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Abstract. We consider unbounded fanin depth-2 circuits with arbitrary boolean functions
as gates. We define the entropy of an operator f : {0, 1}n → {0, 1}m as the logarithm of the
maximum number of vectors distinguishable by at least one special subfunction of f .

Our main result is that every depth-2 circuit for f requires at least entropy(f) wires.
This is reminiscent of a classical lower bound of Nechiporuk on the formula size, and gives
an information-theoretic explanation of why some operators require many wires. We use
this to prove a tight estimate Θ(n3) of the smallest number of wires in any depth-2 circuit
computing the product of two n by n matrices over any finite field. Previously known lower
bound for this operator was Ω(n2 log n).

1. Introduction

One of the challenges in circuit complexity is to prove a nonlinear lower bound for logarith-
mic depth circuits computing an explicitly given boolean operator f : {0, 1}n → {0, 1}n. This
corresponds to simultaneous computation of the sequence of boolean functions fj : {0, 1}n →
{0, 1}, where fj(~x) is the j-th coordinate of the vector f(~x). An important result of Valiant
[25] reduces this problem to proving lower bounds for certain depth-2 circuits, where we allow
arbitrary boolean functions as gates. Note that in this case the phenomenon which causes
complexity of circuits is information transfer instead of information processing in the case
of single functions. It is therefore important to understand what properties of operators do
force high information transfer in their depth-2 circuits.

A depth-2 circuit for f : {0, 1}n → {0, 1}m is a directed acyclic graph of depth 2 with n
input nodes x1, . . . , xn, and m output nodes z1, . . . , zm. Every noninput node computes an
arbitrary boolean function of its inputs, and there is no bound on the fanin or on the fanout.
The size of a circuit is the total number of wires in it. Without loss of generality, we may
assume that there are no direct wires from inputs to outputs: this can be easily achieved by
adding at most n new wires. Thus, in depth-2 circuits we have three layers of nodes: the
input, the middle and the output layer.

Let s2(f) denote the minimum size of a depth-2 circuit computing f . Note that s2(f) ≤ n2

holds for every operator f : {0, 1}n → {0, 1}n.
Superlinear lower bounds of the form Ω(n log n) for depth-2 circuits were obtained using

graph-theoretic arguments by analyzing some superconcentration properties of the circuit
as a graph [8, 14, 18, 16, 22]. Lower bounds of the form Ω(n log3/2 n) were proved in [2,
20]. Unfortunately, the approach based on superconcentrators cannot lead to lower bounds
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for depth-2 circuits larger than Ω(n log2 n), since there are depth-2 superconcentrators with
O(n log2 n) [15], and even O(n log2 n/ log log n) [21] edges.

The (numerical) limitation of the graph-theoretic lower bounds comes from their power:
they show much more than that the number of wires must be large—they also provide an
information about the structure of the underlying graphs. It is therefore natural to expect to
prove larger lower bounds, if we only care about the number of wires in a circuit, not about
its structure. And indeed, such an approach has already led to a lower bound of the form
s2(f) = Ω(n3/2) for a bilinear operator of cyclic convolution [6].

In this paper we use an even more direct argument to prove a general lower bound s2(f) ≥
entropy(f), where the entropy of f : {0, 1}n → {0, 1}m is just the logarithm of the maximum
number of vectors distinguishable by at least one special subfunction of f . This gives a simple
explanation of what operators and, more importantly, why require many wires. The amazing
simplicity of the proof indicates that hight entropy of operators is a fundamental reason for a
complicated information transfer in their circuits. The bound itself is reminiscent of a classical
lower bound of Nechiporuk [13] on the formula size of a boolean function as the logarithm of
the number of its subfunctions.

Since entropy(f) is relatively easy to compute, it gives us a handy tool to prove large lower
bounds for a whole string of explicit operators. We demonstrate this by a tight estimate
Θ(n3) of the smallest number of wires in any depth-2 circuit computing the product of two n
by n matrices over any finite field. This improves the highest previously known lower bound
s2(f) = Ω(n2 log n) for this operator derived in [22].

