must also provide a proof or witness that a solution
it finds is approximative (see Remark 1 above).

The proofs of both theorems are elementary: they just use standard argu-
ments of circuit complexity. Our contribution is an application of these arguments
to show the limitations of particular type of algorithmic paradigms.

2. Knapsack and perfect matchings

Our first goal is to relate optimal solutions for the instance of the knapsack
problem KNAP(a, b) defined above with perfect matchings in a bipartite graph.

Lemma 4. The q-ary code of the weight w(x) is (d1, d2, . . . , d2n), where di is the
degree of the i-th vertex in Ex.

Proof. Since 0 ≤ di ≤ n < q for every vertex i ∈ U ∪ V , the lemma follows by
direct computation:

w(x) =
∑
i∈U

diq
i−1 +

∑
j∈V

djq
j−1 =

2n∑
i=1

diq
i−1 .

Thus, solutions of KNAP(a, b) correspond to subgraphs of Kn,n of weight at
most b. As a direct consequence of Lemma 4 we obtain the following graph-
theoretic characterization of the optimal solutions for KNAP(a, b). A subgraph
E ⊆ Kn,n is a perfect matching if it consist of n vertex-disjoint edges.

Lemma 5. A 0-1 vector x is an optimal solution for KNAP(a, b) if and only if
Ex is a perfect matching.

Proof. A vector x is an optimal solution for KNAP(a, b) if and only if w(x) = b.
By Lemma 4, we know that the q-ary code of w(x) is the sequence (d1, . . . , d2n)
of degrees of vertices in the graph Ex defined by x. On the other hand, since
b = q0 + q1 + · · ·+ q2n−1, the q-ary code of b is the all-1 vector (1, . . . , 1). Hence,
x is an optimal solution if and only if di = 1 for all i, that is, iff Ex is a perfect
matching.

3. Proof of Theorem 2

The following theorem gives a general lower bound on the size of free NBPs.
The theorem itself is an extension of a similar lower bound for read-once NBP
proved in [11].

9

Let S ⊆ {0, 1}n be a set of vectors. Let also m be the minimum number of 1s
in a vector of S. For a subset of positions I ⊆ [n] = {1, . . . , n}, let dI(S) denote
the number of vectors in S having ones in all these positions:

dI(S) =
∣∣{x ∈ S : xi = 1 for all i ∈ I}

∣∣ .
If I = ∅ then we set dI(S) = |S|. Define dk(S) as the maximum of dI(S) · dJ(S)
over all subsets I of size |I| = k and all subsets J ⊆ [n] \ I of size |J | = m − k.
Hence, dk(S) is the maximum size |T | of a subset of vector T ⊆ S for which there
exits a pair I, J of disjoint subsets of position such that |I| = k, |J | = m− k and
every vector x ∈ T has 1s either in all positions of I or in all positions of J (or
of both). Finally, let d(S) be the minimum of dk(S) over all 1 ≤ k ≤ m.

Let M be the maximum number of 1s in a vector of S. Say that a boolean
function f : {0, 1}n → {0, 1} isolates S if, for every vector x with at most 2M
ones, we have that f(x) = 1 iff x ∈ S.

Theorem 6 (Criterion for free NBP). If a free NBP isolates a set S ⊆ {0, 1}n
then it must have at least |S|/d(S) nodes.

Proof. Take a free NBP G isolating S, and let 1 ≤ k ≤ m an integer for which
d(S) = dk(S). Since each vector x ∈ S must be accepted by G, there must be
a path accepting this vector x, that is a path consistent with x and ending in a
1-leaf.

For each vector x ∈ S, fix a path accepting x, and split this path into two
segments (px, qx), where px is an initial segment along which exactly k 1-bits of
x are tested. Let Ix denote the set of these 1-bits of x, and let Jx denote the set
of 1-bits of x corresponding to the tests xi = 1 made along qx. Note that the sets
Ix and Jx need not to be disjoint: we only know that |Ix| = k, m ≤ |Ix∪Jx| ≤M
and xi = 1 iff i ∈ Ix ∪ Jx.

For a node v of our program G, let Sv denote the set of all vectors x ∈ S such
that v is the end-node of the path px. It is enough to prove that |Sv| ≤ dk(S).
Let I = {Ix : x ∈ Sv} and J = {Jx : x ∈ Sv}. For each pair I ∈ I and J ∈ J
consider the combined vector zI,J defined by zI,J(i) = 1 iff i ∈ I ∪ J .

Claim 7. For every I ∈ I and J ∈ J the combined vector zI,J belongs to S.

