
DISCRETE 
APPLIED 
MATHEMATICS 

EISEVIER Discrete Applied Mathematics 85 (1998) 2233238 

Neither reading few bits twice nor reading illegally 
helps much 

S . Jukna a,*, A. Razborov b,’ 
a Department of Computer Science, University of I?ier, D-54286 I?ier, Germuny 

and Institute of Mathematics, Akademijos 4. 2600 Vilnius, Lithuania 

bSteklov Mathematical Institute, Gubkina 8, 117966, GSP-I, Moscow, Russiu 

Received 12 March 1996; received in revised form 23 January 1998; accepted 2 February 1998 

Abstract 

We first consider the so-called (1, +s)-branching programs in which along every consistent 
path at most s variables are tested more than once. We prove that any such program computing 
a characteristic function of a linear code C has size at least 2n(m’“t4~d2’s1), where (it and d2 are 
the minimal distances of C and its dual C’-. We apply this criterion to explicit linear codes and 
obtain a super-polynomial lower bound for s = o(n/log n), 

Then we introduce a natural generalization of read-k-times and (I, +s)-branching programs that 
we call semantic hrunchiny proyrams. These programs correspond to corrupting Turing machines 
which, unlike eraser machines, are allowed to read input bits even illegally, i.e. in excess of 
their quota on multiple readings, but in that case they receive in response an unpredictably 
corrupted value. We generalize the above-mentioned bound to the semantic case, and also prove 
exponential lower bounds for semantic read-once nondeterministic branching programs. 0 1998 
Elsevier Science B.V. All rights reserved 

Keywords: Complexity; Lower bounds; Branching programs; Switching-and-rectifier networks; 
Corrupting machines 

1. Introduction 

We consider the usual model of branching programs (b.p.). This model captures 

in a natural way the deterministic space whereas nondeterministic branching programs 

(n.b.p.) do the same for the nondeterministic mode of computation. A similar model 

of switching-and-rectzjier networks (s.r.n.) appeared already in pioneering work of 

Shannon and was extensively studied in the Russian literature since early 50th. The best 

lower bound for unrestricted n.b.p., however, remains the lower bound of SZ(n3/‘/logn) 

* Corresponding author. E-mail: jukna@ti.uni-trier.de. Supported by DFCI grant Me 1077/10-l. 
’ Supported by grant # 96-01-01222 of the Russian Basic Research Foundation, and by an AM8FSU 

grant. 

0166-218X/98/$39.00 0 1998 Elsevier Science B.V. All rights reserved 
PIISO166-218X(98)00042-0 



224 S. Jukna, A. RazborovlDiscrete Applied Mathematics 85 (1998) 223-238 

proved by NeEiporuk in 1966 [ 111. A survey of known lower bounds for these models 

can be found in [13]. 

In order to learn more about the power of branching programs, various restricted 

models were investigated. One of the most intensively studied was that of read-k- 

times programs (k-b.p. or k-n.b.p.) where in each computation every input bit can be 

tested at most k times. This model introduced in [lo] corresponds to so-called eraser 

Turing machines, and the first super-polynomial lower bounds for 1-b.p. were obtained 

in [ 18, 191; see also [ 1, 3, 6, 81 for further results in that direction. Exponential lower 

bounds for 1-n.b.p. were proven in [2, 4, 5, 71. However, any attempts to get such 

bounds for 2-b.p. bitterly failed (so far). 

One possible explanation of this failure might be that the restriction of being read- 

k-times is somewhat “unstructured” and, as such, is difficult to capture in an argument. 

Its stronger and more constructive version requires that in every path, be it consistent 

or not, every variable appears at most k times: the corresponding branching programs 

were called in [2] syntactic. This restriction is much easier to capture and analyze, 

and, indeed, strong lower bounds for syntactic k-b.p. (for an arbitrary but fixed k) 

were independently established in [2] (for the nondeterministic case) and in [ 121 (for 

the deterministic one); see also [5]. As a matter of fact, the difference between syntactic 

and ordinary programs disappears in the read-once case, and this provides us with some 

intuition as to why already the next case k = 2 (= the first non-syntactic case) presents 

a new level of difficulties. Another piece of evidence that “syntactic” is a rather strong 

restriction is given by the exponential separation between syntactic and non-syntactic 

models established in [5] by exhibiting an explicit function which can be computed 

by a read-once switching-and-rectifier network2 of size O(n3i2) but requires (syntactic) 

1-n.b.p. of exponential size. 

Another idea to get closer to the 2-b.p. case is to allow a limited number of bits 

be tested more than once. More specifically, (1, +s)-branching programs are the usual 

b.p. where in every consistent path at most s variables are tested more than once. 

For syntactic (1, +s)-b.p., where s = s(n) <~(ia’/~/log*‘~n), exponential lower bounds 

were proved in [15, 161. Ref. [14], improving upon [20], established (implicitly) the 

lower bound exp(o(n/(s+ 1) log n)“*) on the size of non-syntactic (1, +s)-b.p. comput- 

ing some function in ACC. This is super-polynomial in n as long as s = o(n/(logn)3). 

In the first part of this paper we apply some of the techniques of [20, 141 to show 

that any (1, +s)-b.p. computing the characteristic function of a linear code C has size 

at least 2n(mm{d1,dz’s)), where dl and d2 are the minimal distances of C and its dual 

CL, respectively (Corollary 4). We then apply this criterion to concrete linear codes. 

For a Reed-Muller code this yields the bound exp(S2(n/(s + 1))‘/2) (Theorem 5), and 

for a Bose-Chaudhuri-Hocquenghem code the bound becomes exp(R(min{ fi, n/s})) 

(Theorem 6). This is super-polynomial in n for any s = o(n/log n). Whereas we have 

only a slight numerical improvement over [20, 141, the combinatorial part of our 

* This is the weakest natural nondeterministic model that is non-syntactic, and no non-trivial lower bounds 

are known for it. See Section 4 for the definition and a more thorough discussion. 