2. Results

In this section we first introduce the notion of entropy of operators, and state some its
basic properties. Then we prove our main result—a general lower bound on the number of
wires in depth-2 circuits in terms of the entropy (Lemma 2 and Theorem 1).

2.1. Entropy of function sets. In general, a (uniform) entropy of a mapping f : U → V
is the smallest number of binary bits that are necessary to specify each single value f(x) of
f . That is, the logarithm log2 |S| of the largest number of elements in a set S ⊆ U on which
f is injective. By looking at sets of functions as corresponding mappings, we arrive to the
following definition.

Let F = {f1, . . . , fm} be a set of functions fj : {0, 1}n → {0, 1} on the same set of variables
x1, . . . , xn. Say that a set of vectors S ⊆ {0, 1}n is separated by F , if for every pair of vectors
a 6= b ∈ S there is a function f ∈ F with f(a) 6= f(b), that is, if the corresponding operator
F : {0, 1}n → {0, 1}m in injective on S. Define

entropy(F ) = max{log2 |S| : S ⊆ {0, 1}n and F separates S}.

Example 1. If F (~x) = A~x is a linear operator over GF2 for some boolean m × n matrix A
with m ≤ n, then entropy(F ) is just the rank r of A over GF2, since the operator F (a) takes
the same value on 2n−r out of all 2n input vectors a.

Say that a boolean function f can be computed from a set of boolean functions G if there
exists a boolean function ϕ such that f = ϕ(g1, . . . , gk) for some functions g1, . . . , gk in G.
Note that, in any circuit, every function is computed from the set of functions computed at
its inputs. In particular, every set of functions F on variables x1, . . . , xn is computable from
G = {x1, . . . , xn}.
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Proposition 1. Let F and G be some finite sets of boolean functions in n variables.

(i) Upper bound: entropy(F ) ≤ min{n, |F |}.
(ii) Lower bound: if F contains r single variables, then entropy(F ) ≥ r.

(iii) Main connection: if every function in F can be computed from the functions in G,
then entropy(F ) ≤ entropy(G) ≤ |G|.

Proof. (i) The set F = {f1, . . . , fm} defines a natural encoding of vectors a ∈ {0, 1}n by
vectors F (a) = (f1(a), . . . , fm(a)) in {0, 1}m. If a set S ⊆ {0, 1}n is separated by F , then
each vector in S must receive its own code, implying that |S| ≤ 2m = 2|F |, and hence,
log2 |S| ≤ |F |.

(ii) Suppose that F contains r single variables x1, . . . , xr. Let S ⊆ {0, 1}n be an arbitrary
set of |S| = 2r vectors having the same values on all remaining n − r variables. Since any
pair of vectors a 6= b ∈ S must differ in at least one of the first r coordinates, each such pair
is separated by at least one of the variables x1, . . . , xr.

(iii) Just observe that then G(a) = G(b) implies F (a) = F (b). Hence, any set separated
by F must be also separated by G, implying that entropy(F ) ≤ entropy(G) ≤ |G|, where the
last inequality follows from (i). �

2.2. Entropy of subfunctions and the number of wires. Let F and G be two sets of
boolean functions. We can think of F as a set of functions computed by some circuit at its
output nodes, and G as a set of functions computed at some intermediate nodes. Fix some
set ~x = (x1, . . . , xn) of variables, and call them main variables. Let ~y = (y1, . . . , yr) be the
set of the remaining auxiliary variables.

We say that a main variable xi is critical for a function g(~x, ~y) if g(~ei, ~y) 6= g(~0, ~y), where
~ei = (0, . . . , 0, 1, 0, . . . , 0) is the vector of length n with precisely one 1 in the i-th coordinate.

Given a subset X ⊆ {x1, . . . , xn} of main variables, let X(g) denote the set of all variables
xi ∈ X which are critical for g. The number |X(g)| of variables in X(g) is the weight of g with
respect to the set of variables X. The weight of a set G of functions, denoted by weightX(G),
is the sum

weightX(G) =
∑
g∈G
|X(g)|

of weights of all its functions. We will see soon (Lemma 2) that, in depth-2 circuits, this
number lower bounds to the number of wires leaving the inputs in X.