Proof. Choose some x, y ∈ Sv such that I = Ix and J = Jy. The combined
path (px, qy) goes from the source node to the node v and then follows qy until a
1-leaf. Since our program is null-path free, the path (px, qy) must be consistent.
Moreover, this path is consistent with the combined vector z = zI,J . To show this,
take an arbitrary bit i. If z(i) = 1 then the test xi = 1 is made along at least one
of the two paths px and qy, and hence, the test xi = 0 cannot occur in the other
one, since the entire path (px, qy) must be consistent. If z(i) = 0 then i 6∈ Ix∪Jy,

10

implying that the test xi = 1 cannot be made along any of the two paths px and
qy, by the definition of the sets Ix and Jy. Hence, the vector z is consistent with
all tests along the path (px, qy). Since this path ends in a 1-leaf, the vector z is
accepted by G. But since this vector has only |Ix ∪ Jy| ≤ k +M ≤ 2M ones and
since our program isolates the set S, the program can accept z only if z ∈ S, as
desired.

To finish the proof of the theorem, fix an arbitrary I0 ∈ I. Then all vectors
zI0,J with J ∈ J have 1s on I0 and, by Claim 7, all of them belong to S. This
implies that |J | ≤ dI0(S). Similarly, fix an arbitrary J ∈ I and an arbitrary
its subset J0 ⊆ J \ I0 of size |J0| = m − k (we can do this since |I0| = k and
|I0 ∪ J | ≥ m). Then all vectors zI,J with I ∈ I have 1s on J , and hence, also on
J0. By Claim 7, all of them belong to S. This implies that |I| ≤ dJ(S) ≤ dJ0(S).
Finally, every x ∈ Sv is uniquely determined by the pair (Ix, Jx), therefore |Sv| ≤
|I| · |J |, as claimed.

Proof of Theorem 2. Let S ⊆ {0, 1}n2
be the set of all optimal 0-1 solutions of

KNAP(a, b). By Lemma 5, we know that x ∈ S iff the graph Ex is a perfect
matching. Thus, a free NBP for the knapsack problem KNAP(a, b) accepts a
vector x if and only if x ∈ S. In particular, any such program must isolate the
set of optimal solutions S. Since only (n − k)! perfect matching can contain
a fixed set of k edges, we have that dk(S) ≤ k!(n − k)!. Thus, Theorem 6
implies that every free NBP solving the problem KNAP(a, b) must have at least
|S|/d(S) ≥ n!/k!(n − k)! =

(
n
k

)
nodes. Taking k = n/2 gives the desired lower

bound.

4. Proof of Theorem 3

Consider the knapsack problem KNAP(a, br). Optimal solutions for this prob-
lem are all vectors x ∈ {0, 1}n2

of weight w(x) = br. Let G be a 1NBP approx-
imating KNAP(a, br) within the factor r. Then G accepts a vector x ∈ {0, 1}n2

if and only if b ≤ w(x) ≤ br. In particular, we have that

G(x) = 1 if w(x) = b, and G(x) = 0 if w(x) < b. (7)

Fix an integer k, 1 ≤ k ≤ n, and set S = {x : w(x) = b}. For each vector x ∈ S,
fix a path accepting x, and split this path into two segments (px, qx), where px is
an initial segment along which exactly k 1-bits of x are tested. Let Ix denote the
set of all bits (not just of 1-bits) of x tested along px, and Jx the set of all bits of
x tested along qx. Bits in this case correspond to edges of Kn,n. By Lemma 5, we
know that x ∈ S iff the graph Ex = {e : xe = 1} is a perfect matching. This way
the n edges of the perfect matching Ex are divided into two parts: the matching

11

Mx := Ex ∩ Ix with k edges, and the matching Ex ∩ Jx with the remaining n− k
edges. Finally, if we define the weight of an edge e = (i, j) by w(e) = qi−1 + qj−1,
then the weight w(x) of every vector x ∈ {0, 1}n2

is exactly the total weight of
the edges in the corresponding graph Ex:

w(Ex) =
∑
e∈Ex

w(e) .

For a graph E ⊆ Kn,n, let V (E) denote the set of vertices touched by at least
one edge of E. Hence, |V (Ix)| = 2k for every x ∈ S. For a node v of our program
G, let Sv denote the set of all vectors x ∈ S such that v is the end-node of the
path px.

Claim 8. For any two vectors x, y ∈ Sv we have V (Ix) = V (Iy).

