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Abstract

We consider the clause-based version of the general model of semantic derivations
proposed by Krajitek. Resolution refutation proof is a special deterministic version
of fanin-2 clause—based derivation. We prove the following combinatorial lower bound
on the length of such derivations. Let F be a k-partite hypergraph, with at most
b points in each part such that no point belongs to more than d edges and any two
edges share at most A points. If |F| > k(d 4 1)/2 then no CNF containing such a
hypergraph among its clauses, can have a fanin-/ semantic derivation of length smaller
than exp (Q (%)) When applied to the generalized pigeonhole principle PH P"
and to blocking principles for finite geometries, this directly yields exponential lower
bounds on the length of their semantic derivations, including the exp (Q(n?/(Im)))

lower bound for the length of fanin-/ clause-based semantic derivation of PH P".
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1. Introduction

The pigeonhole principle asserts that every arrangement of n pigeons among m (m > n)
holes must leave at least one of the holes empty. A natural search problem associated with
this principle is to find such a hole. Many other problems have a similar flavor: Given an
unsatisfiable CNF formula and an assignment to its variables, find a clause which is not
satisfied. Given a hypergraph F and a set of points A which does not intersect all the edges
of F, find an edge F € F such that EN A = (. In general, given a set H of Boolean
functions and a set A C {0,1}" of binary strings, the search problem for H over the set A is
the following: given an input a € A (a query), find a function h € H (an answer) such that
h(a) = 0. The problem is valid (or well-defined) if every query has at least one answer; the
problem is to find it.

How hard it is to solve such search problems? The answer depends of course on their
representation and the computational model. A general situation is captured by the model
of ‘semantic derivations’ introduced by Krajicek [17]. This is a kind of a standard model of
straight-line program, and is defined in [17] as follows. Let F' be a set of Boolean functions.
A semantic F-derivation of a Boolean function f from the functions in H is a sequence of
functions fi,..., f; such that f; = f, and each f; is either one of the functions in H or
belongs to F' and is derived from previous functions by the semantic rule, which allows to
infer a function f; from the functions f; ,..., f;, if and only if f; > H§‘=1 fi,- As noted in [17],
proofs in any of the usual propositional calculi translate into semantic derivations: simply
replace a sequent (a formula, an equation, etc) by the corresponding Boolean function. We
are going to look semantic derivations as searching algorithms, so we slightly extend their
definition.

A semantic F-derivation for a search problem (H, A) is a directed acyclic graph G with
one distinguished node vy, called the root, and a set of out—degree 0 nodes, called the leaves.
Every node v of (i is labeled by a Boolean function f, € F'U H (called a test function) in
such a way that f, € H for every leaf v, and f,,(A) = 0 for the root vy. The only restriction
is that the labeling v +— f, must fulfill the following consistency condition: if vy,...,v; are

immediate successors of a node v in G then
I
fola) > H fu(a) forall a€ A.
=1

The consistency ensures that for every a € A there must be at least one path vy, vy, ..., v
in G from the root vy to a leaf v; such that f,,(a) = fi,(a) = ... = f,,(a) = 0. Since the last

function f,, belongs to H, we have found a desired answer for the query a. Note that, for



A ={0,1}", the sequence of all test functions in semantic F-derivation for a search problem
(H, A) is exactly the semantic F-derivation of the function f,, from H in the sense of [17]
(and vice versa). Thus, the only difference is that we represent the derivation as a graph

and relax the consistency condition to subsets A C {0,1}".

The size (or length) of a derivation is the number of nodes in it. The fanin is the maximal
out—degree ' of its node. Given a search problem, the goal is to estimate the minimum
possible size of a derivation for it.

If we allow arbitrary fanin then the problem becomes trivial: take |F'| leaves and connect
the root with each of them. Moreover, if we put no other restrictions on the labeling v — f,,
except for consistency, then the search procedure is, in general, non-deterministic. It can
be made deterministic by the following restriction: require that every node v in GG has only
two successors vy and vg, and that the corresponding test functions satisfy the inequality
fo = (xi V fo) A (mz; V fy,) for some variable ;. It is easy to see that then every input
induces exactly one path from the root to a leaf, i.e. the search is deterministic. The class
of such semantic derivations is the familiar model of (deterministic) branching programs.