S. Jukna, A. Razborovl Discrete Applied Mathematics 85 (1998) 223-238 225 

bound is much easier, essentially trivial (modulo some known deep facts from coding 

theory). 

In the second part of this paper we introduce a stronger and, perhaps, more natu- 

ra13 version of eraser machines that we call corrupting machines. The corresponding 

restrictions in the non-uniform setting of branching programs are even more tightly 

associated with the actual computation than for ordinary b.p.: in this sense our new 

model is opposite to syntactic b.p. in whose definition the computation plays no role 

at all. For that reason we call the non-uniform version of corrupting machines semun- 

tic branching programs: these are apparently stronger than their ordinary counterparts, 

although we have not been able to prove any separation between them. 

One of our motivations for introducing semantic b.p. is the common belief that 

working in a “right” model can significantly advance us to the task of proving lower 

bounds for the original (weaker, but more awkward) model. In pursuit of this goal 

we generalize the results about (1, +s)-b.p. to the semantic case (Theorem 9) and 

also we prove exponential lower bounds for semantic I-n.b.p. (Theorems 13 and 15). 

Our methods tend to examine multiple readings along rejecting (rather than accepting) 

computations, and we hope that this approach may turn out to be helpful for the future 

research in the area. 

2. Lower bounds for (1, +s)-branching programs 

We will use the following notation. A partial input is a mapping a : [n] + (0, 1, *} 

where [n] = {I,. . . ,n}. If a(i) = * we say that the ith bit in a is unspecijied (or unde- 

fined). By S(a) we denote the set of all specified bits, i.e. S(a) = {i E [n]: a(i) # *}. For 

(partial) inputs al, a2,. . . , a, such that all S(ai) are pairwise disjoint, [al, a2,. . . , a,] is 

the input specifying bits from UJ=, S(aj) and defined by the equality [a,,a2, . . . , as](i) = 

aj(i) for iES(a,). The length Ial of a is the number of bits in S(a). For two partial 

inputs a and b, let D(a,b) be the set of all bits where they both are defined and have 

different values. Given a boolean function f(xl, . . . , xn ), every partial input a (treated 

for this purpose as a restriction) defines the subfunction fla of f in n - Ial variables 

in a usual manner. A minterm (maxterm) of f is a partial input a for which f Ia E 1 

(f Ia E 0, respectively), and which is minimal in the sense that unspecifying every sin- 

gle value u(i) E (0, 1) already violates this property. Given a boolean function f, we 

say that: 

l f is d-rure if \D(a, b)l > d for every two different totally defined inputs a, b such 

that f(a) = f (b) = 1; 

l f is m-dense if ]a( 3 m for every maxterm a of f. 
We adopt the standard definition of a branching program (b.p.), see e.g. [17, Section 

141. The sire IPI of a b.p. P is the number of nodes. For a partial input a : [n] 4 (0, 1, *}, 

3 Especially in the context of quantum computations, although we have not been able to draw any direct 

analogies. 



226 S. Jukna, A. RazborovlDiscrete Applied Mathematics 85 (1998) 223-238 

camp(a) is the path in P consistent with a until we reach a node where the first test 

of * is made. PI, is the naturally defined program in 12 - la] variables that computes 

f Ia, where f is the function computed by P. More specifically, PI, is obtained from P 

by removing all edges inconsistent with a and contracting all edges consistently testing 

a specified bit in a (so that exactly edges and nodes testing an unspecified bit are left 

intact). If the input a is totally defined, camp(a) leads to one of the sink nodes, and 

PI, is a trivial single-node program. 

A b.p. P is read-k-times (k-b.p. for short) if for every (total) input a every variable 

appears at most k times along camp(a). P is (1, +s) if the number of variables tested 

more than once along camp(a) does not exceed s, for every (total) a. 

2.1. General bounds 

The following general bound was implicitly proved (but not stated exactly in this 

form) in [14]: 

Theorem 1. Let 0 < d, m, s <n be arbitrary integers. Every ( 1, +s)-branching program 

computing a d-rare and m-dense function must have size at least 

2(m’n{d,m/(s+l)}-1)/2 

For completeness we include here its independent proof. Recall first the main tech- 

nical statement from [14, 201 concerning so-called “forgetting pairs” of inputs. 

Definition 2. Let a, b be (partial) inputs with S(a) = S(b). Given a branching pro- 

gram P, the pair a, b is called a forgetting pair (for P) if there exists a node w such 

that w belongs to both camp(a) and camp(b), and both computations read all the 

variables with indices in D(a, 6) at least once before reaching w. 

Given a b.p. P, one can get a forgetting pair by following all the computations until 

Y:= Llog, lP]J + 1 d’ff I erent bits are tested along each of them. Since IP( <2’, at least 

two of these paths must first split and then stick in some node. Take the corresponding 

partial inputs ai and b’, and extend them to al and bl such that S(al ) = S(bl) = S(a; ) U 
S(bi) and D(al, bl) C &‘(a:) c1 S(b’,). This way we get a forgetting pair of inputs al # bl 

both of which are defined on the same set of at most IS(a’,) U S(b’,)l<2r - 1 bits. 

We can now repeat the argument for PI,, and obtain next forgetting pair of in- 

puts [al,az] and [al, b2], etc. We can continue this procedure for s steps until s(2r 

- 1) ds(2 log, IP( + 1) does not exceed the minimum number of different variables 

tested on a computation of P. This proves the following. 

