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By the complexity of a graph we mean the minimum number of union and intersection
operations needed to obtain the whole set of its edges starting from stars. This

measure of graphs is related to the circuit complexity of boolean functions.

We prove some lower bounds on the complexity of explicitly given graphs. This

yields some new lower bounds for boolean functions, as well as new proofs of some
known lower bounds in the graph-theoretic frame. We also formulate several combina-

torial problems whose solution would have intriguing consequences in computational

complexity.

1. Introduction

A major challenge in computational complexity is to exhibit an explicit boolean function
fm : {0, 1}m → {0, 1} that has high computational complexity, i.e. cannot be computed
using a small number of basic boolean operations (gates) such as OR x ∨ y, AND x ∧ y
or Parity x⊕y = x+y (mod 2); inputs for such a circuit are literals, i.e. variables xi and
their negations xi. Though this problem is intensively studied for more than fifty years
there is no proof of a lower bound super-linear in the number of variables m. The main
difficulty here is that we want the function fm be explicitely constructed—easy counting
shows that almost all functions require circuits of size 2Ω(m). The problem of proving
super-linear lower bounds is widely open even if we assume the additional restriction of
circuit depth be logarithmic in m.

Pudlák, Rödl and Savický [36] observed that in oder to construct boolean functions
requiring large circuits it would be enough to construct graphs that require many union
and intersection operations to represent them starting from some “simplest” graphs,
like stars. Although simple, this observation is important because it allows to translate
the lower bounds problems for boolean functions to purely combinatorial problems for
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graphs. For example, some old problems in computational complexity could be solved
by proving non-trivial lower bounds on the following generalisation of the edge clique
covering number (we show this in Section 5):

cov(G) =df minimal t for which there exist t (spanning) subgraphs of G such that each
edge of G is an edge of at least one of the subgraphs, and the non-edges of
each of these subgraphs can be covered by at most t independent sets.

It is not difficult to show (by standard counting argument) that cov(G) = Ω(n1/2) for
almost all n-vertex graphs. The problem, however, is to exhibit an explicit n-vertex graph
with cov(G) ≥ nε for some constant ε > 0. Actually, such a lower bound even with ε tend-
ing slowly to 0 would resolve some long-standing open problems in computational com-
plexity. If proved with ε = ω(1/

√
log n), this would give an explicit boolean function in m

variables requiring depth-3 circuits of size 2ω(
√
m). If proved with ε = (log log n)ω(1)/ log n,

this would give an explicit boolean function outside the second level of the communi-
cation complexity hierarchy introduced in [6]. If proved with ε = ω(1/ log log log n) this
would give a super-linear lower bound for log-depth circuits.

Motivated by this connection between graphs and boolean functions, in this paper we
are trying to better understand what properties of graphs make them hard to represent
by different kinds of circuits. One of the aims of this paper is to draw once more readers
attention to graph complexity. This concept has already led to interesting results [8, 36,
39, 38, 33, 28], and its potential seems to be far from being exhausted.

Graph complexity. We shall use standard graph theory notation. Of particular interest
for us will be bipartite graphs. We shall look at such a graph G with a fixed bipartition
V = U ∪W as a set G ⊆ U ×W of its edges. A non-edge is a pair uv of non-adjacent
vertices. A non-edge in a bipartite graph G ⊆ U×W is a pair uv of non-adjacent vertices
with u ∈ U and v ∈ W ; hence, pairs of vertices within one part of a bipartition are
neither edges nor non-edges. If not stated otherwise, by a subgraph we will always mean
a spanning subgraph.

Given a graph G = (V,E) we associate to each its vertex v a boolean variable xv, and
let X = {xv : v ∈ V }. We say that a boolean function (or a circuit) f(X) accepts/rejects
a subset of vertices S ⊆ V if f accepts/rejects the characteristic vector of S, i.e. a binary
vector in {0, 1}V with 1’s in positions u for all u ∈ S, and 0’s elsewhere.

We say that a boolean function f(X) represents a graph G if it accepts all edges and
rejects all non-edges of G.

Hence, f(X) represents the graph G if for every input vector a ∈ {0, 1}X with precisely
two 1’s in, say, positions u and v, f(a) = 1 if uv is an edge, and f(a) = 0 if uv is a non-
edge of G. Note that if uv is neither an edge nor a non-edge (in the bipartite case) or if
a contains more or less that two 1’s, then the value f(a) may be arbitrary.

For example, a single variable xv represents a star around (a set of all edges incident
with) the vertex v. An OR

∨
v∈S xv represents a union of stars which, in turn, is a

complement of a complete graph on V \ S. The formula
(∨

u∈S xu
)
∧
(∨

v∈T xv
)

with
S ∩ T = ∅ represents a bipartite complete graph S × T .

Every graph G = (V,E) can be represented by a monotone formula
∨
uv∈E xuxv with
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|E|+1 gates: |E| AND gates of fanin 2 and one OR gate of fanin |E|. Hence, no n-vertex
graph G of maximal degree d requires circuits of size larger than dn. However, this trivial
upper bound may be exponentially far from the truth: a result of Alon [2] on the clique
covering number of graphs (see Theorem 5.3 below) implies that every n-vertex graph G
of maximal degree d can be represented by a monotone CNF (conjunctive normal form)∧r
i=1

∨
v∈Si xv with r = O(d2 log n). In particular, every graph of constant degree can

be represented by a monotone depth-2 formula of logarithmic size.

From graphs to boolean functions. The complexity of a graph (in a given class of
boolean circuits) is the minimum number of gates in a circuit representing this graph.
Although estimating the circuit complexity of graphs may be of independent interest, we
(just like the authors of [36]) consider the graph complexity mainly as a tool for proving
lower bounds for boolean functions.

The translation of lower bounds for graphs to lower bounds for boolean functions is
given by the following lemma (we give its proof in the Appendix). With every bipartite n×
n graph G ⊆ U ×W , where n = 2m and U = W = {0, 1}m, one may associate a boolean
function f in 2m variables—the characteristic function of G—such that f(uv) = 1 if and
only if uv ∈ G. In the lemma below, by a circuit we will mean an arbitrary computational
model whose inputs are literals, i.e. boolean variables xi and their negations xi.

Lemma 1.1 (Magnification Lemma). Given a circuit computing the characteristic
function f of a bipartite n× n graph G, it is possible to replace each its input literal by
an OR of at most n variables so that the obtained circuit represents the graph G. The
same holds when Parity gates are used instead of OR gates.

This fact is particularly useful in such circuit models where computing an OR (or a
Parity) of input literals is “cheap.” For example, if the circuit computing f has unbounded
fanin OR gates on the bottom (next to the inputs) level, then the obtained (monotone)
circuit represents G and has just the same number of gates! Hence, if we could prove
that a bipartite n×n graph G with n = 2m cannot be represented using, say, fewer than
nε gates, this would immediately imply that the characteristic function f of G requires
at least nε = 2εm gates, which is exponential in the number 2m of variables of fm (this
is where the term “magnification” comes from).

