
Incremental vs. Non-Incremental Dynamic Programming I

Stasys Jukna1

Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main, Germany

Abstract

Many dynamic programming algorithms for discrete optimization problems are pure in that they only

use min/max and addition operations in their recursions. Some of them, in particularly, those for

various shortest path problems and those in bioinformatics, are even incremental in that one of the

inputs to the addition operations is a variable. We present an explicit optimization problem such that

it can be solved by a pure DP algorithm using a polynomial number of operations, but any incremental

DP algorithm for this problem requires a super-polynomial number of operations.

1. Introduction

A 0-1 optimization problem is specified by giving a set of ground elements, and a family
of its subsets, called feasible solutions. Given an assignment of nonnegative weights to the
ground elements, the goal is to compute the maximum or the minimum weight of a feasible
solution, the latter being the sum of weights of the elements in this solution.

Dynamic programming (DP) is a popular technique to solve optimization problems. Many
of fundamental DP algorithms are pure in that they only use min/max and addition operations
in their recursion equations. Such an algorithm is incremental if one of the two inputs of every
addition operation is a variable. In the DP literature, incremental DP algorithms are also
called monadic while non-incremental are called polyadic (see, e.g., [9]).

Prominent examples of incremental DP algorithms are the well-known Bellman–Ford DP
algorithm for the shortest s-t path problem [1, 3], the Held–Karp DP algorithm for the
traveling salesman problem [4], and others. Say, Bellman and Ford consider subproblems
fl(j) = the minimum weight of a path from s to the node j consisting of at most l edges.
The basis cases are f1(j) = xs,j (weights of edges from s to j), and the recursion is

fl+1(j) = min
{
fl(j), min

i
{fl(i) + xi,j}

}
. (1)

A prominent example of a non-incremental pure DP algorithm is that of Floyd [2] and Warshall
[10] for the all-pairs shortest paths problem: it uses the recursion

fk(i, j) = min {fk−1(i, j), fk−1(i, k) + fk−1(k, j)} ,

where fk(i, j) stands for the length of a shortest path from i to j that only uses nodes 1, . . . , k
as inner nodes. Hence, a natural question:
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� Can non-incremental pure DP algorithms be substantially faster than incremental?

In this note, we use a recent construction of Hrubes and Yehudayoff [5] to answer this ques-
tion affirmatively : there are explicit optimization problems that can be solved by pure DP
algorithms using a polynomial number of operations, but any incremental DP needs to apply
a super-polynomial number of operations to solve them.

To define the corresponding optimization (minimization and maximization) problems,
consider the complete binary tree Td = (V,E) of depth d; hence, Td has |V | = n := 2d+1 − 1
nodes. A labeling of Td is a mapping h : V → Zn from the nodes of Td to the additive group
Zn = {0, 1, . . . , n − 1} of integers modulo n. A labeling h is legal if it is additive in the
following sense: if u is a node with sons v and w in Td, then h(u) = h(v) + h(w). Let H
denote the set of all legal labelings of Td. Note that the labels of leaves in every legal labeling
determine the labels of all other nodes. So, there are |H| = n2d = n(n+1)/2 legal labelings.

The optimization (minimization or maximization) problem on H is: given an assignment
of nonnegative weights xu,i to the points (u, i) of the grid V × Zn, compute the minimum
or the maximum weight

∑
u∈V xu,h(u) of a legal labeling h. Note that the number of ground

elements in this case is |V × Zn| = n2.

Theorem. Both optimization problems on H can be solved by pure DP algorithms using O(n3)
operations, but any incremental DP algorithm for any these two problems must perform at
least nΩ(logn) operations.

The lower bound here holds even when incremental DP algorithms are only required to
solve the problem correctly on all input weightings x ∈ {0, 1}n (in the case of maximization)
or on all input weightings x ∈ {0, 1, n + 1}n (in the case of minimization). Moreover, the
lower bound is already on the number of unbounded fanin min/max operations.

The upper bound is given by Lemma 1, and the lower bound by Lemma 6.

2. Upper bound

The upper bound O(n3) was proved by Hrubes and Yehudayoff [5] for monotone arithmetic
circuits computing the corresponding (to H) multivariate polynomial, but their argument
works with almost no changes also for tropical circuits.

Lemma 1. Each of the two optimization problems on H can be solved by a pure DP algorithm
using O(n3) operations.

Proof. We only consider the minimization problem on H; the case of the maximization prob-
lem is the same. So, our goal is to efficiently solve, by a pure DP algorithm, the following
minimization problem:

fn(x) = min
h∈H

∑
u∈V

xu,h(u) .