The fanin in branching programs is restricted to 2 but there is no restriction on the form
of test functions. On the other hand, the most restrictive case would be to require each test
function f, to be a clause, i.e. a disjunction of some variables or their negations. If we add
the additional requirement that f, = (z; V f,,) A (-z; V f,,) then we obtain the classical
model of resolution refutation proof. 1f we add one more restriction - require the graph be
a tree - then we obtain the familiar Boolean decision tree model. Search problems in this
model were studied by Lovasz et al. [18] where a drastic difference between nondeterministic,
probabilistic and deterministic variants of this model was shown.

In this paper we concentrate on an intermediate computational model: we restrict pos-
sible test functions f, to clauses only (as in resolution) but allow large fanin and do not put
any other restrictions on the the labeling v — f,, except the consistency (hence, the result-
ing derivation needs not be deterministic). We call such derivations clause-based semantic
derivation. Formally, these are semantic F-derivations where F'is the set of all clauses. Our
main result is a general combinatorial lower bound for this model (Theorem 1 below) and

the simplicity of its proof.

INot the in-degree, it can be arbitrary. Fanin ! means that every conclusion must be derived (by the

semantic rule) from at most { hypotheses.



2. A general lower bound

In this section we state our main result and describe several its applications. We first need
to setup some notation. A hypergraph over a set X is a family F of its subsets; elements
of X are points, and sets in F are edges. The cover number 7(F) is the minimal possible
number of points in a set, intersecting all the edges of F. By an edge-search problem for F
we will mean the following: given a set A with |A| < 7(F), find an edge F of F such that
AN E =10. There can be several such edges in F; our goal is to find at least one of them.

We will be interested in the size of clause-based semantic derivation for this problem.
Recall that any such derivation is a digraph, each node of which is labeled by a clause.
Leaves are labeled by (positive) clauses {z; : 1 € E}, one for each edge £ € F. All the
remaining nodes can be labeled by clauses in an arbitrary way; consistency is the only
requirement. Note that if C = {z;: 0 € I} U{-z;: 5 € J} is a clause then C'(A) = 0 if and
only if ANT =0 and A D J. Thus, in clause-based derivations we allow tests of the form
"Does A separates a given pair of disjoint sets?”.

We will consider only special k-partite hypergraphs. Let Si,..., Sy be mutually disjoint
subsets of X, called blocks. A partial transversal is a set B C X which intersects each block
in at most one point; B is a transversal if |B| = k (in this case B intersects each block in

exactly one point).

Definition. We call a hypergraph F a (k, b, X, d)-design if there exist & mutually disjoint
blocks 51, ..., Sk such that:

1. Every edge of F is a transversal for Sy,..., Sg;
2. |Si| <bforalle=1,... k;

3. [ENF| < Xfor all edges £ # F € F;

4. Every point belongs to at most d edges of F.

Such a design F is large if every transversal of S7,..., 5 avoids at least one edge of F. Note
that any design, with more than kd edges, is large, but there also are large designs with

smaller number of edges.

Our main result is the following general lower bound on the size of clause-based semantic

derivations.



Theorem 1. Let F be a large (k,b, A, d)-design, and G be a clause-based semantic derivation
of fanin alt most [. Lel s and t be inlegers satisfying

Is <min{|F|—dt,k—1t} andt > k/2 (1)

If G solves the edge-search problem for F then |G| > 2M/% where

s(k—t—1s+1)*

R Y )

In particular, if |F| > k(d+1)/2 then

o)