Note, however, that proving lower bounds for graphs may be even more difficult task
than for boolean functions. For example, the Parity function x1 ⊕ x2 ⊕ · · · ⊕ xm cannot
be computed by a constant-depth circuit using a polynomial number of unbounded fanin
AND and OR gates ([19]) whereas the corresponding to this function graph is just a union
of two vertex-disjoint bipartite complete graphs, and can be represented by a circuit using
just seven gates! This also demonstrates that the Magnification Lemma has no inverse: if
a graph can be represented by a small circuit, this does not imply that its characteristic
function can be computed by a small circuit. Still, studying the graph-theoretic structure
of boolean functions may provide new insights into their complexity—unlike for boolean
functions, the structure of graphs is much better understood.

As it is, the Magnification Lemma only holds for bipartite graphs. Still, lower bounds
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for general (non-bipartite) graphs would also yield lower bounds for boolean functions,
because every graph G = (V,E) on 2n vertices is a union of O(log n) bipartite n × n
graphs of the form E ∩ (U ×W ) with |U | = |W | = n.

Why even depth-3 circuits are interesting? In this paper we are mainly interested
in proving lower bounds on graph complexity in the class of depth-3 circuits. Although
this restriction seems to be rather severe, non-trivial lower bounds even in this class of
circuits would already resolve some old problems in the circuit complexity of boolean
functions.

Of particular interest is the case of Σ3 circuits. These circuits consist of unbounded
fanin AND and OR gates which are organised in three levels: the bottom (next to the
inputs) level consists of OR gates, the middle level consists of AND gates, and the top
level consists of a single OR gate. Inputs are variables and their negation. If there are no
negated inputs then the circuit is monotone. Hence, a monotone Σ3 circuit has the form

s∨
i=1

r∧
j=1

∨
u∈Sij

xu.

Here s is the top fanin and r the middle fanin of a circuit; by the size of a circuit we
will mean the maximum max{s, r} of its top and middle fanins.

Our motivation to study representation of graphs by depth-3 circuits comes from the
following result due to Valiant [41]: if a boolean function f inm variables can be computed
by a log-depth circuit of size O(m) then f can be computed by a Σ3 circuit of size
2O(m/ log logm); here a log-depth circuit is a circuit of depth O(logm) using any boolean
functions in constant number of variables as gates. Together with the Magnification
Lemma, this implies the following: if a bipartite n× n graph cannot be represented by a
monotone Σ3 circuit of size nε with ε = O(1/ log log log n), then its characteristic function
cannot be computed by a log-depth circuit of linear size.

In last two decades there was a considerable progress in proving lower bounds on the
size of small-depth circuits [1, 14, 42, 19, 37, 40, 15, 21, 31]. However, for Σ3 circuits
these bounds are of the form 2Ω(

√
m), and hence, are too weak to imply lower bounds

for log-depth circuits. The only known strongly exponential lower bounds were obtained
in [32] under the restriction that the bottom OR gates have fanin 2, that is, when the
circuit is just an OR of 2-CNFs. However, Valiant’s reduction requires bottom fanin mε

and, as noted in [32], their argument fails already when bottom fanin is larger than 2.
Our goal is to obtain higher lower bounds for small depth circuits using the graph-

theoretical frame. So far, we have not succeeded to do this for “pure” Σ3 circuits but are
able to do this for some of their variants.

2. Depth-2 circuits

To “warm-up” we start with the simplest model of circuits whose gates are arranged in
two levels. Such circuits are easy to deal with, and the only goal of this section is to
show that, even in this model, there may be a big discrepancy between the combinato-
rial and computational complexity of graphs: some “combinatorially complicated” (or
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“combinatorially interesting”) graphs can be represented by very small circuits and some
“combinatorially simple” graphs require large circuits (of the same type).

Example 1. The Kneser graph K(r, k) (r > 2k ≥ 4) has all k-element subsets v of
{1, . . . , r} as vertices, and two vertices are adjacent iff the corresponding k-subsets are
disjoint. These graphs were introduced by Lovász [29] in his famous proof of Kneser’s
conjecture [25] that whenever the k-subsets of a (2k+s)-set are divided into s+1 classes,
then two disjoint subsets end up in the same class. It is not difficult to see that K(r, k)
can be represented by the following depth-2 circuit:

r∧
i=1

∨
v∈Si

xv (2.1)

where Si = {v : i 6∈ v}. Indeed, u 6= v are non-adjacent in K(r, k) iff u ∩ v 6= ∅ iff
{u, v}∩Si = ∅ for some i iff uv is rejected by some OR

∨
v∈Si xv. Note that with respect

to the total number n =
(
r
k

)
of vertices the representation is quite compact: the circuit

has only 1 + r = O(kn1/k) gates (r OR gates and one AND gate).

Example 2. An Hadamard matrix of oder n is an n × n matrix with entries ±1 and
with row vectors mutually orthogonal. A graph associated with an Hadamard matrix M
(or just an Hadamard graph) of oder n is a bipartite n× n graph Hn where two vertices
u and v are adjacent if and only if M(u, v) = +1. An example of an Hadamard graph is
the Sylvester graph S(n). This is a bipartite n × n graph with n = 2r vertices on each
part identified with subsets of {1, . . . , r}; two vertices u and v are adjacent iff |u ∩ v| is
odd. It is easy to see that (for even r) this graph can be represented by a depth-2 circuit

r⊕
i=1

∨
v∈Si

xv (2.2)

with Si = {v : i 6∈ v}. Indeed, u and v are adjacent in S(n) iff |u∩ v| is odd iff r− |u∩ v|
is odd iff the number of sets Si containing at least one of u and v is odd iff the number
of clauses

∨
v∈Si xv accepting uv is odd. Again, the representation is quite compact: the

circuit has only 1 r+ 1 = log(2n) gates (r OR gates and one Parity gate of fanin r+ 1).
On the other hand, each Hadamard graph (including the graph S(n)) is “combinatorially
complicated” because, as shown in [36] (see also [35]), it contains an induced subgraphs
on
√
n vertices which is Ramsey, meaning that it does not contain cliques or independent

sets of size ω(log n). By setting the corresponding variables in the circuit (2.2) to 0, we
obtain that this Ramsey graph can be represented by a depth-2 circuit of size O(log n).

Razborov in [39] developed a general probabilistic machinery allowing to show that a
whole string of other “combinatorially complicated” n-vertex graphs can be represented
by constant-depth circuits using a small (polynomial in log n) number of unbounded
fanin AND and Parity gates (see Lemma 8.1 below).

1 All logarithms in this paper are to the basis of 2.
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On the other hand, some “combinatorially simple” graphs—like an n to n matching
Mn (a set on n vertex disjoint edges) or its complement—cannot be represented by
depth-2 circuits using fewer than Ω(n) gates. If a graph G is represented by a depth-2
circuit of the form (2.1) with top fanin r then its complement is just a union of r cliques.
Hence, r = Ω(n) for any such circuit representing Mn. High lower bounds for depth-2
circuits of the form (2.2) can be obtained via simple rank argument: every such circuit
representing a graph G must have size at least rk(G)/2 where rk(G) is the rank over
GF (2) of the adjacency matrix of G (just because each graph represented by an OR gate
is a complement of a clique, and hence, has rank at most 2). Hence, r = Ω(n) for any
circuit of the form (2.2) representing Mn.

3. Depth-3 circuits with Parity gates

We have just seen that proving high lower bounds for depth-2 circuits is an easy task.
However, already the case of depth-3 circuits turns out to be much more difficult. And
this is not surprising because, as we already mentioned above, lower bounds on the size
of monotone Σ3 circuits of the form nε (where ε may even tend slowly to 0) would resolve
some old problems in computational complexity.