Proposition 3 (.?%k [20] and Savicky and .?Xk [14]). Let P be a branching program 

in which every computation reads at least m direrent variables. Let s be a natural 

number in the interval 1 <s <m/(2 log, IPI + 1). Th en there exist pairwise disjoint sets 



S. Jukna. A. Razborovl Discrete Applied Mathematic,s 85 (19%‘) 223-238 227 

Ij C: [n] for j = 1,. . ,S and partial inputs aj # bj with S(ai) = S(bj) = I/ such that ,~OY 

all j= 1,2,...,s we have: 

6) 
(ii) 

lljl62lOg* IPI + 1, 
the inputs [al,..., aj] and [al,. . , aj_1, bj] form a forqettinq pair. Moreover, 

nodes w1 , . . .,w, fulfillinq Definition 2 for these pairs can be chosen in such 

a way that they appear on the path comp([al,. . ,a,]) in the non-decreasinq 

order. 4 

Proof of Theorem 1. Suppose the contrary that some (1, +s)-b.p. P computes a d-rare 

and m-dense function and has size less than 2(mi”{d,m~(s+‘)}-‘)~2. We can assume w.1.o.g. 

that d > 2 (otherwise the bound becomes trivial), and this implies that every minterm 

of f has size n 3 m. Hence, in order to force f to either 0 or 1 we must specify at least 

m positions, therefore every computation of P must read at least m different variables. 
Since lpi <2(“i(s+1)-‘1/2, we can apply Proposition 3 (with s := s + 1) and find II, a,, hi 

(1 d j<s + 1) with properties (i) and (ii). From (i) and the bound on lPl we have 

11, I < min{d, ml(s + 1 I}, and this implies that the partial input [al,. . . , a,s+l] specifies 

strictly less than m variables. Since f is m-dense, [al,. . a,,~] can be extended to a 

totally defined input a such that f(a) = 1. 

As 1,‘s are pairwise disjoint and P is (1, +s), there exists j, 1 <j <s + 1, such that 

all variables with indices from Ji are tested at most once along camp(a). Now, let w 

be the node that corresponds to the forgetting pair 

[a1 ,...,a,-t,aj], [at,...,aj-t,bj] 

accordingly to Definition 2; clearly, w is on camp(a). All variables with indices from 

D(aj, bi) C Z, are already tested along camp(a) before w, hence no such variable is 

tested after w, and the computation on the input c obtained from a by replacing a, 

with bj cannot diverge from camp(a) after the node w. Therefore, f(c) = f (a) = I. 

But this, along with ]Zjl <d, contradicts the d-rareness of .f. The proof of Theorem I 

is complete. 0 

This theorem is especially useful for (characteristic functions of) linear codes, i.e. 

for linear subspaces of GF(2)“. Say that a subset C C (0, 1 }” is d-rare or m-dense if 

such is the characteristic function of C. 

C is d-rare if and only if the minimal distance of C (treated as a code over GF(2)) 

is at least d. 

m-density of C means that for any subset of coordinates S C [n] with ISI <m and 

for each vector v E (0, l}s, there is at least one vector in C whose projection onto S 

coincides with I). It follows that a linear code C (over GF(2)) is m-dense iff the 

minimal distance of its dual CL is at least m. Indeed, the set of all projections of 

strings in C onto S is a linear subspace in (0, l}s, and this subspace is proper if and 

only if all strings a E C satisfy a non-trivial linear relation xi [[ai = 0 mod 2 whose 

4 This extra property of WI,, , w,~ will be used only in Section 3. 



228 S. Jukna, A. RazborovlDiscrete Applied Mathematics 85 (1998) 223-238 

support {i: & = l} is contained in S. But, by definition, Cl consists exactly of all 

relations t satisfied by C, and its minimal distance is exactly the minimal possible 

cardinality of a set S for which the projection of C onto (0, l}’ is proper. 

Hence, Theorem 1 implies: 

Corollary 4. Let C be a linear code with minimal distance dl, and let dz be the min- 

imal distance of the dual code Cl. Then every (1, +s)-branching program computing 

the characteristic function of C has size at least 

2.2. Lower bounds for explicit codes 

Reed-Muller codes. Recall that the rth-order binary Reed-Muller code R(r,e) of 

length n = 2’ is the set of graphs of all polynomials in e variables over GF(2) of 

degree at most r. This code is linear and has minimal distance 2’-‘. 

Theorem 5. Let n=2’, Ods<n and r= [1/2(d+log,(s+ l))]. Then every (l,+s)- 

branching program computing the characteristic function of the Reed-Muller code 

R(r,/) has size at least exp(R(n/(s + 1))‘i2). 

Proof. It is known (see, e.g. [9, p. 3751) that the dual of R(r,L) is R(e - r 

- l,/). Hence, in the notation of Corollary 4 we have dl = 2’-’ B R( dm) 

and d2 = 2’+l> 0( ,,/‘m). The desired bound follows. 0 

Bose-Chaudhuri-Hocquenghem codes. Let n = 2’ - 1, and let C C { 0, l}n be a BCH- 

code with designed distance 6 = 2t + 1, where t < G/4. Let d2 be the minimal distance 

of its dual Cl. The Carliz-Uchiyama bound (see, e.g., [9, p. 2801) says that d2 >2’-’ 

- (t - 1)2”2 which is n(n) due to our assumption on t. Since the minimal distance 

dl of a BCH-code is always at least its designed distance 6, we get from Corollary 4 

Theorem 6. Let n = 2’- 1, and let C be a BCH-code with designed distance 6 = 2t+ 1, 

where t d &t/4. Then every (1, +s)-branching program computing the characteristic 

function of C has size exp(R(min{t,n/s})). In particular, zf t >o(logn) then every 

such program must have super-polynomial size as long as s d o(n/log n). 