Remark. Note that Theorem 1 gives also the same lower bound for the size of any clause-
based semantic derivation of the following statement Cover(F): "for any set of points A,
either |A| > 7(F) or A does not intersect some edge of A”. This statement can be written as
a propositional formula in different ways. For example, one can take an unsatisfiable CNF
formula ®(2) A U(z,y) where ®(z) consists of |F| clauses {z; : © € E}, one for each edge
E € F,and W(z,y) consist of the clauses {y;1,...,vi x|}, {=¥ij ¥}, {7wij —2;} where
1 <i#4¢ < |X|=7(F)+1and 1 <j < |X|. The meaning of this last formula is the
following: given a set of points A C X, the formula W( A, y) is satisfiable if and only if there
is an injection from {1,...,|X|—7(F)+1} to X\ A, which in turn can happen iff |A| < 7(F).
The whole formula C'over(F) has O(|F| + |X|2) clauses. Note that any semantic derivation
of Cover(F) also solves the edge-search problem for F: associate with each set A of less
than 7(F) points, a string y4 such that W(A,y4) =1, and fix this injection. (Recall that in
clause-based derivation we allow arbitrary clauses; besides main ‘x-variables’ they can have
any auxiliary ‘y-variables’). Thus, a lower bound on the size of a semantic derivation for the
edge-search problem for F is also a lower bound on the size of a semantic derivation of an
empty clause from the clauses in Cover(F). The complexity of the search problem itself is,

however, interesting in its own right.
To motivate the rest of the paper, let us mention several applications of Theorem 1.

Example 1 (Pigeonhole principle). The pigeonhole principle PHP!* (m > n + 1) says
that if each of n pigeons sits in one of the m holes (and, by the low of nature, no one sits

in two holes) then there must be an empty hole. The corresponding search problem is the
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following: given an n x m (0,1)-matrix M with m > n and exactly one 1 in each row,
find an all-0 column. In this case we have a hypergraph F with m edges, corresponding to
columns, and n blocks, corresponding to rows. Since |F| = m > n, this hypergraph is a large
(k,b, A, d)-design with k =n, b=m, A =0and d=1. Since |F|=m >n=k(d+1)/2, we
can apply (3), which yields the lower bound 9f(n?/(mD)), Recall that 22%7°/™) {5 the best known
lower bound for the minimal length of a Resolution refutation proof of PH P™ [13, 23,9, 11].
So, the reason why PHP" is hard for Resolution, seems to lie not in the weakness of
the resolution rule itself, but rather in the impossibility to keep enough information about

possible outcomes, using small (up to ) sets of clauses.

Example 2 (Affine planes). Take an affine plane AG(2, ¢) of order q. Every point lies on
q + 1 lines, and there are ¢(¢ + 1) lines, each two of which intersect in at most one point.
It is known (see [15, 5]) that every set of less than 2¢ — 1 points misses at least one line
of AG(2,¢). This result leads to the following line search problem for AG(2,q). We have
n = q(q+ 1) variables z,...,z, corresponding to points, and n leaves, labeled by clauses
C1, = Vier, @i, corresponding to lines L. Given a set of at most 2(¢ — 1) points, the problem
is to find a line with no point in this set. By the result, mentioned above, this problem is
well defined. Any semantic derivation for this problem solves the edge-search problem for
the following design F. Take any set L' = {L;,..., L,} of ¢ parallel (i.e. mutually disjoint)

lines, and consider the hypergraph F, the edges of which are all the remaining ¢* lines. Since

every such line intersects each of the lines Ly,..., L, in exactly one point, the hypergraph
Fis a (k,b, A, d)-design with k = b =d = ¢ and A = 1. To verify the largeness, let B be
any transversal. Since B intersects all the lines Ly,..., L,;, we have that B must avoid at

least one line of F, since otherwise B would intersect all the lines of AG(2,¢). Thus F is
large. Since |F| = ¢*> > q(q+1)/2 = k(d+1)/2, we we can apply (3), which yields the lower
bound 2%/1) = exp (\/ﬁ/l) on the size of any clause—based semantic derivation of fanin
< [, solving the edge-search problem for F, and hence, for any such derivation solving the

line search problem for AG(2, ¢).