Pudlák, Rödl and Savický [36] asked whether dense C4-free bipartite graphs could be
good candidates. In a somewhat weaker (but still enough to imply super-linear lower
bounds for log-depth circuits) form their question can be stated as follows.

Problem 3.1. Is there a constant c > 0 such that every bipartite C4-free n× n graph
with M edges requires monotone Σ3 circuits of size at least (M/n)c?

In this section we show that this question has an affirmative answer for a modified
version of Σ3 circuits where Parity gates (instead of OR gates) are used on the bottom
level; we call such circuits Σ⊕3 circuits. Such a circuit of top fanin s and middle fanin r

is just an OR of s boolean functions, each of which is a product of r linear forms over
GF (2):

s∨
i=1

r∧
i=1

⊕
u∈Sij

xu ⊕ λij

where λij ∈ {0, 1}. The top fanin is the fanin s of the last OR gate, i.e. the number of
AND gates. If all scalars λij are equal 0, the circuit is positive.

Remark 3.2. If we would require that the top gate of a circuit must also be a Parity
gate (not an OR gate), then truly exponential lower bounds 2Ω(m) for such version of Σ⊕3
circuits could be obtained using the algebraic (approximation by low-degree polynomials)
techniques of [37, 40, 15]. However, these techniques seem incapable of proving truly
exponential lower bounds for Σ⊕3 circuits themselves because, in this case, we would be
forced to approximate the top OR gate as well, which would invariably result in the
square root 2Ω(

√
m) in the final bound.



On graph complexity 7

In what follows, Ka,b denotes a biclique (bipartite clique, complete bipartite graph)
A×B, A ∩B = ∅ with parts of size a = |A| and b = |B|.

Theorem 3.3. Let G ⊆ U × W be a bipartite n × n graph. If G contains no copy
of Ka,b, then any Σ⊕3 circuit representing G (and hence, any Σ⊕3 circuit computing the
characteristic function of G) has top fanin at least

|G|
(a+ b)n

.

To prove the theorem, we first give a combinatorial characterisation of the top fanin
of Σ⊕3 circuits and then give a general lower bound on this characteristic.

A fat matching is a union of vertex-disjoint bipartite cliques (these cliques need not
to cover all vertices). A fat covering of a graph G is a family of fat matchings such that
each of these fat matchings is a subgraph of G and every edge of G is an edge of at least
one member of the family. Let fat(G) denote the minimum number of fat matchings in
a fat covering of G. This measure was also considered by several authors, [10, 13, 2, 34]
among others (fat matchings are often called “equivalence graphs”). In particular, it is
known that fat(G) = O(n/ log n) for every n-vertex graph [34].

Lemma 3.4. For every bipartite graph G ⊆ U ×W , fat(G) equals to the minimum top
fanin of a Σ⊕3 circuit representing G.

Proof. First note that in the case of graphs we can safely restrict ourselves to positive
circuits, because

⊕
u∈A∪B xu with A ⊆ U and B ⊆ W represents the same graph as

1⊕
⊕

u∈A∪B xu.
Let g =

⊕
v∈A∪B xv be a gate on the bottom level of a Σ⊕3 circuit representing G. Then

g represents a fat matching (A×B) ∪ (A×B) where A = U \A and B = W \B. Since
the intersection of any number of fat matchings is a fat matching, each AND gate on the
middle level represents a fat matching. Hence, if the circuit has top fanin s, then the OR
gate on the top represents a union of these s fat matchings, implying that s ≥ fat(G).

To show that G can be represented by a Σ⊕3 circuit of top fanin fat(G), let M =⋃r
i=1Ai × Bi be a fat matching. If A =

⋃r
i=1Ai and B =

⋃r
i=1Bi, then M is an

intersection of A × B with r fat matchings of the form Hi = Ai × Bi ∪ Ai × Bi. Since
A× B can be represented by an AND of two Parity gates

⊕
u∈A xu and

⊕
v∈B xv, and

each Hi can be represented by the Parity gate
⊕

v∈Ai∪Bi xv, every fat matching can be
represented by an AND of Parity gates. Hence, every graph G can be represented by a
Σ⊕3 circuit of top fanin fat(G).

Lemma 3.5. Let G ⊆ U ×W be a bipartite n×n graph. If G contains no copy of Ka,b

then

fat(G) ≥ |G|
(a+ b)n

.

Proof. Let H =
⋃t
i=1Ai × Bi be a fat matching, and suppose that H ⊆ G. By the
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definition of a fat matching, the sets A1, . . . , At, as well as the setsB1, . . . , Bt are mutually
disjoint. Moreover, since G contains no copy of Ka,b, we have that |Ai| < a or |Bi| < b

for all i. Hence, if we set I = {i : |Ai| < a}, then

|H| =
t∑
i=1

|Ai ×Bi| =
t∑
i=1

|Ai| · |Bi| ≤
∑
i∈I

a · |Bi|+
∑
i 6∈I

|Ai| · b ≤ (a+ b)n.

Thus, no fat matching H ⊆ G can cover more than (a + b)n edges of G, implying that
we need at least |G|/(a+ b)n fat matchings to cover all edges of G.

There are many explicit bipartite n×n graphs which are dense enough and do not have
large bicliques. Theorem 3.3 immediately yields truly exponential lower bounds (i.e. lower
bounds of the form 2Ω(m)) on the top fanin of Σ⊕3 circuits computing the characteristic
functions of these graphs; recall that these functions have only 2m = 2 log n variables.
Here we restrict ourselves with few examples.

The disjointness function is a boolean function DISJ2m in 2m variables such that

DISJ2m(y1, . . . , ym, z1, . . . , zm) = 1 if and only if
m∑
i=1

yizi = 0.

Corollary 3.6. Every Σ⊕3 circuit computing DISJ2m has top fanin 2Ω(m).

Proof. The function DISJ2m is the characteristic function of the Kneser-type bipartite
graph K(m) ⊆ U ×V where U and W consist of all n = 2m subsets of [m] = {1, . . . ,m},
and uv ∈ K(m) iff u ∩ v = ∅. The graph K(m) can contain a complete bipartite a × b
subgraph ∅ 6= A × B ⊆ K only if a ≤ 2k and b ≤ 2m−k for some 0 ≤ k ≤ m, because
then

(⋃
u∈A xu

)
∩
(⋃

v∈B xv
)

= ∅. In particular, K(m) can contain a copy of Ka,a only
if a ≤ 2m/2 =

√
n. Since this graph has

|K(m)| =
∑
u∈U

d(u) =
∑
u∈U

2m−|u| =
m∑
i=0

(
m

i

)
2m−i = 3m ≥ n1.58

edges, Theorem 3.3 yields that any Σ⊕3 circuit representing K(m)—and hence, any Σ⊕3
circuit computing DISJ2m—must have top fanin at least |K(m)|/(2an) = Ω(n0.08) =
2Ω(m).