For i ∈ Zn, let F
(d)
v,i denote the minimization problem defined as fn, except that h is

now restricted to range over legal labelings with h(v) = i, where v is the root of Td. Hence,

fn = mini∈Zn F
(d)
v,i . Observe that

F
(d)
v,i = min

{
F

(d−1)
u,j + F

(d−1)
w,k + xv,i : j, k ∈ Zn, j + k = i

}
,
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where u and w are the left and right sons of the root v. Hence, if L(d) denotes the number of

operations required to compute the minimum of all F
(d)
v,i with i ∈ Zn, then we have a recursion

L(d) ≤ 2 · L(d − 1) + O(n2), which resolves to L(d) = O(n22d) = O(n3). So, the resulting
pure DP algorithm uses only O(n3) operations to compute fn, as desired.

Our goal is now to show that every incremental DP algorithm solving any of the two
optimization problems on H must use at least nΩ(logn) operations. After some preparations,
this will be done in Lemma 6.

3. Tropical branching programs

Let N = {0, 1, 2, . . .} be the set of nonnegative integers. Every finite set A ⊂ Nn of
vectors (of feasible solutions) defines two natural optimization problems: given an assignment
x ∈ Rn+ of nonnegative weights, compute the minimum or the maximum weight 〈a, x〉 =
a1x1 + · · ·+ anxn of a feasible solution a ∈ A.

A natural mathematical model for incremental DP algorithms is that of tropical branching
programs (tropical BP). Such a program is a directed acyclic graph G with one zero indegree
node s (the source node) and one zero outdegree node t (the target node); multiple edges
joining the same pair of nodes are allowed. Every edge is either unlabeled or is labeled by
one of the variables x1, . . . , xn. The size of a BP is the total number of its nodes.

Every tropical BP solves some optimization problem (minimization or maximization) in
a natural way: along every s-t path, the sum of all labels of its edges is computed and the
optimization problem solved by the program is the minimum or the maximum of all these
sums.

Another way to view at how a tropical BP computes, and to see the connection with
incremental DP algorithms, is to view each edge as adding its label xi (or constant 0, if the
edge is unlabeled) to the already computed value, and to view each node (except for the
source node s) as performing a min or max operation:
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�� ��

◦ ◦
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Every tropical BP also creates some set B ⊂ Nn of vectors in a natural way. Namely,
every path p creates the vector b = (b1, . . . , bn), where bi ∈ N is the number of times the i-th
variable xi appears as a label of an edge of p. In particular, if the path p has no labeled edges,
then the created vector is the all-0 vector (of length n). The set of vectors created at a node
u 6= s is the set of vectors created by paths from s to u. The set of vectors created by the
entire branching program is the set of vectors created at the target node t.

If b ∈ B is the vector created by an s-t path, then on every input weighting x ∈ Rn+,
the sum 〈b, x〉 = b1x1 + · · · + bnxn is computed along this path. Hence, the BP solves an
optimization problem defined by B, i.e., computes either the minimum or the maximum
of 〈b, x〉 over all vectors b ∈ B. If, however, we only know that the BP G solves a given
optimization problem defined by some set A ⊂ Nn of feasible solutions, then the set of vectors
B created by G does not need to coincide with A (see Fig. 1): we only know that the set
B must define the same optimization problem as A and, hence, must be related as given in
Lemma 7.
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Figure 1: Two BPs solving the same minimization problem f(x, y) = min{2x, 2y} given by the set
A = {(2, 0), (0, 2)} of feasible solutions. The set of vectors created by the first BP is B = A, but
the second BP saves one node by creating a different set B = {(2, 0), (1, 1), (0, 2)}. Both sets A and
B define the same minimization problem, because A ⊆ B and vector (1, 1) is a convex combination
1
2 (2, 0) + 1

2 (0, 2) of vectors in A.

And indeed, there are sets A of feasible solutions such that it is exponentially easier to
solve an optimization problem on A than to create the set A itself.

Example. Consider the shortest s-t paths problem. Here we have m =
(
n
2

)
ground-elements

(edges of a complete graph Kn on n vertices), and A ⊂ {0, 1}m is the set of characteristic
vectors of s-t paths in Kn. The minimization problem on A can be solved by a tropical BP
corresponding to the Bellman–Ford shortest s-t path dynamic programming algorithm (1)
using only O(n2) nodes and O(n3) edges. The set B ⊂ Nm of vectors created by this program
corresponds not to paths but rather to walks from node s to node t of length at most n− 1;
in particular, some vectors of B have entries larger than 1. Still, the BP solves the shortest
s-t path problem correctly, because every s-t path is also an s-t walk, and every s-t walk
contains an s-t path (recall that we only consider nonnegative weights). On the other hand,
the results of Jerrum and Snir [6] imply that tropical BPs with 2Ω(n) nodes are necessary to
create the set A itself.