Example 3 (Projective planes). Take a projective plane PG(2, ¢) of order ¢. It has the
same number n = ¢* + ¢ + 1 of lines and points; each line has ¢ + 1 points and every point
lies in ¢ 4+ 1 lines; any two lines share exactly one point. It is known (see [6, 7]) that any
set of at most ¢ + /g points must either contain a line or must avoid a line. This result
leads to the following line search problem for PG(2,q). We have n = ¢*> + ¢ 4 1 variables
Z1,...,2, corresponding to points, and and 2n leaves, labeled by clauses C} = ey x; and

Cr, = Vier, 77i. Given a set of at most ¢ + /¢ points, the problem is to find a line which
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lies entirely either in this set or in its complement. This problem reduces to the line search
problem in affine planes. The idea is to use the well-known fact that deletion of any one line
Ly from PG(2,¢q) (together with all its points) gives us affine plane AG(2,¢); the lines of
this new plane are sets L\ Ly where L # L are lines of the projective plane. Let now G be
a fanin-/ clause-based semantic derivation solving the line search problem for PG(2, ¢). Fix
an arbitrary line Ly of PG(2, ¢) and set to 0 all the variables z; with ¢ € Ly. This restriction
kills (evaluates to 1) all negative leaves of G and deletes (i.e. evaluates to 0) exactly one
variable from each positive leaf. The restriction Lg — 0 corresponds to deletion of Ly from
PG(2,¢), and hence, leads to AG(2,¢). Thus, we obtain a derivation which solves the line
search problem for AG(2,¢). As shown in the previous example, this derivation (and hence

the original derivation () must have at least 2M4/!) clauses.

3. The proofs

The proof of Theorem 1 consists of two steps: the ‘killing large clauses’ step and the ‘forcing
large clauses’ step. The goal of the first step is to show that, if the graph G would have less
than 2M/* clauses, with M defined by (2), then it would be possible to set some ¢ variables
to constants so that all long clauses in (7 are killed (i.e. are evaluated to 1). The goal of the
second step is to show that no graph can solve the desired search problem, using only short
clauses as tests. Hence, the size of G cannot be smaller than 2M/%, as desired.

The approach itself is not new. Similar ideas appear (more or less explicitly) in different
lower bounds proofs. The ‘killing’ (large clauses/monomials) idea is a standard trick in circuit
complexity (cf. the famous Switching Lemma for depth-2 AND/OR circuits). The ‘forcing’
(large clauses) idea was used by Chvatal and Szemerédi [10] to generate hard examples for
resolution. In a recent work [2], Beame and Pitassi accumulated both ideas into a direct and
elegant proof of Haken’s [13] lower bound for the pigeonhole principle PH P!, Our work
is motivated by the exposition in [2].

All the combinatorics we need is accumulated in two lemmas: the ‘killing large clauses’

lemma (Lemma 1) and the ‘forcing large clause’ lemma (Lemma 2)

3.1. Combinatorics

Lemma 1. (Killing Lemma) Let A be a hypergraph over a set X, and Sy,..., Sy be a

r/b
partition of X into sels of cardinality alt most b. If |A| < (ﬁ) / and each edge of A has



more than r poinls then there is a partial transversal T of Sy,..., Sy such that |T| <t +1
and T intersects all the edges of A.

Proof. Let n = |X|. We construct the set T via the following “greedy” procedure. Let
Al = Aand X' = X. For each 7, 1 <1 <, include in T the element z; € X* which occurs
in the largest number of sets of A°. Then remove from X* all the points of that block, which
contains z;, to obtain X**!, and remove all the sets containing z; from A° to obtain AL,
Sets deleted after ¢ + 1 steps intersect the set {z1,...,x¢41}. Since n < kb, the number of

remaining sets in A is bounded from above by « - |A| where

(D))
a = T o —b Cn—bt =€

—r/b
< edlbtrrete] o (L) |

k—1
Since A has less than o' sets, all the sets of A are already intersected by T', as desired. ]

Let T be a partial transversal of Sy,..., S, and let H C F. We say that H is a T-witness
for a set of points A if, for every transversal B containing T', we have that either BN A # () or
BNE = 0 for at least one E € H (or both). Put otherwise, every extension of T', intersecting
all the edges of H, must intersect the set A. Given a set of points A C X, define its weight
wr(A) as the minimum number |H| of edges in a T-witness H for A. Note that the largeness

of F ensures that the weight function wy(-) is well-defined for every partial transversal T

Lemma 2. (Forcing Lemma) Let T' be a partial transversal, t = |T'|, and let A C X be a
set of points of weight s = wr(A). Then

(k—t—s+1)2

e B FE v )

Lemma 2 follows directly from the following two lemmas.