3. Semantic branching programs 

The uniform model corresponding to k-b.p. are so-called eraser machines, and a sim- 

ilar definition capturing the (1, +s)-case can be given in a straightforward way. It is 

not clear, however, to which extent the very name “eraser” is justified; perhaps, some- 

thing like poisoning machines would be more natural. Indeed, these machines model 

the situation when after reaching the quota on the amount of readings, input bits get 



S. Juknu. A. Rnzborov I Discrete Applied Mathematics 85 ilV4S) 223-238 229 

“poisoned” so that any extra attempt to read them leads to something really bad (short 

circuit, for example). Accordingly, programs for such machines should be designed in 

such a way that they avoid this unpleasant situation by any means. 

We might try to define “truly” eraser machines as machines erasing every input bit 

after the quota on the number of its readings is reached, and putting into its place a 

question mark to be observed during subsequent readings. This is not good since the 

question marks can be used for storing information on the input tape, and read-once 

logarithmic space eraser (in this sense) machines can recognize essentially all poly-time 

computable languages. More precisely, for every L E P there exists a polynomial p(n) 

such that the language {x# OJ’(lXl): x E L} is recognized by such a machine. Actually. 

this fact looks like an interesting phenomenon, so let us briefly sketch its proof. 

We use the second part of the input tape (originally occupied by ~(1x1) zeros) for 

simulating the computation of a poly-time decision algorithm for L on x. Let c,, be the 

(binary) content of the jth cell on the working tape at the ith stage of the performance 

of this algorithm on x; 1 f i < t, 1 <j < 1. For every i, j we reserve one cell a,, on the 

second part of the input tape. The simulation proceeds in t stages, and our goal in the 

ith stage is to read exactly those aii among ail,. . . , a,/ for which c,, = 1. Thus, after 

the ith stage a,, contains 0 if Cij = 0, and contains “?” if ci, = 1. 

Suppose we have already performed i stages and enforced the desired content of 

the cells ail,. , ai/. NOW we process ui+l,l , . . , ui+l,/. First, we, using the external 

logarithmic space, simulate the (i + 1)th step of the original computation and put 

appropriate question marks into 0( 1) active cells a,,~.,, i.e., into those cells for which 

ci+t_i may in principle differ from cij. Then we go over all remaining (inactive) cells 

and simply “copy” the content of a,j into ai+t,j by reading the latter cell if and only 

if we observe “?” in ai,j (the content of uij is destroyed, but we will not use it in the 

sequel anyway). 

We propose corrupting machines as an intermediate model between poisoning and 

eraser machines which is free of this disadvantage: every language recognizable by a 

logarithmic space corrupting machine belongs to LOGSPACE. Namely, when such 

a machine attempts an illegal reading (that is, in excess of its quota), nothing bad 

happens (as with poisoning machines) except that the machine gets a possibly cor- 

rupted value. Our machine (unlike “truly” eraser machines) does not know whether 

the reading was legal or not (so, it cannot use this knowledge to store an extra in- 

formation), and it is required to output the correct answer at the end of the com- 

putation no matter which corruption took place during illegal readings (adversary 

model). 

The corresponding restrictions in the non-uniform setting of branching programs are 

even more tightly associated with the actual computation than for ordinary b.p. In this 

sense, the situation is just the opposite to the case of syntactic b.p. whose definition 

is given entirely in terms of internal combinatorial structure of the program. For that 

reason we call the non-uniform model corresponding to corrupting machines semantic 

branching programs and immediately proceed to this setting for precise definitions. The 

interested reader should have no difficulties in adopting them to the uniform version. 



230 S. Jukna, A. RazborovlDiscrete Applied Mathematics 85 (1998) 223-238 

3.1. Deterministic case 

Let Q C N” be an anti-monotone non-trivial predicate which in the sequel will 

be called the quota predicate. Here N is the set of nonnegative integers, n is the 

number of variables, and the anti-monotonicity means that Q(ki, . . . , k,) along with 

k;<k*,..., k,!, <k, implies Q(ki, . . . , k;). The predicate Q expresses the quota on the 

amount of legal readings, and the following examples are the most important 

for us: 

Qdh,. . . , k,) z Vi E [n] (ki <k) (every variable is read at most k times); 

Q(l,+s)(h,. . . > kn)- I{iE [n]: kia2}[ <s (at most s variables are read more 

than once). 

Definition 7. For a path p in a b.p. P and a quota predicate Q, we define a vector 
kP>Q = (k:Q , . . . ,ktQ) E N” such that Q(kfiQ) by induction on the number of edges 

in p. 

(i) If p is empty then kP,Q = (0,. . . ,O). 

(ii) Let p = (q,e), and suppose that the head node w of e is marked by xi. 

(a) If Q(krg ,. . . ,kp:y,kFQ + l,ky;F,. . . ,k$“) then we let 

kPJi? = (,$LQ , . . . , k,?:$kf’Q + 1 kB’” , l+ ,,..., kFQ>. 

In that case we say that the reading of xi at w along the path p is legal. 

(b) If -Q(krp,. . ,ky:y,ki4” + 1, k$,. . . , k?‘) then we let kp,Q = kq,Q and say 

that xi is read illegally at w. 

Notice that illegal readings do not increment the counter k&Q. This allows our program 

to function properly between different attempts to read illegally. 

Given a b.p. P, a quota predicate Q and a totally defined input a E (0, l}“, we let 

CompQ(a) denote the set of all possible I/O paths such that all legal readings along 

these paths are consistent with a. Obviously, camp(a) E CompQ(u), but CompQ(a) may 

also contain other paths (typically inconsistent). We say that P is semantic W.Y. t. Q 

if for every a E (0, I}” all paths in CompQ(a) lead to a sink of the same type (ac- 

cepting or rejecting) as camp(a). A semantic read-k-times branching program is a 

b.p. semantic with respect to Qk. A semantic (l,+s)-b.p. is a b.p. that is semantic 

w.r.t. Q(I,+~). 