Proof. Assume that V (Iy) 6= V (Ix) for some two vectors x, y ∈ Sv. Since Ix∩Jx =
∅, and since the weight of a graph is defined as the sum of weight of its edges,
for every vector x ∈ Sv we have that w(x) = w(Ix) + w(Jx). Moreover, since
both Ix ∩ Ex and Iy ∩ Ey are matchings, Lemma 4 implies that the q-ary codes
of w(Ix) and w(Iy) have only coefficients 0 and 1, and V (Ix) is exactly the set
of all 1-positions in the q-ary code of w(Ix). Thus, V (Ix) 6= V (Iy) implies that
w(Ix) 6= w(Iy). Assume w.l.o.g. that w(Iy) < w(Ix), and consider the combined
vector z such that ze = 1 iff e belongs to at least one of the matchings Iy ∩ Ey

and Jx ∩ Ex. Since the program is read-once, these matchings must be disjoint.
Hence,

w(z) = w(Iy) + w(Jx) < w(Ix) + w(Jx) = w(x) = b .

But the vector z is consistent with the combined path (py, qx), and hence, is
accepted by our program, contradicting (7).

Since only k!(n− k)! perfect matchings can match a given set of 2k vertices,
Claim 8 implies that |Sv| ≤ k!(n − k)!. Hence, our program must have at least
|S|/k!(n − k)! = n!/k!(n − k)! =

(
n
k

)
nodes. Taking k = n/2 yields the desired

lower bound.

5. Concluding remarks

In this paper we consider the space complexity of branch-and-bound and
dynamic programming algorithms with memoization. We look at an instance
a ∈ An of a zero-one optimization problem as a boolean function fa which accepts
a 0-1 vector x iff x is an optimal solution for a. The space complexity of a is then
measured as the minimum size of a branching program computing fa. Such a
branching program is a compact encoding of the set of partial solutions produced
by an algorithm when working on instance a. Since, as in dynamic programming,

12

the algorithm must be able to reconstruct an optimal solution going backwards
from any “optimum” leaf, the branching program cannot have inconsistent paths
to such leafs. This leads us to a subclass of all branching programs—the class of
free NBP.

We exhibited an instance a of the n2-dimensional zero-one knapsack problem
such that its boolean function fa requires free NBPs of size 2Ω(n). The main
structural property of this instance a is that optimal zero-one solutions for it
are exactly the characteristic vectors of perfect matchings. We have then shown
that any 1NBP (read-once NBP) approximating the value of optimal solutions
for this instance within a factor of n must also be of exponential size. It would
be interesting to extend these bound to the model of free NBP.

An interesting problem remains whether exponential lower bounds for the
knapsack problem can be proved in more general models of branching programs
than those considered above. The read-once condition in a 1NBP is a “syntactic”
one: every path to a 1-leaf must be a read-once path, that is, every variable along
such path can be tested at most once. One could ask what happens if we relax
this condition to a semantic one: every path to a 1-leaf is either inconsistent or
is a read-once path. Let us call such programs semantic 1NBP. The following
proposition shows that such a seemingly “innocent” relaxation may exponentially
increase the power of BPs.

Proposition 9. The zero-one knapsack problem KNAP(a, b) has a semantic
1NBP of size O(n3).

Proof. The proof is a combination of Lemma 5 with an observation made in [10]
that the so-called “exact perfect matching function” has small semantic 1NBP. By
Lemma 5, a 0-1 vector x = (xij) in {0, 1}n2

is an optimal solution for KNAP(a, b)
iff its 1-positions form a perfect matching. Thus, if looked at as an n×n matrix,
the vector x is an optimal solution iff x is a permutation matrix (has exactly one
1 in each row and each column). To test that a given square (0, 1) matrix is a
permutation matrix, it is enough to test whether every row has at least one 1,
and every column has at least n− 1 zeroes. These two tests can be made by two
NBPs G1 and G2 designed using the formulas

G1(X) =

n∧
i=1

n∨
j=1

xij and G2(X) =

n∧
j=1

n∨
k=1

n∧
i=1
i 6=k

¬xij .

Let G = G1 ∧G2 be the AND of these two programs, that is, the 1-leaf of G1 is
the source-node of G2. The entire program has size O(n3). It is also semantically
read-once because in G1 only tests xij = 1 and in G2 only tests xij = 0 are made;
so every path in the whole program P is either inconsistent or is read-once.

13

So far, no explicit boolean function requiring semantical 1NBPs of exponential
size is known. In particular, it is not known whether some instances of the zero-
one knapsack problem require semantical 1NBPs of exponential size.