Lemma 3. Let H be a minimal T-wilness for a set A. Let s = |H| and t = |T|. Then
IANE|>k—t—s+1 for every edge E € 'H.

Proof. Take an arbitrary edge F¥ € H. Since H is minimal, there must be a transversal
B D T such that the set B intersects all the edges of H' = H\ {E} but BN (EFUA) = 0.
For each edge E’' € H' choose any one point from the intersection B N E’, and let I be the
set of these choosed < |H'| = s — 1 points. Let E denote the set of all points in E, which
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belong to no of the blocks intersecting 7UT'. Since every edge F is a transversal, every block
contains only one point of E, and hence, |E| > |E| — |T| = |I| > k —t — s + 1. It remains
therefore to prove that A D FE for every edge F € H.

To prove this, take an edge F € H and an arbitrary point z € E. Our goal is to show
that z belongs to A. Let S be the (unique) block containing this point z. The fact that
point z belongs to E implies that this block S is disjoint from both T and I. Since B is
a partial transversal and BN E = §, the block S intersects B in some other point y # .
Remove from B the point y and add the point z. The resulting set (B\ {y})U{z} intersects
the edge E. Moreover, B\ {y} 2 TUT, because y € S and SN (I UT) = 0. Therefore, the
set (B\{y})U{z} contains T" and intersects all the remaining edges in H' (since [ intersects
them). Since H is a witness for A, we have that AN ((B\ {y}) U {z}) # 0. This together
with AN B = (), implies that z € A. [

Lemma 4. Let F = {E1, ..., Es} be a family of sets such that u < |E;| < v and |E;NE;| < A
for all v # 3. Then

U2S

>
[y U UES|_U+(3—1)/\

Proof. The proof is a slight modification of a similar counting argument used by K. Corradi
[12] in the case when u = v. Let X = U{_; E;. For a point = € X let d(z) be the number of
sets in F containing x. Then, for eachset £ € F, Y cpd(z) =Y per |[ENF| <v4(s—1)A\
Summing over all sets £ € F we obtain

1 1

Y S = Sz e (Se)) = (X m) = 0

EeF zek rz€X | | rz€X EeF

Using the previous estimate we obtain (us)* < s-|X|(v+ (s — 1)A), which gives the desired

lower bound on |X|. [

Proof of Lemma 2. Let {Fy,..., F;} € F be a minimal set of edges witnessing the weight
of A. By Lemma 3 there exist subsets F; C E; such that AD FyU---UF, and u < |]:72| <w
withu =%k —t—s4+1 and v = k. Lemma 4 yield the desired lower bound (4) 0

3.2. Proof of Theorem 1

Let GG be a clause-based semantic derivation of fanin at most [ and suppose that G solves the
edge-search problem for F. The largeness of F ensures that all the transversals of Sy, ..., Sk
are legal inputs for G. We will use this property to re-label the nodes of (& so that all the test
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are posilive clauses, i.e. clauses without negated literals. The idea of this transformation
is similar to that used by Buss [8] in case of the pigeonhole principle. For a point ¢, let
S(z) = S\ {¢} where S is the (unique) block containing this point 7. Replace every clause
C of GG by the clause C't which is obtained from C' by replacing each negated literal —z; by
the set of positive literals {z; : j € S(¢)}. Since for any transversal B we have that 1 € B
< BnNS() =10, it follows that C*(B) = C(B), and hence, the resulting graph G still
solves the edge-search problem for F| restricted to transversals.

The graph G has at most £ = |G| clauses. Let r be the smallest number for which

< ()" .