Remark 8. Notice that every (ordinary) k-b.p. or (l,+s)-b.p. is also semantic simply 

for the reason that there can be no illegal readings, and CompQ(a) consists of the single 

path camp(a). In fact, it is easy to see that the condition V’a6 (0, l}“(CompQ(a) = 

{camp(a)}) characterizes ordinary programs in the class of semantic programs. 

Now we show how to extend Theorem 1 to the semantic case. 



S. Jukna, A. Razborovl Discrete Applied Mathematics 85 (1998) 223-238 231 

Theorem 9. Let 0 <d, m, s <n be arbitrary integers. Every semantic (1, +s)-branching 

program computing a d-rare and m-dense jimction must have size at least 
2(min{d,m/(Zs+l)}- I)/2 

In particular, both our bounds for explicit codes (Theorems 5 and 6) are still valid 

in the same form for the more general case of semantic (1, +s)-b.p. 

Proof. We begin as in the proof of Theorem 1 but with the assumption 

PI <2 (min{d,m/(2s+l)}-I)/2 
3 

and construct II,. . . ,Z2s+lral,. . ,azS+,, bl, . . . , bzs+l satisfying Proposition 3 (with s := 

2s + 1) and a total extension a of [al,. . . , a>+]] such that f(a) = 1. The rest of that 

proof basically says that every D(a,, b,) C Zj contains at least one variable tested for the 

second time along camp(a), meaning that P is not a (1, +2s)-b.p. In our case, however, 

we have to derive a contradiction from the fact that P is a semantic (1, +s)-b.p., which 

requires some extra work. 

Let cj be the input obtained from a when we replace aj with bj, and let p,, p,! 

be the sub-paths of camp(a), comp(cj) respectively ending at the node w, mlfilling 

Definition 2 for the forgetting pair [al,. . ,a,], [al,. ,aj_l, bj]. Let also q, be the re- 

maining part of camp(a) so that camp(a) = (pjqj). As in the proof of Theorem 1 

we are going to force P to accept at least one of the inputs Cj which, together with 

,f(a) = 1, would contradict d-rareness of f. For doing this, it suffices to show that 

(pie) E Colnp Q”.“‘(c,i) for some 1 <jd2s + 1. Consider two cases. 

Case 1. At least s variables are tested more than once along ~2~. We claim that 

in this case ( p$S+,q2S+l ) E CompQ”--“(c2,+~ ). Indeed, pi,+, is OK since all readings 

along this path (legal or not) are consistent with czS+l. Moreover, since w~,?+I appears 

on camp(a) after ~2.~ (by property (ii) from Proposition 3), &.+, extends pzs which 

implies that kp;~-l,Q(l~i~) already contains (exactly) s components that are greater or 

equal than 2. Thus, every repetitive reading of a new variable along (pi.,+, q2,s+l ) that 

occurs on qz,+l is illegal. This, in particular, applies to all bits from D(a2S+i, h2,+~ ), 

and all other readings along qzS+l are consistent with a and, hence, with c~.~+I. 

Case 2. Less than s variables are tested more than once ulong pzS. We know that 

every D(a,, bj) contains at least one bit which is tested once more after the node w,. 

For 1 <j < 2s denote by wj the earliest node along camp(a) where the second test of 

a bit from D(ai, 6,) is made. The assumption of Case 2 implies that at least (s + 1) 

nodes among w{, wi, . . . , w6 must belong to qzs. Let w,! be the latest (along camp(a)) 

of these nodes. Note that qj contains the segment ii of camp(a) bounded by w, and 

w:, and this segment is consistent with c,. Moreover, at least s variables are already 

tested more than once along p;qj (namely, at nodes from the list (w/1, IV;, . , w;~~} 

belonging to qzs and other than wj). Now, the same argument as in Case 1 shows that 

(pjqj) E COWZp”“-+‘I (Cj). 

This completes the proof of Theorem 9. 0 



232 S. Jukna, A. Razborovl Discrete Applied Mathematics 85 (1998) 223-238 

3.2. Nondeterministic case 

We introduce nondeterminism into branching programs simply by additionally al- 

lowing guessing nodes of out-degree 2 that are not marked by any variable and have 

an obvious computational meaning. A nondeterministic branching program (n.b.p.) is 

read-k-times or (1, +s) when this restriction is satisfied by all consistent paths begin- 

ning at the source node [ 131. 5 Notice that every consistent path in a n.b.p. can always 

be extended to a consistent path terminating at a sink node, so we could equally well 

consider in this definition only such I/O paths. 

We extend Definition 7 to nondeterministic b.p. in an obvious way. Namely, if 

p = (q, e) and e goes out of a guessing node, we let kP,Q = kq,Q. 

In order to define acceptance/rejectance conditions for a n.b.p. P on a string a with 

respect to some quota predicate Q we introduce a game of two players, B (brancher) 

and C (corrupter). This game, which we denote by GQ(a), develops along a path in 

P, and it begins at the source node. At a guessing node, B simply chooses one of the 

two alternatives for the game to proceed. Suppose GQ(a) arrives at a computational 

node w along some path q, and let e be the outgoing edge consistent with a. If the 

reading at w is legal (along the joint path (q,e)), GQ(a) follows e. Otherwise C 

chooses one of the two continuations. The game terminates when it arrives at a sink 

node. 

The goal of the brancher is to reach one of the accepting sink nodes, and we say that 

in this case he wins. The goals of the corrupter are defined less clearly: in general, she 

is interested in creating as much damage by corrupting the computation as possible. 

This leads us to the following definition: 

Definition 10. A n.b.p. P is semantic with respect to a quota predicate Q if for every 

string a E (0, 1)” either B has a winning strategy against C in the game GQ(u) (a is 

accepted) or B loses in the cooperative version of this game, that is even when C 

helps him to win (a is rejected). 