If every function in F can be computed from the functions in G, then Proposition 1(iii)
implies |G| ≥ entropy(F ). To get a similar (entropic) lower bound on weightX(G), we consider
the following set FX of subfunctions of the functions in F .

We define the set FX of subfunctions of F with respect to X to be the set of all boolean
functions h(~y) that can be obtained from some function f ∈ F by setting some variable
xi ∈ X to 1 and all the remaining main variables to 0. That is,

FX = {f(~ei, ~y) : f ∈ F, xi ∈ X}.

Note that FX may contain up to |X| · |F | different functions.

Lemma 1 (Entropy and weight). If every function in F can be computed from the functions
in G, then

weightX(G) + |G| ≥ entropy(FX).
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Proof. Since the functions in F can be computed from the functions in G, the subfunctions
in FX can be computed from the subfunctions in GX , as well. By Proposition 1(iii), we
have entropy(FX) ≤ entropy(GX) ≤ |GX |. It remains, therefore, to show that |GX | ≤
weightX(G) + |G|.

To show this, recall that GX consists of all boolean functions g(~ei, ~y) obtained from some
function g ∈ G by setting some variable xi ∈ X to 1 and the remaining main variables to 0.
If xi 6∈ X(g), then g(~ei, ~y) = g(~0, ~y). Hence, for each g ∈ G, the set {g(~ei, ~y) : xi ∈ X} consist
of at most |X(g)| functions g(~ei, ~y) with xi ∈ X(g), and just one additional function g(~0, ~y).
Summing over all g ∈ G, we obtain that |GX | ≤ |G|+

∑
g∈G |X(g)| = |G|+ weightX(G). �

Let now f = (f1, . . . , fm) be an operator and F ⊆ {f1, . . . , fm}. Let also X ⊆ {x1, . . . , xn}
be a subset of main variables. Lemma 1 yields the following basic relation between the entropy
and the number of wires.

Lemma 2 (Entropy and the number of wires). In any depth-2 circuit computing f , the number
of wires leaving the inputs in X or entering the outputs in F must be at least entropy(FX).
Moreover, the outputs in F must have at least entropy(F ) neighbors on the middle layer.

Proof. Let M be the set of all nodes on the middle layer joined by a wire with at least one
output in F . Then F must be computable from the set G = {gv : v ∈M} of boolean functions
computed at the nodes v ∈ M . Proposition 1(iii) implies that |M | ≥ |G| ≥ entropy(F ),
proving the second claim.

To prove the first claim, observe that we must have at least |M | ≥ |G| wires entering the
outputs in F . Hence, by Lemma 1, it remains to show that at least weightX(G) wires must
leave the inputs in X.

Each node v ∈ M must be connected by a wire with each input xi ∈ X of which the
function gv depends. Hence, at least |X(gv)| wires must go from X to the node v. Since no
wire can go to more than one node, the total number of wires from X to M must be at least∑

v∈M |X(gv)| = weightX(G). �

Remark 1. Note that the same argument also works for arbitrary (not just depth-2) circuits:
If V is a set of nodes such that each path from X to F goes through at least one node in V ,
then |V | plus the number of paths from X to V must be at least entropy(FX).

Define the entropy of an (n, m)-operator f = (f1, . . . , fm) as

(1) entropy(f) = max
p∑
t=1

entropy({fj(~ei, ~y) : i ∈ It, j ∈ Jt}),

where the maximum is over all partitions I1, . . . , Ip of inputs [n] and all partitions J1, . . . , Jp
of outputs [m]. Since the total number of wires in a depth-2 circuit is just the number of
wires incident to its input or output nodes, Lemma 2 directly yields the following

Theorem 1 (Entropy Criterium). For every operator f , we have s2(f) ≥ entropy(f).

Remark 2. Theorem 1 can be readily extended to sequences of functions f : Dn → D for any
finite set D. For this, it is enough to take the logarithm to the basis |D| in the definition of
the entropy. The rest is the same.