Remark 3.7. In the context of boolean functions, Σ⊕3 circuits cannot be efficiently
simulated by Σ3 circuits: the Parity function x1⊕x2⊕· · ·⊕xm has an obvious Σ⊕3 circuit
of size 1, whereas (as shown in [19]) this function requires Σ3 circuits of size 2Ω(

√
m). It

may be, therefore, interesting to note that in the context of graphs the situation is entirely
different: if a graph can be represented by a Σ⊕3 circuit of size L then G can be represented
by a monotone Σ3 circuit of size at most 2L. This holds because we can just replace each
parity gate

⊕
u∈S xu on the bottom level by an AND

(∨
u∈S xu

)
∧
(∨

u6∈S xu

)
of two

OR gates; the obtained monotone Σ3 circuit will represent the same graph. Moreover,
the graph K(m) shows that Σ⊕3 circuits may be even exponentially weaker : this graph
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can be represented by a monotone Σ3 circuit of size O(log n) (see (2.1)) but requires Σ⊕3
circuits of size at least Ω(nε).

A prominent example of a dense bipartite graph without K2,2 was constructed by
Erdős and Rényi [11]: this is the incidence n×n graph Pn ⊆ U ×W of a projective plane
PG(2, q) of order q (n = q2 + q + 1). This graph is (q + 1)-regular and has no copies of
K2,2. According to the well-known construction of PG(2, q) (which can be found in any
textbook on finite geometries), the characteristic function π2m of Pn is just the boolean
version of the function f : GF (q)6 → {0, 1} defined by: f(x, y, z, a, b, c) = 1 if and only
if ax+ by + cz = 0 modulo q. Since the graph Pn has Ω(n3/2) edges, Theorem 3.3 yields

Corollary 3.8. Every Σ⊕3 circuit computing π2m has top fanin Ω(2m/2).

For every constant a > 1 explicit constructions of n×n graphs (so-called norm-graphs)
with Ω(n2−1/a) edges and no copies of Ka,a!+1 were found by Kollár, Rónyai and Szabó
in [27]; explicit graphs without Kr,s but for somewhat larger values of r and s were
earlier constructed by Andreev [5]. For the characteristic functions fa2m of these graphs,
Theorem 3.3 yields

Corollary 3.9. For every constant a > 1, every Σ⊕3 circuit computing fa2m has top
fanin Ω(2m−1/a).

The only previously known truly exponential lower bound for Σ⊕3 circuits we are aware
of was proved by Grolmusz [16] for the Inner Product function

IP2m(y1, . . . , ym, z1, . . . , zm) =
m∑
i=1

yizi (mod 2).

Quite recently Pudlák and Rödl [35] have also proved such a lower bound for the charac-
teristic functions of certain pseudorandom sets. Both proofs employ non-trivial facts—the
probabilistic communication complexity of IP in [16] and some properties of pseudoran-
dom sets in [35].

Actually, the lower bounds in [16] and [35] were proved for a more general model of Σ⊕3
circuits: instead of an OR gate they allow an arbitrary threshold gate on the top level.
(Recall that a threshold-k function accepts an input iff it contains at least k 1’s.) Let us
show that lower bounds for this extended model can be proved in the context of graphs
as well.

At this point, it is worth to note that in some cases it can even make sense to reprove
known lower bounds for boolean functions in the frame of graphs. For example, reproving
known lower bound 2Ω(

√
m) for Σ3 circuits—or even proving a much weaker lower bound

2(logm)ω(1)
—in the graph-theoretic frame would give us a graph outside the second level

of the communication complexity hierarchy introduced in [6] (see Problem 8.3 below).

Corollary 3.10. Any Σ⊕3 circuit which has an arbitrary threshold gate on the top and
represents an n× n Hadamard graph must have top fanin Ω(

√
n).
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Since the inner product function IP2m is the characteristic function of an Hadamard
n×n graph Hn with n = 2m, Corollary 3.10 and the Magnification Lemma immediately
yield a lower bound Ω(2m/2) for IP2m in this (more general than Σ⊕3 ) class of circuits.

For the proof of Corollary 3.10 we need the so-called “discriminator lemma” for thresh-
old gates (used also in [16, 35]). Let B be a family of subsets of a finite set X. For a
subset A ⊆ X, let thrB(A) denote the minimum number t for which there exist t mem-
bers B1, . . . , Bt of B and a number 0 ≤ k ≤ t such that, for every x ∈ X, x ∈ A if and
only if x belongs to at least k of Bi’s. A set A is an ε-discriminator for a set B if∣∣∣∣ |A ∩B||A|

− |A ∩B|
|A|

∣∣∣∣ ≥ ε.
Lemma 3.11. ([17]) If thrB(A) ≤ t then A is a 1/t-discriminator for some B ∈ B.

Proof. Let B1, . . . , Bt ∈ B be a threshold-k covering of A, i.e. x ∈ A iff x belongs to
at least k of Bi’s. Our goal is to show that then A is a 1/t-discriminator for at least one
Bi. Since every element of A belongs to at least k of the sets A ∩Bi, the average size of
these sets must be at least k. Since no element of A belongs to more than k − 1 of the
sets A ∩Bi, the average size of these sets must be at most k − 1. Hence,

1 ≤
t∑
i=1

|A ∩Bi|
|A|

−
t∑
i=1

|A ∩Bi|
|A|

≤ t · max
1≤i≤t

∣∣∣∣ |A ∩Bi||A|
− |A ∩Bi|

|A|

∣∣∣∣ .

Proof of Corollary 3.10. Let A be an n×n Hadamard graph. Lindsey’s lemma (see,
e.g. [3] or [6]) says that the absolute value of the difference between the number of +1′s
and −1′s in any a× b submatrix of A is at most

√
abn. Since both A and A have Θ(n2)

edges, by Lemmas 3.4 and 3.11, it is enough to show that
∣∣|A ∩B| − |A ∩B|∣∣ = O(n3/2)

for every fat matching B =
⋃t
i=1 Si × Ri. By Lindsey’s lemma, the absolute value of

the difference between |A∩ (Si ×Ri)| and |A∩ (Si ×Ri)| does not exceed
√
sirin where

si = |Si| and ri = |Ri|. Since,
∑t
i=1 si ≤ n and

∑t
i=1 ri ≤ n, we obtain∣∣∣∣|A ∩B| − |A ∩B|∣∣∣∣ =

∣∣∣∣ t∑
i=1

|A ∩ (Si ×Ri)| −
t∑
i=1

|A ∩ (Si ×Ri)|
∣∣∣∣

≤
t∑
i=1

√
sirin ≤

√
n

t∑
i=1

si + ri
2

≤ n3/2.

4. A tradeoff for Σ3 circuits

We now use the graph theoretic frame to prove a trade-off between top and middle
fanins in Σ3 circuits, where middle fanin of a circuit is the maximum fanin of a gate in
the middle level.
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Theorem 4.1. If IP2m is computed by a Σ3 circuit with top fanin s and middle fanin r,
then both s2r and rs must be at least Ω(2m).

A trade-off sr = Ω
(
m3/(logm)5

)
between these parameters for IP2m was recently

proved by Lokam [28] (also using a graph-theoretic frame). The trade-off in Theorem 4.1
is better only if one of the parameters r or s is at most mε—the second parameter must
then be at least 2Ω(m1−ε).