A semantic k-n.b.p. [(l, +s)-n.b.p.1 is a n.b.p. semantic with respect to Qk [Qc~,+~), 

respectively]. 

Semantic b.p. make a subclass of semantic n.b.p. (with respect to the same quota 

predicate Q). In this case there is no brancher, and C is doomed to fail in the solitaire 

game GQ(a), both for accepted and rejected inputs. 

Ordinary (read-k-times or (1, +s)) n.b.p. also make a subclass of semantic n.b.p. 

(cf. Remark 8). This is because C never has a chance to participate in the game, due 

to the structure of the program, and the game itself proceeds only along consistent 

paths. 

Finally, note that if a semantic program accepts or rejects according to Definition 10, 

it also accepts (or rejects) in the usual sense. Indeed, it is easy to see that acceptance/ 

s One natural modification of this definition will be discussed in the next section 



S. Jukna. A. Razborovl Discrete Applied Mathematics 85 (1998) 223-238 233 

rejectance conditions from Definition 10 turn into ordinary ones in the partial case 

when the corrupter is passive, i.e. refrains from corrupting the computation by always 

choosing the continuation consistent with a. 

For a Boolean function f and an integer d we denote by cov( f ,d) the minimal h 

for which there exist monomials ~1 ,...,Uh, of d literals each, such that f bulV...Vuh. 

Our general bound for semantic I-n.b.p. looks as follows: 

Theorem 11. Let f be a d-rare function, d > 1. Then every semantic read-once non- 

deterministic branching program computing f has size at least cov( f, d - 1). 

Proof. We can assume w.1.o.g. that d 32 (otherwise the bound becomes trivial). Let 

P be a semantic 1-n.b.p. computing some d-rare function f. Fix arbitrarily one con- 

sistent 6 accepting path pa for every accepted input a. Since d 3 2, pa must read all 

variables at least once. Let pa = (p,‘p,“), where p: is a segment of pa along which 

exactly (d - 1) variables are tested (at least once), and let w, be the terminal node of 

p:. For each node w in IV := {w,: f(a) = 1) select arbitrarily one path from all the 

paths p,’ with w, = w, and denote this path by pw. Let u, be the monomial of (d - 1) 

literals corresponding to that path pm. We are going to finish the proof by showing 

that f d V,,,,, u,. 
For this we will exploit one particular property of semantic read-once n.b.p. (not 

shared already by (1, +1)-n.b.p.). Namely, in the cooperative mode of the game ~$1 (a), 

B and C can follow every path p (consistent or not) for some input ap E (0, 1)“. This 

input ap is simply constructed by letting a,(i) to be the result of the first reading of 

xi along p. The input ap is in general partial, but when p leads to an accepting sink, 

and the function f computed by the program is known to be 2-rare, ap must be an 

accepted input (since B and C can win by cooperating, ap can not be rejected), and it 

must be totally defined (from 2-rareness). 

Suppose now that f(b) = 1, and w is the terminal node of pb. We claim that 

u,(b) = 1. 

Indeed, otherwise the input ap corresponding to the path p = (p,pi) would be an 

accepted input different from b (since readings along pW have priority in defining ap). 

On the other hand, all bits from D(b,a,) must be tested along pW. To show this, notice 

that every bit i not tested along pW is tested for the first time only on pi. Let E be 

the result of the earliest reading of xI along pi. Then b(i) = E since pi is consistent 

with b, and ap(i) = E by construction of ap. Hence, i @ D(b,a,). 

Thus, u,(b) = 0 could happen only if P would accept two different inputs ap and b 

with jD(b,a,)l cd, which is impossible by d-rareness of f. This completes the proof 

of the fact u,(b) = 1, and the proof of Theorem 11. 0 

The following easy lemma provides a lower bound on cov( f, d) in terms of density. 

6 Such path exists since the brancher must have a winning strategy on a also in the case when the corrupter 

plays passively. 



234 S. Jukna, A. Razborovl Discrete Applied Mathematics 85 (1998) 223-238 

Lemma 12. For an m-dense function f in n variables, 

Proof. Let f < Vkl ui, where ui are monomials of d literals and h = cov( f ,d). Hit 

this inequality with a restriction p assigning random (O-l) values to randomly chosen 

(m - 1) variables. Then 

p[“iIp$Ol d P 
[ 

ls(Ui)nS(p,l<g 1 [ +P Uijp$O 

<exp(-Cl(+)) 
and 

The 

P[ f Ip $01 = 1 since f is m-dense. On the other hand, 

h 

P[f lp +“lG C p[UiIp $01. 
i=l 

statement follows. 0 

Theorem 11 and Lemma 12 imply the lower bound exp(R(md/n)) on the size of 

semantic 1-n.b.p. computing a d-rare and m-dense function. In particular, this gives an 

exp(R(fi)) bound for BCH-codes: 

Theorem 13. Let n = 2! - 1, and let C be a BCH-code with designed distance 6 = 

2t + 1, where t <fiJ4. Then every semantic read-once nondeterministic branching 

program computing the characteristic function of C has size exp(R(t)). 

The following theorem extends the lower bound argument used in [4, 21 (for or- 

dinary I-n.b.p.) to semantic 1-n.b.p., and works for Boolean functions which are not 

sufficiently rare for Theorem 11 to give a strong lower bound. 

For a set of inputs A C (0, 1)” and an integer 0 d k < n, we define the kth degree 

dk(A) as the maximum number of inputs in A, all of which have l’s on some fixed 

set of k coordinates. An input a is a lower one of a Boolean function f if f(a) = 1 

and f(b) = 0 for all inputs b # a such that b d a. Lowest ones are lower ones with 

the smallest number of 1 ‘s. 

Theorem 14. Let f be a Boolean function, A be the set of its lowest ones and r 

be the number of l’s in them. Then, for every 0 <k <r, every semantic read-once 

nondeterministic branching program computing f has size at least IAl/(dk(A)d,_tJA)). 