Remark 3. Taking partitions of inputs and outputs in the definition of entropy(f) is not
crucial. For each natural number k, we can define entropyk(f) as the maximum (1) over all
subsets I1, . . . , Ip of inputs and all subsets J1, . . . , Jp of outputs such that no element belongs
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to more than k of these sets. Hence, taking partitions corresponds to k = 1. Now, if d(i) is
the number of wires leaving the input i, then the sum

p∑
t=1

∑
i∈It

d(i) =
n∑
i=1

∑
t:i∈It

d(i) ≤ k
n∑
i=1

d(i)

is at most k times larger than the total number
∑n

i=1 d(i) of wires leaving the inputs. Since
the same also holds for the number of wires entering the output nodes, Lemma 1 implies

s2(f) ≥ max
k≥1

1
k
· entropyk(f).

Remark 4. Note that entropy(f) is not only a lower bound on the size of any depth-2 circuit
computing the operator f(~x, ~y) on all inputs (~x, ~y), but also on the size of any depth-2 circuit
correctly computing f on special inputs of the form (~ei, ~y); on inputs (~x, ~y), where ~x has more
than one 1, the circuit may output arbitrary values.

3. Application: matrix multiplication

Theorem 1 allows one to show that s2(f) must be super-linear for many operators f =
(f1, . . . , fm) on two sets of variables X and Y . For this, it is enough that we can split the set
F = {f1, . . . , fm} of functions computed by this operator into some number p of disjoint sets
F1, . . . , Fp such that, for some partition X1, . . . , Xp of the set of variables X, and for each
t = 1, . . . , p, we can obtain each single variable y ∈ Y by taking some function f ∈ Ft and
fixing one its variable x ∈ Xt to 1 and the rest of X to 0. (We say in this case that f isolates
the variable y.) Then, by Proposition 1(ii), the set of subfunctions in each Ft with respect to
the corresponding set of variables Xt must have entropy at least |Y |. By Theorem 1, we then
have s2(f) ≥ p|Y |.

One of the most natural functions isolating all its single variables is a scalar product
function f(~x, ~y) = x1y1 + x2y2 + · · · + xryr; then f(~ei, ~y) = yi for all i = 1, . . . , r. Hence,
natural examples of operators of large entropy are sequences of particular scalar products.
Many operators computing sequences of bilinear functions, including that of cyclic convolution
considered in [6], fall in this general (scalar product) frame. We illustrate this with one
important example—matrix product.

Given two r × r boolean matrices X = (xi,j) and Y = (yi,j), our goal is to compute their
product Z = X ·Y over GF2. The corresponding operator f = multn(X, Y ) has n = 2r2 input
variables, arranged in two matrices, and consists of n = r2 scalar products fi,j =

∑r
k=1 xi,kyk,j

corresponding to the entries of the product matrix Z = (zi,j). (This time indexes of variables
as well as of computed functions are pairs of numbers.)

Since multn is just a sequence of r2 scalar products on 2r variables, (2r)r2 = 2n3/2 is a
trivial upper bound, even in depth-1. If we put no restrictions on the depth, then Strassen’s
algorithm [24], improved in [7], gives a circuit of size O(n1.2). The only know lower bound
in the unrestricted case, however, is the lower bound 2.5 · n proved in [4]. A lower bound
s2(multn) = Ω(n log n) for depth-2, as well as nonlinear lower bounds for any constant depth,
were proved in [22] using superconcentrators. For depth-2, entropy arguments yield a tight
estimate s2(multn) = Θ(n1.5).

Lemma 3. entropy(multn) ≥ n3/2.
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Proof. Let f = multn, and let ~ei,k be the boolean r × r matrix with precisely one 1 in the
position (i, k). Since

fi,j(~x, ~y) = xi,1 · y1,j + · · ·+ xi,k · yk,j + · · ·+ xi,r · yr,j ,
we have that

fi,j(~ei,k, ~y) = 0 · y1,j + · · ·+ 1 · yk,j + · · ·+ 0 · yr,j = yk,j ,

for all j = 1, . . . , r. That is, the i-th row fi,1(~ei,k, Y ), . . . , fi,r(~ei,k, Y ) of the product matrix
~ei,k · Y is just the k-th row yk,1, . . . , yk,r of Y .