A clique covering of a graph G is a family of complete subgraphs of G such that every
edge of G is an edge of at least one member of the family; if the graph G is bipartite,
then we take complete bipartite subgraphs. The minimum number of such subgraphs is
known as the (bipartite) clique covering number, and is denoted by cc(G). This measure
was first studied by Erdős, Goodman and Pósa [12], and now is the subject of extensive
literature. A complement of a graph G is the graph G on the same set of vertices whose
edges are non-edges of G and vice versa.

Since, by Lindsey’s lemma, the clique covering number of an n × n Hadamard graph
and of its complement is Ω(n), Theorem 4.1 follows directly from the following lemma.

Lemma 4.2. If a bipartite graph G can be represented by a monotone Σ3 circuit of
middle fanin r and top fanin s, then cc(G) ≤ s2r and cc(G) ≤ rs.

Proof. Take a monotone Σ3 circuit of middle fanin at most r and top fanin s, and let
G ⊆ U ×W be the bipartite graph represented by this circuit. Each gate g =

∨
i∈S xi on

the bottom level represents a (bipartite) complement of a bipartite clique A×B, where
A = U \ S and B = W \ S. Each such complement is a union of two bipartite cliques
A×B and A×W . Since the intersection of any number of bipartite cliques is a (possibly
empty) bipartite clique, each AND gate on the middle level represents a union of at most
2r bipartite cliques. Since G is a union of s such graphs, we have cc(G) ≤ s2r.

To prove cc(G) ≤ rs, observe that G is an intersection of s graphs H1, . . . ,Hs, each of
which is a union of r bipartite cliques. Since the intersection of any number of bipartite
cliques is a bipartite clique, we have cc(G) ≤

∏s
i=1 cc(Hi) ≤ rs.

5. Σ3 circuits and the clique covering number

In this section we give a combinatorial characterisation of graphs represented by mono-
tone Σ3 circuits. Recall that each such circuit of size t is an OR of at most t monotone
CNFs of length t, where a monotone CNF conjunctive normal form) of length t is an
AND

(∨
u∈S1

xu
)
∧ · · · ∧

(∨
u∈St xu

)
of t clauses, each of which is an OR of variables.

Let cnf(G) denote the minimum length of a monotone CNF representing G. This
measure can be described combinatorially in terms of the clique covering number as well
as in terms of set-intersections.

A graph G admits an intersection representation of size t if each vertex u can be
associated with a subset Au ⊆ {1, . . . , t} such that Au ∩ Av = ∅ if uv is an edge, and
Au∩Av 6= ∅ if uv is a non-edge of G. Let int(G) denote the smallest t for which G admits
such a representation.
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Proposition 5.1. For every graph G = (V,E) we have cnf(G) = cc(G) = int(G).

Proof. An OR of variables
∨
u∈S xu with S ⊆ V represents a complement of a clique

(complete graph) on V \ S, and each such complement can be represented by an OR
gate. Hence, a graph G can be represented by a CNF of length t iff G is an intersec-
tion of complements of t complete graphs, or equivalently, iff the complement G can be
represented as a union of t cliques, implying that cnf(G) = cc(G).

The equality cc(G) = int(G) is also easy to show; it was observed already in [12]. Given
an intersection representation of G by subsets Au of {1, . . . , t}, the t sets Ii = {u : i ∈ Au}
are independent and cover all non-edges of G. On the other hand, given a covering of the
non-edges of G by independent sets I1, . . . , It, one can take Au = {i : u ∈ Ii}.

Using the intersection representation of graphs, it may be easily shown that some
simple graphs (like an n to n matching Mn) have short CNFs. For example, to show that
cnf(Mn) = O(log n), let t = 2 log n and associate with each vertex ui on the left side its
own (t/2)-element subset Ai of {1, . . . , t}, and assign to the unique matched vertex vi on
the right side the complement Bi = Ai of this subset. It is clear that then Ai ∩ Bj = ∅
iff i = j. Hence, cnf(Mn) = int(Mn) ≤ t = 2 log n.

Remark 5.2. The same argument as for Mn yields an upper bound cnf(H) = O(log n)
for every n × n fat matching H. Hence, in the case of graphs, Σ⊕3 circuits are no more
powerful than monotone Σ3 circuits with logarithmic middle fanin.

By Proposition 5.1, the number cov(G) (defined in the introduction) is precisely the size
(the maximum of the top and middle fanins) of a monotone Σ3 circuit representingG. The
equality cnf(G) = int(G) gives an equivalent algebraic characterisation of this number:

cov(G) = smallest number t such that each vertex u can be associated with a t× t 0-1
matrix Au so that uv ∈ G iff the product AuA>v has at least one 0 on the
diagonal.

Since we have only 2t
2

such matrices, we can encode at most 22nt2 of all 2n
2

bipartite
n × n graphs; hence, cov(G) = Ω(n1/2) for almost all graphs. This also yields that
cov(G) = Ω

(
(log n)1/2

)
for every graph, in which no two vertices have the same set of

neighbours (we need different matrices for different vertices). An explicit graph G with
cov(G) ≥ nε for some constant ε > 0 would resolve some old problems in computational
complexity. However, so far we do not know of any lower bound substantially larger
than log n. Logarithmic lower bounds Ω(log n) are easy to obtain (take, e.g. an n to n

matching), and the best what we know so far is a slightly larger lower bound of the order
(log n)3/2−o(1) proved by Lokam in [28] for an Hadamard graph.

Proposition 5.1, together with an obvious observation that every bipartite clique A×B
can be represented by a CNF consisting of two clauses

∨
u∈A xu and

∨
v∈B xv, gives an

upper bound:

cov(G) ≤ min
{

cc(G), cc(G)
}
. (5.1)
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A general upper bound on cov(G) for graphs of small degree can be obtained from
Proposition 5.1 and the following result.

Theorem 5.3 (Alon [2]). For every n-vertex graph G of maximal degree d, cc(G) =
O(d2 log n).

Hence, if G has maximum degree d, then cnf(G) = O(d2 log n). In particular, every
graph of constant degree can be represented by a monotone CNF of logarithmic length.
This also implies an upper bound cov(G) = O(d2/3 log n): simply break G into d2/3

subgraphs of maximal degree d1/3 each.

6. Σ3 versus Π3 circuits

As mentioned above, no explicit n-vertex graphs requiring monotone Σ3 circuits of size
(log n)ω(1) are known. On the other hand, if we replace the ANDs by ORs and vice versa,
then the situation is much easier. The obtained “dual” circuits are known as Π3 circuits
and have the form:

s∧
i=1

r∨
j=1

∧
v∈Sij

xv;

by the size of such a circuit we again mean max{s, r}.
It is worth to mention that, in the context of boolean functions, proving lower bounds

for Σ3 circuits is the same as proving lower bounds for the dual model of Π3 circuits: if
a function is hard in the former model then its negation is hard in the later. However,
the following theorem shows that in the context of graphs the situation is different: if a
graph is hard for (monotone) Π3 circuits, then we cannot conclude that its complement
must be also hard for (monotone) Σ3 circuits.

Theorem 6.1. Let Mn be an n to n matching. Then both the graph Mn and its comple-
ment Mn can be represented by monotone Σ3 circuits of size O(log n), but every monotone
Π3 circuit representing Mn must have size at least Ω(

√
n).

A larger lower bound on the size of monotone Π3 circuits can be obtained for Hadamard
graphs.