Proof. Let P be a semantic 1-n.b.p. computing f. Given an input a E A, let pa be 

any accepting path which is followed by the game @I (a) when the corrupter always 

chooses to continue along the edge marked by 0, totally disregarding real values of 



S. Jukna. A. Razborovl Discrete Applied Mathematics 85 (1998) 223-238 235 

bits. pa may be inconsistent but it has one nice property: for each bit i, the variable x, 

appears positively on pn exactly a(i) times. Let pa = (pdp,‘l), where p,’ is a segment 

of pa with exactly k positive readings. We denote the corresponding set of bits by I,, 

and let J, denote the set of remaining r - k bits in a-‘( 1). For a node M: of P, let 

A, denote the set of all inputs a E A such that w is the terminal node of p,‘. We are 

going to finish the proof by showing that lAwl <dk(A)d,_k(A) for every node w. 

Fix some node w of P, and let 9 = {Ia: a r A,}, # = {Jh: h E A,$,}. Consider an 

arbitrary pair I E f, J E y, and denote by (I VJ) the input defined by (I VJ)(i) = 1 iff 

i E I U J. Choose some a, b e A, such that I = I,, J = Jh, and let the input ap correspond 

to the path p = (p:pt ) as in the proof of Theorem 11. Then, clearly, up 6 (I V J ). 

Moreover, ap is accepted because p leads to an accepting sink. But since II / + lJI = r 

and r is the smallest number of l’s in an accepted input, this is possible only when 

In J =# and (I V J)=a, E A. Let us emphasis that this conclusion holds for every 

pair IE~, JEW. 

With this observation in mind, we fix an arbitrary J E 2 and notice that {(I V 

J): IEY} is a set of different inputs from A, all of which have l’s on J. Hence, 

1x1 d&/AA) (P rovided 2 # 0). Similarly, IfI <dk(A) which implies /cYl.l~l <da(A) 

d,+(A). Finally, every a E A, is uniquely determined by the pair (Z=,J,), therefore 

l.4~~l~lJld&l. Th’ IS completes the proof of the desired inequality IA,,,1 <dk(A)d,._k(A), 

and of Theorem 14. 0 

We demonstrate the theorem by a lower bound for explicit functions in AC?. The 

exact-perfect-matching function is a Boolean function EPM, in n2 variables, encoding 

the edges of a bipartite graph with parts of size n; the function computes 1 iff the input 

graph is a perfect matching. The isolated vertex function is a Boolean function ISOL2, 

in (“2”) variables, encoding the edges of an undirected graph on 2n vertices; the function 

computes 1 iff the input graph has no isolated vertices. That is, 

ISOLz, =i\ (V{x{i,j]: 1 Gjdn, j # i}) . 
i=l 

It is clear that both these functions are in AC’. Moreover, it is known that EPM, has 

a read-once switching-and-rectifier network (see the next section for definition) of size 

O(n3) but cannot be computed by a I-n.b.p. of polynomial size [4]. Note also that 

neither of these two functions is d-rare even for d = 5, so Theorem 11 cannot give 

any super-polynomial lower bounds for them. 

Lowest ones for EPM, and ISOL2, are perfect matchings. The first function has 

n! lowest ones and, for every 1 <k dn, the kth degree of them is exactly (n - k)!. 

The second function has (2n)!/2” . n! lowest ones, and the kth degree is (2n ~ 2k)!/ 

2”-k . (n - k)!. By Theorem 14 we get that these functions are hard for semantic 

1 -n.b.p.: 

Theorem 15. Neither EPM, nor ISOL2, can be computed by ~1 semantic reud-once 

nondeterministic branching program of size smaller than ( ,ny2,). 



236 S. Jukna, A. RazborovlDiscrete Applied Mathematics 85 (1998) 223-238 

4. Conclusion and open problems 

In this paper we have further (after [14]) simplified the original lower bound argu- 

ment of [20] and applied it to explicit linear codes. The most interesting open question 

certainly consists in modifying that argument in order to make some variable be read 

for the third time, i.e. in trying to prove super-polynomial lower bounds for the read- 

twice case. 

Our knowledge about the power of n.b.p. is even more depressing: for this model 

the (1, + 1) case is still open. In fact, there are no non-trivial lower bounds even for 

a weaker model of read-once switching-and-rectiJier networks (1-s.r.n.). In [13] these 

were defined in such a way that they are equivalent to I-n.b.p. Since now we are 

interested in outlining challenges in the area, we adopt here the following simpler 

definition that leads to a stronger model. 

Definition 16. A switching-and-rectijier network is a directed graph (not necessarily 

acyclic!) with one distinguished source node s and several accepting sink nodes. Some 

of its edges receive labels of the form “a(i) = O”, “a(i) = I”, whereas other edges are 

left free (consistent with any input). An input a is accepted if there exists at least 

one path from s to one of the sink nodes consistent with a, and rejected otherwise. 

The switching-and-rectifier network is read-once (I-s.r.n.) if every variable is tested at 

most once along every consistent path’ beginning at s. 

Thus, 1-n.b.p. can be viewed as specially structured I-s.r.n., and, as we already 

observed, a separation between them is provided by the EPM, function [4]. Moreover, 

the example from [5] somehow suggests that methods previously known for 1-n.b.p. 

(including our Theorems 11 and 14) seem to be inherently too weak to deal with 

1-s.r.n., and the latter model probably requires some new machinery. 

We have introduced semantic branching programs and proved in this framework 

exponential lower bounds for (1, t-s)-b.p. (when s = o(n/ log n)) and I-n.b.p. These 

are exactly at the border of our knowledge about ordinary branching programs. In 

this connection, it would be interesting to prove (or disprove) that semantic b.p. are 

strictly stronger than their ordinary counterparts. This could be done, say, by exhibiting 

a function that can be computed by a poly-size semantic 1-b.p. or 1-n.b.p. but requires 

super-polynomial size in the corresponding ordinary model. 