Hence, if we take Xi = {xi,1, . . . , xi,r} (the i-th row of X) and Fi = {fi,1, . . . , fi,r} (the i-th
row of the product matrix), then the corresponding set of subfunctions of Fi with respect to
the variables in Xi,

fi,1(~ei,1, Y ) fi,2(~ei,1, Y ) · · · fi,r(~ei,1, Y )
fi,1(~ei,2, Y ) fi,2(~ei,2, Y ) · · · fi,r(~ei,2, Y )

...
...

...
fi,1(~ei,r, Y ) fi,2(~ei,r, Y ) · · · fi,r(~ei,r, Y )

 =


y1,1 y1,2 · · · y1,r

y2,1 y2,2 · · · y2,r
...

...
...

yr,1 yr,2 · · · yr,r


contains all r2 = n variables of Y . Together with Proposition 1(ii), this implies that, for each
i = 1, . . . , r, the entropy of Fi with respect to Xi is at least n. Hence, entropy(f) ≥ rn =
n3/2. �

Remark 5 (Limitations). How large can entropy of operators be? Recall that in the definition
of entropy(f) of an (n, m)-operator f , we first split the inputs into p blocks I1, . . . , Ip of some
sizes a1 ≤ a2 ≤ . . . ≤ ap, and the outputs into p blocks J1, . . . , Jp of some sizes b1, . . . bp.
Then we just take the sum of the entropies of the corresponding (to these blocks) sets of
subfunctions. Say that a partition is balanced if b1 ≥ b2 ≥ . . . ≥ bp. Note that the partition
(into the rows) which we used for the matrix product is balanced—there all bi’s were even
equal.

Since each of the sets {fj(~ei, ~y) : i ∈ It, j ∈ Jt} can have at most |Ii × Ji| = aibi functions,
Proposition 1(i) implies that the entropy of this set cannot exceed aibi. If the partition is
balanced, then Chebyshev’s inequality yields

entropy(f) ≤
p∑
i=1

aibi ≤
1
p

( p∑
i=1

ai

)( p∑
i=1

bi

)
≤ nm

p
.

On the other hand, by Proposition 1(i), we have a trivial upper bound entropy(f) ≤ pn.
Substituting p ≥ entropy(f)/n in the previous inequality, we obtain that entropy(f) ≤ n

√
m.

Thus, at least with respect to balanced partitions, the entropy of any (n, m)-operator does
not exceed n

√
m. In particular, for such partitions, matrix multiplication has the largest

possible entropy Θ(n3/2) among all (n, n)-operators.

4. Open problems

In view of Valiant’s result [25], reducing log-depth circuits to depth-2 circuits with un-
bounded fanin gates, it is important to first be able to prove a lower bound s2(fA) = Ω(n1+ε)
on the number of wires in a depth-2 circuit, computing an explicit linear operator fA(~x) = A~x
over GF2. No such bound is known even for linear depth-2 circuits, where we only allow linear
functions (sums mod 2) as gates. In this case, matrices A requiring Ω(n2/ log n) exist. So,
again, the problem is to construct such a matrix.
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Superlinear lower bounds Ω(n log n) and even of the form Ω(n log3/2 n) for linear depth-2
circuits were obtained by analyzing the determinant or the rigidity of the underlying matrix
[11, 12, 1, 9, 16, 17, 5]. For such circuits over the real field a lower bound Ω(n3/2) was proved
in [23]. However in their result it is essential that they use large integers in the matrix. It
remains an open problem to prove such a bound for 0-1 matrices. For GF2 the largest bound
is Ω(n log3/2 n) [19, 2, 20]. It remains unclear to what extent entropy can help when dealing
with linear operators.

Actually, in the case of arbitrary gates, even extremal values of s2(f) are not well under-
stood. We already know that some natural (n, n)-operators f : {0, 1}n → {0, 1}n require
s2(f) = Ω(n3/2) wires. On the other hand, s2(f) ≤ n2 is a trivial upper bound for every such
operator.

Problem 1. What is the maximum of s2(f) over all operators f?