Fortunately, if a set A is homogeneous, then it is no more difficult to create A than to
solve an optimization problem on A. A set of vectors is homogeneous if all its vectors have
the same degree, where the degree of a vector is just the sum of its entries.

Lemma 2. Let A ⊂ {0, 1}n be homogeneous. If an optimization problem on A can be solved
by a tropical BP of size `, then the set A can be also created by a BP of size at most `.

We postpone the proof of this lemma to Appendix A.
The sumset X + Y of two sets of vectors X,Y ⊂ Nn is the set of all vectors x + y with

x ∈ X and y ∈ Y . Such a sumset is k-balanced if all vectors of X have the same degree k.

Lemma 3. Let A ⊂ {0, 1}n be homogeneous of degree d, and suppose that an optimization
problem on A can be solved by a tropical branching program of size `. Then for every k =
1, . . . , d, the set A can be written as a union of at most ` k-balanced sumsets.

Proof. Lemma 2 gives us a tropical BP G of size at most ` which not only solves the corre-
sponding optimization problem on the set A (maximization or minimization), but even creates
this set.

Associate with every node u of G the sumset Xu + Yu, where Xu is the set of vectors
created by paths from the source node s to u, and Yu is the set of vectors created by paths
from node u to the target node t. Then Xu+Yu is exactly the set of all vectors created by s-t
paths going through node u. Since no vector outside A can be created, we have Xu+Yu ⊆ A.
Moreover, since A is homogeneous, all vectors in Xu must have the same degree du. Along
the nodes u of every s-t path p, du takes all values 0, 1, . . . , d: if e = (u, v) is an edge of p,
then dv = du if e is unlabeled, and dv = du+1 otherwise. So, for every k = 1, . . . , d, the union
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of k-balanced sumsets Xu + Yu over all nodes u with du = k gives us the desired covering
of A.

4. Lower bound

Recall that a labeling h : V → Zn of the nodes of a complete binary tree Td of depth d
is legal if for every non-leaf u, h(u) is the sum (modulo n) of the labels of all leafs of the
sub-tree rooted in u. Let H be the set of all legal labelings. The following lemma from [5]
gives the key combinatorial property of this set.

Let V = V0∪V1 be a partition of V . The composition of two partial labelings h0 : V0 → Zn
and h1 : V1 → Zn is the labeling h = h0◦h1 which coincides with hi on all nodes in Vi, i = 0, 1.
Every two sets H0 ⊆ ZV0n and H1 ⊆ ZV1n of partial labelings define the rectangle

H0 ◦H1 = {h0 ◦ h1 : h0 ∈ H0 and h1 ∈ H1}

consisting of all possible compositions of these labelings. Such a rectangle is a k-rectangle if
|V0| = k.

The complete binary tree Td has n = 2d+1 − 1 nodes. For an integer 0 ≤ k ≤ n, take its
binary expansion a = (a0, a1, a2, . . .) with ai ∈ {0, 1}, that is, k = a0 + 2a1 + 4a2 + 8a3 + · · · ,
and let τ(k) denote the number of configurations “10” (one followed by zero) in the vector a.
For example, τ(5) = τ(1 + 4) = 2 whereas τ(7) = τ(1 + 2 + 4) = 1. In particular, if we take
k = 1 + 4 + 16 + · · ·+ 2d = (2n+ 1)/3 (for even d) or k = 1 + 4 + 16 + · · ·+ 2d−1 = n/3 (for
odd d), then τ(k) ≥ d/2.

Lemma 4 (Hrubes and Yehudayoff [5]). Let 1 ≤ k < n be an integer. If a k-rectangle H0◦H1

consists of only legal labelings, that is, if H0 ◦H1 ⊆ H holds, then

|H0 ◦H1| ≤
|H|

nτ(k)/8
.

The characteristic vector of a labeling h : V → Zn of Td is a vector in {0, 1}n×n whose
(u, i)-th position is 1 if and only if h(u) = i. Consider the set A ⊂ {0, 1}n×n of characteristic
vectors of all legal labelings of Td. Note that this set A is homogeneous: every its vector has
exactly |V | = n ones.

If x ≤ a for some a ∈ A, then we say that vector x touches a node u of the tree Td, if
xu,i = 1 holds for some i ∈ Zn. Note that every vector a ∈ A touches every node in V (exactly
once).

Lemma 5. If ∅ 6= X + Y ⊆ A, then all vectors in X as well as all vectors in Y touch the
same sets of nodes, and these two sets of touched nodes decompose the set of all nodes of the
tree.