By Lemma 1, there is a partial transversal T such that |T| < ¢+ 1 and every clause in G,
with > r variables, has at least one variable x; with ¢ € T'. Assign now constant 1 to all the
variables x; with ¢ € T'. This kills (i.e. evaluates to 1) all clauses with r or more variables,
and hence, the resulting graph G’ can have only clauses, with less than r variables each.
Since every leaf of GG corresponds to an edge of F and each point belongs to no more than
d edges of F, at least |F| — dt of the leaves survive the restriction. These leaves correspond
to exactly those edges of F, that do not intersect 7. Thus, G’ solves the edge-search problem
for F, restricted to transversals B such that B O T. If C' = \/;c4 x; is a clause in G’ then
ANT =0 (since C survived the restriction T +— 1). We can therefore define the weight of
C' as the weight wr(A) of the corresponding set of points A. This way, each leaf of G’ gets
weight 1. On the other hand, the root must have weight larger than min {|F| — dt, k —t},
since we have at least |F| — dt leaves, for any k — ¢ of them we can find a transversal B 2O T
such that B\ T intersects all of them (recall that |B| = k and |T'| = t). Since (by soundness)
the weight of every clause is at most the sum of the weights of the (at most [) clauses from
which it is derived, we can find a clause C such that s < w(C') < s, as long as [s does not

exceed the weight of the root, which is ensured by (1). By Lemma 2 this clause has at least

s(k—t—ls+1)2

M =
k4 Xs—1)

variables. Since GG' does not have clauses with more than r — 1 variables, M must be strictly

smaller than r. Since r was minimal for which (5) holds, we have

po\ M/
Gl=(>|—— 6
o=> () ()
which is > 2M/" since t > k/2, as desired. This completes the proof of Theorem 1. [
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4. Concluding remarks

The input size of an edge-search problem for a hypergraph F is the number |F| of edges. It
is interesting to compare the lower bounds which we obtain for searching problems, resulting
from the generalized pigeonhole principle and from the line search problem in finite geome-
tries. By Theorem 1, the general lower bound is exponential in Q(k?/b) if F is k-partite with
block size b. Thus, in case of PH P}, the bound is exp (k?/|F]|), which is super-polynomial
only if |F| = o(k?/log k), and it is still not known if it remains such for |F| > k*. (Recall
that % is the number of pigeons and |F| = b is the number of holes). In this sense, the
lower bound for AG(2,q) is better: here we have |F| = k* (with & = ¢) and the bound
is exp( |.7:|> The reason, why our argument (as well as previous arguments, based on
Haken’s "bottlenecks counting” idea [13, 23, 9, 11]) does not work for PH P} with b > k?,
is that we a priori restrict our search domain to transversals only. This makes possible the
transformation G — G but binds our hands when trying to kill long clauses, since now our
killing set 7" must be (partial) transversal. Note that without this last restriction, we could
replace the bound (ﬁ)”b in Lemma 1 by (#)T, which does not depend on the block size b
at all (1). The overall conclusion is that, in order to get lower bounds for PH P} with b > k2,

one should learn more on how to force large clauses which are not assumed be positive.

The approach based on ‘effective interpolation theorems’ is now one of most successful
schemes for proving lower bounds in different proof systems (see [22] for a survey). The
main idea is to reduce the original problem to that for (monotone) Boolean circuits or
communication protocols, where large lower bounds are known. Although powerful, this
approach fails in the situations where the corresponding problems (like all three examples
in Section 2) have small circuits or small communication complexity. In such situations
we need some direct ‘combinatorial’ lower bounds argument. Theorem 1 gives such an
argument for clause-based semantic derivations. Next logical step could be to understand
the combinatorics of cutting planes proofs. All the known superpolynomial lower bounds for
the length of such proofs follow from the corresponding lower bounds on the size of monotone
Boolean [20, 1] and monotone real circuits [14, 19, 16] via appropriate interpolation theorems
[21, 4, 17, 19]. Thus, known bounds capture the weakness of corresponding circuits rather
than the weakness of cutting planes themselves. To get more insight in their structure, it
would be interesting to understand the cutting plane complexity of blocking principles for
finite geometries. These geometries have more structure then the pigeonhole principle, and
the corresponding principles have very natural formulation in terms of linear inequalities.

The Jamison-Brower-Schrijev’s theorem [15, 5] for AG(2, ¢) is given by the system of 2n + 1
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inequalities:

ZxZ-Zl, 7=1,...,n

iel,

>wi<2Aq—1)

=1

0<uz <1, t=1,...,n.