Theorem 6.2. Every monotone Π3 circuit representing an Hadamard graph of oder n
must have size at least Ω(n2/3).

We derive both theorems from the following property of graphs represented by mono-
tone Π3 circuits.

Lemma 6.3. Suppose that a bipartite graph G can be represented by a monotone Π3

circuit of size t. Then it is possible to add to G a set E of |E| ≤ t2 edges so that
cc(G ∪ E) ≤ t.
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Proof. Suppose that a graphG ⊆ U×W can be represented by a monotone Π3 circuit of
size t. Such a circuit is an AND of at most t monotone DNFs D1, . . . , Dt, each containing
at most t monomials (ANDs of variables). Since we are interested in the behaviour of the
circuit only on arcs (edges and non-edges), we may assume that none of these monomials
contains more than two variables. Hence, each of the DNFs

Di =
∨
u∈Si

xu ∨
∨

uv∈Fi

xuxv

accepts some set Si ⊆ U∪W of vertices and some set Fi of |Fi| ≤ t arcs. Let E =
⋃t
i=1Ei

where Ei = Fi∩G is the set of edges of G accepted by the i-th DNF; hence, |E| ≤ t2. We
may assume that the set G\E of remaining edges is non-empty, since otherwise we would
have E = G, meaning that G ∪ E is just a complete graph. By what was said, the CNF(∨

u∈S1
xu
)
∧· · ·∧

(∨
u∈St xu

)
must represent the graph G\E. Hence, by Proposition 5.1,

cc(G ∪ E) = cc(G \ E) = cnf(G \ E) ≤ t.

Proof of Theorem 6.1 We already know (see Section 5) that both Mn and Mn have
monotone Σ3 circuits of size O(log n). So, it remains to show that Mn requires large
monotone Π3 circuits.

Let t be the minimum size of a monotone Π3 circuit representing Mn. Then, by
Lemma 6.3, it must be possible to add a set E of |E| ≤ t2 edges to the matching Mn

so that the resulting graph Mn ∪ E can be covered by at most t bicliques. At least one
of these bicliques, say A×B, must contain at least |Mn|/t = n/t edges of the matching
Mn. But this means that |E ∩ (A × B)| ≥ (n/t)2 − (n/t). Together with |E| ≤ t2 this
implies that t must satisfy the inequality (n/t)2− (n/t) ≤ t2, that is, t4 ≥ n2− tn, which
implies t = Ω(

√
n).

Proof of Theorem 6.2 Let t be the minimum size of a monotone Π3 circuit repre-
senting a bipartite n × n Hadamard graph H = Hn. We may assume that t ≤ n/16,
for otherwise there is nothing to prove. We will use the known fact that any Hadamard
graph contains about the same number of edges and non-edges; in particular, both |H|
and |H| are at least n2/4.

By Lemma 6.3, there is a set E of |E| ≤ t2 edges such that the graph H ∪ E can be
covered by at most t bicliquesR1, . . . , Rt, that is,H∪E = R1∪· · ·∪Rt. LetN = |H| be the
total number of non-edges in H (hence, N ≥ n2/4) and take a biclique R ∈ {R1, . . . , Rt}
containing the largest number of non-edges of H; hence, N0 := |R ∩ H| ≥ N/t. Let
N1 := |R ∩ H| be the number of edges of H lying in R. Since R ∩ H can contain only
edges from E, we have that N1 ≤ |E| ≤ t2. On the other hand, by Lindsey’s lemma,
|N1 − N0| ≤

√
n|R|, implying that N1 ≥ N0 −

√
n|R|. Remembering that N1 + N0 =

|R| ≥ N/t ≥ n2/4t ≥ 4n, we obtain

2N1 ≥ |R| −
√
n|R| = |R|

(
1−

√
n

|R|

)
≥ N

2t
,

that is, N1 ≥ N/(4t). Together with N1 ≤ t2, this implies that t3 ≥ N/4. Thus, t must
be at least (N/4)1/3 ≥ (n2/16)1/3 = Ω(n2/3).
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7. Boolean formulas

In this section we consider circuits of arbitrary depth with unbounded fanin AND and
OR gates; as before, inputs are literals (variables and their negations). A formula is a
circuit with all gates having fanout 1, i.e. the underlying graph in this case is just a tree.
The length of a formula is the number of input literals.

Given a boolean function f and a graph G, let L(f) (resp., L+(f)) be the minimum
length of a formula (resp., monotone formula) computing f , and L+(G) the minimum
length of a monotone formula representing G.

If F is a formula computing the characteristic function f (in 2m variables) of a bipartite
n×n graphG (with n = 2m) then, by the Magnification Lemma, we can replace each input
literal in F by a monotone formula of length at most n (computing the corresponding
OR of variables) so that the resulting monotone formula recognises G. Thus,

L(f) ≥ L+(G)/n.

Easy counting shows that L+(G) = Ω(n2/ log n) for most n× n graphs G. Pudlák, Rödl
and Savický have proved in [36] that L+(G) = Ω(n log(n/a)) for any n × n graph G

such that neither G nor its complement contains a copy of Ka,a. But, so far, no explicit
graph with L+(G) = Ω(n log3 n) is known. Such a graph would improve the strongest
currently known lower bound Ω(m3−o(1)) on the (non-monotone) formula length of an
explicit boolean function in m variables [20].

The reason, why it is difficult to show that a given graph G = (V,E) cannot be
represented by a short (monotone!) formula F , is that we only know that the formula
must behave correctly on the 2-element subsets of vertices: for all S ⊆ V with |S| ≤ 2

F (S) = 0 if and only if S is an independent set in G. (7.1)

On larger sets the formula may output arbitrary values. In particular, it can accept
independent sets of size k ≥ 3.

In this section we look what happens if we require that the formula F must reject
independent sets only up to some size k ≥ 2. That is, this time we require that (7.1)
must hold for all subsets S ⊆ V of size |S| ≤ k. Note that the quadratic function

fG(X) =
∨
uv∈E

xuxv

rejects all independent sets of G, but the corresponding formula has length 2|E|. Can
we essentially decrease the length of the formula by relaxing this condition and requiring
that it must reject only independent sets up to some size k for k < n? Using a rank-
argument it can be shown that, for some graphs, this is not possible unless k is smaller
than two times the maximal degree of G.

Theorem 7.1. Let G = (V,E) be a triangle-free graph without 4-cycles and of maximal
degree d. Let f be a monotone boolean function which accepts all edges and rejects all
independent sets of G of size at most 2d. Then L+(f) ≥ |E|/2. In particular, L+(fG) =
Θ(|E|).
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Proof. We look at vertices as one element and edges as two element sets. For a vertex
y ∈ V , let Iy be the set of its neighbours. For an edge y ∈ E, let Iy be the set of all
its proper neighbours; that is, v ∈ Iy precisely when v 6∈ y and v is adjacent with an
endpoint of y. Since G has no triangles and no 4-cycles, the sets Iy are independent
sets of size at most 2d, and must be rejected by f . We will concentrate only on these
independent sets.

Let M be a matrix whose rows correspond to edges x ∈ E, columns to vertices and
edges y ∈ V ∪ E, and

Mx,y = x \ Iy.
A rectangle in M is a submatrix A× B ⊆ M with the property that there is a vertex v
such that

v ∈ x \ Iy for all x ∈ A and y ∈ B;

we call v a common element of the rectangle. Let R be a smallest possible set of mutually
disjoint rectangles covering the whole matrix M . It is well known that every monotone
formula computing f has length at least |R| (see [38, 22]). Hence, it remains to prove
that |R| ≥ |E|/2.