Proof. Assume contrariwise that there are two vectors x 6= x′ ∈ X and a node u in the tree
Td which is touched by x but not by x′. Take any vector y ∈ Y . Since u is not touched by
x′, and since x′ + y must be a characteristic vector of some legal labeling, the node u must
be touched by vector y. Hence, there are i, j ∈ Zn such that xu,i = yu,j = 1. Since the vector
x + y belongs to A, it must be a 0-1 vector. So, i 6= j. But this is impossible because no
function can take two distinct values i and j on the same input u.
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Lemma 6. None of the two optimization problems on A can be solved by a tropical branching
program using fewer than nΩ(logn) nodes.

Proof. Let t be the minimum number of nodes in a tropical branching program solving either
the maximization or the minimization problem on A, and let k be a natural number for which
τ(k) ≥ d/2 holds (we know that such k exists, be the depth d even or odd). Since the set A
is homogeneous, Lemma 3 implies that it can be written as a union of at most t k-balanced
sumsets X + Y ⊆ A; being k-balanced implies that every vector of X has exactly k ones.

Lemma 5 implies that every vector in X must touch the same set V0 of nodes, and every
vector in Y must touch the same set V1 of the remaining nodes of the tree Td. Moreover,
we have |V0| = k since every vector of X has exactly k ones. By Lemma 4, we have that
|X+Y | ≤ |A|/nd/16. Thus, the number t of nodes in our BP must be at least |A|/(|A|/nd/16) =
nd/16 = nΩ(logn), as claimed.

The lower bound in Lemma 6 is not far from the truth: nO(logn) nodes are also sufficient.
This follows from the construction of a DP algorithm in Lemma 1. It actually gives us a
tropical formula with nO(d) gates, and tropical formulas are tropical branching programs of
a special form, when the underlying graph is series-parallel.

A. Proof of Lemma 2

We will need some structural properties of the sets of feasible solutions of equivalent
optimization problems.

If two sets of vectors define the same optimization problem, how do these sets must be
related? To answer this question, say that a set B ⊂ Nn lies above (resp., below) a set A ⊂ Nn
if for every vector b ∈ B there is at least one vector a ∈ A such that bi ≥ ai (resp., bi ≤ ai)
holds for all i = 1, . . . , n. A set A is an antichain if no its two vectors are comparable under ≤.

A simple proof of the following structural lemma is given in [7, Lemmas 6,7]; in the proof
of item (ii), the weight +∞ was used but, as shown in [8, Appendix A], one can use the weight
n+ 1 instead.

Lemma 7 ([7, 8]). Let A ⊂ {0, 1}n be an antichain, and B ⊂ Nn be some finite set of vectors.
Then:

(i) maxb∈B 〈b, x〉 = maxa∈A 〈a, x〉 holds for all weightings x in {0, 1}n if and only if A ⊆ B
and B lies below A.

(ii) minb∈B 〈b, x〉 = mina∈A 〈a, x〉 holds for all weightings x in {0, 1, n+ 1}n if and only if
A ⊆ B and B lies above A.

The “if” directions here are trivial, and hold even for all nonnegative weightings x ∈ Rn+.
What is interesting is the “only if” direction: relatively small sets of weightings x are sufficient
to capture the structural relation between sets A and B.

Proof of Lemma 2. Let A ⊂ {0, 1}n be homogeneous of degree d, and consider first the maxi-
mization problem on A. Let G be tropical (max,+) branching program solving this problem,
and let B ⊂ Nn be the set of vectors created by G. Our goal is to show that some subprogram
of G must create the set A.
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By Lemma 7, we know that A ⊆ B, and every vector of B must be contained in at least
one vector of A. These two properties imply that A is the subset of all vectors in B of largest
degree (which is the degree d of A).

Define the length of a path in G to be the number of labeled edges along this path. Hence,
the length of a path coincides with the degree of the vector created by this path. Apply
iteratively the following transformation to the BP G until possible: remove an edge (u, v) if
the longest path from the source node s to node v going through this edge is shorter than the
longest path from s to v.

Since vectors in A ⊆ B have the largest degree among all vectors in the set B created by
the program G, none of the vectors of A will be lost during this removal. By applying such
a removal as long as possible, we will eventually obtain the desired BP creating the set A.

The argument in the case of the minimization problem on A is almost the same. By
Lemma 7, the set A is exactly the subset of vectors in B of smallest degree (which is the
degree d of A). Thus, we now remove an edge (u, v) if the shortest path from s to v going
through this edge is longer than the shortest path from s to v.
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