Bruen’s theorem [6] for PG(2, ¢) also can be stated as a system of 3n + 1 inequalities:

1< i <q-1, j=1,...,n
i€l

dYoxi<q+/q
=1

0<z; <1, t=1,...,n.

What is the cutting plane complexity of these systems? The ”quadratic counting” trick
used in Bruen’s proof makes plausible the conjecture that this system does not have a short
cutting planes proof, unless we allow quadratic inequalities and/or multiplication of two
inequalities. Both answers - a short cutting planes proof of Bruen’s theorem or the absence

of such proof - would be interesting.

Acknowledgment

I would like to thank Alexander Razborov for turning my attention to resolution proofs and

very interesting discussions.

References

[1] N. Alon and R.B. Boppana, The monotone circuit complexity of boolean functions. Com-

binatorica, T (1987), 1-22.

[2] P. Beame and T. Pitassi, Simplified and improved resolution lower bounds. In: Proc. of

37th FOCS’96 (to appear)
[3] A. Blokhuis, On the size of a blocking set in PG(2, p), Combinatorica 14 (1994), 111-114.

[4] M. Bonet, T. Pitassi and R. Raz, Lower bounds for cutting planes with small coefficients.
In: Proc. 27th ACM STOC (1995), 575-584.

11



[5] A.E. Brower and A. Schrijev, The blocking number of an affine space. J. Comb. Theory
(A) 24 (1978), 251-253.

[6] A. A. Bruen, Baer subplanes and blocking sets. Bull. Amer. Math. Soc. 76 (1970), 342-
344.

[7] A. A. Bruen, Blocking sets in finite projective planes. STAM J. Appl. Math. 21 (1971),
380-392.

[8] S. Buss, Polynomial size proofs of the propositional pigeonhole principle. Journal of

Symbolic Logic, 52 (1987), 916-927.

[9] S. Buss and G. Turén, Resolution proofs of generalized pigeonhole principles. Theor.
Comp. Sci., 62 (1988) 311-317.

[10] V. Chvatal and E. Szemerédi, Many hard examples for resolution. J. ACM 35 (4) (1988),
759-768.

[11] S. Cook and T. Pitassi, A feasibly constructive lower bound for resolution proofs. In-
Jormation Processing Letters 34 (1990), 81-85.

[12] K. Corradi, Problem at the Schweitzer competition. Mat. Lapok, 20 (1969), 159-162.
[13] A. Haken, The intractability of resolution. Theor. Comp. Sci., 39 (1985), 297-308.

[14] A. Haken and S. Cook, An exponential lower bound for the size of monotone real circuits.

Manuscript, 1995.

[15] R. Jamison, Covering finite fields with cosets of subspaces. J. Comb. Theory (A) 22
(1977), 253266,

[16] S. Jukna, Finite limits and monotone computations over the reals. Submitted to Com-
binatorica, 1996.

[17] J. Krajicek, Interpolation theorems, lower bounds for proof systems and independency

results for bounded arithmetic. J. Symbolic Logic, (to appear)

[18] L. Lovasz, M. Noar, I. Newman and A. Wigderson, Search problems in the decision tree
model. In: Proc. of 32th FOCS, (1991), 576-585. Journal version: SIAM J. Discr. Math.,
21 (1995).

12



[19] P. Pudlak, Lower bounds for resolution and cutting planes proofs and monotone com-
putations. Submitted to Journal of Symbolic Logic, 1995.

[20] A.A. Razborov, Lower bounds on the monotone circuit complexity of some Boolean

functions. Soviet Mathem. Doklady, 31 (1985), 354-357.

[21] A.A. Razborov, Unprovability of lower bounds on circuit size in certain fragments of

Bounded Arithmetic. Izvestia: Mathematics 59:1 (1995), 205-227.

[22] A.A. Razborov, Lower bounds for propositional proofs and independence results in
bounded arithmetic. In: Proc. of 23rd Int. Collog. Automata, Languages and Program-
ming, I[CALP’96, (Paderborn, Germany, 1996).

[23] A. Urquhart, Hard examples for resolution, J. ACM 34 (1) (1987), 209-219.

13