One more natural class of nondeterministic models (both in ordinary and semantic 

settings) is obtained when we relax the rejectance condition. More specifically, for 

ordinary programs we only require that for every accepted input there exists at least 

one accepting path obeying the quota on the amount of reading (but paths violating 

this quota are also allowed, both accepting and rejecting). For semantic n.b.p. we 

simply relax the rejectance condition to its ordinary form (B is required to loose only 

’ Ref. [13] used here a broader notion of “almost consistent” path, and it is the only place where our 
definitions diverge. 



S. Jukna, A. Razborovl Discrete Applied Mathematics 85 (1998) 223-238 231 

in cooperation with the passive corrupter). Let us call these nondetetministic models 

strong. We remark that we do not know of any lower bounds for strong 1-n.b.p. (even 

ordinary), and that in fact strong I-n.b.p. can be easily shown to include I-s.r.n. 

The overall conclusion is that I-s.r.n. seems to be the “minimal” nondeterministic 

model for which no non-trivial lower bounds are known, and it is also remarkable 

that at the same time it is the weakest non-syntactic model. Thus, proving exponential 

lower bounds for I-s.r.n. (along with proving such bounds for 2-b.p.) is the next logical 

challenge in the area. 

Acknowledgements 

We are indebted to both anonymous referees of this paper for many valuable remarks. 

References 

[I] L. Babai, P. Hajnal, E. Szemeredi, G. Turan, A lower bound for read-once-only branching programs, 

J. Comput. System Sci. 35 (1987) 153-162. 
[2] A. Borodin, A. Razborov, R. Smolensky, On lower bounds for read-k times branching programs, 

Comput. Complexity 3 (1993) I-18. 
[3] P.E. Dunne, Lower bounds on the complexity of one-time-only branching programs, in: Proc. FCT’85. 

Lecture Notes in Computer Science, vol. 199, Springer, Berlin, 1985, pp. 90-99. 

[4] S. Jukna, Lower bounds on the complexity of local circuits, in: Proc. MFCS’86, Lecture Notes in 

Comput. Science, vol. 233, Springer, Berlin, 1986, pp. 440-448. [Journal version: S. Jukna. Entropy 

of contact circuits and lower bounds on their complexity, Theoret. Computer Sci. 57 (1988) 1133129.] 
[S] S. Jukna, A note on read-k-times branching programs, lnformatique Theorique Appl./Theoret. Inform. 

Appl. 29 (1) (1995) 75-83. 
[6] M. Krause, Exponential lower bounds on the complexity of local and real-time branching programs. 

J. EIK 24 (3) (1988) 99-l 10. 
[7] M. Krause, C. Meinel, S. Waack, Separating the eraser turing machine classes L,,A!L,,co - NL,. and 

c, Theoret. Computer Sci. 86 (1991) 267-275. 

[S] K. Kriegel, S. Waack, Lower bounds on the complexity of real-time branching programs, in: Proc. 

FCT’87, Lecture Notes in Computer Science, vol. 278, Springer, Berlin, 1987, pp. 90-99. 
[9] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-correcting Codes, Elsevier, North-Holland, 1977. 

[lo] W. Masek, A fast algorithm for the string editing problem and decision graph complexity, Master’s 

Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of 

Technology, 1976. 

[l I] E. 1. Nechiporuk, Ob odnoi bulevskoi funktsii, DAN SSSR 169(4) (1966) 765-766 

E. 1. Neciporuk, On a Boolean function, Sov. Math. Doklady 7 (4) (1966) 999-1000. 
[12] E. A. Okolnishnikova Nizhnie otsenki slozhnosti realizatsii kharakteristicheskikh funktsii dvoichnykh 

kodov binamymi programmami, Metody diskretnogo analiza 51 (1991) 61-83. 

E. A. Okolnishnikova, Lower bounds for branching programs computing characteristic functions of 

binary codes, Metody Discretnogo Analiza 51 (1991) 61-83 (in Russian). 

[ 131 A.A. Razborov, Lower bounds for deterministic and nondetermimstic branching programs, in: Proc. 

FCT’91, Lecture Notes in Computer Science, vol. 529, Springer, Berlin, 1991, pp. 47760. 

[ 141 P. Savicky. S. iak, A lower bound on branching programs reading some bits twice, Theoret. Computet 

Sci. 172 (1997) 2933301. 
[I51 D. Sieling, New lower bounds and hierarchy results for restricted branching programs, J. Comput. 

System Sci. 53 (1) (1996) 79-87. 
[16] D. Sieling, I. Wegener, New lower bounds and hierarchy results for Restricted Branching Programs. 

in: Proc. of Workshop on Graph-Theoretic Concepts in Computer Science WG’94, Lecture Notes in 

Computer Science, vol. 903, Springer, Berlin, 1994, pp. 359-370. 



238 S. Jukna, A. RazborovlDiscrete Applied Mathematics 85 (1998) 223-238 

[17] I. Wegener, The Complexity of Boolean Functions, Wiley-Teubner, New York, 1987. 

[18] I. Wegener, On the complexity of branching programs and decision trees for clique functions, J. ACM 

3.5 (1988) 461-471. 

[ 191 S. &k, An exponential lower bound for one-time-only branching programs, in: Proc. MFCS’84, Lecture 

Notes in Computer Science, vol. 176, Springer, Berlin, 1984, pp. 562-566. 

[20] S. .%k, A superpolynomial lower bound for (1, +/c(n))-branching programs, in: Proc. MFCS’95, Lecture 

Notes in Computer Science, vol. 969, Springer, Berlin, 1995, pp, 319-325. 