The case of linear operators fA(~x) = A~x is particularly interesting. Note that the number
2n

2
of such operators is much smaller than the number 2n2n

of all operators.

Problem 2. What is the maximum of s2(fA) over all linear operators fA?

It is well known that in the class of linear depth-2 circuits this maximum is Θ(n2/ log n)
(see, e.g., [19]). In the class of depth-2 circuits with arbitrary gates a lower bound s2(fA) =
Ω(n log n) holds already for triangular matrix A [16]. But the gap is still very large.

A less famous problem about depth-2 circuits, related to another old problem in circuit
complexity (proving lower bounds for ACC circuits), is the following one.

A symmetric depth-2 circuit is a depth-2 circuit, where the gates on the middle layer
compute parities of their inputs, and each output gate computes the same symmetric function
of its inputs. That is, each output gate gives the value 1 iff the number of 1’s in its input
belongs to some specified for the whole circuit subset S of natural numbers. We also assume
that there are no direct wires from an input to an output node.

Say that a circuit computing an operator f = (f1, . . . , fn) represents a given boolean n×n
matrix A = (aij) if fi(~ej) = aij for every i and j. That is, the circuit is only required to be
correct on inputs with precisely one 1. Let sym2(A) be the minimum number of nodes on the
middle layer in a symmetric depth-2 circuit representing A. That is, now we count nodes,
not wires.

This measure has an equivalent definition in terms of set intersections. Namely, sym2(A)
is the smallest number m such that it is possible to associate (not necessary different) vectors
from {0, 1}m to the rows and columns so that aij = 1 iff the scalar product over the reals of
the corresponding vectors belongs to some fixed set S ⊆ {0, 1, . . . ,m}. To see the equivalence,
just associate with each output node i and each input node j the sets Ui and Vj of all their
neighbors on the middle layer. Then aij = fi(~ej) = 1 iff |Ui ∩ Vj | ∈ S.

Using counting argument, the existence of matrices A with sym2(A) = Ω(n) is quite easy
to show: there are 2n

2
different matrices, but only 2m+1 possibilities to chose S, and only

(2m)2n possibilities to assign the sets Ui and Vj .

Problem 3 (Yao). Prove sym2(A) = 2(log logn)ω(1)
for an explicit matrix A.

Together with the results of [26, 3], this would yield a super-polynomial lower bound for
ACC-circuits. Unfortunately, no lower bound larger than a trivial one sym2(A) ≥ log2 n is
known. If we would not require output gates be symmetric functions, then O(log n) nodes on
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the middle layer would be already enough to represent every matrix A. Since matrices with
sym2(A) = Ω(n) exist, this means that the symmetry of gates is a severe restriction, and
should be captured in the lower bounds argument. The difficulty here, however, is that the
circuit can use arbitrary symmetric functions. High lower bounds of the form sym2(A) = nΩ(1)

are only known for circuits using arbitrary threshold or modular gates, or their negations [10].
An interesting question is to extend this to interval gates accepting a given input vector iff
the number of 1’s in it lies in a given interval S of consecutive numbers.

Problem 4. Prove sym2(A) ≥ (log2 n)1+ε in the case of arbitrary interval gates.

The next difficulty with Problem 3 is that the circuit is allowed to output arbitrary values on
inputs ~x with more than one 1. Would we require that the circuit must correctly compute the
whole transformation fA(~x) = A~x over GF2, the problem would be trivial. Since entropy(fA)
is at least the rank rk(A) of A over GF2 (see Example 1), Proposition 1(iii) implies that any
depth-2 circuit (not just a symmetric one) computing fA must have at least rk(A) nodes on
the middle layer. In particular, if I is the n× n identity matrix, then n nodes are necessary.
On the other hand, it can be shown that m = 2 log2 n nodes on this layer are already enough
to represent the matrix I, i.e. that sym2(I) ≤ 2 log2 n. Sketch: put m nodes on the middle
layer, associate with each input variable xi its own m/2-element subset Si of these nodes,
and join the i-th output node with all middle nodes outside this set Si. Then there is a path
from the i-th input to the j-th output iff i 6= j.
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