To do this, re-fill the entries of M with constants 0 and 1 by the following rule:

Mx,y = 1 if and only if x ∩ y 6= ∅ (7.2)

Let R = A×B be a rectangle in R, and let v be its common element. Then v ∈ x for all
edges x ∈ A and v 6∈ Iy for all y ∈ B. Hence, for each y ∈ B, the corresponding column
in R is either the all-1 column (if v ∈ y) or the all-0 column (if v 6∈ y) because in this
last case the second endpoint of x cannot belong to y (for otherwise, the first endpoint
v would belong to Iy). Thus, either the rectangle R is monochromatic or we can split it
into two monochromatic rectangles. In this way we obtain a covering R′ of M by at most
2|R| mutually disjoint monochromatic rectangles. To estimate their number we use the
rank argument. Let rk(M) stand for the rank of M over GF (2). Since the rectangles in
R′ are mutually disjoint and have rank 1, it follows that |R′| ≥ rk(M). Hence, it remains
to prove that M has full row-rank over GF (2).

Take an arbitrary subset ∅ 6= F ⊆ E of edges. We have to show that the rows of the
submatrix MF of M corresponding to the edges in F cannot sum up to the all-0 row over
GF (2). If F is not an even factor, that is, if the number of edges in F containing some
vertex v is odd, then the column of v in MF has an odd number of 1’s, and we are done.
Hence, we may assume that F is an even factor. Take an arbitrary edge y = uv ∈ F ,
and let H ⊆ F be the set of edges in F incident to at least one endpoint of y. Since
both vertices u and v have even degree (in F ), the edge y has a nonempty intersection
with an odd number of edges in F : one intersection with itself and an even number of
intersections with the edges in H \ {y}. Hence, the colum of y in MF contains an odd
number of 1’s, as desired.

For the incidence n× n graph Pn of a projective plane PG(2, q), Theorem 7.1 yields

Corollary 7.2. L+(fPn) = Θ(n3/2).
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Note that if we would only know that the formula must reject non-edges (independent
sets of size 2)—the case interesting in the context of boolean functions—then the same
rank argument with the matrix M defined by the rule (7.2) would not work. In this case
we would have that Mx,y = 1 if and only if |x ∩ y| = 1 (edge and non-edge can share at
most one vertex). That is, M would be just a matrix of scalar products (over the reals)
of the characteristic vectors of edges x and non-edges y, and (even over the reals) the
rank of M would not exceed n.

8. Open problems

In the context of this paper the most interesting (and, perhaps, most realistic) problem
remains to prove that some explicit graph requires large monotone Σ3 circuits. Since,
by Eq. (5.1), both the graph and its complement must then have large clique covering
number, graphs with good Ramsey properties could (apparently) be possible candidates
for this purpose. Say that a (bipartite) graph is (a, b)-Ramsey if it contains no copy of Ka

(resp., Ka,a) and its complement contains no copy of Kb (resp., Kb,b). An indication that
(a, b)-Ramsey graphs with both parameters a and b small (say, logarithmic in n) may be
not good enough is given by the following result about the power of depth-3 circuits. In
terms of graphs, this result can be stated as follows.

Let G(m, r) be a random graph on V = {1, . . . , n} represented by a random depth-3
formula of the form

r⊕
i=1

m∧
j=1

n⊕
k=1

(λijkxk ⊕ λij) (8.1)

where {λijk, λij} are independent random variables uniformly distributed in {0, 1}.

Lemma 8.1 (Razborov [39]). Let H be a graph on k vertices. If
(
k
2

)
≤ 2m−1, then

G(m, r) contains a copy of H as an induced subgraph with probability at most(
n

k

)[
2−(k2) + e−r/2

m
]
.

By this lemma, some (a, b)-Ramsey graphs with a = b = Θ(log n) can be represented
by depth-3 circuits (8.1) of poly-logarithmic size. Together with Theorem 3.3, this also
shows that using a Parity gate (instead of an OR gate) on the top of Σ⊕3 circuits may
exponentially increase the power of such circuits. Note, however, that Lemma 8.1 does
not work for (a, b)-Ramsey graphs if one of the parameters a or b is,say, constant, just
because then the term 2−(k2) = Ω(1) is too large. Thus, dense bipartite C4-free graphs—
like the plane graph Pn, which is (a, b)-Ramsey with a = 2 and b = O(n3/4) [3]—could
still be good candidates. Explicit constructions of (non-bipartite) (a, b)-Ramsey graphs
with a = 3 and b = O(n2/3) are also known [4]; moreover, these graphs are d-regular
with d = Θ(n2/3). It would be interesting to know whether such graphs are hard for Σ3

circuits (cf. Problem 1 in [39]).
We known (see Example 2) that the Sylvester graph H = S(n) can be represented by

a depth-2 circuit of the form
⊕r

i=1

∨
v∈Si xv with r = O(log n) gates. Although small,



18 S. Jukna

this circuit uses a Parity gate and it remains not clear what is the Σ3 circuit complexity
of this graph and, in particular, what is cov(H). The characteristic function of H (the
Inner Product function) can be computed by a trivial circuit of linear size and logarithmic
depth. Together with Valiant’s result (mentioned in Introduction) this implies that H can
be represented by a monotone Σ3 circuit using no(1) gates. On the other hand, Lokam
[28] has proved that Ω

(
(log n)3/(log log n)5

)
gates are necessary.

Problem 8.2. Does cov(H) = exp
(
ω(
√

log n)
)
?

If true, this would imply that the Inner Product function IP2m requires Σ3 circuits of
size 2ω(

√
m), thus improving the highest known lower bound 2Ω(

√
m) for such circuits.

Another interesting question is to find graphs whose complements can be represented
by depth-3 circuits of much smaller size. Let E be the set of all bipartite n × n graphs
representable by monotone Σ3 circuits of size exp

(
(log log n)O(1)

)
. Let co−E be the set

of complements of graphs from E .

Problem 8.3. Prove that E 6= co−E .

This would separate the second level of the communication complexity hierarchy in-
troduced by Babai, Frankl and Simon in [6], and hence, resolve a long-standing open
question in communication complexity. Note that in the case of Π3 circuits this problem
has a positive solution: an n to n matching Mn can be represented by a monotone Π3

circuit (in fact, by a CNF) of size O(log n), but any such circuit for Mn requires size
Ω(
√
n) (see Theorem 6.1).

As we have shown in Section 5, the size of Σ3 circuits can be characterised using
the intersection representation of graphs. Good lower bounds on the following related
measure would also resolve an old question in boolean circuit complexity.

d(G) =df minimal number d for which there exists a set L ⊆ {0, 1, . . .} of integers such
that each vertex u can be associated with a subset Au ⊆ {1, . . . , d} so that two
vertices u and v are adjacent in G if and only if |Au ∩Av| ∈ L.