It would be also interesting to prove that other natural zero-one optimization
problems require large free NBPs. For example, the maximum clique problem
for a given graph G = (V,E) can be formulated as the following integer linear
program: maximize

∑
v∈V xv subject to xu + xv ≤ 1 for all {u, v} 6∈ E, and

xv ∈ {0, 1} for all v ∈ V . Hence, a zero-one vector x is an optimal solution for
this problem iff Vx = {v ∈ V : xv = 1} is a clique of size |Vx| = ω(G), where
ω(G) is the maximum number of vertices in a clique of G. The optimum-function
fG(x) of a given graph in this case is

fG(x) = 1 iff Vx is a clique in G and
∑

v∈V xv = ω(G).

It is known [14] that the number of maximum cliques in an n-vertex graph does
not exceed 3n/3. This bound is achieved by so-called Moon–Moser graphs: these
are complements of graphs consisting of n/3 vertex disjoint triangles. It is how-
ever easy to see that the maximum clique problem for these “rich” graphs has
a 1BP of size O(n): connect sequentially n/3 programs, each computing 1 iff
exactly one of the three variables in the corresponding triangle are set to 1.

Note a big difference between fG and a classical clique function CLIQUEn,k.
This function has

(
n
2

)
boolean variables, each variable xe corresponding to a

potential edge e. This way every zero-one vector x ∈ {0, 1}
(
n
2

)
defines a graph

Gx on n vertices. Then CLIQUEn,k(x) = 1 iff Gx has a clique of size k. Thus,
CLIQUEn,k describes a property of all graphs, whereas the optimum-function
fG describes a property of one single graph. In this sense, the first function
seems to be “harder” than the second one. And indeed, it is known [2] that, for
k = n/3, the function CLIQUEn,k requires 1NBP of exponential size. It would
be interesting to find graphs G whose optimum-function fG requires free NBPs
(or at least 1NBP) of exponential size.

References

[1] B. Bollig, On the size of (generalized) OBDDs for threshold functions, Inf. Process. Lett.
109:10 (2009) 499–503.

[2] A. Borodin, A. Razborov and R. Smolensky, On lower bounds for read-k times branching
programs, Comput. Complexity 3 (1993) 1–18.

[3] J. Buresh-Oppenheim, S. Davis, R. Impagliazzo, A stronger model of dynamic programming
algorithms, Algorithmica 60(4) (2011), 938–968.

[4] C. S. Chung, M. S. Hung, W. O. Rom, A hard knapsack problem, Naval Res. Logistics, 35
(1988), 85–98.

[5] V. Chvátal,, Hard knapsack problems, Operation Research 28:6 (1980) 1402–1411.
[6] Z. Gu, G. L. Nemhauser, M. W. P. Savelsbergh, Lifted cover inequalities for 0-1 linear pro-

grams: Complexity, INFORMS J. on Computing 11 (1999) 117–123.

14

[7] K. Hosaka, Y. Takenaga, T. Kaneda, S. Yajima, Size of ordered binary decision diagrams
representing threshold functions, Theor. Comput. Sci. 180(1-2) (1997) 47–60.

[8] B. Hunsaker, C. A. Tovey, Simple lifted cover inequalities and hard knapsack problems,
Discrete Optimization 2(3) (2005) 219–228.

[9] R. G. Jaroslow, Trivial integer programs unsolvable by branch-and-bound, Math. Program-
ming 6 (1974) 105–109.

[10] S. Jukna, A note on read-k times branching programs, RAIRO Theoret. Informatics and
Appl. 29(1) (1995) 75–83.

[11] S. Jukna, A. Razborov, Neither reading few bits twice nor reading illegally helps much,
Discrete Appl. Math. 85(3) (1998) 223–238.

[12] S. Jukna, A. Razborov, P. Savický, I. Wegener, On P versus NP ∩co-NP for decision trees
and read-once branching programs, Computational Complexity 8(4) (1999) 357–370.

[13] B. Krishnamoorthy, Bounds on the size of branch-and-bound proofs for integer knapsacks,
Operation Res. Lett. 36(1) (2008) 19–25.

[14] J. W. Moon and L. Moser, On cliques in graphs, Israel J. of Math. 3 (1965) 23–28.
[15] A. A. Razborov, Lower bounds on monotone network complexity of the logical permanent,

Math. Notes Acad. of Sci. USSR, 37(6) (1985), 485–493.
[16] I. Wegener, Branching programs and binary decision diagrams, SIAM Monographs on Dis-

crete Mathematics and Applications 4, 2000.

15