Hence, d(G) ≤ int(G) because int(G) is a special case of this measure for L = {0}.
Again, by standard counting, d(G) = Ω(n) for almost all bipartite n × n graphs G.
Graphs G with d(G) = Ω(log n) are also easy to find—such is, for example, an n to n

matching Mn. For some subsets L, high lower bounds are also easy to obtain. Say, if
L = {ip : i = 0, 1, . . .} for some prime power p, then d(Mn) = Ω(n) can be shown by an
easy linear algebra argument. The difficult thing therefore is to do this for all possible
choices of L.

Problem 8.4. Exhibit a bipartite n× n graph G with d(G) = exp
(
(log log n)ω(1)

)
.

Together with the Magnification Lemma and the results of Yao [43], and Beigel and
Tarui [7], this would yield a super-polynomial lower bound for so-called ACC circuits
computing the characteristic function of G. Such circuits have unbounded fanin AND,
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OR and MODk gates, where MODk(x1, . . . , xm) = 1 iff x1 + . . . + xm = 0 modulo k.
When k is a prime power, exponential lower bounds for such circuits were proved by
Razborov [39] and Smolensky [40]. However, the case of composite moduli k—even the
case of circuits with AND, OR and MOD6 gates—remains widely open.

A more ambitious task is to prove non-trivial lower bounds on the projective and/or
affine dimensions of graphs. Given a field F , these measures are defined by:

pdimF (G) =df minimal d such that each vertex u can be associated with a projective
subspace Au of F d such that uv ∈ G iff Au ∩Av 6= {0};

adimF (G) =df minimal d such that each vertex u can be associated with an affine sub-
space Au of F d such that uv ∈ G iff Au ∩Av 6= ∅.

These measures were introduced, respectively, by Pudlák and Rödl [33], and by Raz-
borov [38] as a tool to prove lower bounds for branching programs and formulas: if G is
a bipartite graph and f is its characteristic function f , then L(f) ≥ adimF (G) ([38]),
and pdimF (G) is a lower bound on the size of branching programs computing f ([33]).
Karchmer and Wigderson [23] have shown that adimF (G) is also a lower bound on the
size of span programs computing f . In order to improve the best known lower bounds
for these models we need an explicit bipartite graph G with pdimF (G) = Ω

(
log2 n

)
and/or with adimF (G) = Ω

(
log3 n

)
. Even a lower bound adimF (G) = Ω (α log n) with α

growing faster than the iterated logarithm of n would improve the best lower bound for
span programs, given in [23]. Lovasz’s subspace version of Bollobá’s theorem [30] yields
adimF (Mn) = Ω(log n) and, so far, this is the only nontrivial lower bound.

In the proof of Theorem 7.1 we have mentioned yet another possibility to obtain lower
bounds on L(f). Given a graph G, let M be a matrix whose rows are labelled by edges
and columns by non-edges of G; the (x, y)-th entry is Mx,y = x \ y. That is, each entry
of M is either a single vertex or a pair of adjacent vertices. As before, a rectangle in M

is a submatrix A × B ⊆ M with the property that there is a vertex v such that v ∈ x
and v 6∈ y for all x ∈ A and y ∈ B.

Problem 8.5. Exhibit an n-vertex graph G with R(G) = Ω (n loga n).

If proved with a = 2 this would give a graph-theoretic proof of Khrapchenko’s classical
lower bound Ω(m2) on the size of non-monotone formula on m variables [24]. If proved
with a ≥ 3 this would improve the strongest currently known lower bound Ω(m3−o(1))
due to H̊astad [20].

Appendix: Proof of the Magnification Lemma

In the lemma below, by a circuit we will mean an arbitrary computational model whose
inputs are literals, i.e. variables x1

i = xi and their negations x0
i = xi. A boolean function is

isolating if it rejects the all-0 vector (0, . . . , 0) and accepts all vectors containing precisely
one 1; on other vectors the function can take arbitrary values. Since OR and Parity
functions are isolating, the Magnification Lemma is a special case of Lemma 8.6 below.
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Let G ⊆ U ×W be a bipartite graph with U = W = {0, 1}m, and

f(y1, . . . , ym, z1, . . . , zm)

be its characteristic function; that is, f(uv) = 1 iff uv ∈ G. Suppose we have a circuit F
computing f . A positive extension of F has 2m+1 variables {xu : u ∈ U}∪{xv : v ∈W},
and is obtained from F by replacing input literals yai and zai by functions

Y ai = g ({xu : u ∈ U, u(i) = a}) and Zai = h ({xv : v ∈W, v(i) = a})

where g and h are arbitrary isolating functions, and u(i) is the i-th bit of u ∈ {0, 1}m.

Lemma 8.6. Let G ⊆ U ×W be a bipartite n × n graph. If a circuit F computes the
characteristic function of G, then every its positive extension F+ represents the graph G.

Proof. For an arc uv ∈ U ×W , let au,v be the vector in {0, 1}U∪W with precisely two
1’s in positions u and v. Let F be a circuit computing the characteristic function of G.
Then uv ∈ G iff F (uv) = 1. Hence, it is enough to show that F+(au,v) = 1 iff F (uv) = 1.

The only difference of the circuit F+ from F is that instead of input literals it takes the
corresponding isolating functions as inputs. Hence, it is enough to show that on an input
vector au,v these isolating functions output the same values as the corresponding literals
do on the input vector uv. We show this only for y-literals (for z-literals the argument is
the same).

Let yai be some input literal of F , and u, v ∈ {0, 1}m. By the definition, the function
Y ai = g ({xu : u ∈ U, u(i) = a}) depends only on the variables xu corresponding to the
left part U of the bipartition such that u(i) = a. Each input of the form au,v assigns
precisely one 1 to these variables, and this 1 is in the position xu. Hence, Y ai (au,v) = 1
iff Y ai depends on xu, which can happen if and only if u(i) = a. On the other hand, we
also have that yai (uv) = 1 if and only if u(i) = a. Thus, Y ai (au,v) = yai (uv), and we are
done.
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[36] Pudlák, P., Rödl, V. and Savický, P. (1988) Graph complexity, Acta Informatica 25 515–535.
[37] Razborov, A. A. (1987) Lower bounds for the size of circuits of bounded depth with basis
{∧,⊕}, Math. Notes of the Academy of Sciences of the USSR 41:4 333–338.

[38] Razborov, A. A. (1990) Applications of matrix methods to the theory of lower bounds in
computational complexity, Combinatorica, 10:1 81–93.

[39] Razborov, A. A. (1988) Bounded-depth formulae over the basis {&,⊕} and some combina-
torial problem. In S.I. Adian (ed.), Problems of Cybernetics, Complexity Theory and Applied
Mathematical Logic (VINITI, Moscow) 149–166. (Russian)

[40] Smolensky, R. (1987) Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proc. of 19th Ann. ACM Symp. on the Theory of Computing 77–82.

[41] Valiant, L. (1977) Graph-theoretic methods in low-level complexity. In Proc. of 6th Conf.
on Mathematical Foundations of Computer Science, Springer Lect. Notes in Comput. Sci.
53 162–176. Springer-Verlag.

[42] Yao, A. C. (1985) Separating the polynomial time hierarchy by oracles. In Proc. of 26th
Ann. IEEE Symp. on Foundations of Comput. Sci. 1–10.

[43] Yao, A. C. (1990) On ACC and threshold circuits. In Proc. of 31th Ann. IEEE Symp. on
Foundations of Comput. Sci. 619–627.


